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Abstract

We study the market partition between two distinct firms that de-
liver services to waiting-time sensitive customers. In our model, the
incoming customers select a firm on the basis of its posted price, the
expected waiting time and its brand. More specifically, we quan-
tify by a cost any departure from the ideal brand expected by each
incoming customer. Considering that the two underlying queueing
processes operate under high traffic regimes, we analyze the market
sharing dynamics by using a diffusion process. As a function of con-
trol parameters, such as the waiting and brand departure costs or the
incoming traffic intensity, we are able to analytically characterize a
transition between an Hotelling-like regime (dominated by brand con-
siderations) and a deadline type regime (dominated by waiting time
considerations). The market sharing dynamics is described by the
time evolution of a boundary point, which time evolution belongs to
the class of noise-induced phase transitions, so far widely discussed in
physics, chemistry and biology. Explicit illustrations for both sym-
metric (i.e. identical servers) and asymmetric cases are worked out.
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1 Introduction

In his original contribution [Hotelling 1929], H. Hotelling did consider
the case where two vendors supply an identical product that is per-
ceived homogenous by incoming customers. However, the vendors be-
ing separated in geographical space, transportation costs to be added
to the mill prices charged by the vendors are generated. In presence
of two vendors, it exists an inner market boundary point, for which the
mill price plus the transportation costs from both suppliers break even.
This seminal modeling framework has stimulated a wealth of contri-
butions with the goal to relax some of the oversimplifying hypothesis
of the original model. In particular, the introduction of elastic de-
mands (i.e. customers are not prepared to pay “prohibitive prices” for
the product) has been discussed in [Puu 2002]. Note that the original
Hotelling’s model is basically deterministic - it indeed does not incor-
porate random perturbations which actually may corrupt the prices
and then affect the customers’ decision process. Among the numerous
potential noise sources, one of the simplest and most natural way to
incorporate randomness is to consider the situations where the cus-
tomers’ decision to select one of the vendors depends on the expected
time delay before service. This simple and realistic situation has been
recently proposed by G. Cachon and P. Harker in [Cachon et al. 1999]
and [Cachon et al. 2002]. As these authors clearly emphasized in [Ca-
chon et al. 1999], the resulting inherent analytical complexity implies
that rather seldom are the models dealing with firms that simulta-
neously compete with both prices and processing rates. The aim of
this note is to investigate a class of simple models for which explicitly
analytical considerations can partly be worked out. While in [Cachon
et al. 1999] the firms are assumed to adjust their processing rates to
guarantee a fixed expected time cost, our class of models takes into
account the fluctuations of the waiting times and therefore keeps full
track of the randomness induced by the underlying queueing processes.
Note that the adjusting processing rates assumption proposed in [Ca-
chon et al. 1999] allows a discussion based only on averages. Contrary
to [Cachon et al. 1999], where no variance effects enter into the de-
scription of the model (i.e. this is effectively a “pseudo-stochastic”
model), our approach explicitly emphasizes the role played by the
fluctuations variance - also called in the sequel the “volatility” of the
underlying noise sources. As discussed in [Hassin et al. 2003], the
introduction of waiting costs in the queueing dynamics leads to the
concept of externalities (i.e. the costs induced on later incomers by
a customer who is just joining the queue). In the class of models
to be discussed here, these externalities trigger the random dynam-
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ics controlling the boundary point which defines the market partition.
While, for Hotelling-like models, the interest is paid directly on the
competition between the servers (see for instance [D’aspremont et al.
1979, Cachon 2002, Puu 2002, Sanner 2005]), in the present study we
exclusively focus on the market sharing dynamics.

Service models where distance and quality of service enter into con-
sideration find, among others, a practical framework in the secondary
health care market. More precisely, let us consider patients who wait
for non-urgent operations, that can be mid-term planed. As said
in [Montefiori 2005], where an application of the standard Hotelling
model to the secondary health care market is proposed, patients may
accept meeting monetary and non-monetary costs inherent to dis-
tance, if they expect a positive return in term of enhanced quality
of service. Furthermore, the quality of service perceived by the pa-
tients combines different aspects, including the time to wait for the
operation to take place. Another typical situation will be met when
car drivers entering into a city centre are offered alternative choices
between several parking lots (here we focus on two lots). It is nowa-
days common to post in real time, at the entrance of the city, the
number of available parking spaces of each parking lot. The actual
time required to complete a parking action, which here plays the role
of the waiting time, is clearly monotonously decreasing with the num-
ber of available spaces of the parking lot. Hence, the selection of the
best parking lot does not only depend on its location, but also on its
current content.

In section 2, we introduce the two service providers linear market
considered throughout this paper. In section 3, attention is restricted
to the simplest case where symmetric configurations are discussed.
We show that, for heavy traffic regimes of the underlying queueing
processes, the boundary point partitioning the market interval is gov-
erned by a scalar stochastic differential equation with multiplicative
noise source. For this dynamics, it is possible to explicitly calcu-
late the associated stationary probability measure. The multiplica-
tive character of the noise source offers the possibility to observe a
so-called noise-induced phase transition, which manifests itself by a
change of the modal character of the stationary probability measure -
a transition from uni- to a bimodal probability density. In the present
context, the transition between these two regimes relates to a transi-
tion between a regime where the Hotelling’s spatial (i.e. the brand)
character dominates in the decision taken by the incoming customers
and a regime where the time delays dominate. We explicitly work
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out a simple, though fully representative, illustration belonging to our
class of models. For this particular case, we are able to fully cal-
culate the relaxation rate (i.e. the transient regimes) characterizing
the approach towards the final statistical equilibrium. The relaxation
process is strongly dependent on the relative importance of the exter-
nalities arising in the associated queueing processes. A short account
devoted to simulation experiments explicitly comforts our analytical
findings. The dynamics arising for asymmetric configurations is dis-
cussed in section 4. Following the technique used for the symmetric
case, we compute the stationary probability density function of the
boundary point when the two servers work at different service rates
(i.e. dynamic asymmetry). We also consider the cases where the two
service providers charge non-equal prices and the configurations where
the two servers do not have symmetric positions with respect to the
center of the market. We show that while these static asymmetries
strongly influence the transient regime, they however do not affect the
stationary measure.

2 Model for Market Sharing Dynam-

ics

As in [Cachon et al. 1999], our starting point will be a two servers
Hotelling’s model where two service providers S1 and S2 are located in
a (linear) market confined on a segment Ω := [−∆,+∆] ⊂ R, ∆ > 0.
The positions of the service providers are denoted respectively by x1

and x2 and satisfy x1 < x2. Let L = x2 − x1 denotes the distance
between S1 and S2. The servers S1 and S2 charge respectively prices
p1 and p2. Departing now from the original Hotelling’s model, we add
queueing processes in front of S1 and S2 and following [Hassin et al.
2003], we will attach waiting costs to any customer lining in the queues
before being served. Taking into account waiting costs thus confers
a dynamical character to the original Hotelling’s model. Specifically,
our dynamic model exhibits the following features and obeys to the
following rules:

a) Arrivals dynamics. Incoming customers follow a Poisson rule
with rate Λ, hence the average time between two arrivals will be
Λ−1.

b) Spatial distribution of the arrivals. Incoming customers arrive
at a random location x ∈ Ω drawn from a uniform probability
density U(Ω) with support on Ω.

c) Services dynamics. Both servers Si, i = 1, 2, have generally
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distributed service times with rate µi, hence the average service
time will be µ−1

i , i = 1, 2.

d) Traffic intensity. The traffic into the system is limited to
ρ := Λ

µ1+µ2
< 1. This ensures that the system is globally stable,

i.e. the global incoming rate is less than the global service rate.

e) Queueing processes. When an incoming customer finds both
S1 and S2 busy, he/she will wait for service and line-up in a
queue. The capacity of the queue is assumed to be unlimited
and the service discipline is first-in-first-out (FIFO). In view of
points a) and c), we hence consider M/G/1 queues.

f) Customer information gathering. Upon his/her arrival at x ∈
Ω, each incoming customer knows:

1) his/her relative distance | x − x1 | and | x − x2 | to S1

and S2.

2) the contents N1(t) and N2(t) of both queues (t ∈ R
+

being the arrival time). In other words, both queue contents
are observable to any incoming customer.

g) Cost structures. There are two types of costs incurred by any
customer, namely:

1) the waiting time cost (WTC), characterized by a cost
parameter cw with physical unit

[

dollar
time unit

]

.

2) the brand departure cost (BDC), quantified by a cost
parameter ct with physical unit

[

dollar
brand distance unit

]

.

h) Decision policy. Upon arrival, an incoming customer is aware
of:

- the queue contents N1(t) and N2(t),

- his/her relative position to S1 and S2,

- the values of the costs cw and ct,

- the service rates µ1 and µ2,

- the posted prices p1 and p2.

Based on this information set, the incoming customer decides
which server S1 or S2 he/she will join.

i) Demand structure. Following the original Hotelling’s case, we
assume an inelastic demand, i.e. a customer will purchase the
service at any price, even if the proposed price is arbitrarily large.

A sketch of our modeling framework can be found in Fig. 1. Extending
original Hotelling’s configuration, waiting times confer to the above
class of models an explicit dynamic character.
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Figure 1: Bounded market with two vendors and time sensitive customers.

When served by Si, an incoming customer feels a utility function
Ui(x), i = 1, 2, where x is the customer’s initial position which en-
ters into the decision policy. In words, the functions Ui(x) quantify
the gain realized by a customer choosing server Si when he/she enters
at location x. Specifically, for linear waiting and transportation costs,
the utility functions read as:

Ui(x) = a − pi − ct|x − xi| − cwE (Wi|Ni(t)) , i = 1, 2, (1)

with a being a systematic reward due to the service and E (Wi|Ni(t))
standing for the conditional expected waiting time at Si when Ni(t)
already waiting customers are observed. As µ−1

i is the average service
time at server Si, this last conditional expectation is readily given by:

E (Wi|Ni(t)) =
Ni(t)

µi

.

We obviously assume that any customer does maximize his utility
function when choosing one of the two servers. This suggests to in-
troduce a time-dependent boundary position Yt ∈ [−∆,+∆] implicitly
defined by:

U1 (Yt) = U2 (Yt) . (2)

Hence, our strictly increasing BDC which we assume from now on
imply that Yt dynamically separates the two monopolies held by S1

and S2. A sketch of the situation is given in Fig. 2. As Yt is a
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function of the two stochastic processes N1(t) and N2(t), it will be
itself a stochastic process.

Figure 2: Cost structure as a function of the customers’ location. The total costs for
a customer located at position x are the sum of the selling price pi, the waiting time
cost cwE (Wi|Ni(t)) (identical service rates are assumed in this figure) and the brand
departure cost ct|x − xi|. Any customer chooses the service provider minimizing his/her
total costs (i.e. it corresponds to maximize his/her utility function). As a consequence, all
the customers standing on the left of Yt will choose S1, those on the right go to S2. The
difference between the two figures is the current queue contents. These contents determine
the position of the boundary point Yt, which separates the respective market shares held
by S1 and S2.

Let λi(t, Yt) denotes the partial incoming rate of customers feeding Si

at time t and hence:

λ1(t, Yt) + λ2(t, Yt) = Λ, ∀t ∈ R
+. (3)

In view of the assumption b) (i.e. spatially uniform arrival on Ω =
[−∆,+∆]), the partial traffic flows feeding S1 and S2 result from the
Bernoulli “thinning” of the incoming Poisson flow with global rate Λ.
The branching probability is given by P = ∆−Yt

2∆ and it is established
[Çinlar 1975] that the thinning produces two independent Poisson pro-
cesses with partial rates:

λ1(t, Yt) =
∆ + Yt

2∆
Λ and λ2(t, Yt) =

∆ − Yt

2∆
Λ. (4)
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For the utility functions given by Eq.(1), the time-dependent boundary
point will obey, ∀t ∈ R

+:

Yt =











a) cw

2ct

(

N2(t)
µ2

− N1(t)
µ1

)

+ x1+x2
2 + p2−p1

2ct
if ctL ≥ |Ψ| ,

b) + ∆ if ctL < Ψ,
c) − ∆ if ctL < −Ψ,

(5)

where:

Ψ := Ψ (N1(t), N2(t), µ1, µ2, p1, p2) = p2 − p1 + cw

(

N2(t)

µ2
− N1(t)

µ1

)

.

In case a), Yt ∈ [x1, x2] ⊂ [−∆,+∆]. Indeed in this case, the BDC
from one server to the other (i.e. ctL) is greater than the global differ-
ence between the prices and the WTC’s of the two servers (i.e. |Ψ|).
Hence, a customer located near the server having the longest queue
will choose this server anyway. In cases b) and c), any customer in the
whole interval [−∆,+∆] joins the server having the shortest queue.
Indeed, the gain in WTC (due to the difference between the queue
contents) and in price exceeds the BDC incurred by the distance from
one server to the other. A representation of the dynamics induced by
Eq.(5) for a particular choice of the control parameters is found in
Fig. 3.

We now separately discuss the symmetric and the asymmetric con-
figurations.

3 Symmetric Configurations

The positions of the service providers are assumed to satisfy −∆ ≤
x1 ≤ 0 and 0 ≤ x2 ≤ +∆ and they are located symmetrically with
respect to the center of the market, i.e. x1 = −x2. Furthermore, the
servers S1 and S2 offer homogenous services µ1 = µ2 = µ and both
charge an equal price p1 = p2 = p.

Let Ai(t), Di(t) and Ni(t) respectively denote the numbers of arrivals,
departures and the population in Si at time t. From now on, we re-
strict ourselves to heavy traffic regimes characterized by ρ = Λ

2µ
= 1−ǫ,

with ǫ small. Writing

Ni(t) = Ai(t) − Di(t),

in heavy traffic the server Si has very long busy period and hence the
process Ni(t) does almost never vanish, i = 1, 2. This implies that
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Dynamics induced by Eq. (5)

Figure 3: Typical representation of the boundary position dynamics for ′∆ = 1. The solid
line shows the dynamics induced by Eq.(5) when ct = 10, cw = 8 × 10−3, µ1 = µ2 = 1,
p1 = p2 = 1 and x2 = −x1 = 3

4
. The dashed line shows the dynamics given by Eq.(21)

when γ = 5.33 × 10−4.

the departure and arrival processes are almost independent. In heavy
traffic regimes, it is well established (see in particular [Mehdi 1991])
that both queue contents at time t are well approximated by diffusion
processes of the form:

Ni(t) =

∫ t

0
[λi(s, Ys) − µ] ds +

∫ t

0
Vi(s, Ys)dBi,s i = 1, 2, (6)

where B1,t and B2,t are independent standard Brownian motions and
the terms Vi(t, Yt) denote the state-dependent ”volatilities” given by:

Vi(t, Yt)
2 = λi(t, Yt)

3σ2
a,i + µ3σ2

s,i i = 1, 2, (7)

with σ2
a,i (resp. σ2

s,i) being the variance of the inter-arrival times (resp.
the variance of the service times) for server Si. Using Eqs.(3) to (7)
and the fact that B1,t and B2,t are independent, we therefore can write:

N2(t) − N1(t) = −Λ

∆

∫ t

0
Ysds +

∫ t

0
V (s, Ys)dBs, (8)
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with Bt being a standard Brownian motion and V 2(t, Yt) = V1(t, Yt)
2+

V2(t, Yt)
2 = Λ+µ3

(

σ2
s,1 + σ2

s,2

)

- remember that for Poisson processes,

we have σ2
a,i = λi(t, Yt)

−2.

In this symmetric configuration, Eq.(5) reduces to, ∀t ∈ R
+:

Yt =







cw

2µct
(N2(t) − N1(t)) if ctL ≥ |Ψ̃|,

+∆ if ctL < Ψ̃,

−∆ if ctL < −Ψ̃,

(9)

where, for this symmetric case, we define:

Ψ̃ = Ψ (N1(t), N2(t), µ, µ, p, p) =
cw

µ
(N2(t) − N1(t)) .

To proceed further with analytical calculations, we approximate the
dynamics implied by Eq.(9) by introducing an odd (due to the sym-
metry of the problem), effective monotonously increasing one-to-one,
C2(R) function:

f(·) : R → [−1,+1] (10)

fulfilling:
Yt = ∆f (γ (N2(t) − N1(t))) , (11)

with:
γ :=

cw

µ L ct

. (12)

The control parameter γ is dimensionless and quantifies the respective
importance of the different costs. Note that in Eq.(12), the time unit
is measured in average service time.

As f is invertible, Eq.(11) can be written as:

f−1

(

Yt

∆

)

= γ (N2(t) − N1(t)) . (13)

Using Eq.(8), Eq.(13) becomes:

f−1

(

Yt

∆

)

= −γΛ

∆

∫ t

0
Ysds + γ

∫ t

0
V (s, Ys)dBs. (14)

Differentiating, we obtain:

(

f−1
)′
(

Yt

∆

)

dYt = −γΛYtdt + ∆γV (t, Yt)dBt, (15)

which can be written as:

dYt = − γΛYt

(f−1)′
(

Yt

∆

)dt +
∆γV (t, Yt)

(f−1)′
(

Yt

∆

)dBt. (16)
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In our settings (remember that we deal with M/G/1 queues), V (t, Yt) =

V =

√

Λ + µ3
(

σ2
s,1 + σ2

s,2

)

does not depend on Yt nor on t. We can

thus write Eq.(16) as:

dYt = − γΛYt

(f−1)′
(

Yt

∆

)dt +
∆γV

(f−1)′
(

Yt

∆

)dBt. (17)

The stochastic differential equation (SDE) given by Eq.(17) describes
the effective dynamics of the boundary position Yt. The White Gaus-
sian noise dBt being merely the limit of finitely correlated processes,
we assign to the underlying stochastic integral relative to Eq.(17) the
Sratonovitch’s interpretation [Horsthemke 2006]. Hence, the transi-
tion probability density P (y, t | y0, t0) describing the solution of the
SDE (17) reads as:

∂

∂t
P (y, t | y0, t0) = FP (y, t | y0, t0), (18)

with Fokker-Planck operator taking here the form, [Horsthemke et al.
2006]:

F(·) :=
∂

∂y

[

γΛy

(f−1)′
(

y
∆

) (·)
]

+
1

2

∂

∂y

[

g(y)
∂

∂y
g(y) (·)

]

, g(y) =
∆γV

(f−1)′
(

y
∆

) .

The stationary probability density function Ps(y) solving Eq.(18),
with vanishing left hand side, reads as:

Ps(y) = N
(

f−1
)′
( y

∆

)

exp

{

− 2Λ

γ∆2V 2

∫ y

u
(

f−1
)′
( u

∆

)

du

}

, (19)

for y ∈ [−∆,+∆], with N < ∞ a normalization constant.

Symmetry (i.e. our assumptions that x1 = −x2, µ1 = µ2 and p1 = p2)
implies that Ps(y) = Ps(−y). In particular, studying the curvature
R(0) of Ps(y) at y = 0 directly furnishes information regarding the
modularity of Ps(y). From Eq.(19), we directly obtain:

sign {R(0)} = sign
{

−γV 2f ′′′(0) − 2Λ
(

f−1
)′

(0)
(

f ′(0)
)3
}

. (20)

For given functions f , we observe that the sign of the curvature R(0)
directly depends on the values of the (control) external parameters
(here cw, ct, L, Λ and µ) solely. A curvature sign change exhibits a
transition of regime triggered by the presence of fluctuations. This
is referred as a noise-induced phase transition [Horsthemke et al.
2006] and an explicit illustration is now worked out.
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3.1 Explicit Illustration - Symmetric Case

Belonging to the previous class of models, the particular choice

Yt = ∆tanh (γ (N2(t) − N1(t))) (21)

leads to very simple algebra. A particular representation of Eq.(21),
put into comparison with the dynamics induced by Eq.(5), is found in
Fig. 3.

For this particular case, the SDE (17), describing the effective bound-
ary point dynamics, becomes:

dYt = −γΛYt

(

1 −
(

Yt

∆

)2
)

dt + ∆γV

(

1 −
(

Yt

∆

)2
)

dBt. (22)

In view of Eq.(19), the corresponding stationary probability density
function simply becomes:

Ps(y) = N
(

1 −
( y

∆

)2
)

Λ
γV 2 −1

for y ∈ [−∆,+∆], (23)

where N is the normalization constant given here by:

N−1 = ∆

∫ 1

0
t−

1
2 (1 − t)

Λ
γV 2 −1

dt = ∆B

(

1

2
,

Λ

γV 2

)

,

where B(x, y) := Γ(x)Γ(y)
Γ(x+y) and Γ(x) stands for the Gamma function.

An illustration of the probability density function given by Eq.(23) for
different values of γ and ∆ = 1 is found in Fig. 4. Regarding Eq.(20),
the sign of the curvature R(0) of Ps(y) at y = 0 is here given by:

R(0)











> 0 when Λ
γV 2 < 1,

= 0 when Λ
γV 2 = 1,

< 0 when Λ
γV 2 > 1.

(24)

The information given by Eq.(24) (which is in perfect agreement with
what we would expect with regard to the form of Ps(y) given by
Eq.(23)) perfectly describes the modularity of Ps(y) and the underly-
ing noise-induced phase transition.

3.1.1 Transient Behavior

For the choice given in Eq.(21), we can also study the rate of approach
to the equilibrium. Indeed, by introducing the change of variables:
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Figure 4: Stationary probability density function of the time-dependent boundary position
Yt when ∆ = 1, Λ = 1.8, µ = 1 (ρ = 0.9) and the service time processes are Poisson. This
density is drawn for three different values of γ = [0.8; 0.47; 1.6 · 10−2]. Furthermore, when
γ → ∞ (it corresponds to purely deadline type regimes), the density is sharply peaked at
y = −∆ = −1 and y = +∆ = +1. In the other limit, γ → 0 (corresponding to purely
Hotelling-like regimes), the density is restricted to a single peak at y = 0. This graph
clearly exhibits the noise-induced phase transition arising in our dynamic model.

t 7→ τ = γ2V 2t, Xt 7→ Yt = ∆ tanh(Xt), (25)

the dynamics given by Eq.(22) reduces to:

dXτ = −
(

Λ

γV 2
+ 1

)

tanh(Xτ )dτ + dWτ

:= −2K tanh(Xτ )dτ + dWτ (26)

and the time-dependent solution P (y, t | y0, 0) of the associated Fokker-
Planck is known for long (see for instance [Wong 1964]). As an illus-
tration, let us mention that for the situations where the dimensionless
parameter K := Λ

2γV 2 + 1
2 ∈ N, the explicit form simplifies somewhat

and is given by [Wong 1964]:
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P (y, t | y0, 0) =
1

(1 + z2)K+ 1
2

[

(1 + z2
0)

K
2 (1 + z2)

K
2

1

2
√

πt
e−K2te−g(z,z0,t)2

]

+

1

π(1 + z2)K+ 1
2

K−1
∑

n=0

(K − n)

n!Γ(2K + 1 − n)
e−n(2K−n)tθn(z0)θn(z)fn(z, z0, t), (27)

with the definitions:

sinh(z) := y, fn(x, x0, t) :=
1√
π

∫ g(x,x0,t)+(K−n)
√

t

g(x,x0,t)−(K−n)
√

t

e−u2
du,

g(x, x0, t) :=
arcsinh(x) − arcsinh(x0)

2
√

t

and the polynomials:

θn(x) := (−1)n2K−nΓ(K − n +
1

2
)(1 + x2)K+ 1

2
dn

dxn
(1 + x2)n−K− 1

2 .

In particular, the long time scale trelax governing the approach to the
stationary state given by Eq.(23) is determined by the spectral gap
between 0 and the first non vanishing eigenvalue of the Fokker-Planck
equation (18) (remember that the vanishing eigenvalue corresponds to
the stationary probability measure given by Eq.(19)). It follows that:

1/trelax =







(2K − 1)γ2V 2 = Λγ if K ≥ 1,

K2γ2V 2 = γΛ+γ2V 2

2 if K < 1.

(28)

From Eq.(28), we can draw the following remarks:

a) Spectral characteristics of the Fokker-Planck equation. In view
of Eq.(28), there are two relaxation regimes governed by the spec-
tral properties of the associated Fokker-Planck equation (18). As
discussed in [Wong 1964], for K ≥ 1 the spectrum exhibits both
discrete and continuum parts whereas for K < 1 only the con-
tinuum part survives.

b) Regime transitions. Note that the transition from unimodal

to bimodal densities given in Eq.(23) by
(

Λ
γV 2 − 1

)

= 0 coincides

with the transition in the relaxation regimes given by Eq.(28)

c) Rate of approach to the equilibrium. When discrete eigen-
values exist, the asymptotic time relaxation towards the single
mode stationary probability density (given by Eq.(23)) is faster
compared to the relaxation rate associated with the purely con-
tinuum spectrum which drives the system to the bimodal density
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(given by Eq.(23)). This can be intuitively understood in lim-
iting regimes. Indeed, for the pure Hotelling’s case, a situation
arising when ct → ∞, the boundary position probability density
is delta-peaked in the middle of the market interval, (remem-
ber that we did focus in this section on symmetric configura-
tions) and the relaxation time to reach this equilibrium is van-
ishingly small - this corresponds to the deterministic scheduling
which commands to “join the closest server”. For dominating
Hotelling’s type regimes, the externalities (i.e. the waiting costs
affecting incomers arriving behind a customer entering into ser-
vice) have little influence on the equilibrium probability density
which describes the boundary point - this produces a fast re-
laxation towards the statistical equilibrium, which will be close
to the limiting delta-peaked density. In the contrary, when the
deadline type regime dominates, a new incomer strongly modifies
the dynamical state of the system and hence strongly perturbs
the underlying probability measure, thus implying long relax-
ation times to the statistical equilibrium. Note that for K = 0
in Eq.(28), a situation realized when cw → ∞, the relaxation
time diverges to infinity, meaning that no statistical equilibrium
exists - this corresponds to the purely deterministic scheduling
which commands to always “join the server exhibiting the short-
est queue”.

3.1.2 Simulation Experiments

We have simulated the dynamics of the boundary position Yt in the
particular case where Yt fulfills Eq.(21). Each customer, upon arrival,
determines on which side of the boundary point Yt (dynamically given
by Eq.(21), with regard to the current content of the queues) is his/her
(uniformly distributed) position and he/she joins the queue hence cho-
sen. We have computed an estimation of the stationary probability
density function of the boundary position Yt after 105 customers have
passed through the system. The simulation experiments performed for
different values of the control parameters (here γ, Λ and µ) confirm the
presence of the noise-induced phase transition. The particular simu-
lation results are compared with theoretical findings given by Eq.(23)
(see Fig. 5).

4 Asymmetric Configurations

Different sources of asymmetry are possible:
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Figure 5: Simulated and theoretical stationary probability density function of the time-
dependent boundary position Yt = ∆ · tanh (γ (N2(t) − N1(t))) when ∆ = 1, Λ = 1.9,
µ = 1 (ρ = 0.95), γ = 5 · 10−2 and the service time processes are Poisson.

- Dynamic asymmetry. This situation is encountered when het-
erogeneous servers are operating, it is treated in section 4.1.

- Static asymmetry. This arises in presence of non-symmetric
server locations and non-equal prices. Configurations where the
servers have asymmetric positions with respect to the center of
the market and situations where the posted prices are different
lead to analogous dynamics and are discussed in section 4.2.

4.1 Heterogeneous Servers

We treat in this section the situations where the two service providers
work at different service rates µ1 6= µ2 but post the same prices p1 =
p2 = p and have symmetric locations x2 = −x1. For utility functions
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satisfying Eq.(1), the dynamic boundary point Yt here obeys , ∀t ∈ R
+:

Yt =



















cw

2ct

(

N2(t)
µ2

− N1(t)
µ1

)

if ctL ≥ cw

∣

∣

∣

(

N2(t)
µ2

− N1(t)
µ1

)∣

∣

∣
,

+∆ if ctL < cw

(

N2(t)
µ2

− N1(t)
µ1

)

,

−∆ if ctL < cw

(

N1(t)
µ1

− N2(t)
µ2

)

.

(29)

In view of Eq.(29), the dynamics is here driven by the difference be-

tween the normalized numbers of customers Ni(t)
µi

, i = 1, 2, waiting
in the different queues. While we have used the approximation given
by Eq.(11) in the symmetric case, we approximate here the dynamics
implied by Eq.(29) with:

Yt = ∆f

(

γ̃

(

N2(t)

µ2
− N1(t)

µ1

))

, (30)

where f is a function satisfying the same hypothesis as in the sym-
metric case and:

γ̃ :=
cw

Lct

. (31)

Note that γ̃ = µγ (with γ being given by Eq.(12)). Following the same
methodology used to derive Eqs.(6) to (8), it ensues that:

N2(t)

µ2
−N1(t)

µ1
=

Λ

2

∫ t

0

[(

1

µ2
− 1

µ1

)

− 1

∆

(

1

µ2
+

1

µ1

)

Ys

]

ds

+

∫ t

0
Ṽ (s, Ys)dBs, (32)

where, for Poisson arrival and service processes:

Ṽ (t, Yt)
2 =

V1 (t, Yt)
2

µ2
1

+
V2 (t, Yt)

2

µ2
2

=
ΛYt

2∆

(

1

µ2
1

− 1

µ2
2

)

+
Λ

2

(

1

µ2
1

+
1

µ2
2

)

+

(

1

µ1
+

1

µ2

)

.

Starting from Eq.(30) and following the lines used to derive Eq.(11)
to Eq.(17), we obtain:

dYt =





γ̃Λ∆
2

(

1
µ2

− 1
µ1

)

− γ̃ΛYt

2

(

1
µ1

+ 1
µ2

)

(f−1)′
(

Yt

∆

)



 dt +
∆γ̃Ṽ

(f−1)′
(

Yt

∆

)dBt.

(33)
Setting µ1 = µ2 = µ in Eq.(33), we directly recover the dynamics valid
in the symmetric case, given by Eq.(17). The stationary probability
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density function ensuing from the dynamics stated in Eq.(33) is given
by:

Ps(µ1, µ2; y) = N
(

f−1
)′ ( y

∆

)

Ṽ (t, y)
·

exp







Λ

γ̃∆2

∫ y





∆
(

1
µ1

− 1
µ2

)

− u
(

1
µ1

+ 1
µ2

)

Ṽ (t, u)2





(

f−1
)′
( u

∆

)

du







,

(34)
where N is a normalization constant. Note that the structure of the
dynamics obviously implies that Ps(µ1, µ2; y) = Ps(µ2, µ1;−y). Re-
mark that we consistently recover Eq.(19) when we fix µ1 = µ2 = µ
in Eq.(34).

4.1.1 Explicit Illustration - Asymmetric Case

For the particular choice f(x) = tanh(x), we find:

Ps(µ1, µ2; y) = N
(

1 +
y

∆

)−1−β−α
ξ−δ

(

1 − y

∆

)−1−β+α
ξ+δ

(δ∆ + ξy)
2(βξ−αδ)

ξ2−δ2
− 1

2 ,

(35)
where:

α = − γ̃Λ∆

2

(

1

µ1
+

1

µ2

)

, β =
γ̃Λ∆

2

(

1

µ1
− 1

µ2

)

, ξ =
γ̃2Λ∆

2

(

1

µ2
1

− 1

µ2
2

)

and δ =
γ̃2Λ∆

2

(

1

µ2
1

+
1

µ2
2

)

+ γ̃2∆

(

1

µ1
+

1

µ2

)

.

A sketch of the stationary distributions arising for heterogeneous ser-
vices is given in Fig. 6. We observe that Ps is shifted (and biaised)
to the opposite side of the most effective server. This server clearly
attracts more customers than the slowest one. This illustrates the fact
that the most effective server does enhance its market share.

Observe that for µ1 = µ2 = µ in Eq.(35), we consistently recover
Eq.(23).

4.2 Asymmetric Positions and Different Prices

When the two service providers are not symmetrically located with
respect to the center of the market (i.e. x1 6= −x2), but have equal
service rates and prices, the utility functions felt by the customers are
modified such that the boundary position Yt obeys:

Yt =







cw

2µct
(N2(t) − N1(t)) + x1+x2

2 if ctL ≥ |Ψ̃|,
+∆ if ctL < Ψ̃,

−∆ if ctL < −Ψ̃.

(36)
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Figure 6: Stationary probability density function of the time-dependent boundary position
Yt for heterogeneous service rates µ1 6= µ2 and f(x) = tanh(x). Here, ∆ = 1 and Λ = 5.7.
Left: γ̃ = 0.15 (Hotelling-like regime). Right: γ̃ = 2.4 (deadline type regime), note
that the mixed boundary behavior of the dash-dot curve can only arise for asymmetric
configurations.

Similarly, when the service providers differ only in their posted price
(i.e. p1 6= p2), the time-dependent boundary position obeys:

Yt =











cw

2µct
(N2(t) − N1(t)) + p2−p1

2ct
if ctL ≥ |Ψ̂|,

+∆ if ctL < Ψ̂,

−∆ if ctL < −Ψ̂,

(37)

where:

Ψ̂ = Ψ (N1(t), N2(t), µ, µ, p1, p2) = p2 − p1 +
cw

µ
(N2(t) − N1(t)) .

For both cases (or a combination of them), the addition of a static
asymmetry contribution is required and the dynamics can be now
approximated as:

Yt = ∆f (γ (N2(t) − N1(t) + η)) . (38)

Using the same methodology as for the symmetric case, we get:

f−1

(

Yt

∆

)

= −γΛ

∆

∫ t

0
Ysds + γ

∫ t

0
V (s, Ys)dBs + γη. (39)

When taking the time-derivative of Eq.(39), the asymmetric contri-
bution (i.e. γη) disappears, and we get back to symmetric dynamics
given by Eq.(15). Hence for static asymmetry, the stationary probabil-
ity density coincides with the symmetric case, given by Eq.(19). This
should in fact not come as a surprise. Indeed, the static asymmetry
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manifests itself only during the transient regime. Starting with empty
queues for both servers, the boundary point is initially located closer
to the less attractive (in terms of price and/or position) server, imply-
ing thus a larger feeding rate to the most attractive one. The (static)
lack of attractivity of one server will gradually be counterbalanced by
a (dynamic) larger number of customers visiting the most attractive
server. Asymptotically, the stationary regime for Yt behaves as in the
symmetric case. Note however that, contrary to the symmetric case,
the stationary queue contents will however not be equal anymore.

5 Conclusion

When alternative choices between services are offered to customers,
several criteria enter into their final selection decision. There are
namely static criteria such as posted prices and server locations as
considered in the original Hotelling’s model and dynamic aspects typ-
ified by the waiting times before service. It is intuitively clear that the
negative aspects of the actual and/or perceived waiting times strongly
affect the final customers’ satisfaction and hence their decisions. As in
generic situations the waiting time is an intrinsically random quantity,
it is naturally described in the context of queueing theory. Focusing on
the simple duopoly configuration, we study the (stochastic) dynamics
of the frontier which defines the market partition. For heavy traf-
fic regimes of the underlying queueing processes, the market frontier
can be described by a (random) diffusion dynamics (i.e. a differen-
tial equation driven by a White Gaussian Noise) with a multiplicative
noise (i.e. a state dependent diffusion term). It is remarkable that
the stationary probability measure characterizing the frontier process
exhibits a noise-induced phase transition triggered by the values of the
external control parameters (brand departure cost, waiting time cost,
service rate and spatial separation between the servers). Note that
multiplicative noise processes are not confined to physics, chemistry
and biology domains where they first have been applied, they also nat-
urally occur in operational research, in economics and more generaly
in social sciences. One of the most popular illustration is clearly found
in financial mathematics - the Black-Scholes model, which is based on
the geometric Brownian motion (hence a multiplicative noise process).
Note however that contrary to the simple market sharing dynamics
considered here, no noise-induced transition occurs in the financial
context.

20



Acknowledgments

This work is partially supported by the “FNSR” (Fonds National Su-
isse pour la Recherche) and by the Fundaçao para a Ciênca e a Tec-
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