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a b s t r a c t 

The functional organization of neural processes is constrained by the brain’s intrinsic structural connectivity, i.e., the connectome. Here, we explore how structural 

connectivity can improve the representation of brain activity signals and their dynamics. Using a multi-modal imaging dataset (electroencephalography, structural 

MRI, and diffusion MRI), we represent electrical brain activity at the cortical surface as a time-varying composition of harmonic modes of structural connectivity. 

These harmonic modes are known as connectome harmonics. Here we describe brain activity signal as a time-varying combination of connectome harmonics. We 

term this description as the connectome spectrum of the signal. We found that: first, the brain activity signal is represented more compactly by the connectome 

spectrum than by the traditional area-based representation; second, the connectome spectrum characterizes fast brain dynamics in terms of signal broadcasting 

profile, revealing different temporal regimes of integration and segregation that are consistent across participants. And last, the connectome spectrum characterizes 

fast brain dynamics with fewer degrees of freedom than area-based signal representations. Specifically, we show that a smaller number of dimensions capture 

the differences between low-level and high-level visual processing in the connectome spectrum. Also, we demonstrate that connectome harmonics capture more 

sensitively the topological properties of brain activity. In summary, this work provides statistical, functional, and topological evidence indicating that the description 

of brain activity in terms of structural connectivity fosters a more comprehensive understanding of large-scale dynamic neural functioning. 
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. Introduction 

The brain is a large biological network of interconnected neural pop-

lations. Given the vast number of neural populations, at the macro-

copic level, the activity of the brain is commonly studied using a par-

ellation. The choice of brain parcellation into areas of interest reflects

he underlying assumption on how large populations of neurons cluster

ogether, and typical clustering models are anatomical ( Desikan et al.,

006 ), functional ( Gordon et al., 2016 ; Yeo et al., 2011 ), structural

 Fan et al., 2016 ) or multi-modal ( Glasser et al., 2016 ). Considering

he entire brain, its activity can be represented as a trajectory over time

n a high-dimensional coordinate system where each dimension repre-

ents the activity of a specific brain area. Even though these brain areas

re commonly regarded as independent units, they synchronize among

hem according to their connectivity ( Vincent et al., 2007 ). In this work,

e focus on local measures of cortical electrical activity as measured by

ource reconstructed electroencephalography (EEG). 

In particular, we assume that brain activity is defined on top of

he structural connectivity (SC), i.e., the connectome ( Hagmann, 2005 ;
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porns et al., 2005 ). The SC can be conceptualized as a graph in which

he nodes are defined as gray matter brain areas using a reference atlas

nd a parcellation (see Fig. 1 C). The edges of this graph reflect some

roperty of the estimated white matter connectivity (number of fibers,

heir average length or mean fractional anisotropy), which is estimated

sing diffusion magnetic resonance imaging ( Hagmann et al., 2008 )

dMRI, see Fig. 1 D). When analyzing any signal, the graph upon which

t is defined allows us to draw observations from a global perspective

as opposed to local). For example, in a movie, the graph upon which

he image is defined consists of a two-dimensional grid, in which pixels

re connected to their four nearest neighbors. This graph allows us to

etermine the relevance of a pixel value within the image at a given

ime-point, i.e., data from neighboring pixels can be seen as redundant,

f both pixels encode a piece of background, or very significant, if they

re forming an edge belonging to a contour. 

When analyzing a signal of which the underlying domain is known

nd can be defined by a graph, such as the structural connectiv-

ty, one can decompose the signal as the sum of graph Laplacian

igenvectors. This operation is known as the graph Fourier transform
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Fig. 1. Connectome harmonics for visual evoked potentials. (A) The visual evoked potentials’ experimental design consisted in the presentation of two types of stimuli: 

faces and scrambled-faces. The face images were taken from an openly available dataset ( Pascucci et al., 2021 ) and cropped with a Gaussian kernel to smooth the 

borders. For each one of the 19 participants, approximately 200 trials for each condition were recorded and aligned at the onset of the stimulus presentation. (B) 

Scalp patterns before, and after the face stimulus is presented (at 0 ms) (generated with the visualization tool of MNE v0.21), and the source reconstruction of the 

stimulus evoked activity. (C) gray matter areas defined by an anatomical parcellation define the nodes of the brain graph. (D) The estimated white matter tracts 

from diffusion MRI define the connectivity strength of the edges of the graph. (E) From the constructed graph, we perform the graph Laplacian eigendecomposition 

and obtain a graph spectrum, consisting of a set of eigenvalues and a set of eigenvectors, the former ones termed graph spectrum, and the later termed graph or 

connectome harmonics. A few more examples of connectome harmonics are shown in Fig. S1. (F) The source reconstructed time-series signal represented in each 

brain area r (left plot, s t (r) ) or in each connectome spectrum corresponding to each graph Laplacian eigenvalue λ (right plot, ̂𝑠 𝑡 (λ) ). In the connectome spectrum plot, 

the rows’ height corresponds to the value of λ. 
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 Shuman et al., 2013 ) (GFT). In the case of the brain, we define con-

ectome spectral analysis as the connectome graph Fourier Transform

f the brain activity signal: 

𝐬̂ 𝑡 ( λ) = 𝐺𝐹 𝑇 
(
𝐬 𝑡 ( 𝑟 ) 

)
= 𝐔 

T 𝐬 𝑡 ( 𝑟 ) , (1) 

here 𝐬 𝑡 ( 𝑟 ) represents the electrical activity estimated at each brain re-

ion 𝑟 at time 𝑡 , and the columns of 𝐔 contain the connectome Laplacian

igenvectors { 𝐮 i } , referred to as connectome harmonics ( Atasoy et al.,

016 ). The signal’s connectome spectrum 𝐬̂ 𝑡 (λ) defines the participa-

ion of each connectome harmonic in the signal 𝐬 𝑡 ( 𝑟 ) ( Huang et al.,

016 ; Glomb et al., 2020 ) (see Figs. 1 E–F and S1). The GFT is analo-

ous to the discrete Fourier transform for temporal signals and to the

wo-dimensional Fourier transform for images (see Fig. S1 for illustra-

ion). Connectome harmonics { 𝐮 𝑖 } are ordered by their associated con-

ectome graph Laplacian eigenvalues { λ𝑖 } which quantify their smooth-

ess (in terms of Dirichlet energy Belkin and Niyogi 2001 ). The smooth-

ess of each harmonic can be understood as a graph frequency (see

ig. S1). Low-frequency connectome harmonics capture smooth signal

radients over the structural connectivity graph, for example captur-
2 
ng the left-right, anterior-posterior, ventral-to-dorsal and the medial-

eripheral axes ( Atasoy et al., 2016 ). By contrast, high-frequency har-

onics capture irregular patterns over the connectivity graph in space

see Fig. S1 for illustration). 

The structure-function relationship is an unresolved topic in neuro-

cience ( Vincent et al., 2007 ; Robinson et al., 2003 ; Deco et al., 2008 ;

vena-Koenigsberger et al., 2018 ; Seguin et al., 2020 ), and recently, sev-

ral studies have explored potential applications of connectome spectral

nalysis (see Lioi et al. 2021 for a review). Characterizing brain func-

ion by means of its underlying graph is motivated by the fact that brain

ctivity is constrained by, and coupled through its structural connec-

ivity ( Glomb et al., 2020 ; Sorrentino et al., 2021 ). When functional

nteractions follow structural connections, as in the case of brain ac-

ivity, the signal is represented in the smoothest subset of connectome

armonics, and thus, it can be reconstructed with a sparse signal rep-

esentation ( Glomb et al., 2020 ; Abdelnour et al., 2018 ). Exploiting the

nderlying signal’s graph might not only improve the statistical proper-

ies of the signal, but it could also provide mechanistic information on

ow signals propagate. In this sense, connectome harmonics have been
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Fig. 2. Signal compactness in different coordinate systems of signal representa- 

tion. (A) Signal compactness measured by two distance metrics between original 

and compressed signals: compression correlation (dashed line) and reconstruc- 

tion error (continuous line) (see Methods: Analysis of compactness ). The signal 

compression was performed at all integer percentiles from 1 to 100 for the sig- 

nal represented by brain areas ( 𝑟 ) and for the signal represented by connectome 

harmonics ( 𝜆), i.e., the signal’s connectome spectrum. (B) Signal average com- 

pactness (mean across percentiles). It was computed for different controls (see 

Methods ): 𝜆𝑑𝑠𝑢𝑟 , harmonics of degree-preserving surrogate connectomes; λ𝑔𝑠𝑢𝑟 , 
harmonics of geometry-preserving surrogate connectomes; PCA, principal com- 

ponents from principal component analysis; and ICA, independent components 

from independent component analysis. See Fig. S2 for statistical significance 

tests of the differences among coordinate systems. Each data-point shows the 

mean compactness for each subject, and the boxplot indicates the median, quar- 

tiles and 5–95th percentiles of the subjects’ distribution. (C) Conditional prob- 

ability of the compactness dynamics 𝑐 𝑡 (shown in (D)). It is conditioned by the 

power of the signal at the same time-point (see Methods: Conditional probabilities ) 

for either the area and the connectome harmonics’ activity. (D) Compactness dy- 

namics 𝑐 𝑡 . It was computed at each time-point as the compression reconstruction 

performance (1 - reconstruction error) averaged across percentiles (see Methods: 

Analysis of compactness ), and informed about the number of active dimensions 

in time (i.e., a proxy of its sparsity). At each time-point, a Wilcoxon Rank-sum 

two-sided test was performed, and those time-points with significant p -value are 

indicated with black rectangular boxes (Bonferroni corrected for multiple com- 

parisons). (E) Visual illustration on the brain surface of the effect of compressing 

a signal in different coordinate systems. The signal was compressed at 95-th per- 

centile in each coordinate system (only 11 out of 219 dimensions are non-zero). 

For the area-based signal representation, the signal is shown right after being 

compressed. For the connectome spectrum of the signal, the compressed activa- 

tion coefficients were mapped back to the original atlas-based coordinates. The 

error bars in this figure show the mean and standard deviation of the distribution 

across subjects. 
heoretically proposed as a mechanism for macroscopic brain activity,

llowing nested functional segregation and integration across multiple

patio-temporal scales ( Wang et al., 2019 ). 

Even though connectome harmonics seem a promising tool for study-

ng whole-brain activity, a comprehensive empirical evaluation of the

roperties of the signal’s connectome spectrum is lacking. In this work,

e characterized the advantages of connectome harmonics as a coor-

inate system for representing the fast-evolving brain-wide activity sig-

als at the cortical surface estimated from EEG recordings. We report

ome evidence suggesting the advantages of the connectome spectrum

epresentation in three different aspects: the statistical, the functional,

nd the topological properties of the signal. We first show that during

isual evoked brain activity, the EEG signal estimated at the cortical

urface can be represented more compactly by its connectome spectrum

han by its traditional area-based signal representation. The connectome

pectrum, which is a model-based representation of the signal, performs

qually or better in terms of compactness than traditional data-driven

pproaches such as PCA and ICA. Importantly, the compactness of the

ignal’s connectome spectrum is specific to the connectivity structure,

ather than to the graph spectral decomposition properties. Then, we

emonstrate that the representation of the signal on its connectome

pectrum automatically characterizes brain activity dynamics in terms

f the signal broadcasting profile, revealing integration and segregation

egimes of brain processing, which follow consistent dynamics across

articipants. Finally, we provide evidence that connectome harmonics

apture the functional aspects of visual perception with fewer degrees

f freedom than isolated brain areas. These advantages extend to topo-

ogical properties of the signal and their fast temporal dynamics. After

resenting these three types of evidence, we propose the connectome

pectrum as a canonical basis for the representation of large-scale brain

ctivity dynamics. 

. Results 

.1. A sparse basis for large-scale brain activity 

Coordinate systems in which data are compactly represented are ad-

antageous because they summarize the data well, and they provide

obustness to small variations such as noise ( Baraniuk et al., 2010 ). Fur-

hermore, if brain activity admits a sparse signal representation, i.e., a

ransformation that describes the signal with only a few non-zero valued

lements, it means that the underlying process has a limited number of

arameters that we are able to estimate. The compactness of a signal in-

icates how compressible it is, and gives us an estimation on its sparsity

 Candes and Davenport, 2013 ). In the present work, brain activity signal

as recorded in visual evoked potential experiments using high-density

EG, and reconstructed at the cortical surface (see Fig. 1 A,B). Using

n anatomical parcellation, the single-trial cortical time-courses were

arcellated into 219 areas ( Cammoun et al., 2012 ) using the method

ntroduced in ( Rubega et al., 2019 ). We estimated the sparsity (in terms

f signal compactness) of the brain activity in the usual brain area-

ased signal representation 𝐬 𝑡 ( 𝑟 ) and in its connectome spectrum 𝐬̂ 𝑡 (λ)
 Glomb et al., 2020 ), and we compared them. 

The compactness of the evoked signal in each coordinate system was

uantified by means of signal compression performance (inspired from

 Grassi et al., 2017 )). Signal compression was performed by replacing

he signal values (and its spectrum coefficients) with magnitudes smaller

han the p -th percentile with zeros (and performing the corresponding

nverse GFT on the resulting coefficients in the case of the signal’s con-

ectome spectrum). The compactness for each p -th percentile was then

efined as the Pearson correlation between the original and the com-

ressed signal on the one hand, and as one minus the reconstruction

rror (see section Methods: Analysis of Compactness , Fig. 2 A,B) on the

ther hand. In this way, the compression analysis collapsed time and

roduced only a scalar value for each compression percentile p . The re-

ults show that the thresholding performed in the connectome spectral
3 
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omain achieved greater signal compactness than in the area-based co-

rdinates ( p < 0.001, Wilcoxon Rank-sum two-sided test, corrected for

ultiple comparisons via Bonferroni, Fig. S2A,B). This result indicates

hat 𝐬̂ 𝑡 (λ) is sparser than 𝐬 𝑡 ( 𝑟 ) , meaning that the evoked activity is de-

cribed with fewer connectome harmonics than brain areas. The idea

hat the connectome spectrum of the signal is sparse is illustrated by

he fact that we can reconstruct more than 50% of the explained vari-

nce of the signal after compressing down to just 5% of its connectome

pectrum content. 

For validation, we tested if the improved compression capacity was

elated to the structural connectivity graph capturing the mechanisms

nderlying brain activity dynamics, and not to general decomposition

roperties of the graph Laplacian. To this end, we performed a non-

arametric statistical analysis by measuring the compactness of the sig-

al represented by degree-preserving surrogate connectome harmonics

nd by geometry-preserving surrogate harmonics ( Roberts et al., 2016 )

see Methods: Surrogate harmonics ). Briefly, degree-preserving surrogates

enerate random networks that preserve the connectivity degree distri-

ution. Instead, geometry-preserving surrogate harmonics preserve the

onnectivity pattern while shuffling the connection weights. Interest-

ngly, degree-preserving surrogates compress the signal slightly better

han its area-based representation ( p < .01 for correlation, p > .05 for

econstruction error, Wilcoxon Rank-sum two-sided test, corrected for

ultiple comparisons via Bonferroni, see Figs. 2 B and S2A,B), suggest-

ng that part of the improved performance is due to the decomposition

roperties of the graph Laplacian. Compared to the degree-preserving

urrogates’ compactness, the compactness of the signal’s connectome

pectrum was significantly higher, both in terms of signal correlation

nd reconstruction error ( p < .001). However, the results indicate that

he compactness performance is not significantly different between the

tructural connectome and its geometry-preserving surrogates ( p > .05).

hese results show that is the actual spatial embeddedness of the connec-

ome graph what drives the observed compression of the brain activity

ignal. 

It is worth noting that signal decomposition techniques are usu-

lly data-driven (based on the statistical properties of the signal), such

s in the case of Principal Component Analysis (PCA) or Independent

omponent Analysis (ICA). In contrast to these techniques, the connec-

ome spectral decomposition provided by the connectome GFT is model-

riven, as brain activity is modeled as a weighted sum of structural

onnectivity gradients. Fig. 2 B assesses the compression properties of

hese well-known methods to benchmark the performance of connec-

ome harmonics. It shows that connectome spectral analysis compares

imilarly to PCA in terms of correlation and reconstruction error, but

t always outperforms ICA (see Fig. S2C,D; p < .001, Wilcoxon Rank-

um two-sided test, corrected for multiple comparisons via Bonferroni).

hese results suggest that connectome harmonics capture well the vari-

nce of the stimulus-evoked brain activity, and more specifically, that

hey compare favorably with commonly-used data-driven decomposi-

ion methods. 

.2. Compactness dynamics 

Visual evoked potentials have a highly temporal non-stationary na-

ure; therefore, the sparsity of the signal can be expected to change in

ime. For this reason, we assessed the dynamical properties of the sig-

al in the coordinate system defined by the connectome harmonics. We

ypothesized that the fast dynamics of the visual evoked activity should

e reproducible across participants if the signal’s connectome spectrum

 ̂𝐬 𝑡 (λ) ) captured relevant features. We used the compactness dynamics

 𝑐 𝑡 ), defined as the reconstruction error of the compressed signal at a

iven time-point, averaged across all percentiles ( Methods: Analysis of

ompactness ), as a proxy of the number of active dimensions at each

ime-point, i.e., as the sparsity dynamics of the signal ( Fig. 2 D). The mo-

ivation behind this analysis is to reveal those time-points during which
4 
rain activity can be described by very few connectome harmonics, i.e.,

 sparse spectrum. 

We first studied the dependency of the connectome spectral com-

actness on the power of the signal, to assess whether the activation

f connectome harmonics was not trivial. We analyzed the relationship

etween the signal compactness and the total energy of the signal by

eans of the conditional probability 𝑃 ( 𝑐 𝑡 | ‖ ⋅ ‖2 ) ( Methods: Conditional

robabilities ), for " ⋅" representing 𝐬 𝑡 ( 𝑟 ) or 𝐬̂ 𝑡 (λ) . The conditional proba-

ility showed a strong linear tendency, with an increase in the power

f the signal positively correlated to the activation of a few connectome

armonics (see Fig. 2 C). This result suggests that connectome spectrum

ompactness is non-randomly distributed in time, and can be partially

xplained by the dynamics of the power of the signal. In other words,

his dependency indicates that in moments of high power the signal is

oncentrated in just few harmonics. When analyzing the area-based sig-

al 𝐬 𝑡 ( 𝑟 ) , however, we did not find such a relationship, indicating that

he power of the signal 𝐬 𝑡 ( 𝑟 ) does not depend on the number of active

reas. 

To test whether connectome harmonics can characterize fast, func-

ionally specific processes, we used visual-evoked potentials (VEP) to

ace presentation. Face-specific processes are well-studied and can be

rimarily localized to the Fusiform gyrus ( Kanwisher et al., 1997 ), but

re known to also involve occipital, parietal and orbitofrontal areas

 Haxby et al., 2000 ; Gauthier et al., 2000 ; Rolls, 2007 ). They also have a

pecific temporal signature in terms of temporal localization (at around

70 ms after the stimulus is presented) ( Plomp et al., 2010 ; Bentin et al.,

996 ). The compactness dynamics of connectome harmonics ( 𝑐 𝑡 λ) of the

voked signal revealed different regimes of visual processing ( Fig. 2 D). 

At time zero (0 ms), the visual stimulus was presented and the brain

ignal associated with stimulus processing quickly built up, becoming

ore compact in both the connectome harmonic and area-based sig-

al representation. This increased compactness was significantly larger

or the connectome spectrum in three time-windows ([96–128 ms, 204–

52 ms, 396–400 ms], p < .05, Wilcoxon Rank-sum two-sided test, cor-

ected for multiple comparisons via Bonferroni). The increased compact-

ess indicates that during these time windows, the variance of the signal

as captured by fewer number of harmonics than number of brain ar-

as. This result suggests that the constitution of the signal during those

ime-points is shaped by the activity of a limited number of connectome

armonics rather than the activity of isolated brain regions. 

During pre-stimulus time, the evoked signal consists of the average

ctivity across many non-aligned trials, and thus, can be regarded as

esidual noise. This noise should be ideally evenly distributed across

imensions. For this reason, the noisy signal during pre-stimulus time

as not compressible in any coordinate system. However, such noise

as more evenly distributed in the signal’s connectome spectrum, and

hus, significantly less compact ( p < .05, Monte-Carlo simulations (1000

er time-point), corrected for multiple comparisons via Bonferroni, see

ethods: Statistical Analysis ), suggesting connectome harmonics as a ro-

ust representation against noise. 

At this point, the reader might think that a compact signal might not

e a good signal, but instead misses crucial information. To guarantee

hat the increased compactness of the signal does not come at the ex-

ense of destroying parts of the signal that are known to be relevant,

e next focused only on two well-known spatio-temporal patterns: face

rocessing in the ventral stream at 170 ms, and motion processing in the

orsal stream at 150 ms (see Methods: EEG and Supplementary text S1).

or simplicity, reconstruction error and correlation after compression

ere estimated for three visual systems: ventral, dorsal and the group

f early visual areas (see Fig. S3). The only significant differences in the

ompactness properties of 𝐬 𝑡 ( 𝑟 ) and its connectome spectrum ̂𝐬 𝑡 (λ) were

ound in motion perception at 150 ms ( p < .05, corrected for multiple

omparisons via Bonferroni), for which compactness was better in the

onnectome spectrum ̂𝐬 𝑡 (λ) . These results indicate that the connectome

armonic representation of the signal does not underestimate the part

f the signal known to be functionally relevant. 
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Fig. 3. Signal broadcasting profile. (A) Graph 

power spectral density across time. It was com- 

puted as the power in each connectome harmonic 

during the whole time-series (see Methods: Graph 

spectrum dichotomization ). The power spectral den- 

sity was then divided into two halves of equal cu- 

mulative power. (B) The energy of the brain ac- 

tivity signal contained in each of these two ends 

of the connectome spectrum was computed for 

each time-point: 𝑃 𝑡 
𝐿 
, the energy concentrated in 

the lowest-end of the spectrum, associated with in- 

tegration processes, and 𝑃 𝑡 
𝐻 

, the energy concen- 

trated in the highest-end of the spectrum, associ- 

ated with brain activity segregation, respectively. 

(C) The time-courses in (B) were normalized by 

the power of the signal at each time-point, illus- 

trating the normalized contribution across time to 

the total power of the signal. By definition, these 

time courses profile the brain activity broadcast- 

ing profile into integration and segregation dynam- 

ics. (D) The normalized 𝑃 𝑡 
𝐻 

(segregation) at each 

time-point (shown in (C)) was compared to the 

connectome spectrum compactness dynamics ( 𝑐 𝑡 , 

previously shown in Fig. 2 D). (E) The significance 

of the broadcasting direction (here summarized 

as 𝑃 𝑡 
𝐻 
− 𝑃 𝑡 

𝐿 
) was tested against the broadcasting 

direction in degree-preserving surrogate connec- 

tomes (see Methods: Broadcasting significance test ). 

For each subject, the non-significant time-points 

are colored in gray. Green colored time-points in- 

dicate a broadcasting profile dominated by seg- 

regation. (F) The group summary of (E) is repre- 

sented by two time-resolved metrics: i) the per- 

centage of subjects with a significant broadcasting 

direction (in gray) and the mean broadcasting di- 

rection across subjects. The continuous lines and 

the shaded area in the plots of this figure show the 

mean and standard deviations of the distribution 

across all subjects (For interpretation of the refer- 

ences to color in this figure legend, the reader is 

referred to the web version of this article.). 
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.3. Integration and segregation dynamics during visual perception 

Low-frequency harmonics (i.e., the connectome Laplacian eigenvec-

ors corresponding to the smallest eigenvalues) define smooth gradi-

nts of structural connectivity. Assuming that the brain activity propa-

ates through the structural connectivity ( Avena-Koenigsberger et al.,

018 ), we can interpret low-frequency harmonics as integrative pat-

erns, i.e., patterns of brain activity in which sets of neighboring brain

egions show strong long-range coupling (in graph space). Conversely,

igh-frequency harmonics reflect short-range coupling, i.e., they cap-

ure signal similarity between smaller sets of neighboring areas, and

n this sense reflect segregation mechanisms ( Lioi et al., 2021 ). Dur-

ng cognitive processes, brain activity shows a strong opposing relation-

hip between the participation of these two types of cortical gradients

 Ito et al., 2020 ), suggesting two different types of broadcasting mech-

nisms underpinning functional dynamics ( Park et al., 2021 ). In line

ith these ideas, we studied the dynamics of the energy distribution

etween the lower and higher end of the spectrum. Figs. 3 A and S4A

hows that the signal’s power spectral distribution on the graph has a

∕λ shape. This means that most of the energy of the signal in time

s concentrated in spatial patterns that are smooth (dominance of low

requencies). To investigate the broadcasting dynamics of the evoked

ignal, we split the graph spectrum into two parts, corresponding to the

owest and the highest end of the spectrum, following the methodology

ntroduced in ( Preti and Van De Ville, 2019 ) (see Methods: Graph spec-

rum dichotomization ). Briefly, we computed the l -norm of the part of
2 

5 
he signal belonging, to the low-frequency connectome harmonics P 𝑡 
𝐿 

and to the high-frequency connectome harmonics P 𝑡 
𝐻 

, respectively) as:

P 𝑡 
𝐿 
= ‖1 [ 𝜆<𝜆𝑇 ] 𝐔 

⊤𝐬 𝑡 ( 𝑟 ) 2 ‖
 

𝑡 
𝐻 

= ‖1 [ 𝜆≥ 𝜆𝑇 ] 𝐔 

⊤𝐬 𝑡 ( 𝑟 ) ‖2 , (2) 

here 1 [ 𝜆< 𝜆𝑇 ] is the indicator function, which keeps only the lowest part

f the spectrum (or to the highest, for 1 [ 𝜆≥ 𝜆𝑇 ] ). The dynamic interplay

etween P 𝑡 
𝐿 

and P 𝑡 
𝐻 

is shown in Fig. 3 B,C, (also in Fig. S4B,C for a vali-

ation in a different dataset). Fig. 3 D shows a strong linear dependency

etween P 𝑡 
𝐿 

and P 𝑡 
𝐻 

and the compactness of the connectome spectrum,

ndicating that when compactness is maximal, brain activity is coupled

ver long-range network distance (integrated). In other terms, almost

very time that the connectome spectrum is compact, the energy of the

ignal is concentrated in the low-frequency harmonics. This suggests

hat integration mechanisms are captured by few harmonics, whereas

egregation is supported by the activation of many. 

In order to summarize the broadcasting direction (BD, towards inte-

ration or segregation), for each participant and time-point we compute

 single scalar value: 

D 

𝑡 = P 𝑡 
𝐻 

− P 𝑡 
𝐿 
. (3) 

e tested the significance of BD against the BD estimated from degree-

reserving surrogate harmonics (see Broadcasting significance test ). The

esults are shown in Fig. 3 D,E, and demonstrate that the broadcasting

irection follows significant and consistent dynamics across time, with

ome variability across participants. 
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Fig. 4. Trajectories of brain activity. (A) Low-dimensional trajectories. The 

brain activity signal evoked by stimulation with images of faces (in blue) and 

scrambled-faces (in red) is represented as a vector moving in time in a three- 

dimensional coordinate system. The three-dimensional space is defined by those 

dimensions that capture more energy of the signal: (left plot) coordinate sys- 

tem spanned by the three top brain areas, and (right plot) coordinate system 

spanned by the three top connectome harmonics. (B) Co-linearity of dimensions. 

The co-linearity of the dimensions of each coordinate system ( 𝑟 : area-based; λ: 

connectome harmonics; PCA: principal components from principal component 

analysis; ICA: independent components from independent component analysis) 

is measured by the average pairwise correlation among the top three dimen- 

sions (top plot), and among all dimensions (bottom plot). (C) Difference in con- 

ditions’ distance. The difference in the magnitude of the distance between brain 

patterns in the two different coordinate systems (regions of interest and connec- 

tome harmonics). A larger value indicates that the difference in brain activity 

between two conditions is larger in the subspace of connectome harmonics. A 

value of zero indicates that magnitude of the distance between conditions is sim- 

ilar in both subspaces (see Methods: Distance between two trajectories ). (D) Face vs 

scrambled-faces difference map. The reconstructed pattern (for a compression 

percentile of 99, corresponding to keeping only the 3 dimensions shown in (A)) 

at the time-point in which the distance between the faces’ and the scrambled- 

faces’ trajectories is maximal in the area-based full dimensional signal (219 ar- 

eas). See Fig. S6 for the participation of each brain area in the difference map 

compressed in the connectome spectrum (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this 

article.). 
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We refer the reader to the Discussion section for a detailed interpre-

ation on the obtained dynamics of integration and segregation. 

.4. Low dimensional trajectories during visual perception 

To understand how brain activity spans, or explores, a given coordi-

ate system, it is useful to conceive of the activity as a dynamic trajec-

ory through that space (commonly referred as state-space representa-

ion). Here, we compared activity trajectories evoked by images of faces

o the trajectories evoked by images of scrambled-faces (see Fig. 4 A).

e represented these trajectories both in the coordinate space defined

y brain regions (signal 𝐬 𝑡 ( 𝑟 ) ) and the coordinate space defined by con-

ectome harmonics (signal ̂𝐬 𝑡 (λ) ). Scrambled-faces are a commonly used

ontrol for the influence of low-level stimulus features, given that they

reserve the amount of image contrast, light intensity and spatial fre-

uency content as in face images. The only differences expected in the

stimated activity between these two stimuli are related to the face-

erception mechanisms. 

The trajectories in Fig. 4 A show that the activation of the different

imensions over time are not completely independent in any coordinate

ystem, i.e., they are correlated. The mean Pearson correlation among

imensions in time was 0.54 for brain areas and 0.45 for connectome

armonics ( p < .005, Wilcoxon Rank-sum two-sided test). However, ̂𝐬 𝑡 (λ)
as significantly less co-linear than the signal 𝐬 𝑡 ( 𝑟 ) (see Fig. 4 B, p < .005,

ilcoxon Rank-sum two-sided test). These results indicate that connec-

ome harmonics capture components of brain activity that are more spa-

ially independent across time, and hence more likely to capture its de-

rees of freedom. 

The degrees of freedom that encode functionally relevant features

n a signal are expected to concentrate an important proportion of the

ignal’s energy over time. For example, we can expect that a visual stim-

lation experiment will concentrate a great part of the brain activity

ignal in the occipital lobe. Here, we performed dimensionality reduc-

ion of the signal by keeping only those dimensions that concentrated

ost of the energy (by means of the l 2 -norm) in order to estimate the

uality of representation of different coordinate systems (see Methods:

ow-dimensional embedding ). 

The results indicate a larger distance between the two stimulus tra-

ectories in the low dimensional space spanned by connectome harmon-

cs (i.e., the different stimuli are more separated). This effect is illus-

rated in Fig. 4 C, and demonstrates that, as the dimensionality of the

oordinate systems gets reduced, the brain activity trajectories evoked

y faces and scrambled-faces become more separable in the connectome

pectrum signal. Furthermore, the difference between these two trajec-

ories in the reduced subspace of the connectome spectrum signal en-

odes a more representative brain activity map of the face-processing

etwork ( Haxby et al., 2000 ; Gauthier et al., 2000 ) (see Figs. 4 D and

6). In other words, the connectome harmonics that concentrate most

f the stimulus-evoked energy capture the differences between faces and

crambled-faces with higher sensitivity than the area-based analysis.

hese results suggest that high-level features of visual stimulus are en-

oded by a smaller number of connectome harmonics than brain areas.

hus, results indicate that connectome harmonics are able to capture

ndependent neurophysiologic parameters. 

Another important property of the state-space representation is that

otentially functionally relevant features of the signal are encoded in

he topology of the signal’s trajectory ( Chaudhuri et al., 2019 ; Rué-

ueralt et al., 2021 ), i.e., its shape in the state-space. Accordingly, we

easured for each system of coordinates how the dimensions with high-

st energy concentration contributed to the shape of the signal’s tra-

ectory using tools from Topological Data Analysis ( Barannikov, 1994 ;

oodman, 2008 ). Specifically, we used a tool known as persistence ho-

ology of simplicial complexes, which allowed us to analyze the shape

f the brain activity signal and its connectome spectrum, by means of a

ery simple diagram (see Fig. 5 A–C). This so-called persistence diagram

llowed us to analyze how the topological features were maintained
6 
hen decreasing the number of dimensions in each coordinate system

ith the same criteria for reducing the dimensionality as before (di-

ensions were kept based on their energy concentration). In brief, the

nalysis of topology of brain activity signals for different dimensional

tate-spaces consisted of the following steps: first, the set of data points

n the low-dimensional state-space (i.e., the low-dimensional signal, see
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Fig. 5. Topological features of the brain activity signal in different coordinate systems. (A) Two trajectories of brain activity (corresponding to two different stimuli) 

are represented in a low-dimensional subspace (here 𝑑 = 3 for illustration purposes) (B) The Vietoris-Rips Complex (VRC) is constructed from the data points in 

(A) (in this example, only two dimensions are shown for illustration). The VRC is generated for each trajectory individually in the following manner: for a given 

distance threshold 𝜖, connections or edges between data points smaller than the threshold are established (see Methods: Persistence Diagrams and Bottleneck distance ). 

The number of simplicial complexes (connected components and cycles) that appear (birth) or disappear (death) when increasing 𝜖 is registered in the persistence 

diagram (C). The persistence diagram summarizes the topology of the set of data points, i.e., the shape of the trajectory. (D) The distance between any two persistence 

diagrams can be computed with the bottleneck distance. (E)-(F) The bottleneck distance between the persistence diagrams of the original coordinate system (219 

brain areas) and the reduced subspaces is shown (area-based and connectome spectrum). This distance is computed for connected components (E), and for cycles 

(F). 
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ig. 5 A) was used to generate a Vietoris-Rips complex ( Hausmann, 1995 )

VRC, Fig. 5 B). The VRC defines the connectivity among data points

ased on their proximity in the state-space for a varying distance thresh-

ld 𝜖. For each distance threshold 𝜖, time-points are connected if they

re closer than 𝜖 in the state-space. While varying 𝜖, the appearance

birth) or disappearance (death) of new connections (topological fea-

ures) is recorded in the persistence diagram ( Fig. 5 C). We summarized

he shape of the brain activity trajectory in the two coordinate systems

or any dimensionality in [ 1 , 𝐷 ] . If a coordinate system conferred a good

ow-dimensional representation of the signal, i.e., if it kept the shape of

he trajectory, we would expect to see that the persistence diagram of

he subspace was very similar to the persistence diagram of the origi-

al high-dimensional representation. A bad low-dimensional represen-

ation would show a very different persistence diagram, as the impor-

ant topological features would not be maintained. We used the bottle-

eck distance ( Efrat et al., 2001 ) (see Methods: Persistence Diagrams and

ottleneck distance ) to quantify the effect of decreasing the dimension-

lity of the state-space on the persistence diagram. The bottleneck dis-

ance quantifies the difference between two persistence diagrams (see

ig. 5 D). The results are shown in Fig. 5 E,F. When the dimensionality

f the subspace was small (i.e., the dimensionality less than 50 dimen-

ions), both the area-based signal and its connectome spectrum failed

o capture the topology of the original signal. However, as the dimen-

ionality increased, the bottleneck distance in both coordinate systems

ecreased, indicating that the topological features were started to be ac-

ounted for. Importantly, when comparing all the dimensions, the con-

ectome spectrum representation better maintained, in comparison with

he common brain area representation, the overall topology of the signal
7 
 p < .001, Wilcoxon Rank-sum two-sided test). These results show that

he fast temporal dynamics of brain activity are overall better preserved

n a low-dimensional subspace defined by connectome harmonics. 

. Discussion 

A canonical signal representation is a representation that is the sim-

lest or optimal in some aspect ( Vault, 2021 ) (not to be confused with

inear canonical transform ( Bastiaans and Alieva, 2016 )). The advanta-

eous properties of the multi-modal connectome spectrum representa-

ion for brain activity analysis over simpler signal descriptions based on

nimodal EEG data are not unexpected and have been previously pro-

osed ( Glomb et al., 2020 ). With the intention of rigorously benchmark-

ng connectome spectral analysis, this work provides empirical evidence

hat description of neural function in terms of the functional activation

f connectome harmonics has advantageous properties for the analysis

f fast brain activity. When compared to the common area-based signal

epresentation, connectome spectral analysis confers a sparser and more

nformative signal representation of large-scale brain activity dynamics,

n the statistical, functional and topological sense. 

.1. The connectome spectrum of brain activity is sparse 

With the continuous advances in neurotechnology, spatial and tem-

oral resolution of neural activity measurements are steadily improv-

ng. When analyzing noisy high-dimensional data, transformations into

parse signal representations have two main advantages: since the de-

rees of freedom are low, the interpretation is tractable, and the ro-
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ustness to noise is improved ( Baraniuk et al., 2010 ). These properties

ake compact coordinate systems optimal to construct efficient regu-

arizers for regression and classification models, i.e., for brain decoding.

e have shown that the signal is more compressible using its connec-

ome spectral representation than using either the original signal rep-

esentation by brain areas or degree-preserving surrogate connectome

armonics ( Fig. 2 B). Also, this compactness is driven by the geometry

f the connectome, as geometry-preserving surrogate harmonics show

imilar performances. This confers compelling evidence that the spa-

ial embedding of the connectome allows the spectral decomposition of

rain activity into biologically relevant parts, adding one more piece

f evidence that brain activity is shaped by macroscopic structural con-

ectivity. Furthermore, the fact that connectome spectral dimensional-

ty reduction performs equally or better than data driven approaches

PCA and ICA) suggests that the underlying description is relevant to

acroscopic brain activity, as it captures the major axes of variability

n the data. Hence, the brain activity signal can be interpreted as an

ddition of components that define smooth variations at different scales

ver the structural connectivity (connectome harmonics) rather than a

imple addition of the activity in individual brain regions. The plausibil-

ty of this hypothesis is strengthened by the positive linear relationship

etween the compactness of the connectome spectrum and the power

f the signal (see Fig. 2 C). To understand why this linear relationship is

mportant, imagine any graph in which we inject a signal through one of

he nodes. If the input signal has a strong power, the signal will diffuse

long the whole graph following its edges, inducing a strong coupling

mong distant nodes that will be captured by few low-frequency har-

onics, and thus it will be compact. Conversely, if the injected signal is

eak, the diffusion will not reach further than the first neighbors. This

ater activation pattern will take the shape close to a Dirac pulse, which

ranslates into a flat spectrum, i.e., a non-compact connectome spectral

epresentation. 

In a previous article, we have shown that the process of face percep-

ion involves the greater activation of certain structural networks over

ingle brain areas ( Glomb et al., 2020 ). We showed that the representa-

ion of brain signals in terms of connectome harmonics is sparse around

he peak inflection of the ERP (140–340 ms post stimulus). Likewise, in

lomb et al. (2020) , only a few components were needed to differenti-

te the brain activity pattern evoked by the two different visual stimuli.

n the present study, we delve into the temporal dynamics of the sig-

al compactness and show that compactness dynamics reflect underly-

ng cognitive processes. We have observed different temporal regimes

t which the connectome spectrum compactness is significantly higher

han the compactness of the signal defined at the brain areas, and oth-

rs at which they are equal. At the time of high-level face processing,

t around 170 ms, the compactness of the signal is similar in both coor-

inate systems. This is due to the concentration of the activity into the

rain regions around the FFA. As this brain activity pattern conforms a

parse signal in the area-based representation, the compactness of the

ignal in this coordinate system increases, and the signal spectrum com-

actness decreases, i.e., the signal spectrum is more broadband (equiva-

ent to a Dirac pulse in time and its Fourier spectrum). Despite this, when

ompressing the signal’s connectome spectrum down to just 5% of the

ignal, the reconstructed signal is better, in terms of correlation and re-

onstruction error, than the area-based compression. Importantly, Fig.

3 shows that the compactness at the connectome spectrum does not

nderestimate functionally relevant regions. Fig. 2 E shows how the sig-

al spectrum compression preserves much more information than the

ompression in the original signal domain (see also Fig. S2D for the re-

onstruction at two other time-points). These results can be interpreted

n the light of established mechanisms of face perception, which is sus-

ained by the activation of two concomitant pathways in the brain. The

rst pathway, the faster one (taking around 100 ms), is related to the

rocessing of low-level spatial features. In this pathway, sub-cortical

tructures quickly activate and relay to other cortical regions, such as

refrontal areas ( Johnson, 2005 ). This fast and integrative process, con-
8 
ists of large-scale coupling, and it is captured by few smooth harmonics,

n a compact manner, as shown in the first significant peak in Fig. 2 D.

he second pathway, related to processing of higher-level features that

elp identifying the face, activates the ventral visual stream, peaking at

70 ms in the FFA. This coarse activation pattern is reflected by the

ompactness deflection around 170 ms ( Kanwisher et al., 1997 ). Af-

er 170 ms, once the face image has been perceived, the participants

ngage in a decision-making process during which the brain activity

eems to be dominated by large-scale, mainly frontal networks, i.e., low

requency harmonics. Then, between 300 and 600 ms after the stimulus

resentation, the dynamics return to their baseline profile, dominated by

igher-frequency harmonics. Given that visual networks closely match

he patterns defined by low-frequency harmonics ( Atasoy et al., 2016 ),

nd that a large number of harmonics of higher frequency are needed

o compose networks associated with higher cognitive functions, similar

esults could be expected in other experiments of visual perception. We

ave validated this hypothesis in a visual motion detection experiment

nd found similar results (see Fig. S4 and Supplementary Text S1). 

It is also important to take into consideration how the noise compo-

ent of the signal is distributed in different coordinate systems. Before

he stimulus presentation (at 0 ms), the recorded activity consists of the

verage brain activity across trials with very different brain states. Given

hat the time of the stimulus presentation is randomized, the brain sig-

al prior to the stimulus that is averaged corresponds to the residual

oise. Ideally, this noise should not be associated with any particular

imension (brain area or connectome harmonic), but it should rather

e evenly distributed across dimensions. As indicated by a smaller com-

actness of the pre-stimulus signal in its connectome spectrum, noise

o-varies less with connectome harmonics than with brain areas. In Fig.

5, we show that noise is actually not evenly spread across dimensions

ue to the source reconstruction bias toward smooth spatial brain activ-

ty patterns. However, this figure also shows that connectome harmon-

cs are the most robust representation against this source-reconstruction

rtifact. Overall, these results suggest that the brain activity signal rep-

esentation in its connectome spectrum is more noise-independent than

n the traditional area-based representation. 

In summary, in this section we have shown that the brain activity

ignal is more compact when represented as an activation of connectome

armonics, or, in other words, that the brain activity signal is sparser in

ts connectome spectrum. 

.2. Broadcasting dynamics are characterized by the connectome spectral 

ontent 

Besides showing appealing statistical properties, the connectome

pectrum seems to be a canonical basis for brain activity signal repre-

entation, as brain dynamics can be more efficiently described by con-

ectome harmonics than just by isolated brain areas. In fact, the connec-

ome spectral power density follows a λ−1 decay (see Fig. 3 A), indicating

hat, overall, the signal is smooth on the graph. A smooth signal on the

raph is energy efficient, and informs us that the connections that are

resent in the structural connectivity are also present in the functional

ignal ( Chen et al., 2015 ). In this paper, we have shown that the func-

ional connectivity dynamics can be estimated without complex models

imply by measuring at each time-point the contribution of connectome

armonics (see Fig. 3 B,C). We proposed a method to estimate the broad-

asting profile of the brain activity signal at each time-point, character-

zing brain activity in terms of integration and segregation mechanisms

ith respect to the underlying structural network ( Tononi et al., 1994 ;

eco et al., 2015 ). 

Defining functional connectivity from the connectome spectrum as-

umes that communication in the brain is based on a diffusion pro-

ess over the structural connectivity, i.e., that brain activity prop-

gates through the white matter. For this reason, we founded our

nterpretation of broadcasting dynamics upon such a communication

odel. The interpretation of brain function as a combination of con-
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ectome harmonics has recently been receiving an increasing support

 Haak and Beckmann, 2020 ), and it reflects how the brain function is

rganized hierarchically ( Betzel and Bassett, 2017 ). 

We have been inspired by the fact that functional integration and

egregation are strongly related to connectome harmonics ( Wang et al.,

019 ), with low-frequency harmonics being associated with integra-

ion and higher-frequency harmonics being associated with segregation

echanisms. When applied to visual evoked potentials in a face percep-

ion experiment (and in a motion perception experiment in the supple-

entary material), the broadcasting analysis revealed that integration

nd segregation follow significant and consistent fast dynamics across all

articipants, and are closely related to the compactness of the signal in

ts connectome spectrum (see Fig. 3 D,E). During high-frequency visual

rocesses, such as the integration of visual features into a whole object,

r the decision-making process that follows, the brain activity signal

s dominated by low-frequency harmonics that capture large-scale con-

ectivity. During that period, the brain is in an integrated configuration,

nd there is an increase in the signal compactness. Conversely, during

egregated processing, i.e., the initial parallel processing of low-level

eatures, or the peak activation of specialized FFA during face percep-

ion, high-frequency harmonic components redistribute and collectively

educe the signal compactness. 

.3. The structure of the brain shapes its dynamics 

So far, we have shown that connectome spectral decomposition not

nly provides us with a robust and sparse representation for brain activ-

ty, but also enables the natural description of the broadcasting profile

f the signal, indicating whether the brain state is in an integration or

 segregation mode. These can be regarded as some general properties

f the signals defined on the graph. We wanted to evaluate whether

onnectome spectral analysis can show any added value to the study of

rain activity dynamics. 

It is common in theoretical neuroscience to represent the dynamics of

rain activity as a trajectory in its state-space, i.e., as a point that moves

n time in the space defined by the activity of each neuron or neural

opulation ( Hopfield, 1982 ) (see Figs. 4 A and 5 A). In this context, the

orking hypothesis is that high-level neural computation in the brain

nvolves the formation of low-dimensional temporal structures in the

tate-space. These low-dimensional structures are known as attractors

 Seung, 1996 ; Burak and Fiete, 2009 ). In this work, we have studied

ow the brain activity evoked by visual stimuli formed low-dimensional

tructures spanned by either brain areas or by connectome harmonics. 

Our results show that functionally relevant properties of the signal

re characterized with more sensitivity when the state-space is defined

y the signal’s connectome spectrum, rather than by the activity of iso-

ated brain areas. More specifically, we have characterized two different

roperties of the signal. 

On the one hand, we have shown that the brain activity spatial maps

aptured by the connectome spectrum are more independent in time

 Fig. 4 B). It is probably due to this fact that the distance between the

rajectories corresponding to brain activity processing of two different

ypes of information (low-level vs. high-level visual stimuli features) is

igher in the subspace of the connectome spectrum ( Fig. 4 C). Not only

he two types of stimuli are more separable in the connectome spectrum,

ut connectome harmonics also represent more accurately the complex

etworks underlying the physiological mechanisms ( Fig. 4 D). 

On the other hand, we have investigated another important prop-

rty of the state-space: its contribution to the shape of the brain activ-

ty temporal structure ( Chaudhuri et al., 2019 ). It has been proposed

hat human whole-brain dynamics lie onto a low-dimensional mani-

old, whose shape is directly related to behavior ( Saggar et al., 2018 ;

hine et al., 2019 ; Rué-Queralt et al., 2021 ). Using topological data anal-

sis ( Barannikov, 1994 ; Goodman, 2008 ), we have quantified the con-

ribution of each coordinate system’s state-space to the overall shape of

he brain activity trajectory ( Fig. 5 A,B). The results of this last analysis
9 
ndicated that the effect of reducing the state-space dimensionality has a

ore negative impact on the shape of the trajectories for the area-based

epresentation. In other words, that connectome spectrum representa-

ion of the signal captures the important features of the brain activity

ynamics with a smaller number of dimensions. 

.4. Limitations and future directions 

There are some important limitations in our study. The most impor-

ant of them is associated with the use of EEG data. The spatial smooth-

ess of the inverse solution used could bias the estimated coupling be-

ween structure and function. This limitation is made obvious by the

act that there is one type of connectome spectrum configuration that we

ave not observed in our data: the activation of single, or very few high-

requency harmonics during the visual evoked activity (see Fig. 1 F).

n our datasets, these components activate very weakly. The relatively

mooth nature of the reconstructed electrical activity implies that very

igh-frequency connectome harmonics will always have small weight in

he signal. However, the smoothness of the source reconstruction does

ot completely account for the prominence of the low-frequency compo-

ents, which are spatially much smoother (see Fig. S1). For the analysis

f compactness, we have tested the effect of such bias with simulations,

nd observed that the connectome spectrum is the most robust repre-

entation to this artifact (see Fig. S5). fMRI research has already shown

hat connectome harmonics capture the main axes of the variability of

he spatiotemporal dynamics, as their composition conform the differ-

nt resting-state networks ( Atasoy et al., 2016 ), and their dynamics are

ltered by drugs in a harmonic-selective manner ( Atasoy et al., 2017 ).

or this reason, we believe that the connectome spectrum would also

orm a sparse and lower-dimensional basis for fMRI data, and propose

ts study for future research. 

Regarding the analysis of integration and segregation, we com-

ensate for the source-reconstruction smoothing bias towards low-

requency harmonics by defining integration and segregation in a data-

riven manner. More specifically, we define a threshold that divides

he connectome spectrum energy across all time into two halves (which

ay be composed of a different number of harmonics). If instead, we

hose to divide the connectome spectrum into two halves with the same

umber of harmonics, most of the energy would be concentrated in the

owest end of the spectrum (smooth harmonics), and the system would

e always defined as integrated. However, the effect of the source re-

onstruction strategy and accuracy on our results should be addressed

n future studies. 

A related limitation is the general difficulty of the Fourier transform

o pick up transients in the graph, such as a Dirac delta function, in

 compact manner. This is the same in the case of spatial and tempo-

al Fourier analysis. Such transient patterns are better captured by the

ignal representation based on brain areas (which are Dirac delta func-

ions). A possible solution to be investigated in future work could be the

se of graph wavelets ( Hammond et al., 2011 ) instead of connectome

armonics, as they excel at picking up transient signals in a compact

anner. 

Our results suggest that the shape of the structural connectivity plays

 very important role in the signal decomposition. Interesting future

irections could be to study how the inter-individual variability on

he structural connectivity modulates the spectral representation of the

ignal. This approach would be very challenging, given that different

raph-structures would provide different connectome harmonics, and

he comparison between participants would not be straight forward.

imilarly, future directions could point towards hallmarks of brain dis-

rders in which the structural connectivity is affected. 

Taking into account that connectome spectral analysis assumes brain

ctivity as a diffusion process on top of the structural connectivity, the

act that geometry-preserving harmonics provided a similar compact-

ess performance than the connectome harmonics suggests that con-

ectome weight model (number of fibers) that we used might not be
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he most accurate model to capture the diffusion dynamics of the brain.

owever, the fact that geometry-preserving surrogates perform better

han degree-preserving surrogates suggests that the spatial embedding

f the connectome is a property more important than the weight model

o describe brain dynamics compactly. For future work, an interesting

erspective is to study compactness analysis as a cost function to opti-

ize the weight-model selection for connectomics. 

Another important aspect to take into consideration, is that the func-

ional connectivity measures (integration and segregation) estimated

n this work are parametric, i.e., they assume that brain activity dif-

uses over the structural connectivity graph. For this reason, it is cru-

ial that when interpreting those measures, one considers that they ulti-

ately depend on the validity of the underlying communication model

 Seguin et al., 2020 ). 

A potential different line of research to follow-up on this work

ould be the study of the time-vertex joint power-spectral density (see

rassi et al. 2017 ). In that direction, the joint signal representation of

patial and temporal modes could be related to the theories of communi-

ation through coherence ( Fries, 2015 ) and brain oscillations ( Raj et al.,

020 ). In this sense, it would be very interesting to investigate the role

f the connectivity measures used to define the edges in the structural

onnectivity matrix. Here we used the number of fibers connecting ev-

ry pair of brain areas (estimated from tractography). The connectome

armonics would have been different if we used the average fiber length

nstead. This last approach could be useful to investigate the role of de-

ays in functional connectivity. 

Finally, further validation is needed in different contexts, to verify

hether the conclusions and hypotheses presented hold for a larger va-

iety of tasks. 

. Materials and methods 

.1. Data acquisition and pre-processing 

High-density EEG was recorded at 2048 Hz using a 128-channel

iosemi Active Two EEG system (Biosemi, Amsterdam, The Nether-

ands;) at the Fribourg Cantonal Hospital, Fribourg, Switzerland. A to-

al of 20 healthy participants (17 females, mean age: 23, age range:

0–29 years) were recorded while performing a visual discrimination

ask. All participants provided written informed consent before the ex-

eriment. The experimental procedures complied with the Declaration

f Helsinki and were approved by the regional ethics board (CER-VD,

rotocol Nr. 2016–00,060). A good signal quality was guaranteed by

eeping the offset between the active electrodes and the Common Mode

ense - Driven Right Leg (CMS-DRL) feedback loop under a standard

alue of ± 20 mV. After each participant session, individual 3D elec-

rode positions were digitized with an ultrasound motion capture system

Zebris Medical GmbH). This open dataset ( Pascucci et al., 2021 ) has

een used in previous publications ( Glomb et al., 2020 ; Rubega et al.,

019 ). The visual stimuli consisted of images of faces or scrambled ver-

ions of the same images ( Ales et al., 2012 ). After a 200 ms image

resentation, participants responded by pressing one of two buttons

n a response box, whether they had seen a face or a scrambled im-

ge. One participant was excluded due to motion artifacts, leaving 19

atasets for analysis. Data were pre-processed using EEGLAB v14.1.1

 Delorme and Makeig, 2004 ) ( sccn.ucsd.edu/eeglab/index.php ). Down-

ampling to 250 Hz (anti-aliasing filter: cut-off frequency of 112.5 Hz;

ransition bandwidth of 50 Hz) and local detrending (high-pass filter at

 Hz, EEGLAB PREP plugin) were applied ( Bigdely-Shamlo et al., 2015 ).

rials were extracted from 1500 ms before the stimulus presentation un-

il 1000 ms after. Line and monitor noise (at 50 and 75 Hz, respectively,

s well as harmonics of these frequencies) were removed by spectral

nterpolation ( Leske and Dalal, 2019 ). Bad trials (22 ± 36 out of 600

er participant) were removed and bad channels (15 ± 9 out of 128

er participant) marked via visual inspection. The remaining physiolog-
10 
cal artifacts (eye blinks, horizontal and vertical eye movements, muscle

otentials) were removed using FastICA by first marking bad ICs using

he Multiple Artifact Rejection Algorithm (MARA) as implemented in

EGLAB ( Delorme and Makeig, 2004 ). The previously identified bad

hannels were not included in this step. Finally, bad channels were in-

erpolated using the nearest neighbor spline method as implemented in

EGLAB, and data were re-referenced to the common average before

eing globally z-scored. 

.2. Structural MRI 

T1-weighted images were obtained from the same participants

s magnetization prepared rapid-gradient echo (MPRAGE) volumes

sing a General Electrics Discovery MR750 3T MRI scanner and

 COR FSPGR BRAVO pulse sequence with flip angle = 9 ◦; echo

ime = 2.81 ms, repetition time = 7.27 ms, inversion time = 0.9 s,

lice thickness = 1 mm, head first supine. Connectome mapper 3

 Tourbier et al., 2020 ) v3.0.0-RC1 with Freesurfer 6.0.1 were used

o perform the segmentation of the MPRAGE volume into gray and

hite matter, as well as the parcellation of gray matter brain re-

ions of interest according to the Lausanne 2008 multiscale parcel-

ation ( Hagmann et al., 2008 ). Connectome Mapper 3 and Freesurfer

re available at github.com/connectomicslab/connectomemapper3 and

urfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki . 

.3. Diffusion MRI 

To create the structural connectivity matrix, we obtained a

onsensus connectome from an online available dataset consisting

f 70 healthy participants ( Griffa et al., 2019 ) available at zen-

do.org/record/2,872,624 ; mean age 29.7 years, range 18.5–59.2 years;

4 females), scanned in a 3-Tesla MRI scanner (Trio, Siemens Medical,

ermany) with a 32-channel head-coil. Informed written consent in ac-

ordance with institutional guidelines (protocol approved by the Ethics

ommittee of Clinical Research of the Faculty of Biology and Medicine,

niversity of Lausanne, Switzerland, #82/14, #382/11, #26.4.2005)

as obtained for all subjects. A diffusion spectrum imaging (DSI) se-

uence (128 diffusion-weighted volumes and a single b0 vol, maximum

-value 8000 s/mm2, 2.2 × 2.2 × 3.0 mm voxel size) was applied,

nd DSI data were reconstructed following the protocol described in

 Wedeen et al., 2008 ). A magnetization-prepared rapid acquisition gra-

ient echo (MPRAGE) sequence sensitive to white/gray matter contrast

1 mm in-plane resolution, 1.2 mm slice thickness) was also applied,

nd gray and white matter were segmented from the MPRAGE volume

sing Freesurfer and Connectome Mapper 3 ( Tourbier et al., 2020 ). 

Then, individual structural connectivity matrices were estimated by

eterministic streamline tractography on the reconstructed DSI data, by

eeding 32 streamlines per diffusion direction in each white matter voxel

 Wedeen et al., 2008 ). The number of fibers found between each voxel at

he gray matter/white matter-interface was summed within each brain

rea given by the same parcellation used for the structural data. 

A consensus group-representative structural brain connectivity ma-

rix was generated from the connectomes of 70 healthy participants

sing the method introduced in ( Betzel et al., 2019 ). This method

elects a recurrence threshold that is distance-dependent, and pre-

erves the connection density across different levels of connection fiber-

ength. The connection density is preserved independently for intra- and

nterhemispheric connections, allowing more inter-hemispheric con-

ections to be kept in the group estimate, in comparison to simple

onnectome average across subjects. The resulting connection den-

ity in the group connectome results in approximately 13%. The

ode to generate this consensus connectome is openly available at

ttps://www.brainnetworkslab.com/s/distanceDependent.zip . 

https://www.brainnetworkslab.com/s/distanceDependent.zip
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.4. Source reconstruction and area-based time-courses 

Gray matter (source) signal reconstruction of the scalp EEG sig-

als was performed using individual realistic head conductor models,

ased on the tissue segmentation of the individual structural images and

he EEG electrode positions. Both forward solutions, using the Locally

pherical Model with Anatomical Constraints (LSMAC) and inverse so-

utions, using the Local Autoregressive Average (LAURA) method, were

mplemented with the CARTOOL toolbox ( Brunet et al., 2011 ) (freely

vailable at https://sites.google.com/site/cartoolcommunity/ ). 

Using the inverse solution matrix, we projected the EEG data of

ach participant into approximately 5000 dipole locations uniformly

istributed in the gray matter. Apart from a magnitude, each dipole

as a three-dimensional orientation. The time-series for each brain area

as extracted from dipoles whose location overlapped with that region.

sing the singular value decomposition method ( Rubega et al., 2019 ),

e estimated the orientation of maximal variance during the time win-

ow defined from 120 to 500 ms after stimulus onset. Each dipole in the

rain area was then projected to the estimated orientation, and the av-

rage magnitude of the projection across dipoles was taken as the brain

rea value for each time-point. 

.5. Graph signal processing 

.5.1. Connectome harmonics and graph Fourier transform 

The connectome harmonics are the eigenfunctions of the structural

onnectivity graph Laplacian. Given a structural connectivity graph

 ( 𝐷, 𝐸 ) of 𝐷 nodes and 𝐸 edges, we define the graph Laplacian as: 

  = 𝐷 − 𝑊 , (4) 

here 𝐃 is the degree matrix and 𝐖 is the weight matrix. Here we used

he normalized graph Laplacian, which is defined as: 

𝐿 = 𝐃 

− 1 2   𝐃 

− 1 2 . (5) 

The connectome harmonics are obtained by the eigendecomposition

f the normalized graph Laplacian: 

𝐿 = 𝑈Λ𝐔 

⊤, (6) 

here [Λ] 𝑑𝑑 = λ𝑑 for 𝑛 = [ 1 , … , 𝐷 ] are the eigenvalues of the graph

aplacian ordered according to smoothness, and are associated with the

-th eigenvector (connectome harmonic) contained in the 𝑑-th column

f 𝑈 . We formulate the graph Fourier transform ( GFT { 𝐬 𝑡 
𝑟 
} ) of the brain

ctivity defined in the area-based coordinate system at a given moment

n time ( 𝐬 𝑡 
𝑟 
∈ R 

𝐷 ) as following: 

𝐬̂ 𝑡 λ = 𝐺𝐹 𝑇 
{
𝐬 𝑡 
𝑟 

}
= 𝐔 

⊤𝐬 𝑡 
𝑟 
. (7) 

The GFT linearly maps the original signal into the connectome har-

onics. To project back the signal to the area-based coordinate system,

e define the inverse graph Fourier transform iGFT as: 

𝐬 𝑡 
𝑟 
= 𝑖𝐺𝐹 𝑇 

{
𝐬̂ 𝑡 λ
}
= 𝑈 ̂𝐬 𝑡 λ. (8) 

These operations were implemented using the

raph Signal Processing toolbox in Python available at

ttps://pygsp.readthedocs.io/en/stable/ . 

.5.2. Graph power spectral density 

The graph power spectral density describes the amount of energy

resent in each connectome harmonic during a graph time-varying sig-

al. We compute the normalized graph power spectral density for each

articipant by: first transforming the evoked signal (i.e., the average sig-

al across trials) into its connectome spectrum through the GFT. Then

ormalizing the connectome spectrum of the evoked signal by the stan-

ard deviation in time. Finally, the power is defined as the mean squared

ignal’s spectrum across time. 
11 
.5.3. Graph spectrum dichotomization 

Graph spectrum dichotomization was first introduced in Preti and

an De Ville (2019) . First, we decompose the brain activity signal in

ow-frequency and high-frequency connectome harmonic parts. These

wo signals are computed by multiplying the graph Fourier transformed

oefficients by the indicator function to the first 𝑇 lowest eigenvalues

nd to the 𝐷 − 𝑇 highest eigenvalues, where λ𝑇 is the threshold graph-

requency that divides the graph energy spectrum in two halves: 

 

𝑡 
𝐿 
= 

‖‖‖1 [ λ< λ𝑇 ] 𝐔 

⊤𝐬 𝑡 ( 𝑟 ) 2 
‖‖‖

𝐏 𝑡 
𝐻 

= 

‖‖‖1 [ 𝜆≥ 𝜆𝑇 ] 𝐔 

⊤𝐬 𝑡 ( 𝑟 ) 2 
‖‖‖, (9) 

here 1 [ 𝜆< 𝜆𝑇 ] is the indicator function, which keeps only the lowest part

f the spectrum (or to the highest, for 1 [ 𝜆≥ 𝜆𝑇 ] ). These power time-courses

nform about the amount of energy of the original signal contained in

he lowest- and highest-end of the graph spectrum for each time-point. 

.5.4. Surrogate harmonics 

A thousand surrogate connectome graphs were obtained using

he Brain Connectivity Toolbox ( Rubinov and Sporns, 2010 ) function

ull_model_und_sign . This function shuffles the connections of the origi-

al connectome while preserving its degree distribution. The harmonics

rom these surrogate graphs are referred to as degree-preserving surro-

ate harmonics. 

Another thousand surrogate connectome graphs were ob-

ained using the “Geometry Surrogate Networks ” code from

ttp://www.sng.org.au/Downloads . This function shuffles the con-

ection weights of the original connectome while preserving its

onnectivity structure. The harmonics from these surrogate graphs are

eferred to as geometry-preserving surrogate harmonics. 

.6. Analysis of compactness 

.6.1. Signal compactness in a given coordinate system 

Signal compactness was measured using two metrics: The Person cor-

elation between the original and the compressed signal, and the com-

ression reconstruction error. These two metrics are based on first com-

ressing the signal using: 

̂
 

( 𝑝 ) 
𝑖 

= 

{ 

𝐗 𝑖 if ‖‖𝐗 𝑖 
‖‖F ≥ f 

(
𝐗 , ‖⋅‖F , 𝑝 )

0 otherwise , (10) 

or 𝐗 ∈ R 

𝐷,𝑇 ,𝑁 and 𝐗 𝑖 ∈ R 

𝑇 ,𝑁 corresponding to the 𝑇 samples and 𝑁

rials of the 𝑖 -th dimension out of 𝐷 total dimensions (brain areas or

armonics), where ‖ ⋅ ‖F is the Frobenius norm. f ( ) is a function that

eturns the value of the 𝑝 -th percentile in the distribution of the norms

f all dimensions. This compression removes the dimensions with the

mallest amount of signal power throughout time and trials. 

Given a signal 𝐗 

(S) ∈ R 

𝐷,𝑇 ,𝑁 , 𝐷 the dimensionality, 𝑇 the number of

amples, and 𝑁 the number of trials, and 𝐗̂ 

( 𝑆) ( 𝑝 ) the compressed signal,

he reconstruction normalized mean squared error (or just reconstruc-

ion error) for a given percentile is computed as: 

𝑐 ( p ) = 

‖‖‖⟨𝐗 ( S ) ⟩‖‖‖F − ‖‖‖‖⟨ 𝐗̂ ( 𝑆 ) ( 𝑝 ) ⟩ − ⟨𝐗 ( S ) ⟩‖‖‖‖F ‖⟨𝐗 ( S ) ⟩‖F 
, (11) 

here ⟨⋅⟩ denotes the average across trials. Compression correlation is

efined as: 

𝑟 ( 𝑝 ) = 𝜌

(⟨ 
𝐗 

( S ) , 𝐗̂ 

( 𝑆 ) ( 𝑝 ) 
⟩ )

. (12) 

When computing compactness dynamics, we first define compression

s: 

̂
 

( 𝑝 ) 
𝑖,𝑡 

= 

{ 

𝐗 𝑖,𝑡 if ‖‖𝐗 𝑖,𝑡 
‖‖2 ≥ f 

(
𝐗 ∶ 𝑡 , ‖⋅‖2 , 𝑝 )

0 otherwise , (13)

or 𝐗 𝑖,𝑡 ∈ R 

𝑁 corresponding to the 𝑁 trials of the 𝑖 -th dimension at sam-

le 𝑡 of 𝐗 , where ‖ ⋅ ‖ is the l -norm. f ( ) is a function that returns the
2 2 

https://sites.google.com/site/cartoolcommunity/
https://pygsp.readthedocs.io/en/stable/
http://www.sng.org.au/Downloads
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alue of the 𝑝 -th percentile in the distribution of the norms of all di-

ensions. We then define compactness dynamics ( 𝑐 𝑡 ) as the average re-

onstruction performance (1 − reconstruction error) of the compressed

ignal across all percentiles at each time-point: 

𝑐 𝑡 = 

1 
100 

100 ∑
𝑝 =1 

‖⟨𝐗 ∶ 𝑡 ⟩‖2 − 
‖‖‖‖‖‖𝐗̂ ( 𝑝 ) ∶ 𝑡 

‖‖‖− ⟨𝐗 ∶ 𝑡 ⟩‖‖‖2 ‖⟨𝐗 ∶ 𝑡 ⟩‖2 
, (14) 

here ⟨𝐗 ∶ 𝑡 ⟩ ∈ R 

𝐷 ( and ⟨𝐗̂ 

( 𝑝 ) 
∶ 𝑡 ⟩ ∈ R 

𝐷 ) is the average pattern (across trials)

f the original signal (compressed signal at a given percentile) across all

rials at time 𝑡 . Please note the differences when measuring compactness

n Eq. (11) . 

.6.2. Compression effect on visual streams 

We assessed whether the effect of compressing the signal was harm-

ul at specific brain areas known to be involved in visual processing. For

hat reason, we defined the dorsal and ventral streams, and a group of

arly visual areas, by clustering some of the 219 regions of interest in

cale 3 of the multi-scale Lausanne atlas parcellation ( Cammoun et al.,

012 ). The choice of brain areas used is shown in Fig. S3, and was based

n a previous study finding clusters corresponding to the different visual

athways (see Fig. S4 in the Ref. Hagmann et al. 2008 ). Compactness

etrics were computed only taking into account the signal in those ar-

as. To do so, in the case of the connectome spectrum, the signal of brain

egion activity was uncompressed using a set of coefficients estimated

y compression, by means of the iGFT defined in Eq. (8) . 

.6.3. Conditional probabilities 

The conditional probability of the compactness of the evoked signal

𝐗 

(S) ⟩ ∈ R 

𝐷,𝑇 in a given coordinate system S , given the signal power

as computed as the following. First, we computed the compactness

ynamics, using Eq. (12) . We then removed the outliers (3 standard

eviations) and computed the joint probability of signal compactness

nd power: 

𝑃 

(
𝑐 𝑆 
𝑡 
, 
‖‖‖𝐗 

( S ) ‖‖‖2 ), (15) 

sing the Gaussian kernel density estimation from the python SciPy tool-

ox ( Virtanen et al., 2020 ). From the joint probability, we obtained the

arginal probability of the signal power. The conditional probability

as finally obtained as: 

𝑃 

(
𝑐 𝑆 
𝑡 

|||‖‖‖𝐱 ( 𝑆 ) ‖‖‖) = 

𝑃 

(
𝑐 𝑆 
𝑡 
, 
‖‖‖𝐱 ( S ) ‖‖‖2 )

𝑃 ( ‖𝐱 ( S ) ‖2 ) 
. (16) 

.7. Statistical analysis 

.7.1. Difference in compactness dynamics between different coordinate 

ystems 

The significance of the difference in compactness dynamics between

wo coordinate systems was assessed by means of Monte-Carlo simu-

ations. Specifically, we designed a permutation test to generate a null

odel distribution of “no difference of compactness between coordinate

ystems ”. This null model was generated by computing 𝑛 𝑝𝑒𝑟𝑚 -times the

ifference between two matrices that were randomly sampled from the

ompactness matrices of the two coordinate systems. For each permu-

ation, these two matrices contained the data from half of the subjects

n one coordinate space, and half of the subjects in the other. 𝑛 𝑝𝑒𝑟𝑚 was

omputed taking into account a significance level of 𝛼 = 0 . 05 , and the

umber of comparisons to be corrected for by the Bonferroni method,

s follows: 

𝑛 𝑝𝑒𝑟𝑚 = 

50 𝑛 𝑐𝑜𝑚𝑝 

α
(17) 

inally, a compactness difference was considered significant, if the em-

irical difference was among the 5% of the extremes of the null model

istribution. For this purpose, the Bonferroni corrected 𝑝 -value was com-

uted for each time-point as: 

𝑝 ( 𝑡 ) = 𝑛 𝑐𝑜𝑚𝑝 

∑𝑛 𝑝𝑒𝑟𝑚 

𝑖 
𝑓 

(
dif f ( 𝑡 ) , dif f 𝑖 𝑝𝑒𝑟𝑚 ( 𝑡 ) 

)
+ 1 

𝑛 𝑝𝑒𝑟𝑚 + 1 
, (18) 
12 
here 

 

(
dif f , dif f 𝑖 

𝑝𝑒𝑟𝑚 

)
= 

{ 

1 , 𝑑𝑖𝑓𝑓 < dif f 𝑖 
𝑝𝑒𝑟𝑚, 

0 , 𝑑𝑖𝑓𝑓 ≥ dif f 𝑖 
𝑝𝑒𝑟𝑚 

. 
(19) 

.7.2. Broadcasting significance test 

The significance of the broadcasting dynamics was assessed by a sta-

istical test based on comparing against the broadcasting dynamics de-

cribed by surrogate networks. More specifically, we first obtained a

ingle scalar summary of the broadcasting dynamics for each subject

nd time-point, namely the broadcasting direction (BD): 

B D 

𝑡 = 𝐏 𝑡 
𝐻 

− 𝐏 𝑡 
𝐿 

(20) 

We then computed the BD for the degree-preserving surrogate har-

onics (see Surrogate harmonics ) and created a null distribution. For

ach time-point and subject, a p -value was computed following the same

pproach as in the previous section Difference in compactness dynamics

etween different coordinate systems. However, due to the increase in the

umber of comparisons (as we tested for each subject separately), we

orrected for multiple comparisons with the Benjamini Hochberg FDR

ethod from the Python toolbox https://www.statsmodels.org/ . 

.8. Dimensionality analysis 

.8.1. Co-linearity of dimensions 

Co-linearity of dimensions was measured by first computing the cor-

elation matrices: 

𝑅 𝑖,𝑗 = 𝜌

(
vec 

(
𝐗 

( S ) 
𝑖 

)
, vec 

(
𝐗 

( S ) 
𝑗 

))
, (21) 

here 𝐗 

(S) 
𝑖 

∈ R 

𝑇 ,𝑁 corresponds to the data in the 𝑖 -th dimension of the

oordinate system S , with 𝑇 samples and 𝑁 trials, and after vectoriza-

ion vec ( 𝐗 

(S) 
𝑖 
) ∈ R 

𝑇𝑁 . 

.8.2. Distance difference between different trajectories 

We computed the distance between two trajectories of brain activity

or each time-point as: 

𝑑 ( S ) ( 𝑡 ) = 

‖‖‖‖
⟨ 
𝐗̂ 

( S ,𝑖 ) 
∶ 𝑡 

⟩ 
− 

⟨ 
𝐗̂ 

( S ,𝑗 ) 
∶ 𝑡 

⟩ ‖‖‖‖, (22) 

here 𝐗̂ 

( S ,𝑘 ) 
∶ 𝑡 ∈ R 

𝑑 is the average brain activity pattern across the many

rials corresponding to the 𝑘 -th condition (faces vs scrambled) at time 𝑡 ,

n the coordinate space S (area-based vs connectome harmonics). 

We then defined the difference between the distances estimated at

ifferent coordinate-systems’ sub-spaces as: 

𝑑 ( 𝑡, 𝑝 ) = 𝑑 ( S 1 , p ) ( 𝑡 ) − 𝑑 ( S 2 ,𝑝 ) ( 𝑡 ) , (23) 

here ( S 1 , 𝑝 ) indicates that distance is computed for the subspace of the

oordinate system S 1 defined by the percentile 𝑝 (see Low-dimensional

mbedding ). 

.8.3. Low-dimensional embedding 

We followed the dimensionality reduction approach based on the

ame criterion as the compression in Eq. (10) . Namely, to reduce the

imension to a given percentile 𝑝 we keep the 𝑖 -th dimension if: 

‖‖𝐗 𝑖 
‖‖F ≥ f 

(
𝐗 , ‖⋅‖F , 𝑝 ), (24) 

or 𝐗 𝑖,𝑡 ∈ R 

𝑁 corresponding to the 𝑁 trials of the 𝑖 -th dimension at sam-

le 𝑡 of 𝐗 , where ‖ ⋅ ‖F is the Frobenius norm. f ( ) is a function that

eturns the value of the 𝑝 -th percentile in the distribution of the norms

f all dimensions. 

https://www.statsmodels.org/
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.8.4. Persistence diagrams and bottleneck distance 

To compute the persistence diagrams of the trajectories, we used

he package Ghudi available at http://gudhi.gforge.inria.fr . Persistence

iagrams were generated for connected components and cycles, for co-

rdinate systems with a varying number of dimensions, using the low-

imensional embedding explained above. Then we computed the bot-

leneck distance between the persistence diagrams of the original signal

219 areas) and the persistence diagram of the signal in the subspace of

he different dimensions. 
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