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Analyse, modélisation et visualisation de données

spatio-temporelles pour les études urbaines

Résumé

La part de personnes vivant dans une région urbaine est plus élevé que ja-
mais et continue à crôıtre. L’étalement urbain et la dépendance automobile
ont supplanté la ville compacte adaptée aux piétons. La pollution de l’air,
le gaspillage du sol, le bruit, et des problèmes de santé pour les habitants en
sont la conséquence. Les urbanistes doivent trouver, ensemble avec toute la
société, des solutions à ces problèmes complexes. En même temps, il faut
assurer la performance économique de la ville et de sa région. Actuellement,
une quantité grandissante de données socio-économiques et environnemen-
tales est récoltée. Pour mieux comprendre les processus et phénomènes du
système complexe ”ville“, ces données doivent être traitées et analysées. Des
nombreuses méthodes pour modéliser et simuler un tel système existent et
sont continuellement en développement. Elles peuvent être exploitées par
le géographe urbain pour améliorer sa connaissance du métabolisme urbain.
Des techniques modernes et innovatrices de visualisation aident dans la com-
munication des résultats de tels modèles et simulations.

Cette thèse décrit plusieurs méthodes permettant d’analyser, de modé-
liser, de simuler et de visualiser des phénomènes urbains. L’analyse de
données socio-économiques à très haute dimension à l’aide de réseaux de
neurones artificiels, notamment des cartes auto-organisatrices, est montré à
travers deux exemples aux échelles différentes. Le problème de modélisation
spatio-temporelle et de représentation des données est discuté et quelques
ébauches de solutions esquissées. La simulation de la dynamique urbaine, et
plus spécifiquement du trafic automobile engendré par les pendulaires est il-
lustrée à l’aide d’une simulation multi-agents. Une section sur les méthodes
de visualisation montre des cartes en anamorphoses permettant de trans-
former l’espace géographique en espace fonctionnel. Un autre type de carte,
les cartes circulaires, est présenté. Ce type de carte est particulièrement utile
pour les agglomérations urbaines. Quelques questions liées à l’importance
de l’échelle dans l’analyse urbaine sont également discutées. Une nouvelle
approche pour définir des clusters urbains à des échelles différentes est
développée, et le lien avec la théorie de la percolation est établi. Des statis-
tiques fractales, notamment la lacunarité, sont utilisées pour caractériser
ces clusters urbains. L’évolution de la population est modélisée à l’aide d’un
modèle proche du modèle gravitaire bien connu.

Le travail couvre une large panoplie de méthodes utiles en géographie
urbaine. Toutefois, il est toujours nécessaire de développer plus loin ces
méthodes et en même temps, elles doivent trouver leur chemin dans la vie
quotidienne des urbanistes et planificateurs.
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Analysis, modelling and visualisation of

spatiotemporal data for urban development

Abstract

The proportion of population living in or around cities is more important
than ever. Urban sprawl and car dependence have taken over the pedestrian-
friendly compact city. Environmental problems like air pollution, land waste
or noise, and health problems are the result of this still continuing process.
The urban planners have to find solutions to these complex problems while
keeping the economic performance of the city and its surroundings at the
same level. At the same time, an increasing quantity of socio-economic and
environmental data is acquired. In order to get a better understanding of
the processes and phenomena taking place in the complex urban environ-
ment, these data should be analysed. Numerous methods for modelling and
simulating such a system exist and are still under development and can be
exploited by the urban geographers for improving our understanding of the
urban metabolism. Modern and innovative visualisation techniques help in
communicating the results of such models and simulations.

This thesis covers several methods for analysis, modelling, simulation
and visualisation of problems related to urban geography. The analysis of
high dimensional socio-economic data using artificial neural network tech-
niques, especially self-organising maps, is showed using two examples at
different scales. The problem of spatiotemporal modelling and data repre-
sentation is treated and some possible solutions are shown. The simulation of
urban dynamics and more specifically the traffic due to commuting to work
is illustrated using multi-agent micro-simulation techniques. A section on
visualisation methods presents cartograms for transforming the geographic
space into a feature space, and the distance circle map, a centre-based map
representation particularly useful for urban agglomerations is shown. Some
issues on the importance of scale in urban analysis and clustering of urban
phenomena are exposed. A new approach on how to define urban areas
at different scales is developed, and the link with percolation theory estab-
lished. Fractal statistics, especially the lacunarity measure, and scale laws
are used for characterising urban clusters. In a last section, the population
evolution is modelled using a model close to the well-established gravity
model.

The work covers quite a wide range of methods useful in urban geography.
Methods should still be developed further and at the same time find their
way into the daily work and decision process of urban planners.
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Tous mes collègues de l’IGUL méritent aussi un grand grand merci. Tout
particulièrement Gaston et Manon, qui étaient là toutes ces années et qui
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Ein ganz spezielles Dankeschön möchte ich auch meiner ganzen Familie
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j’aurai oublié dans cette liste bien trop courte!

Finally we should not forget the financial support for the past few
years. This work has been supported by the Swiss National Science Founda-
tion, project ”Urbanization regime and environmental impact: Analysis and
Modelling of Urban Patterns, Clustering and Metamorphoses“, n. 100012-
113506.

vii



viii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and challenges of the thesis . . . . . . . . . . . . . 4
1.3 Short review of techniques and data . . . . . . . . . . . . . . 5

1.3.1 Techniques . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Chapter 3: Analysis of urban structures and dynamics 8
1.5.2 Chapter 4: Simulation of urban dynamics . . . . . . . 10
1.5.3 Chapter 5: Visualisation techniques . . . . . . . . . . 11
1.5.4 Chapter 6: Advanced exploratory geospatial data anal-

ysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Elements of quantitative urban geography 17
2.1 What is a city, and why does it exist? . . . . . . . . . . . . . 20
2.2 Why do we need urban analysis? . . . . . . . . . . . . . . . . 23
2.3 Quantitative urban analysis . . . . . . . . . . . . . . . . . . . 25
2.4 Beyond the MAUP . . . . . . . . . . . . . . . . . . . . . . . . 30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Analysis of urban structures and dynamics 39
3.1 A word about the importance of scale . . . . . . . . . . . . . 40
3.2 Defining the urban area . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 The percolation algorithm . . . . . . . . . . . . . . . . 44
3.2.2 Zipf’s law for urban clusters of different scale . . . . . 51
3.2.3 Measuring the urban concentration using percolation . 53
3.2.4 Application of the percolation approach to socio-eco-

nomic data . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Analysis of the urban structure using fractal geometry . . . . 61

3.3.1 Fractal dimension . . . . . . . . . . . . . . . . . . . . 62
3.3.2 Lacunarity . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



x CONTENTS

3.4 Analysis of urban dynamics . . . . . . . . . . . . . . . . . . . 68
3.4.1 Population growth . . . . . . . . . . . . . . . . . . . . 68
3.4.2 Modelling the evolution of population . . . . . . . . . 71

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Simulation of urban dynamics 83
4.1 Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Self-organisation with Multi-Agent Systems . . . . . . 88
4.2.2 Multi-agent simulation . . . . . . . . . . . . . . . . . . 90

4.3 Traffic simulation . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.1 MATSim: a stochastic queue based agent traffic sim-

ulation package . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Traffic simulation of the agglomeration of Lausanne

using the MATSim package . . . . . . . . . . . . . . . 96
4.4 Calibration of a multi-agent simulation . . . . . . . . . . . . . 100

4.4.1 Estimation of the spatial distribution of the agents . . 104
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Visualisation techniques 123
5.1 Spatially continuous data representation . . . . . . . . . . . . 127

5.1.1 The method of the moving windows . . . . . . . . . . 128
5.1.2 Kernel density maps . . . . . . . . . . . . . . . . . . . 129

5.2 Cartograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.1 Cartogram algorithms . . . . . . . . . . . . . . . . . . 132
5.2.2 Problems of cartogram creation . . . . . . . . . . . . . 134
5.2.3 Are cartograms useful? . . . . . . . . . . . . . . . . . . 137

5.3 Distance circle map . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4 Cartoscopy of Lausanne . . . . . . . . . . . . . . . . . . . . . 143

5.4.1 The 70 communes and the transportation infrastruc-
ture of the agglomeration . . . . . . . . . . . . . . . . 145

5.4.2 Typology of the communes . . . . . . . . . . . . . . . 147
5.4.3 Volume of buildings . . . . . . . . . . . . . . . . . . . 149
5.4.4 Population . . . . . . . . . . . . . . . . . . . . . . . . 151
5.4.5 Jobs in secondary and tertiary sectors . . . . . . . . . 153
5.4.6 Human density . . . . . . . . . . . . . . . . . . . . . . 155
5.4.7 Polarity of active population against jobs . . . . . . . 157
5.4.8 Jobs in tertiary sector . . . . . . . . . . . . . . . . . . 159
5.4.9 Jobs in secondary sector . . . . . . . . . . . . . . . . . 161
5.4.10 Population evolution 1860–1920 . . . . . . . . . . . . . 163
5.4.11 Population evolution 1940–2000 . . . . . . . . . . . . . 165

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



CONTENTS xi

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6 Advanced exploratory geospatial data analysis 171
6.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.2 Self-organising map . . . . . . . . . . . . . . . . . . . . . . . . 172

6.2.1 U-Matrix and P-Matrix . . . . . . . . . . . . . . . . . 175
6.2.2 Choice of the grid topology . . . . . . . . . . . . . . . 175

6.3 Case studies for urban analysis . . . . . . . . . . . . . . . . . 179
6.3.1 Socio-economic status of municipalities of Vaud and

Geneva cantons . . . . . . . . . . . . . . . . . . . . . . 179
6.3.2 Socio-economic landscape of Switzerland . . . . . . . . 186

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7 Conclusions 197
7.1 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . 197
7.2 New methods and techniques for dealing with complex spatial

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.3 General discussion and future research . . . . . . . . . . . . . 201
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8 Addendum: Spatial Tools 205



xii CONTENTS



Acronyms

ABM Agent Based Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

AI Artificial Intelligence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

ANN Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ASSOM Adaptive Subspace Self-Organising Map . . . . . . . . . . . . . . . . . . . . . 173

CA Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

CCA City Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CNRS Centre National de la Recherche Scientifique . . . . . . . . . . . . . . . . . . . 95

DAI Distributed Artificial Intelligence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

DM Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

ESDA Exploratory Spatial Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

EPFL Swiss Federal Institute of Technology in Lausanne. . . . . . . . . . . . . .11

ESOM Emergent Self-Organising Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

ETHZ Swiss Federal Institute of Technology in Zurich. . . . . . . . . . . . . . . . .95

FIFO First-In First-Out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

IPF Iterative Proportional Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

GIS Geographic Information System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

GISc Geographic Information Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

GNG Growing Neural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

GNU GNU’s Not Unix

GPL General Public Licence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

GPS Global Positioning System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

GRNN General Regression Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

HAC Hierarchical Ascendant Classification. . . . . . . . . . . . . . . . . . . . . . . . . . .11

HSOM Hybrid Self-Organising Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

INS Inertial Navigation System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

JSP Job-Shop Scheduling Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

xiii



xiv CONTENTS

KDD Knowledge Discovery in Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

LiDAR Light Detection And Ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

MAS Multi-Agent System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

MATSim Multi-Agent Traffic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

MAUP Modifiable Area Unit Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

MDS Multi-Dimensional Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

ML Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

MLA Machine Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

MLP Multi Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

NP Non-Deterministic Polynomial-Time

OD Origin-Destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

OPUS Open Platform for Urban Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . .84

QAP Quadratic Assignment Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

PC Personal Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

PDF Probability Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

RBF Radial Basis Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

SFSO Swiss Federal Statistical Office . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

SOM Self-Organising Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

SQSim Stochastic Queue Based Agent Traffic Simulation . . . . . . . . . . . . . . 95

SVG Scalable Vector Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

SVM Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

TS Traffic Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

TSP Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

TU Technische Universität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

VRP Vehicle Routing Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88



Chapter 1

Introduction

1.1 Motivation

Urban agglomerations are the living place of more than half the world’s
population. Cities have emerged and grown over the last centuries. The
population pattern has progressively changed from numerous smaller towns
dispersed in space to highly centralised urban agglomerations with an im-
portant proportion of population and economic activity located in cities
(Da Cunha & Both, 2004). Most developed countries have made an ”urban
transition“ characterised by a transformation of the urban system with a
high but stable urbanisation rate and growing occurring mostly in periph-
eral zones of the agglomerations. The ”metropolisation“ is the continuation
of the concentration process in the most important agglomerations (Bochet,
2006; Bassand, 1997; Bassand, Kaufmann, & Joye, 2001). It can be consid-
ered as the set of dynamic processes transforming a city into a metropole
(Derycke, 1999; Bochet, 2006). A metropole is an important urban agglom-
eration of international importance; the metropoles are connected together
at the first level in the global network of cities.

Cities are the product of the territorial appropriation and organisation
of human activities. The urban morphology and the spatial arrangement
of cities are influenced by complex systems of actors, actions and features
modifying continuously the urban structure. The ”urbanisation regime“
describes all the changes occurring in time modifying the urban structure
and morphology.

The development scheme of the cities follows a set of opportunities vary-
ing in space and time by respecting dynamic human and environmental con-
straints. The current urbanisation regime leads to urban sprawl and spatial
fragmentation, resulting in pollution of air, soil and water, noise and land
use conflicts. Studies of urbanisation dynamics in Switzerland showed that
the cities are growing by spatial extension (sprawl) and losing the connectiv-
ity to the agglomeration centre (Bassand, Joye, & Schuler, 1988; Da Cunha,
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2 1. Introduction

1993; Da Cunha & Both, 2004).
The urban structure influences strongly the environmental footprint of a

city. Environmental impact and amount of traffic seem to be strongly cor-
related to the population density (Newman & Kenworthy, 1989; Fouchier,
1995, 2002). In this sense, the urban structure is a core factor in the frame-
work of the sustainable urban development. The sustainable development
aims for making the economic and social development compatible with the
environment (Da Cunha, 2005). Different models for a more sustainable
city have been discussed and analysed (see e.g. Lynch, 1981; Frey, 1999;
Bochet, 2006). A compact city seems to be the solution for making the
city more sustainable. Empirical studies suggest that a compact city can
improve the use of public transports, reduce the frequency of journey’s and
limit the cost of equipments (Real Estate Research Corporation (RERC),
1974; Franck, 1989). However, the direct link between high density and low
need for mobility has not been proved formally (e.g. Breheny, 1995; Knight,
1996; Fouchier, 1995). For example Breheny (1995) states that with a com-
pact city, energy savings will only be minimal and that other forms might
be more adapted. New modelling and simulation approaches are needed for
testing the above hypotheses, and better understanding of the link between
urban structure and ecological footprint is required. Maignant (2009) uses
the urban morphology, and especially the constructal theory (Bejan, 2000)
for finding optimal urban arrangements. This is an interesting approach
as it combines the mathematical analysis of the morphology with spatial
optimisation. There is no possible optimum for all criteria; the optimum is
always a compromise solution (Maignant, 2009). For example, a compact
city is not the optimal urban shape for air pollution (Maignant, 2005).

Classic urban theories are not adapted to the metropolisation process
or the evaluation of the ecological footprint. Rapidly changing urban struc-
tures with the emergence polycentric cities, urban sprawl and modification
of the accessibility of the city are dynamics unknown to classical urban
models (Torrens, 2000). As Batty (2005) notes: ”urban systems are far-
from-equilibrium systems, whose elements are changing at different rates
and whose impact is diverse across different spatial scales and time spans“.
A new paradigm has been developed over the last two decades, based on
the disequilibrium inherent to the urban system (Batty, 2008). For example
Bak (1996) suggests that cities preserve their structure by self-organisation,
in order to avoid radical changes in the system. Wilson (2008) develops
the idea of phase transitions in urban evolution with the example of retail
systems. There seem to be critical thresholds in the urban sub-systems;
crossing these thresholds lead to a phase transition like for example the
change ”from ’corner shop‘ food retailing to supermarkets in the late 1950s
and early 1960s“ (Wilson & Oulton, 1983; Wilson, 2008).

The city has been analysed using new approaches and methods. The
urban morphology has been studied using fractal geometry (Frankhauser,
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1994; Batty & Longley, 1994). It has been recognised that urban systems
are evolving with emerging structures from the bottom up (e.g. Batty, 2005,
2008). Urban agglomerations are treated in this bottom-up approach as
emerging phenomena generated through a big number of decentralised deci-
sions and actions. The urban system has been recognised as being complex,
dynamic and non-linear. Concepts like fractal morphology, self-similarity,
scaling laws, self-organisation or far-from-equilibrium states have been in-
troduced from physics into quantitative urban geography. The constructal
theory (Bejan, 2000) is another interesting concept; according to this con-
structal law, self-organising systems distribute the imperfections, generating
the shape and structure of the system. Maignant (2009) shows how this the-
ory, and optimisation in general, can be used in geography and especially in
urban geography.

This thesis explores several novel ways in urban analysis, simulation and
visualisation. Of course, it is not possible to draw a complete picture of the
complex system ”city“, this would be far beyond the possibilities of a single
thesis. However, it tries to make some bridges between urban geography and
modern quantitative analysis and visualisation. It shows how new methods
can be integrated into urban analysis and addresses some concrete problems
in urban geography. One of these questions are the visualisation of spatial
and spatio-temporal information in a way allowing a useful interpretation
and better understanding of simple parameters in the urban systems. This
type of approach can be found in the field of ”visual analytics“, which is
the integration of interactive visualisation with analysis methods (see e.g.
Yuan & Hornsby, 2007, for an example in geoscience). Providing advanced
visualisation techniques that can be combined with analysis methods can
help urban geographers and decision makers with useful information for
planning or simply a better understanding of the complex urban system.

Another question is to define urban clusters, for example agglomerations,
or also clusters of specialised services. This thesis provides some insights in
how such spatial clusters can be defined using the percolation approach.
A discussion about the scale of analysis accompanies these considerations.
The exploratory data analysis using Self-Organising Map (SOM) is another
interesting topic allowing the urban geographer defining similar groups of
spatial units; it is another form of clustering, performed this time in the fea-
ture space and not in Euclidean space. This thesis provides also a simulation
approach to the problem of traffic simulation in order to retrieve additional
information about the mobility behaviour of the population. Such a simula-
tion can help defining links between the urban morphology and the ecological
footprint in the mobility behaviour.
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1.2 Objectives and challenges of the thesis

The main challenge of this thesis is the building of a bridge between urban
geography and advanced quantitative geography. Urban geographers are
used to make simple models and apply qualitative analysis methods. In
quantitative analysis, a number of new methods have been developed that
can be used for exploring and modelling the city which is a complex social
and economic system.

Urban systems can be analysed using a plethora of methods and tech-
niques very different from each other. This thesis does not provide one
coherent method for the questions outlined in the previous section. It will
rather take several different methods for various tasks in order to provide
some possibilities for the urban geographer to analyse and model the city
using novel techniques. The problem is common to all the methods pre-
sented in this work: provide tools for better understanding of the complex
system ”city“.

Chapter 2 gives some elements of quantitative urban geography, describ-
ing the scientific context of this thesis. Section 2.4 gives an overview of the
scientific questions behind this work. Four different important issues are
identified: the work with spatially continuous data to avoid zoning effects,
scale, change of support for spatial datasets, and visualisation methods.
These issues are discussed throughout the thesis from different perspectives.

Different techniques for dealing with urban and socio-economic data are
discussed in the following chapters. Some advanced methods are shown for
defining spatial clusters like the delimitation of the agglomeration itself, how
high-dimensional socio-economic data can be clustered, and how simulations
can contribute to the understanding of the urban system. Methods like the
SOM or Multi-Agent System (MAS) are already known in some fields; in
this thesis, feasibility studies have been undertaken in these cases to show
their potential applicability in the field of urban geography. The percolation
approach presented in chapter 3 is a novel technique that has been consid-
erably extended in this work and applied to different socio-economic and
demographic data. For all methods, a case study is presented to show a
concrete application.

One of the focuses of this thesis is also to provide some examples of how
socio-economic data in an urban agglomeration can be visualised. Chapter 5
is dedicated to different visualisation techniques. Section 5.4 shows finally
some examples of maps for the agglomeration of Lausanne, along with some
explications related to the observed phenomenon (even if the explications
would probably better fit into chapter 2). These maps should give an idea
in which direction modern visualisation of urban phenomena should go. Of
course, interactive and dynamic systems could help in further improving
the visual analysis. The rising field of GeoVisual Analytics tries to provide
an easy access to analysis results of geographical data through a visual
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approach. Visual Analytics techniques allow to explore huge structured
and unstructured high-dimensional datasets through a visual exploration
approach. Applications to urban and socio-economic data would be very
promising for the urban geographer.

1.3 Short review of techniques and data

This sections provides a very short review of some techniques used in quan-
titative urban geography. It is impossible to be exhaustive at this stage,
only a very general overview will be provided. We will also present briefly
the data that were available for doing the research throughout this thesis.

1.3.1 Techniques

The general description of the fractal geometry and its application to the
characterisation of images and pattern allowed advances in the analysis of
the urban morphology. Two books have been given important impulses in
this field in the middle of the 90’s (Frankhauser, 1994; Batty & Longley,
1994). Several studies on urban morphology using the fractal approach
have been conducted (Frankhauser, 2004; Tannier & Pumain, 2005). If we
consider the city as a far-from-equilibrium self-organised system, the fractal
geometry is indeed an adequate approach. The theory of complex systems
is able to provide a powerful framework for the analysis of the dynamic
processes in urban agglomerations.

The city is a complex system. In such a system, we find emerging
structures. The constituting elements are interdependent. Interdependence
means that in such a system, the actions of the ones depend on the struc-
ture and the actions of the others (Torrens, 2000). The concepts of com-
plexity and emergence are related. Emergence is a phenomenon created
by a high number of small constituting elements of a system, creating an
ordered structure out of a set of simple rules. These simple rules have in
appearance no direct link to this structure. This means, it is not possible to
predict the structure from the set of rules at the origin (Batty, 2005). Only
the interaction between the constituting elements lets ”emerge“ this global
structure. We can say that the complex system is more than just the sum
of its constituting elements.

In geography, two different methods are used for modelling this bottom-
up approach: Cellular Automatas (CAs) and MASs.

CAs are computational models where a set of ordered cells can take
a categorical value and where these cells may change their value in time
according to the state of the neighbours; the rules of these changes are
defined globally for the hole CA. CAs are typically used in geography to
model land use changes and are constraint by a more or less big set of rules
based on spatial interactions or demographics (e.g. White & Engelen, 1993;
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White, 1997; White & Engelen, 2000). The cells of a CA are typicially
arranged in a regular grid, but they can also be arranged in any other way
(e.g. Pinto & Antunes, 2005; Pinto, Antunes, & Roca, 2009; O’Sullivan,
2001).

MASs are systems composed of numerous simple, interacting elements
known as agents. Each agent has its own characteristics and goals. It acts
in an independent way, but is able to communicate with other agents and
to adapt to a changing environment. If used in geography, an agent is
aware of his location, and generally free to move. MASs have been applied
successfully to traffic simulation problems (e.g. Klügl, Bazzan, & Ossowski,
2005; Balmer, 2007; Meister et al., 2009) and location choice problems (e.g.
Marchal & Nagel, 2005). There are also applications to urban phenomena,
mainly to residential dynamics and in combination with CA (e.g. Benenson,
1998; Benenson, Omer, & Hatna, 2002; Benenson & Torrens, 2004; Waddell
& Ulfarsson, 2004; Waddell, Ševćıková, Socha, Miller, & Nagel, 2005).

Machine Learning Algorithms (MLAs) are powerful and adaptive algo-
rithms based on a learning-from-data approach (Kanevski, Podznoukhov, &
Timonin, 2009; Kanevski, Foresti, et al., 2009). They have been success-
fully used in many different cases, for example for analysis or classification
of high-dimensional data sets. The resulting model can be non-linear in
nature enabling the study of very complex phenomena. In this thesis, SOM
are used for clustering of features. A SOM is a kind of Artificial Neural
Network (ANN) and part of MLAs. SOMs have already been used suc-
cessfully for different clustering problems in geography (e.g. Openshaw &
Turton, 1996; Bação, Lobo, & Painho, 2008; Lourenço, Lobo, & Bação,
2005).

1.3.2 Data

All the methods presented above require a quite large amount of data to op-
erate optimally. In Switzerland, the Swiss Federal Statistical Office provides
high quality data with a good resolution. However, due to privacy issues,
individual data are of course not available. The data used in this theses
come mainly from the following data sources:

• Population census 1990 and 2000. The population censuses contain a
high number of variables related to demographics and socio-economic
characteristics. For the resident population, variables as age, educa-
tion, socio-economic status, religion, civil status, working place and
mean of transportation are known at the level of the municipality.
Information about the households are also contained in the census.
Large parts of the census are not only available at the level of the
municipality, but also as a regular grid with a resolution of 100x100
metres (the hectometric data).
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• Buildings census 1990 and 2000. The buildings census is conducted
at the same time as the population census and contains information
about the apartments and houses, including their age, size and energy
source for heating. This information is also available at the level of
the municipality or as a hectometric grid.

• Firms census 1998 and 2001. The firms census contains information
about all the economic activities of the firms, and also their size. Ad-
ditionally, it is known how many jobs in which sector are available for
each municipality and also for the hectometric grid.

• Micro-census on traffic behaviour 2005. A population subset of roughly
30’000 people has been asked on their detailed mobility behaviour like
for example the purpose of their daily trips, available transportation
means etc. For this subset, the exact location for each person is known,
as well as the coordinates of all destinations during the census period.
These data can typically be used for calibrating a MAS, as it gives
detailed global statistics on the mobility behaviour.

1.4 Outline of the thesis

As already mentioned above, this thesis explores different methods and tech-
niques useful for urban geographers or planners, and which are most of the
time little known or new in geography. Several different topics might appear
disconnected from each other at the first sight, but they are related to each
other through the same problem described in section 1.1 above. At the same
time, the different topics are analysed through the same scientific questions
outlined in chapter 2 and specifically in section 2.4. However, because of
this apparent disconnection, each chapter has its own introduction and con-
clusion, and bibliographic references are presented separately. The different
topics treated in this work are the following (see also figure 1.1):

• Chapter 2 presents some aspects of quantitative urban geography and
gives an overview of the scientific background of this thesis. The re-
search questions are outlined in section 2.4 of this chapter.

• The urban structures and dynamics are investigated in chapter 3. The
percolation approach, useful for defining urban areas, is presented,
but also other socio-economic and demographic spatial clusters. The
population growth for the example of Switzerland is also modelled in
this chapter.

• The use of MASs in a spatial context is conceptually straightforward.
The MAS approach is well suited for complex problems in situations
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where insufficient data is available for analytical solutions using tradi-
tional Geographic Information System (GIS) techniques. Traffic sim-
ulation can be done using a MAS, and we show an example of traffic
demand modelling over an urban agglomeration in chapter 4.

• Visualisation techniques are discussed in chapter 5. The main focus
is on innovative mapping methods. Spatially continuous data repre-
sentations are discussed in the first section. A second section deals
with cartograms having some interesting properties for the urban ge-
ographer. A last theoretical section presents a centre-based mapping
technique allowing the comparison of different urban areas or with a
theoretical city model. At the end of the chapter, section 5.4 shows
an example of cartographic visualisation, applied to socio-economic
and demographic data of the agglomeration of Lausanne. Each map
is commented to make a link with the problems related to urban ge-
ography discussed in section 1.1 and chapter 2.

• Chapter 6 deals with different aspects of Exploratory Spatial Data
Analysis (ESDA) useful in an urban context, notably with spatial
clustering techniques and exploration of a high-dimensional feature
space using SOMs. This method is especially useful for complex socio-
economic data.

• Finally, a general discussion (chapter 7) provides a short overview of
the achievements of this thesis.

1.5 Contributions of the thesis

All chapters 3 to 4 present some innovative approach for the urban geogra-
pher and planner. The presented methods contribute to establishing some
new bridges between urban geography and quantitative analysis, and can
potentially improve the understanding of the complex urban systems. For
each chapter, we list the particular contribution, as well as the publications
and presentations related to these works.

1.5.1 Chapter 3: Analysis of urban structures and dynamics

The concept of the City Clustering Algorithm (CCA) initially proposed by
Rozenfeld et al. (2008) is developed further into a more advanced percola-
tion algorithm. The main modifications are the addition of two new pa-
rameters: a functional threshold and a minimum cluster size. Additionally,
the algorithm has been applied to other socio-economic and demographic
data leading to a generalisation of the algorithm into the concept of spatial
percolation. A case study for delimiting the agglomerations in Switzerland
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Figure 1.1: Outline of the thesis
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showed an excellent and promising result, and the conditions to respect for
Zipf’s law of city size distribution being valid have been explored. The re-
sults of this analysis have been presented at two conferences and have been
submitted to two different journals.

An attempt to model the population evolution in Switzerland over the
last 150 years has been undertaken. The gravity model usually used for such
a model has been compared to other slightly different models. It has been
shown that the gravity model is roughly equivalent to a random evolution
and does therefore not provide an interesting model for population evolution,
at least in our case study.

Kaiser, C. and Tuia, D. (2007). Structuration hiérarchique autosimilaire des
réseaux de service suisses: une caractérisation par les lois de puissance. In
Da Cunha, A. and Matthey, L., editors, La ville et l’urbain: des savoirs émergents,
pages 105–120. Presses polytechniques et universitaires romandes, Lausanne.

Kaiser, C., Kanevski, M., and Da Cunha, A. (2009). Swiss metropole: analysis
and geovisualisation of population and service clustering. In 3rd ICA Workshop

on Geospatial Analysis and Modeling, 6–8 August, Gävle, Sweden.

Kaiser, C., Kanevski, M., and Da Cunha, A. (submitted). Swiss metropole: analy-
sis and geovisualisation of population and service clustering. Computers, Environ-

ment and Urban Systems, ”Visualization and Modeling of Spatial Phenomena“.

Kaiser, C., Kanevski, M., Da Cunha, A., and Timonin, V. (2009). Emergence
of Swiss metropole and scaling properties of urban clusters. In S4 International

Conference on Emergence in Geographical Space, 23-25 November, Paris.

Kaiser, C., Kanevski, M., Da Cunha, A., and Timonin, V. (submitted). Emergence
of Swiss metropole and scaling properties of urban clusters. Cybergeo.

Tuia, D., Kaiser, C., and Kanevski, M. (2008). Clustering in environmental mon-
itoring networks: Dimensional resolutions and pattern detection. In Soares, A.,
Pereira, M. J., and Dimitrakopoulos, R., editors, geoEnv VI - Geostatistics for

environmental applications. Proceedings of the Sixth European Conference on Geo-

statistics for Environmental Applications, volume 15 of Quantitative Geology and

Geostatistics, pages 497–509, Rhodos, Greece. Springer.

1.5.2 Chapter 4: Simulation of urban dynamics

The main contribution of this chapter is a feasibility study of a multi-agent
traffic simulation. The purpose of this simulation is the use of the result
for further analysis. The motivation behind this analysis is the question of
the link between the ecological footprint of the mobility behaviour and the
urban morphology. How does the urban morphology change the mobility
behaviour? Are there shapes and structures more suitable for sustainable
development? This simulation approach is very demanding of computa-
tion power. It also requires high-resolution data on demographic and socio-
economic characteristics of the population for the initial calibration. As
shown in chapter 7, the calibration of the multi-agent simulation is a diffi-
cult and challenging problem.
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Kaiser, C. and Kanevski, M. (2010). Population distribution modelling for calibra-
tion of multi-agent traffic simulation. In 13th AGILE International Conference on

Geographic Information Science, 11-14 May, Guimarães, Portugal.

1.5.3 Chapter 5: Visualisation techniques

The highlight of the visualisation techniques presented in this thesis are
probably the cartograms with the development of the user-friendly, multi-
platform application ”ScapeToad“, in collaboration with the Laboratoire
Chôros of the Swiss Federal Institute of Technology in Lausanne (EPFL).
ScapeToad is the first cartogram application able to deform several GIS
layers simultaneously. At the same time, the algorithm is very efficient and
with the upcoming version 1.2, multi-core processors will be supported for
even faster computation times.

Another interesting contribution is the animated cartogram where the
user can see both the topographic map and the cartogram. A prove-of-
concept example can be found at www.clusterville.org/cartogram morphing.

The distance circle maps are a novel way to represent centre-based maps,
and is especially adapted for the study of urban agglomerations where a
centre is clearly defined.

A particular contribution shortly mentioned in chapter 5 is the ”Atlas
interactif de la Roumanie“ (interactive atlas of Romania).

Andrieu, D., Kaiser, C., Ourednik, A., and Lévy, J. (2007). Advanced cartogram
construction using a constraint based framework. In Geocomputation 2007, Na-

tional University of Ireland, Maynooth, 3-5 September 2007.

Kaiser, C., Ourednik, A., Andrieu, D., and Lévy, J. (2008). ScapeToad [Software].
http://scapetoad.choros.ch

Cosinschi, M., Kaiser, C., Martin, S., and Balin, D. (2008). Atlas interactif de la
Roumanie [Webpage]. http://mesoscaphe.unil.ch/atlas/roumanie

1.5.4 Chapter 6: Advanced exploratory geospatial data anal-

ysis

Chapter 6 provides an interesting tool for clustering geographic units into
groups using high-dimensional socio-economic features. The clustering pro-
cess uses a SOM for a non-linear transform of the data before separating
the geographic units into different groups using classical Hierarchical As-
cendant Classification (HAC). This method has the advantage to be close
to tools already known in urban geography while providing highly adaptive
non-linear transformation. Different case studies using this Hybrid Self-
Organising Map (HSOM) approach have been presented in conferences and
published in several papers and book chapters.

Kaiser, C. and Kanevski, M. (2007). Classification and visualization of high-
dimensional socio-economic data using self-organizing maps. In Spatial Economet-

rics Conference, University of Cambridge, UK, 11-14 July 2007.

http://www.clusterville.org/cartogram_morphing
http://scapetoad.choros.ch
http://mesoscaphe.unil.ch/atlas/roumanie
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Tuia, D., Kaiser, C., Da Cunha, A., and Kanevski, M. (2007). Socio-economic
cluster detection with spatial scan statistics. Case study: services at intra-urban
scale. In Geocomputation 2007, National University of Ireland, Maynooth, 3-5

September 2007.

Foresti, L., Pozdnoukhov, A., Kanevski, M., Timonin, V., Savelieva, E., Kaiser,
C., Tapia, R., and Purves, R. (2008). Advanced mapping of environmental spatial
data: case studies. In Advanced mapping of environmental data. Geostatistics,

machine learning and Bayesian maximum entropy. ISTE, London.

Tuia, D., Kaiser, C., Da Cunha, A., and Kanevski, M. (2008). Socio-economic data
analysis with scan statistics and self-organizing maps. In Gervasi, O., Murgante, B.,
Lagana, A., Taniar, D., Mun, Y., and Gavrilova, M., editors, Computational Science

and Its Applications - ICCSA 2008, volume 5072, Berlin, Heidelberg. International
Conference, Perugia, Italy, June 30 - July 3, 2008, Proceedings, Part I, Springer.

Kanevski, M., Foresti, L., Kaiser, C., Pozdnoukhov, A., Timonin, V., and Tuia, D.
(2009). Machine learning models for geospatial data. In Bavaud, F. and Mager, C.,
editors, Handbook of Theoretical and Quantitative Geography, number 2 in Work-
shop series, pages 175–227. University, Faculty of geosciences and environment,
Lausanne.

Tuia, D., Kaiser, C., Da Cunha, A., and Kanevski, M. (2009). Clustering and
hot spot detection in socio-economic spatio-temporal data. In Gavrilova, M. and
Kenneth Tan, C., editors, Transactions on Computational Science VI, number 5730
in Lecture Notes in Computer Science, pages 234–250. Springer, Berlin.
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durable. transformations urbaines et régulation de l’étalement: le cas
de l’agglomération lausannoise. Unpublished doctoral dissertation,
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développement urbain durable: vers un nouvel urbanisme. In
A. Da Cunha, P. Knoepfel, J.-P. Leresche, & S. Nahrath (Eds.), En-
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Chapter 2

Elements of quantitative

urban geography

Over the last two centuries, the world’s population evolved in a spectacular
way (figure 2.1). While in 1800, according to an estimation of the United
Nations, population was roughly 1 billion; it was over 6 billion in 2000. For
2150, a population of nearly 10 billion is expected (United Nations Popula-
tion Division, 1999). At the same time, the urban areas around the world
increased rapidly. Today, more than half of the population is living in cities;
huge agglomerations are the result. The hierarchical and spatial organisa-
tion of the inhabited places has been profoundly modified during the same
period. In the case of Switzerland, the urban system has been transformed
over the last two centuries (Both, 2005). Initially, the population was lo-
cated in many smaller settlements all over the country. Since more than two
centuries, population is concentrating more and more in the urban areas,
and the surface occupied by agglomerations is increasing. These changes in
the spatial distribution of the population went in parallel with economic and
social changes. Industrialisation and the following shift to a tertiary sector
based economy allowed and required a better transportation and communi-
cation infrastructure. These enhancements modified the mobility behaviour
of the population by increasing the potential space where people could go
within a given amount of time.

Today, the cities are essential for the economic development as they
are important platforms for the exchange of ideas, innovations and trend.
They play a key role in the spread of information. The emergence of the new
communication technologies did not weaken the role of urban centres, we can
even say that the opposite is true. In the network of human settlements all
over the world, the cities play the role of hubs. Networks like the one used for
innovation spread, or also for other diffusion processes like epidemics, have
a structure based on the long-distance links between the big metropolitan
areas, from where more local networks link smaller cities and so on.

17
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Figure 2.1: World population evolution between the year 0 and 2150, ac-
cording to the United Nations Population Division (1999)

At the local level, the urban areas around the world are the living and
working space of more than half the humans. Sometimes, cities are consid-
ered as a kind of anti-nature, the opposite of what is natural. Indeed, cities
are sources of pollution – noise, air pollution, and soil pollution. Cities are
associated to physical stress for a lot of people. In a city, we find social
conflicts due to the social and economic differences in the population. Man-
aging and solving all these problems is a huge challenge for the 21st century.
Making cities an attractive and sustainable place is an important task for
the next generation.

Over the last few decades, the access to mobility has increased for almost
the whole population. Figure 2.2 shows the evolution of the number of cars
per 1000 people for Switzerland. The increase goes from 212 cars in 1970 to
517 cars in 2008. In 2008, for the first time since 1970, the number of cars per
1000 people dropped very slightly from 519 in 2007. This increase in mobility
leads to the possibility for the population to accept longer distances for going
to work or for accessing to services. Services can optimise their location to
the new accessibility, shopping centres at the border of highways is one
of the consequences. Another consequence is the spread of the residential
zones into more rural zones, as people prefer the lower land rates of remoter
areas, as well as the relative proximity to ”green zones“ associated with less
pollution and noise. The car dependence of the population is just the next
step of this evolution, leading to saturation of the existing road network and
traffic jams. Therefore, decision makers and urban planners should prevent
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Figure 2.2: Evolution of motorisation level in Switzerland.

excessive developments and undertake the necessary step for providing a
sustainable development of the urban areas.

In order to make the right decisions, decision makers should dispose of
useful information about the processes taking place in a city, and the urban
environment itself. As an urban system is complex, the task of providing
this information is not easy. Analysis, modelling and simulation of an urban
system attempt to understand the processes in order to provide the decision
maker with useful information. This thesis tries to show some of the methods
for analysing, modelling, simulating and visualising the data related to the
city.
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2.1 What is a city, and why does it exist?

Structurally, a city is an important cluster of buildings where humans live
and work. A city is a human settlement of a given size, which distinguishes
it from a village. Agriculture is much less present in a city than in a village
of a rural area. A city is an ’urban area‘, in opposition to ’rural areas‘.

Functionally, cities provide some important services to the humans liv-
ing there, and to the regions surrounding the city. Historically, the role of
protecting the population from attacks with a surrounding wall was very im-
portant; this wall gave also a very sharp limit between the urban and rural
areas. Through its limited extension, the historic cities simplified and en-
hanced the exchange of information and goods between people. Access to the
common knowledge became easier. According to Vicari (2007), cities have
emerged due to climatic crises and allowed their inhabitants to exchange
innovations which enabled them to adapt to the changing environmental
factors.

Today, the big offer of different services and jobs is much more important
than its protecting role. Cities have become much more diffuse, there isn’t
anymore a sharp limit between urban and rural zones. But economically,
cities offer still an important advantage for service providers as the accessi-
bility of the services increase with the number of persons living in a given
area. The accessibility of a point i in space can be defined as follows:

Acci =
�

j

Pjdij
−k for all dij ≤ dmax (2.1)

where Acci is the accessibility at point i, Pj the number of people present
at a point j, dij the distance separating the point i from point j and k
is a scaling factor which depends on the distance measure. The distance
measure can be the Euclidean distance between point i and j, but also
another measure like the travel time between i and j. dmax is the maximum
distance which we consider for estimating the accessibility.

The equation 2.1 makes clear that the accessibility depends solely on the
number of people and some distance measure, typically time distance. The
map in figure 2.3 shows the population within a distance of 3 kilometres for
each point. This map shows clearly the urban areas of Switzerland.

The maximum distance in equation 2.1 might seem to be a somehow
arbitrary value. However, it is probably useful to introduce some limit, as
people won’t use services too far away. Typically, the accessibility of a given
service s1 of type t is limited by the presence of other services sn of the same
type t at another location. Services of type t form a network where each
service point has its own population basin. Of course, such a population
basin is not static as people move in space. And there may be some overlap
due to the fact that people do not always know the nearest service point, and
there may also be some personal preferences. However, for sake of simplicity,
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we shall consider here clearly defined population basins where people go
always to the nearest service point. In this case, the Voronoi polygons
(Boots, 1986) based on all the service points define these population basins.
The Voronoi polygon Vi for the service facility i is defined as the set of points
that are closer to i than to any other service point.

Services in urban areas have usually a larger population basin. This be-
comes clear if we consider the problem of choosing the location for p facilities
like hospitals or supermarkets. The facilities are optimally distributed if the
average distance to the nearest facility over the whole population is minimal.
This is the so-called p-median problem, which is NP-hard and non-trivial to
solve (Gastner & Newman, 2006). For p facilities and n points where we
find potential customers, the number of possibilities to locate the p facilities
is n!

p!(n−p)! .
As population is usually not distributed uniformly in space, it would be

a bad idea to distribute the p facilities equally in space. It would be more
adapted to choose a distribution proportional to the population. But this
choice is also suboptimal, because in highly populated places, there would be
a lot of facilities, and if we would remove one of them, the additional cost for
people to going to another facility would be quite small. The optimal choice
lies somewhere in between. It has been showed by Gastner and Newman
(2006) that the density of facilities increases as the two-thirds power of
population density:

D ∝ ρ
2
3 (2.2)

where D is the facility density and ρ the population density. This result
shows very clearly that there is an economic advantage for increasing the
population density, and therefore for cities. By increasing the population
density, the number of facilities for serving the whole population equally well
can be diminished. If we consider that global costs go up with the number
of facilities, it is reasonable to limit the number of facilities.

The size of the population basins (the area of the Voronoi polygons)
increases for less common, more specialised services. However, equation 2.2
remains valid. We can consider the different types of services as a hier-
archy, where more specialised services are higher in the hierarchy. This
idea is similar to Christaller’s central place theory describing such a hier-
archical organisation of the space for a network of cities, according to the
level of specialisation the city is offering (Christaller, 1933/1980). However,
Christaller (1933/1980) based his theory on the assumption of a homoge-
neous space with equal population density everywhere. This assumption is
clearly against the statement in equation 2.2.

Another important issue for the economy is the presence of sufficient
and well-educated people. The immediate availability of human resources is
one of the factors for economic growth, and it is more probable to find the
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necessary resources in a city, simply because there are more people in a city.
It is difficult to say whether modern cities exist only for economic reasons.

But there are some very good economic reasons for the existence of cities.

2.2 Why do we need urban analysis?

A city is basically a big gathering of people. Each person has a set of
activities making of the city a complex system of actions and interactions.
These activities may enter in conflict with other activities and interfere with
the environment. Modern cities are important sources of air pollution, noise,
garbage, water and soil pollution. Health problems may be the consequence.
There is also an increase of stress for the urban population due to the urban
lifestyle in general and the daily course to growth of the globalised economy.
Land consumption is the most immediate result of city growth.

The age pyramid in figure 2.4 does not show a higher life expectancy for
the population living in rural zones, the contrary seem to be the case at first
sight. But the age pyramid shows very clearly the preference of families with
children for rural areas. This fact may underline the widespread opinion of
a higher life quality in rural areas especially for children. It shows also
that the young population is attracted by urban zones, probably due to
economic reasons and studies. Migration between urban and rural zones,
better access to health services in urban regions and eventually differences
in life expectancy due to pollution or similar make the age pyramid itself a
complex object to study. It is a typical example in urban geography where
most of the time several contradictory mechanisms are present at the same
time.

The city is a self-organised system where each individual tries to optimise
his personal life. Part of this optimisation is the choice of the work or the
place where to live. These choices depend on several factors. For example,
the choice of the location of home will depend on the work, but also on other
members in the same household, financial resources, personal preferences,
the social network, the transportation network for going to work and for
accessing other services and so on. Financial resources and mobility are
important factors in such a choice. If the financial resources are limited,
the choice where to live is smaller. Very often, people make a longer way to
work for having a higher quality of home. This is possible because the prices
for homes decrease with the distance to a city, and mobility is available at a
reasonable price. In fact, mobility is only limited by time consumption and
cost. In developed countries, the cost for a car is not very high. This offers to
the individual a big flexibility in their location choices, with the downside of
traffic jams in densely populated places, along with air pollution and noise.
An increase in the cost for having a car would help to solve this problem.
However, a general increase of living cost would be the result, and people
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with low financial resources would even have less money; social problems
would be the result. For economy, a low cost for mobility is also interesting,
as exchanging goods is essential for the functioning of each economic system.

The city is a complex system where the self-organisation does not lead
to a sustainable state. A city cannot control itself. Planning and control are
therefore needed. The urban analysis is the first step for understanding the
processes at work in a city, and helps the urban planner and geographer in
finding appropriate solutions for the urban development. The quantitative
urban analysis tries to analyse data, to establish models and simulations for
understanding the system and eventually to test effects of a plan. Urban
infrastructure is very expensive. A careful planning is hence needed. Urban
planners need reliable models and simulations for making their decisions.
Urban analysis is very important in the context of the current environmental
problems especially in metropolitan areas all over the world.

2.3 Quantitative urban analysis

The use of quantitative methods in urban geography has a long tradition,
but it is also a challenging domain as the researcher is faced to a complex sys-
tem with multiple interactions and many serious methodological problems
(see e.g. Bernstein, Ferber, & Bernstein, 1973). From the first attempts
for modelling the economic nature of cities to the simulation of complex
urban phenomena, a lot of progress has been done and our understanding of
the urban system has greatly improved. The emergent character of urban
phenomena has been recognised as being an important key to the under-
standing of how cities are structured (see e.g. Pumain, 2006). However,
despite the great progress achieved over the last decades, many processes
and phenomena are still insufficiently understood.

This section gives a short overview of some interesting works in the
field of quantitative urban analysis. Nearly two centuries ago, Von Thünen
(1826/1986) developed a model of spatial economics connecting space and
rents where he predicted a circular land use pattern determined by the abil-
ity of the actors to pay the rent and of the benefit they could obtain. His
approach is remarkable as he developed the basis of the marginal produc-
tivity theory in a clear and rigorous way. He predicts the land rent R as
follows:

R = Y (p− c)− Y Fm (2.3)

where Y is the yield per unit of land, p the market price per unit of
commodity, c the production expenses for the same unit of commodity, F
the freight rate and m the distance to the market where the product is sold.

The urban field has been studies through the density gradient from centre
to periphery as early as 1892 by Bleicher (1892) and later by Clark (1951).
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The statistical analysis of the urban population shows different negative
exponential density gradients from centre to periphery for different cities
around the world (Clark, 1951). Only over 15 years later, Edmonston and
Davies (1978) tried to find a statistical interpretation of this gradient as a
measure of central tendency.

Other statistical observations involving urban areas comprise the struc-
ture of the system of cities, especially the hierarchy between the cities. A
remarkable fact found in all countries of the world, independently of the
culture or the epoch, is that the product of the population P of a city by
its rank r in the hierarchy is constant:

Pi · ri = K (2.4)

where Pi is the population of the i-th city, and ri its rank. According
to Pumain (2006), this relationship has been remarked as early as the 19th
century and described formally by Auerbach (1913) nearly one century ago!
Other authors describe also this law (Lotka, 1924, 1926, 1941; Goodrich,
1926) and links with statistical distributions are established (Singer, 1936;
Gibrat, 1931). Today, this law is known as rank-size rule or Zipf’s law
according to the American linguist and philologist George K. Zipf (Zipf,
1941, 1949). Zipf worked initially on the frequency of words in a text (Zipf,
1935).

Another interesting quantitative study related to cities has been done by
Gibrat (1931). He showed that a lognormal distribution of the city size can
be explained by the independence of the population growth rate from the
city size; this means that big cities do not grow faster than small ones. This
”Gibrat’s“ law has been tested successfully in several cases (e.g. Robson,
1973; Pumain, 1982; Guérin-Pace, 1993; Clemente, Gonzáles-Val, & Olloqui,
2010). However, there is still some doubt about the validity of this ”law“,
as in some cases, it could not be verified. Rozenfeld et al. (2008) show
for different urban and regional systems (Great Britain, United States and
Africa) that population growth deviates from Gibrat’s law and that the
growth rate decreases with population size.

Also in the 1930’s, Christaller (1933/1980) elaborated his central place
theory trying to explain the number, size and location of populated places
in space. This theory explains the hierarchy in a system of cities (the central
places), and is complementary to the city size distribution shown by Gibrat
(1931) or later by Zipf (1949).

The functional differences between cities has been considered already
in the 1920’s by Aurousseau (1921) for American cities. The typology was
based on qualitative descriptions, quantitative classifications have been used
only later (e.g. Pumain & Saint-Julien, 1978). The functional diversity
between cities integrates well with the hierarchy of cities and the concept of
the system of cities (Pumain, 2006).
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The urban hierarchy and the urban structure itself are emerging proper-
ties of a complex system with multiple interactions (Pumain, 2006; Batty,
2005). Such systems can typically be studied using a bottom-up approach:
the small constituting elements are relatively simple, but a complex pattern
can emerge through multiple interactions. Cellular automata have widely
been used for studying the evolution of cities and land use (e.g. Tobler,
1979; Torrens, 2000; Batty, 2005; Benenson & Torrens, 2004; Benenson,
Aronovich, & Noam, 2005; Marceau, Ménard, & Moreno, 2008; White, 1997;
Holm & Sanders, 2001; Al-Kheder, Wang, & Shan, 2008; Pinto, Antunes,
& Roca, 2009). Cellular automata have been used widely in urban geog-
raphy since the 1990’s, but the concept itself is much older; it has been
developed in the 1940’s by Stanislaw Ulam and John von Neumann. The
work of Wolfram (2002) contains a very complete empirical and systematic
study of computational systems such as cellular automata. However, despite
the wide variety of models, the predictive capacity of cellular automata for
urban systems seems to be limited.

The geometric structure of cities has been studies using fractal geometry
(e.g. Frankhauser, 1994; Batty & Longley, 1994). It is known that urban
systems have some self-similar properties.

Location theory, based on Von Thünen’s work, allows to demonstrate
how different kinds of industry can locate between the market and primary
resources (Batty, 2005; Isard, 1956). The connection between location the-
ory and Christaller’s central place theory seem to provide the necessary
framework for a more comprehensive understanding on how cities are struc-
tured and how they evolve. These deterministic models assumed that es-
sentially every existing system, including cities, evolve toward a stable equi-
librium. Nobody imagined that there could exist a dynamic system that is
stable and unpredictable (chaotic)(Gleick, 2008). Either, a system is unsta-
ble and it evolves rapidly into a stable equilibrium, or it is already stable;
this was the base of the deterministic view of the world until the 1960’s.
But: cities are not deterministic, and predicting the evolution of a city is
not an easy matter.

Cities are complex, dynamic but organised systems. An urban theory
not accounting for the city dynamics will just be descriptive and will not be
of great help in the understanding of the processes reining the evolution of
cities. Dealing with such highly non-linear complex and dynamic systems is
just about a mathematical nightmare. And cities are ’far-from-equilibrium’
systems, as all human systems (Batty, 2005); they are changing all the
time. An additional difficulty in modelling cities is the availability (or non-
availability) of data. If some data are available for a specific phenomenon,
most of these data sources are available only at an aggregated level. The first
problem would then be the disaggregation of these data, or the development
of methods working with aggregated data. Both of them are non trivial
problems.
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Quantitative data analysis has a quite long tradition in physical geogra-
phy, and there is a plethora of studies dealing with analysis and modelling of
spatial environmental data. In the field of human geography in general and
urban geography in particular, quantitative geography experienced a decline
in popularity between the early 1980s and the mid-1990s (Johnston, 1997;
Graham, 1997; Fotheringham, Brundson, & Charlton, 2000). The reasons
for this decline are difficult to find, but the fact that human and urban geog-
raphy is traditionally a social science played certainly a role. Social sciences,
and hence also urban geography deal mainly with complex systems. Such
systems are usually difficult to characterise and to model, and there may
some chaotic behaviour involved. The traditional deterministic approach to
modelling, where each system can be perfectly modelled if enough parame-
ters are included, is not able to assess those complex systems. As a result,
human geographers dismissed the quantitative approach for a more qualita-
tive one, whereas physical geographers were not confronted to ’the madness
of people‘ 1 and continued integrating the quantitative models in their re-
search. During the 1980s and 1990s, the knowledge and also the computation
power to deal with such complex systems was not available. The upcoming
of cheap and powerful personal computers opened the way for new simula-
tion approaches. The domain of GIScience became more mature as the base
functions were widely available in GIS software and the efforts could be put
more and more into the methodology. Powerful software systems became
available for analysing spatial datasets. With the spread of the World Wide
Web, our understanding about complex networks and other complex systems
did increase (see e.g. Barabási, 2003). This new achievements did open the
way to new approaches in quantitative geography, but also in other research
fields. The knowledge how to deal with non-linear complex and dynamic
systems did increase and find its way into geographical analysis.

Another challenge in human and urban geography is the availability
of data. Usually, only very limited data is available, and it is virtually
impossible to design real world experiences. However, through new sensor
technology and a world more and more linked to the Web, more data become
available. New methods have to be designed for dealing with this new,
sometimes very big quantity of data. Urban geography is currently evolving
from a domain where reliable data were difficult to obtain to a domain where
a wide variety of different data with different resolutions have to be treated.
Spatial data mining provides techniques that will be used more and more
for quantitative urban analysis.

Urban analysis can be done using qualitative and/or quantitative meth-
ods. Quantitative methods rely on data available at a given spatial level and
at a given moment in time. Quantitative urban analysis is part of the more

1Newton once said that ’modelling the madness of people is more difficult than the

motion of planets‘ (Bouchaud, 2008)
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Figure 2.5: From problem to better understanding and back: the spatial
data analysis workflow

general quantitative geography which consists, according to Fotheringham
et al. (2000), ”of one or more of the following activities: the analysis of
numerical spatial data; the development of spatial theory; and the construc-
tion and testing of mathematical models of spatial processes“. One should
probably include simulation of complex spatial systems, as they have gained
in importance over the last decade.

Quantitative methods can be grouped as follows:

• ESDA is the first stage of an analysis. It enables the researcher to
familiarise himself with the available dataset. The data is plotted
and/or mapped, and tasks like feature selection, feature extraction
and cluster analysis can be conducted.

• Modelling relies generally upon some theories and tries to simplify the
reality in order to understand thoroughly this simplified model of the
reality. Traditionally, modelling is a classical ’top-down‘ approach.

• Simulation tries to reproduce the reality as a sort of virtual reality,
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generally using some iterative computational procedure. Usually, sim-
ulation is typically a ’bottom-up‘ approach.

• Visualisation is involved in all analysis steps and allows the represen-
tation of original data and of computed intermediary or final results.
It can serve as the basis for descriptive tasks and for establishing new
theories.

The current trend in Geographic Information Science (GISc) is towards
an integration of all these topics into a system for interactive analysis and
visualisation of spatial and spatio-temporal data; this is done in the field
of geovisual analytics (Andrienko et al., 2007). User-friendly geovisual an-
alytics systems can help decision makers directly in their daily work. Effi-
cient methods for analysing high-dimensional spatio-temporal data are re-
quired for such a system. Machine learning algorithms can be very effi-
cient in this context (see e.g. Kanevski & Maignan, 2004; Kanevski, 2008;
Kanevski, Foresti, et al., 2009; Kanevski, Podznoukhov, & Timonin, 2009).
It is important to have accurate results easy to interpret, with powerful
visualisation methods. Prototype examples are the real-time topo-climatic
mapping of Switzerland (http://www.geokernels.org/services/meteo)
or the avalanche danger forecasting (Foresti et al., 2008).

2.4 Beyond the MAUP

The Modifiable Area Unit Problem (MAUP) is a potential source of bias
in statistical analysis involving aggregated data. The issue has been first
described by Gehlke and Biehl (1934); the authors observed variations in
the correlation coefficient for different levels of aggregation. The geographic
units become typically more correlated when they are aggregated. They
observed also that different ways of grouping together the smaller units can
have a considerable influence on the correlation coefficient.

The MAUP occurs in cases where spatial point data are aggregated into
geographic regions. Consider for example the population in the agglomera-
tion of Lausanne, with around 300’000 people reported in year 2000. Cen-
sus data is typically aggregated to administrative levels, such as communes.
Such administrative units are in every case somehow arbitrary delimitations
and statistical and geographical analysis will be influenced by the way the
units are defined. The MAUP can be decomposed into two issues: scale ef-
fects and zoning effects (Openshaw, 1984b; Ruddell & Wentz, 2009). Scale
defines the number of aggregated units, while the zoning refers to the spatial
delimitation of a given number of units. Figure 2.6 illustrates the effect of
delimiting arbitrarily a geographic region on the mean and variance values.
The depicted values could for example be the population density for each of

http://www.geokernels.org/services/meteo
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Figure 2.6: The effect of aggregating geographic data.

the geographic units. The colours show the effect of the MAUP on a choro-
pleth map. Important differences can be seen in this simple example; the
mean value varies between 4.15 and 4.51, while the variance ranges between
0.2 and 9.93. Openshaw and Taylor (1979) showed that it was possible to
obtain almost any correlation coefficient between voting behaviour and age
in Iowa by aggregating the counties in a different way. The definition of the
geographic units is therefore an important factor to be taken into account.

The MAUP has been extensively discussed in the literature (e.g. Open-
shaw & Taylor, 1979, 1981; Openshaw, 1984b, 1984a; Fotheringham &
Wong, 1991; Unwin, 1996; Reynolds, 1998; Nakaya, 2000). However, it
is still an important issue in all studies related to space, and in practice, it
is often neglected. In urban geography for instance, the existing administra-
tive boundaries are generally considered for performing statistical analysis
and comparison between regions. This is due to several factors:

• Census data are usually available at the level of the existing adminis-
trative units.

• Only few generic and practical methods for dealing with the MAUP
exist, and they are often unknown to the urban geographer.
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• Urban geographers are used to work with discrete units instead of con-
tinuous fields, simplifying considerably the complexity of the analysis.

Let’s take the example of people having a higher eduction. It is impos-
sible to count the number of such people at one specific point. Indeed, the
probability to find such a person at one given exact point is extremely low.
It is necessary to define some geographic region in which the wanted quan-
tity can be counted. The most detailed data would be to dispose of a set of
locations at which a person with higher education can be found (typically
the centre of the house in which this person is living would then be given).
However, such data is already aggregated to the level of the house in which
several people having a higher education might live. And in most cases, data
at such a detailed level is not available for privacy reasons. It is therefore
necessary to consider the MAUP in studies implying the spatial dimension.

This thesis tries to show some methods applicable to urban geography
for dealing with spatial and spatiotemporal data while taking into account
scale and zoning effects. It considers namely the following questions:

1. Does the use of spatially continuous data allow a better analysis
and representation of the information at hand? Continuous data is not
aggregated to arbitrary spatial units but present rather an expected
density of the phenomenon under study at a given point. Very often,
socio-economic data is not available as continuous data and have to
be estimated based on some aggregated data. Which methods can be
used for making data continuous? What is the accuracy of such an
estimation?

2. Scale is an important issue in geography and in urban studies. The
analysis of a phenomenon may give different results if conducted at
a different scale. Some information or relationships can only be de-
tected at a given scale. However, there are currently no methods for
finding the appropriate scale of analysis or representation, and only
few methods exist for analysing a phenomenon at multiple scales. An
important research question is therefore how to find a good scale for
studying a given phenomenon. Can we detect automatically the best
scale? Which methods allow conducting multi-scale analysis? Is it
sufficient to find an appropriate scale and use classical methods, or
are adapted methods needed?

3. The two previous questions on spatially continuous data and scale
issues raise the question on the availability of sufficiently precise and
high-resolution data. Modern simulation approaches, especially micro-
simulation, need data at an individual level. However, usually, such
data is not available. It is therefore important to consider issues related
to disaggregation of data. Several variants of this issue are known.
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It can concern the change of the spatial resolution. Very often, it is
also a matter of downscaling of data. In geostatistics, this issue is
known as change of support. In the context of urban geography,
this problem has not been studied to a great extent. However, it
is important to know if some given dataset can be used at a given
scale. Can the spatial support of the dataset be changed without
loosing the characteristics of the phenomenon under study? Can new
information be detected after a change of support? These questions
are very important as they give indications about how useful methods
for analysing and visualising continuous and multi-scale data are.

4. Visualisation methods are crucial as they give an easy access to the
result of an analysis. As such, they deserve special consideration.
Spatio-temporal and multi-scale analysis need sophisticated and often
interactive and dynamic visualisation tools. What kind of visuali-
sation method is adapted to complex geographic information? How
can different visualisation methods help in accessing the information
extracted by different analysis methods? Are new visualisation tech-
niques needed, or should existing methods be adapted?

These questions are fundamental in urban geography, and imply a wide
variety of fields in quantitative geography. Of course, only some aspects
can be treated in this thesis. However, as these questions are essential,
it is important to analyse them from different perspectives. The following
chapters try to find some answers to these questions; methods are described
and studied for advanced analysis and visualisation of spatio-temporal and
multi-scale data related to socio-economic and urban phenomena.
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Chapter 3

Analysis of urban structures

and dynamics

An urban area is an area with a high density of structures created by humans,
and is the opposite of a rural area. According to this simple definition, urban
areas can be defined simply using the density of one or several parameters,
e.g. population density or density of buildings. Generally, a settlement must
have a minimal size in order to be accepted as an urban area; rural villages
are then not considered as urban.

But urban geography is not only about densities. There are also the
socio-economic structure of the population, the presence or absence of firms,
flows of persons and goods, interactions and so on. Analysing an urban
area is more complex than only mapping some densities. There are also
well established theories and models which can, or should, be verified using
quantitative methods. In this chapter, we are going to analyse three different
aspects of urban areas:

1. The first analysis is an attempt to define the extent of the urban area.
This is necessary as we need to have a clear and systemic definition
in order to be able to study the ’content‘ of this delimited zone. Not
only the urban area is delimited, but also socio-economic clusters.

2. The different zones are analysed using Zipf’s law, and an application
of fractal geometry to the urban clusters is shown.

3. In a last step, the urban dynamics are analysed. This includes changes
in socio-economic clusters, population growth rate and population evo-
lution over the last 150 years. Urban dynamics at a daily scale, i.e.
commuters going to work, are analysed in chapter 4 on urban simula-
tion.

39
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3.1 A word about the importance of scale

Scale is an important concern in urban analysis. It is crucial to define a scale
while analysing an urban phenomenon; in classic urban geography, these
scales are traditionally referred to as ’at the scale of the agglomeration‘,
’at the scale of a town‘, ’at the scale of the city quarter‘ and so on. Very
often, the scale of analysis is already fixed by the data at hand. But when
using high resolution data, we can fix the scale in a different manner as
we can define analysis windows of a given size in continuous space. It is
not possible anymore to ’just‘ take the aggregated statistics for some more
or less arbitrarily, most often historically, defined administrative area, for
example municipalities. The researcher needs to fix himself a size for his
analysis window, and he must determine at which scales the phenomenon
under study can be analysed.

Figures 3.1 and 3.2 show both the population for the agglomeration of
Lausanne (see also map 4 in section 5.4 of chapter 5). But people typically
are not distributed equally inside a commune; they are usually concentrated
in a quite small part of the territory. The city of Lausanne is an interesting
case: almost half of the territory is not inhabited (in the north of the city),
but the overall density of the city remains important. The population den-
sity map based on the administrative units is somewhat biased due to this
fact (see also section 2.4 in chapter 2, especially figure 2.6). It is possible
to represent these data in a spatially continuous field; section 5.1 in chap-
ter 5 discusses this possibility. Such a representation accounts for a better
independence between the representation and analysis scale.

The analysis of aggregated data sources is a well-known and long-standing
problem in spatial analysis, also referred to as the ’modifiable areal unit
problem‘ or the ’ecological fallacy‘ (Openshaw, 1984; Unwin, 1996; King,
Rosen, & Tanner, 2004).

3.2 Defining the urban area

In urban geography, defining the area to analyse is the first step and not
the most simple one. Urban agglomerations are not defined the same way
at different places over the world. In order to have statistically comparable
urban areas, it is important to have a systemic method that can be applied
for a large region and in different contexts. The definition of the urban
area will have a considerable effect on the results of a statistical or spatial
analysis. Uchida and Nelson (2008) describe for example the problem of
comparing the share of population living in urban areas over all countries of
the world. The authors focus on the issues when working with cross-country
data compiled by the United Nations and recognise as main problem how
to measure urban concentration in a consistent and systemic way. The
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definition of what is urban and what is rural strongly influences the result;
analysis of the resulting data is only of limited interest if there is no systemic
way for defining urban areas. The agglomeration index proposed by Uchida
and Nelson (2008) takes into account the population density, the size of the
population in the central city of the agglomeration, and the travel time to
the centre. However, it does not define what is an urban agglomeration
per se. The main problem is how to define urban areas in a consistent and
systemic way. Administrative units, like municipalities, are of little help in
doing so, as they are more or less arbitrary (or rather historic) delimitations
of space.

Traditionally, urban agglomerations are defined analytically using sev-
eral statistical criteria, generally based on the smallest administrative units.
Among different countries, the definition varies, and there are not necessar-
ily all data available. As an example, in Switzerland, the statistical criteria
are the following (Schuler, Dessemontet, & Joye, 2005):

• Agglomerations are continuous areas of several municipalities with a
total of at least 20’000 inhabitants.

• Each agglomerations has a central zone consisting of a central city
and optionally other municipalities. Each of these municipalities must
have at least 2000 working places and at least 85 working places for 100
working inhabitants. They must also either have 1/6 of the working
population commuting to the central city, or being connected to the
central city through a continuously built zone, or being a neighbour.

• A municipality not belonging to the central zone is part of an agglom-
eration if:

– at least 1/6 of the active population is working in the central city
and

– at least 3 of the following five criteria are met:

1. Continuously built zone with the central city; the distance
between two built zones (agriculture, forest) must not exceed
200 meters.

2. The sum of inhabitants and working places per hectare (only
inhabited and agricultural land without alpine pastures are
considered) is bigger than 10.

3. The population growth over the last 10 years is more than 10
percents greater than the mean of the whole country. This
criterion is only valid for municipalities which do not yet
belong to an agglomerations; for municipalities which already
belong to an agglomeration, this criteria is always considered
as being met.
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4. At least 1/3 of the active population is working in the central
city. Municipalities neighbouring two agglomerations fulfil
this criterion also if at least 40% of the active population
works in one of the two central cities and if for each of the
two central cities, at least 1/6 of the active population is
commuting to.

5. The share of the population working in agriculture does not
exceed twice the share of the average for the whole country.

This definition, as other similar methods employed for the delimitation
of urban areas, is based on the attempt to capture the notion of the city
as a functional economic region, and some experience is used to establish
the criteria. The definition is complex and is not suitable for automatic
delimitation. Additionally, it is quite difficult to compute and needs a fair
amount of time and data available. This availability may be guaranteed
in countries like Switzerland, but are probably not in other contexts. And
it is not sure whether this definition will produce satisfactory results in a
completely different context. Another short-come is that it is based on the
municipalities which is in our opinion not a suitable spatial delimitation. As
some of the statistical data may not be available at some time intervals, it
is also difficult to study the evolution of urban agglomerations in time.

Another well known problem in statistical analysis of aggregated data
is the scale at which the data have been acquired. Considering a given
phenomenon at an appropriate scale of information will allow the identifi-
cation of processes at different locations; the level of detail is an important
characteristic of a geographical description (Ruddell & Wentz, 2009). The
statistical challenges related to the delineation of zones and the use of ag-
gregated data are known for a long time (e.g. Gehlke & Biehl, 1934) and
are referred to as the ”Modifiable Area Unit Problem“ (Openshaw, 1984).

3.2.1 The percolation algorithm

In recent years, a considerable amount of work has been done on how to
define urban areas and how these different definitions affect the statistical
distributions of urban activity (Rozenfeld et al., 2008; Gabaix, 1999; Gabaix
& Ioannides, 2004).

The ”City Clustering Algorithm“ recently introduced in Rozenfeld et al.
(2008) allows the delimitation of urban clusters in a simple and automatic
way based solely on population distribution. The algorithm requires popula-
tion data on a regular grid. An urban cluster is defined as a continuous area
connected by nonzero population cells. The only parameter to be defined is
the grid size.

Cities can be seen as clusters of population in space. If we cover the
entire study region with a fine geographical grid with square cells, the cities



3.2 Defining the urban area 45

Figure 3.3: Illustration of the operation of the CCA. Populated cells are blue,
unpopulated white. Red cells belong to the urban cluster being created.
This process is repeated for every populated cell that is not already part of
the cluster.

are zones of adjacent populated cells. We can see the region as a raster
image as used frequently in GIS, where the value of the pixel cell is equal
to the population located inside this cell. An urban cluster can be defined
in such a population raster image as zones of connected cells with non-zero
population values. The CCA is based on this simple definition of urban
zones (Rozenfeld et al., 2008).

Figure 3.3 shows the way the CCA operates. The algorithm starts delim-
iting a new cluster at an arbitrary nonzero population cell (depicted in blue)
and includes iteratively all nearest neighbours with nonzero population cells.
The cluster (depicted in red) is defined if there are no more neighbouring
nonzero cells. This procedure is repeated for all nonzero population cells
which are not yet included in a cluster. This technique is also known as
the ’burning algorithm‘ in forest fire dynamics (Stauffer & Aharony, 1992).
The type of the neighbourhood can be defined in different ways. It is pos-
sible to use the ”Von Neumann neighbourhood“ that includes the ”nearest
neighbours“ comprising the four cells sharing an edge with the central cell.
Another option is to use the ”Moore neighbourhood“ that includes the ”next
nearest neighbours“ comprising the eight cells sharing at least one common
point with the central cell.

The population clusters can also be studied in the framework of perco-
lation theory. A ”city“ would then be defined as a space where population
can flow freely from one point to another. In practice, this would mean
that a person can relocate to another point in this space without leaving a
continuum. We could call this phenomenon ”urban percolation“. For this
reason, we will also use the term of percolation algorithm instead of City
Clustering Algorithm.

Of course, the scale (the grid cell size) is an important issue in this con-
text. When the cell size of the used grid becomes bigger, very big clusters
can result from the algorithm. Mobility in space is limited by the time avail-
able and by the speed of the used mean of transportation. It would then
be conceptually possible to define the scale for a given mean of transporta-
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Figure 3.4: An example of a lattice for the study of the bond percolation.
Occupied cells are depicted in blue. The dark blue cluster extends from left
to right and top to left.

tion, and for a given type of mobility (mobility between home and work,
accessibility to needed services, commercial contacts, etc.).

In a regular lattice like the one in figure 3.4, lets denote p the fraction
of occupied (blue) cells. If there is a cluster extending from left to right
and top to bottom of the lattice, we say that this cluster percolates through
the system (like water percolates through a coffee machine) (Stauffer &
Aharony, 1992); a continuous path of nearest neighbours exists from one
side to another of the lattice. The critical fraction pc where for the first time
occurs a percolating cluster is called the ”percolation threshold“. Percolation
theory studies the clusters formed in a very large lattice where every cell
(site) is occupied randomly with probability p, and the percolation threshold
pc is an important critical phenomenon.

The CCA aka percolation algorithm depends obviously on the cell size of
the regular grid. This parameter allows the study of urban agglomerations
at different scales. In reality, the minimum cell size will generally be defined
by the availability of the original data on population. There is no maximum
for the cell size, except of course the overall extent of the study region. When
increasing the grid size, we get ultimately at a given moment a population
cluster spanning the whole region. In analogy to the percolation theory,
we could call this grid cell size corresponding to the scale of analysis the
”urban percolation threshold“. Figure 3.7 shows three different scales for the
urban clusters of Switzerland. The urban population threshold is reached
at a scale of 500 metres.

Depending on the original population data, the percolation algorithm
may yield many very small clusters with almost no population inside. These
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Map source: OFS, ThemaKart, 2008
Data source: OFS, Geostat, 2000
Map source: OFS, ThemaKart, 2008
Data source: OFS, Geostat, 2000

Grid size: 100 meters

Grid size: 300 meters

Grid size: 500 meters

Grid size: 1000 meters

Figure 3.5: Urban clusters for Switzerland for four different grid cell sizes,
at two different scales. The right image series is centred on Zurich (at the
Northern end of the lake of Zurich).
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Figure 3.6: The impact of the cell size and the density threshold on the
number of clusters found.

clusters may not be relevant and can be eliminated. Two different ap-
proaches are possible. The first consists of taking into account only popula-
tion cells with a value higher than a given threshold, e.g. 5, 10 or 20 people
per hectare; this approach is equal to require a minimal population density
for a population cell. The second is to retain only clusters with a total pop-
ulation bigger than a given value, for example 10’000 people. These two pa-
rameters are optional parameters and are not part of the definition proposed
by Rozenfeld et al. (2008). However, they have been presented in Kaiser,
Kanevski, and Da Cunha (submitted) and Kaiser, Kanevski, Da Cunha, and
Timonin (2009).

Figure 3.6 shows the relation between the number of resulting clusters
and the population density threshold for population data in Switzerland.
When using small cell sizes for the population grid, the number of clus-
ters decreases significantly by defining a density threshold. As the cell size
increases, more clusters are found when using a density threshold. This be-
haviour is due to the fact that without threshold, cells with low population
value are able to make a ”bridge“ between two clusters and therefore the
total number of clusters decreases.

The density threshold is a functional threshold as it require a minimum
functional value for our data under study. We will therefore speak of ”func-
tional percolation“ when applying a functional threshold in the percolation
algorithm. This simply means that the phenomenon under study must reach
a given intensity for percolation being able to take place. In social sciences,
this is a reasonable approach as there might be some phenomena which are
found only once a critical density threshold has been exceeded. For example,
this may be true for social conflicts where a given density of poor population
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might be an important factor.
We suggest here the use of the CCA for other variables than just popula-

tion data which is straightforward. We will discuss an example application
later.

The second optional parameter of the CCA is the minimum size for the
clusters. It simply cuts the number of clusters at the lower end. It is mainly
intended for visualisation purposes for removing very small or non relevant
clusters; this may enhance the readability of the resulting map.

Figure 3.7 shows three different scales for the percolation algorithm, with
two different sets of parameters. The left column presents the original, un-
filtered data for population in Switzerland. As already seen in figure 3.5,
the percolation threshold is at a grid resolution of 500 metres in this case.
The right column shows the clusters defined with a density threshold of 10
people / hectare and only clusters bigger than 10’000 people are shown (this
corresponds to the somewhat arbitrary minimum size of a city in Switzer-
land). When using the original, unfiltered data, many very small clusters
cover virtually the whole country; the space appears to be very segmented
at an analysis scale of 300 metres. The introduction of a density threshold
and a minimal cluster size filters out such small clusters; the urban cluster
at the cell size of 300 metres is close to the statistical definition of the urban
agglomerations (figure 3.8). The statistically defined agglomerations make
use of the administrative boundaries and contain also non populated regions,
whereas the CCA concentrates on the populated regions only. Hence, the
agglomerations in figure 3.8 appear bigger than the urban clusters from the
CCA.

In the case of the unfiltered data in figure 3.7, the whole Swiss Plateau
including the Lake Geneva region are connected together at a cell size of 500
metres. The main economic activity of Switzerland is located in this region
and the biggest cities, Zurich, Basel and Geneva, are part of this cluster.
At this scale, Switzerland can be considered as a unique metropole (the
”Swiss metropole“ ). It is possible to travel from one end of Switzerland
to another without leaving the same cluster. Using the filtered data, the
percolation threshold occurs with a slightly coarser grid, at 700 metres cell
size (not shown). When increasing the grid cell size, the global behaviour of
the result using the filtered data is similar to the one using unfiltered data,
except that the cell sizes for the filtered data are always slightly bigger.

Rozenfeld et al. (2008) have defined the urban clusters in the United
Kingdom using the CCA with a grid cell size of 2.2 kilometres, and the
delimitation of the metropolitan area of London seems to match fairly well.
When applying this same cell size to the population in Switzerland, all
the country is only one cluster. Thus, we can consider Switzerland as one
metropole in international comparison.

The number of urban clusters decreases very quickly when increasing
the grid cell sizes, up to a resolution of about 800 meters in the case of
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Urban clusters (unmodi!ed data) Urban clusters (!ltered data)
Population density threshold: 0
Minimum cluster size: 0

Population density threshold: 10 people / hectare
Minimum cluster size: 10'000 people

Grid cell size: 300 meters Grid cell size: 300 meters

Grid cell size: 500 meters Grid cell size: 500 meters

Grid cell size: 800 meters Grid cell size: 800 meters

Figure 3.7: Population clusters for Switzerland with different grid cell sizes
and two different sets of parameters for the population density and the
minimal cluster size. Map source: SFSO, Geostat, 2000; Data source: SFSO,
Geostat, Population census, 2000
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Switzerland: Agglomerations in 2000

Map source: SFSO, Geostat, 2000
Data source: SFSO, Population census, 2000

Figure 3.8: The agglomerations of Switzerland defined using the official
statistical definition.

Switzerland (figure 3.9). As already seen, at the same scale, one big cluster
(the Swiss metropole) emerges. The curve in figure 3.9 shows that this
emergence starts already at a threshold of about 500 meters and the number
of clusters is stable for cell sizes of more than 1000 meters. The number of
clusters is very sensitive to scale below this threshold. The cell sizes of 300
to 500 meters, corresponding to the validity domain of the rank-size rule,
are not specially marked in this plot.

3.2.2 Zipf’s law for urban clusters of different scale

Zipf’s law states that the size distributions of cities follow a power law with
exponent −1. According to Soo (2005), it has been Auerbach (1913) who
first proposed that the city size distribution follows a Pareto law of the type
y = Ax−α, where x is the population size of a particular city, y the number
of cities with populations greater than x, and A and α are constants (α > 0).
The contribution of Zipf (1949) was to propose that in the case of the city
size distribution, the parameter α takes the value 1.

Zipf’s law can be defined as follows for city sizes (Gabaix & Ioannides,
2004, p. 2344): let Si denote the normalised size of city i (population of city
i divided by the total urban population). City sizes satisfy Zipf’s law if we
have for large sizes S:

P (Si > S) =
a

Sζ
(3.1)
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Figure 3.9: Number of clusters at different grid cell sizes (at bottom with
log-log scale).
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where a is a positive constant and ζ = 1. Or, put in another way, the size
of a city multiplied by the percentage of larger cites is constant. It has been
shown by several authors that Zipf’s law holds quite well for city sizes, at
least for the upper tail of the distribution (Gabaix & Ioannides, 2004; Soo,
2005). Recent studies have shown that Zipf’s law holds also for the lower
tail of the city size distribution if the cities are correctly defined (Rozenfeld,
Rybski, Gabaix, & Makse, 2009).

An approximation to Zipf’s law is the rank-size rule. The rank of the
biggest city is 1, for the second-largest city 2 and so on. It is then very easy
to visualise the city size distribution by plotting the log of the rank against
the log of the population. It is rather surprising to see a straight line with
a slope of −1.

Figure 3.10 shows a rank-size plot for the Swiss agglomerations as defined
by the official statistical definition and the urban clusters as defined by
percolation with a grid cell size of 500 metres, a density threshold of 20
people/hectare and a minimum cluster size of 5’000 people. The resulting
clusters are very similar to the urban clusters using the filtered data in
figure 3.7. If we run a simple linear regression, we get a slope very close to
−1, which is an expression of Zipf’s law. The difference between the slopes
of the two regressions is only minimal, but the fit for the small cities is better
for the urban clusters issued from the CCA.

Figure 3.11 shows the rank-size plot for the urban clusters with four
different grid cell sizes (using the same density threshold and minimum
cluster size as for figure 3.10).

Figure 3.12 shows the slopes of the regression line for grid cell sizes
between 100 and 1000 meters. Zipf’s law can be verified only at cell sizes
between 300 and 500 meters. For smaller cell sizes, the regression line slope
is higher than −1, and with increasing cell size, it becomes smaller. This
means that globally the hierarchical differences of the urban clusters are
getting more pronounced with the increase of the grid cell size. However,
the curve in figure 3.12 shows a break at a cell size of 700 to 800 meters.
It is interesting to note that the resolution of 800 meters corresponds to
the percolation threshold with the used values for the density threshold
(20 people/hectare) and the minimum cluster size (5’000 people) (see also
figure 3.7). The slope of the regression line drops at a cell size of 700 meters,
just before percolation occurs. After percolation, the slope is only slightly
different from the one for the cell size of 600 meters. However, due to
percolation, one big cluster has emerged, and this cluster is an outlier in the
rank-size plot (see figure 3.12).

3.2.3 Measuring the urban concentration using percolation

As already mentioned in the beginning of section 3.2, the definition of the
urban area has a considerable effect on the results of statistical or spatial
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Figure 3.10: Zipf’s law for the city sizes using the official statistical defini-
tion of Swiss agglomerations (blue triangles and dashed line), and using the
percolation approach (red circles and solid line).
The part with the statistical delimitation comes from Da Cunha and Both
(2004). The data source is the Population Census 2000 from the Swiss
Federal Statistical Office (SFSO).
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Figure 3.11: Rank-size plots for three different grid cell sizes for the perco-
lation algorithm.
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Figure 3.12: Slope of the regression line against the grid cell size for the
percolation algorithm.

analysis. In this section, we will study the impact of the definition of the
agglomerations using the percolation approach and the official definition of
agglomerations for Switzerland.

The share of population living in an urban area is commonly used for
analysing the urbanisation of a country. Urbanisation seems to be driven by
economic growth (Da Cunha & Both, 2004; Satterthwaite, 2007). The pro-
portion of the world’s population living in an urban area has dramatically
increased from 15% in 1900 to 50% in 2008. The definition of the urban area
has been recognised to be one of the main challenges in analysing urbanisa-
tion. An ”agglomeration index“ has been proposed by Uchida and Nelson
(2008) measuring the urban concentration of a nation using three parame-
ters: the population density, the presence of a main urban centre and the
travel time to this urban centre. This agglomeration index should remove
discrepancies between the definitions of urban areas across different coun-
tries. The CCA as a simple but systemic definition for urban areas can also
serve as a basis for measuring the urban concentration. It is straightforward
to compute the ratio of population living in an urban area (figure 3.13).
A population cartogram provides a way to map the spatial distribution of
the urban areas in a country. As already seen, cartograms equalise the
population density over a given region, the ratios between urban and rural
population are therefore respected. In Switzerland, the share of population
living in an urban area using the percolation algorithm is roughly 64%. Us-
ing the official census data with the agglomeration definition from the SFSO,
over 73% of the population lives in an urban area. The fact that the official
agglomeration definition includes also regions that are economically depen-
dant from a centre in an urban area may explain this difference. However,
this simple example illustrates the importance of a systemic definition of
urban areas.
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Map data source: SFSO, Themakart, 2008
Cartogram created using ScapeToad
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Figure 3.13: Population cartogram showing the distribution of urban and
rural population in Switzerland.
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3.2.4 Application of the percolation approach to socio-eco-

nomic data

As already stated, it is easy to replace the population criteria of the perco-
lation algorithm by any other statistical variable or indicator available at a
sufficient spatial resolution. The Swiss Firms Census (Swiss Federal Statis-
tical Office SFSO, 2005b) provides data at a hectare level for the number of
firms active in a given sector. We have selected one service type: specialised
services for firms, which is generally a service type typically found in a city
centre. We have used a modified version of the service type classification
established by Browning and Singelmann (1975). The following service in-
dustries are included in our specialised service type (with the classification
code, see Swiss Federal Statistical Office SFSO (2002) for the details): bank,
insurance and other financial services (65-67); real estate (70); computer and
related activities (72); research and development (73); legal activities, busi-
ness and management consultancy activities, architectural and engineering
activities, miscellaneous business services (74).

Figure 3.14 shows the specialised service clusters for Switzerland. The
clusters have been computed using a cell size of 1 kilometre and using a den-
sity threshold of 20 firms per hectare. Only clusters with at least 800 firms
offering specialised services have been retained. The result shows roughly
the same agglomerations as the population clusters at 500 metres resolu-
tion. However, the service clusters are as expected a little bit smaller and
less numerous. It is interesting to note that the order of the most important
service clusters is not exactly the same as for the population clusters: Zurich
is clearly the most important city. However, in terms of specialised services,
Basel is the second most important cluster, followed by Geneva, Berne and
Lausanne. In terms of population, Geneva is second most important cluster,
followed by Basel, Lausanne and Berne.

If we study the cluster size against their rank (figure 3.14 at bottom),
a similar structure as for Zipf’s law based on population can be observed.
However, the dominant position of the biggest cluster (Zurich) becomes very
clear, more than for the population clusters. This shows the predominant
economic position of Zurich, even compared to Basel or Geneva.

If we compute the clusters for two different years, it is possible to study
and compare the evolution of several urban areas. Figure 3.15 shows the
evolution of the specialised service clusters between 1998 and 2001. It is
possible to observe the geographic changes of the clusters (top) and to study
the way the different urban areas have evolved (bottom). Three new clusters
have emerged between 1998 and 2001. There is currently a trend in urban
development to densify existing urban areas. By plotting the cluster area
against the number of firms, we can identify the trend for a given urban
area. The map and the plot can be created automatically for a series of
different demographic and socio-economic variables.
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Figure 3.14: Clusters of specialised services and the corresponding ranking.
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Figure 3.16: The first three iterations for creating the Koch snowflake.

3.3 Analysis of the urban structure using fractal

geometry

The urban structure contains the built structure of the city – buildings,
transportation infrastructure and other infrastructure – but also a socio-
economic structure. In section 3.2, we have defined a way how to de-
fine spatial clusters using data of every kind available as a regular grid.
The morphological patterns of a city can also be studied using the frame-
work of fractal geometry which has become popular after the monograph
of Mandelbrot (1983). A fractal object has some interesting properties and
is typically difficult to study using traditional Euclidean geometry. Two of
the main properties of a fractal object are its self-similarity and its scale
invariance. Many geometric objects can be considered as ”statistically self-
similar“ where each part can be considered as a reduced image of the whole
(Mandelbrot, 1967).

A simple example of an abstract fractal object is the ”Koch snowflake“.
Figure 3.16 illustrates the first steps for creating a Koch snowflake. Start
with an equilateral triangle. Then divide each side of the triangle in three
parts. Replace each middle part with an equilateral triangle pointing out-
ward. Then start again with each line of the snowflake and iterate endlessly.
If we compute the perimeter L for the iteration n of the Koch snowflake, we
get:

Ln = 3

�
4

3

�n

l0 (3.2)

where l0 is the length of the side of the initial triangle and N the number
of iterations. It can easily be seen that

Ln → ∞ for n → ∞ (3.3)

If we compute the area of Koch snowflake, we get:
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Figure 3.17: A fractal pattern (left) and the first steps of the box counting
method for estimating the fractal dimension.
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where A0 is the area of the initial triangle. The area is a geometric series
with constant c = 4

9 which means that for n → ∞, the area An does not
grow to infinity. In fact, we get:

A∞ =
√
3

�
4

5

�
A0 (3.5)

This shows a very interesting property of the Koch snowflake. While the
perimeter grows to infinity, the area stays limited (Frankhauser, 1994). We
can also see that a part of the snowflake in iteration 3 (figure 3.16 at right)
is a reduced version of a part of the snowflake in iteration 2. This is the
property of self-similarity found in fractal objects.

In order to characterise such fractal object, the concept of ”fractal dimen-
sion“ has been introduced. The fractal dimension is not a integer number
as the Euclidean dimension, but can take any value in between. In the next
section, we present in more detail the concept of fractal dimension and one
possibility how to compute it.

3.3.1 Fractal dimension

Several methods exist how the fractal dimension can be estimated. We will
present here the box-counting method for computing the fractal dimension
df (Falconer, 1990; Peitgen, Hartmut, & Saupe, 1992).

Let’s take a binary geometric pattern on a regular grid like the one
depicted in figure 3.17 (left). We cover the grid with one box of size L
and the number of boxes S(L) needed for covering all coloured cells in the
grid is computed (this is of course 1 in the first step). The box size L
is then iteratively decreased and the total number of boxes N increased
accordingly; the number of filled boxes S(L) is again computed. The box-
counting operation is repeated until the box size L is equal to the grid cell
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Figure 3.18: Example of a log-log plot with the result of a box-counting
process.

size. For a fractal geometry, the number of boxes necessary to cover the
filled cells in the geometric pattern follows a power law:

S(L) ∝ L−df (3.6)

The fractal dimension of the pattern df can be computed as the slope
of the regression line after log-transformation of both sides of equation 3.6.
Figure 3.18 shows an example of such a log-log plot showing the result of
a box-counting process on a grid with the population in Switzerland. The
regression line has a slope of approximately −1.69. Hence, we estimate the
fractal dimension df ≈ 1.69.

For a pattern with an Euclidean dimension of 2, a value smaller than 2
shows that there is some clustering in the pattern.

It has to be noted that there exist also ”multifractal“ patterns. In a
multifractal pattern, the fractal properties vary from one region to another
(Stanley & Meakin, 1988). This type of pattern can for example occur in
the case of heterogeneous phenomena responsible for the generation of the
pattern.
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Figure 3.19: Principle of the gliding box algorithm for measuring the lacu-
narity of a pattern.

3.3.2 Lacunarity

Lacunarity is a complementary measure to the fractal dimension for charac-
terising the structure of an object. It has been first described by Mandelbrot
(1983). In fact, different fractal sets may have the same fractal dimension
but very different textures (Mandelbrot, 1983, 1995; Voss, 1986; Myint &
Lam, 2005; Tuia, Kaiser, & Kanevski, 2008). Lacunarity can be consid-
ered as a scale-dependant measure of heterogeneity or texture of an object,
independently of its fractality (Allain & Cloitre, 1991; Plotnick, Gardner,
Hargrove, Prestegaard, & Perlmutter, 1996). A higher lacunarity value indi-
cates a more heterogeneous pattern, or a more complex spatial arrangement
(it has a more variable structure). Or in other terms, lacunarity represents
the distribution of gap sizes in a pattern (Myint & Lam, 2005). Lacunarity
has initially been developed to describe a property of fractals. However, it
is possible to extend this concept for describing the spatial distribution of
real data sets, including, but not restricted to, those with fractal and mul-
tifractal distributions (Plotnick et al., 1996). Lacunarity can be interpreted
as a deviation from, or lack of, translational and/or rotational invariance
and can, of course, be a property of a non-fractal pattern (Gefen, Meir,
Mandelbrot, & Aharony, 1983; Tuia & Kanevski, 2008). Translation invari-
ance is obviously a scale-dependent measure; a pattern which seems to be
heterogeneous at a small scale can be homogeneous at a larger scale.
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Gliding box algorithm for binary images

Several algorithms have been proposed for computing the lacunarity mea-
sure and there is no general agreement about the best one to use. We
describe here the ’gliding box‘ approach from Allain and Cloitre (1991),
and as presented by Plotnick et al. (1996), Myint and Lam (2005) or Tuia
and Kanevski (2008). This algorithm can be applied to binary images, and
Plotnick et al. (1996) and Myint and Lam (2005) have also applied an ex-
tension to grey scale images. Figure 3.19 shows the principle of the gliding
box. In our example, a grid of 25x14 cells covers the space, and a gliding
box of size r = 4 is placed at the upper left corner. The number of filled
cells within the box is counted (the box mass s). Then the box is moved by
one cell to the right and the box mass counted again. Once the gliding box
has reached the right end, it is placed one row below, again at the left end,
until it reaches the lower right corner of the space. This repetition produces
a frequency distribution of the box masses n(s, r). This frequency distribu-
tion is then converted into a probability distribution Q(s, r) = n(s, r)/N(r)
where N(r) is the number of boxes of size r. The first and second moments
(mean and variance) of the probability distribution are then determined:

Z(1) =
�

sQ(s, r) (3.7)

Z(2) =
�

s2Q(s, r) (3.8)

The lacunarity for box size r is defined as:

Λ(r) =
Z(2)

[Z(1)]2
(3.9)

The lacunarity is a dimensionless measure that however depends on the
box size r.

If we recall that

Z(1) = s(r) (3.10)

Z(2) = s2s(r) + s2(r) (3.11)

where s(r) is the mean and s2s(r) the variance of the number of occupied
cells per gliding box, we can express the lacunarity as

Λ(r) =
s2s(r)

s2(r)
+ 1 (3.12)

which is a dimension-less representation of the variance to mean ratio and
is closely related to a number of statistics like the Morisita index (Plotnick
et al., 1996).
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Figure 3.20: Determining the number of filled cells for each gliding box (b)
of a spatial pattern (a) and its frequency distribution (c).

For easier understanding, we present the step-by-step computation of a
small example. Figure 3.20 shows the binary spatial pattern with 10x8 cells.
Filled cells are in grey, empty in white. We use a gliding box of size 3x3
cells. For each position of the gliding box, we count the number of filled cells
which gives the matrix in b. This matrix has a size of 8x6 cells; it is smaller
than the initial pattern because of the border effect due to the gliding box.
The difference is the size of the gliding box minus 1 (10− (3− 1) = 8). We
can compute the mean and variance for this matrix which gives us 3.1875
for the mean and 3.26 for the variance. These two values correspond to the
equations 3.10 and 3.11 which allows us to compute the lacunarity using
equation 3.12: (3.26/3.18752) + 1 = 1.321.

If we want to determine the lacunarity using equation 3.9, we transform
the frequency distribution in figure 3.20 (c) into a probability distribution
by dividing each frequency by the sum of all frequencies, as illustrated in
table 3.1 (probability column). Using equations 3.7 and 3.8, we compute
the first and second moment which allows to estimate the lacunarity using
equation 3.9.

Lacunarity case study: the Swiss urban agglomerations

In this case study, we use the definition of the urban agglomeration discussed
in section 3.2 (page 40). We have estimated the lacunarity for different grid
cell sizes of the City Clustering Algorithm (CCA), ranging from 100 meters
(the resolution of the dataset) up to 2 kilometres. Figure 3.5 (page 47) shows
four of these images. For the lacunarity analysis, we consider these images
as binary patterns where populated cells get the value 1 and non-populated
cells 0. The lacunarity is estimated using the gliding box approach presented
above, for different gliding box sizes.

Figure 3.21 shows the result of the analysis. Larger boxes are generally
more translation invariant than smaller boxes, except for highly clustered
sets (Plotnick et al., 1996). If we recall the formula for the lacunarity (equa-
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Number of cells First Second
in gliding box Frequency Probability moment moment
0 2 0.04167 0.00000 0.00000
1 6 0.12500 0.12500 0.12500
2 11 0.22917 0.45833 0.91667
3 9 0.18750 0.56250 1.68750
4 11 0.22917 0.91667 3.66667
5 4 0.08333 0.41667 2.08333
6 2 0.04167 0.25000 1.50000
7 2 0.04167 0.29167 2.04167
8 1 0.02083 0.16667 1.33333
9 0 0.00000 0.00000 0.00000
Sum 48 1.00000 3.18750 13.3542

Table 3.1: Frequency and probability distribution for the number of cells in
the gliding boxes.
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Figure 3.21: Lacunarity curves for different urban clusters as defined by the
City Clustering Algorithm.
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tion 3.9), it is the second moment divided by the square of the first moment.
It seems to be intuitive that the second moment decreases relative to the
first one when increasing the box size (variance goes down). A higher lacu-
narity value for a given gliding box size indicates higher clustering. There is
no surprise that clustering diminishes as the urban cluster resolution (grid
cell size of the City Clustering Algorithm) goes up. The curve for the urban
cluster resolution of 100 meters present an abrupt change at a gliding box
size of about 50 and 70 kilometres, whereas the curve for the resolution of
200 meters shows a break at about 80 kilometres. Higher resolutions don’t
show such an abrupt change in slope. Plotnick et al. (1996) has observed
such breaks in clustered datasets where the break in the gliding box size
corresponds to the the size of the clumps. For the dataset under study,
the City Clustering Algorithm detects a percolation threshold of 500 me-
ters (the resolution of CCA grid), while at a threshold of 300 meters, clus-
ters becomes non-detectable. This would correspond to a near-percolation
threshold, which is quite intuitive.

Another interesting observation is the nearly linear curve for resolutions
higher than 200 meters, and even below for a gliding box size smaller than 50
kilometres. As described by Allain and Cloitre (1991), the lacunarity curve
for self-similar monofractals should be a straight line with slopeD−E, where
D is the fractal dimension and E the Euclidean dimension. The fractal
dimension for the urban cluster with resolution of 1 kilometre, computed
using the box-counting method, is approximately 1.71. If D − E holds, the
curve would have a slope of 1.71 − 2 = −0.29. A linear regression on the
curve with 1000 meters resolution yields a slope of −0.27.

In conclusion, we can note that the first results of CCA and its develop-
ments presented above are very promising and stimulating. Further research
and new case studies can be very interesting both from fundamental and ap-
plied points of view. For example data from the Swiss firms census 2005 and
soon 2008 will be available for analysis.

3.4 Analysis of urban dynamics

3.4.1 Population growth

The population P at a given location i at time t+1 can be defined in formal
terms as follows (Batty, 2005, p. 25):

Pi(t+ 1) = Pi(t) +∆Pi(t) = (1 + λ)Pi(t) (3.13)

where ∆Pi(t) is the population growth at location i at time t, and λ the
population growth rate. Thus, the λ can be expressed as:

λ =
Pi(t+ 1)

Pi(t)
− 1 (3.14)
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Figure 3.22: Population growth rate from 1990 to 2000 in Switzerland.

We can now determine the population growth rate at all locations i
using empirical data from two population censuses at time t1 and t2. In
case of Switzerland, population data is available for 1990 and 2000 at the
hectare level (Swiss Federal Statistical Office SFSO, 2005a). At this scale,
more or less arbitrary local variations are visible. Using the moving window
technique, we can change the observation scale. At a scale of 1 km, the
population growth rate is computed for a given point i inside a circle of
1 km diameter. Even at this scale, big local variations predominate; no
pattern is visible (fig. 3.22). Only at a coarser scale, e.g. 10 km, a pattern
becomes visible (fig. 3.23). This is one more example which proves the
importance of scale in the analysis. Figure 3.24 shows the semi-variogram
of the population growth. The local variations can be seen clearly at lag
distances lower than 7 to 8 kilometres; the a prior variance is much lower
than the variogram value. Only at higher distances, the variogram value
stabilises at a lower value. This semi-variogram shows that the population
growth rate has a negative spatial auto-correlation at short distances. When
adapting an arbitrary delimitation such as administrative boundaries, it is
more difficult to vary the scale, and the scale is not homogenous in space.
Misinterpretations can be the result of a non-adapted mapping support.
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Figure 3.23: Population growth rate from 1990 to 2000 in Switzerland.
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Figure 3.24: Semi-variogram for the population growth rate from 1990 to
2000 in Switzerland.
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In urban geographic terms, the pattern of population growth rate be-
tween 1990 and 2000 has some interesting characteristics. Cities like Zurich,
Basel, Lausanne, Berne and some more show no or a negative growth rate.
A notable exception is Geneva. There are also a couple of remote alpine
valleys that show negative population growth, together with regions like the
Rhine valley around Sargans and Buchs, the Emmental between Berne and
Lucerne or the region around St-Imier or Le Locle. The interstitial regions
between the cities have known the highest growth rates. These regions are
generally not too far from a city and are certainly the result of the ongoing
urban sprawl.

3.4.2 Modelling the evolution of population

The gravity model is used in geography for estimating the degree of inter-
action between two places. It is derived from Newton’s law of universal
gravitation which states that the gravitational force between two objects is
proportional to the masses of the objects and inversely proportional to the
distance separating them. If the objects are considered as a point, this law
can be written as:

F = G
m1m2

r2
(3.15)

where F is the force of attraction (identical for both objects), G is the
gravitational constant, m1 the mass of the first object, m2 the mass of the
second object, and r the distance between the two objects.

In geography, the gravity model can be applied for the estimation of
the migration between two places. The masses in Newton’s law are then
replaced by the population of the two places. This model is based on the
hypotheses that the interactions between two places increase with their size,
and that there is a distance decay in the quantity of the interactions. The
distance decay effect states simply that the interaction between two places
declines with distance.

The gravity model has been used widely in population flow modelling
and also in estimating the overall population potential at a given place
(see e.g. Calvo Palacios, Jover Galtier, Jover Yuste, Pueyo Campos, &
Zúñiga Antón, 2008). The population potential at a given location i is the
sum of the interactions with all possible locations:

Poti = Pi +
n�

j=1

Pjr
−2
ij (3.16)

where Poti is the population potential at location i, Pi the population at
this same location, n the set of all possible locations except i, Pj the popula-
tion at location j ∈ n, and rij the distance between i and j (Calvo Palacios
et al., 2008). However, there is no formal prove of the shape of the distance
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decay function. In equation 3.16, this distance decay is a power function
with exponent −2. This distance decay function could also be any other
strictly monotonic decreasing function, for example an inverse exponential
or any power function with a negative exponent. We can therefore rewrite
equation 3.16 in a more general way:

Poti = Pi +
n�

j=1

Pjf(r) with
d

dr
f(r) < 0 for all r (3.17)

Reasonably, we should add the constraints that f(r) → 1 if r → 0, and
f(r) → 0 if r → ∞. Distance r is by definition always positive.

As the population potential represents the sum of all possible interac-
tions, it is a simple but reasonable hypothesis to say that there is some
positive correlation between the population potential and the population
growth. Using equation 3.13 from section 3.4.1 and by replacing the real
but unknown population growth by the population potential, we can esti-
mate the population at time t+ 1 using the population at time t:

Pi(t+ 1) = Pi(t) +
Poti∆P (t)�

i Poti
(3.18)

where ∆P (t) is the overall population growth at time t, and
�

i Poti the
overall population potential. Of course, ∆P (t) may be negative in a case
of an overall population loss. Equation 3.18 can be used for estimating the
population at time t+i given the population at time t, but also at time t−1,
as the overall population growth can be negative. The only parameter to
define is the function f(r) in equation 3.17. This function defines how the
population spreads in space during one time step; we will call it the spread
function. The spread function is constrained between 1 and 0. The function
γ(r) = 1−f(r) is then similar to a variogram model function as used e.g. in
kriging. Figure 3.25 shows three different possible functions for γ(r). These
three functions have the following formulas:

1. Exponential: γ1(r) = 1− e
3r
1.5

2. Spherical: γ2(r) =
3r

2·1.5 − x3

2·1.53 if r < 1.5 and γ2(r) = 1 if r ≥ 1.5

3. Square power: γ3(r) = 1− (x+ 1)−2

4. Gaussian: γ4(r) = 1− e−
3r2

1.52

The exponential, gaussian and spherical functions are well known from
geostatistics; these three functions as depicted in figure 3.25 have a range
of 1.5. This range can be seen as a distance of influence for the population
potential. Beyond this range, the effect of an occupied place is quite limited.
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Figure 3.25: Possible functions for modelling the spread of the population
potential.

The program r.potential which is part of the SpatialTools package (see
addendum) allows the computation of the population potential based on a
population raster file and an exponential, spherical, gaussian or power func-
tion. Figure 3.26 shows the population at the level of a hectare in 1990 and
2000 around the city of Lausanne, along with the population potential based
on the 1990 population and computed using 4 different spread functions.

However, the choice of the spread function is not trivial. It depends on
the population evolution process itself, and on the time period considered
between two evolution steps. We have computed for a selection of spread
functions the statistical pixel-by-pixel correlation between the population
potential and the hectare population in Switzerland in 2000. The popula-
tion potential has been computed using one of the spread functions based
on the hectare population in Switzerland in 1990. Figure 3.27 shows this
correlation factor for 12 different spread functions, and for comparison also
the pixel-by-pixel correlation factor between the hectare population 1990
and 2000. The ’best‘ spread function for this particular case seems to be
the exponential function with a range of 100 meters; the correlation factor is
0.773. The correlation factor between the population 1990 and 2000 is 0.718;
this means if we would use simply the population 1990 as an estimator for
the population 2000 instead of a computed population potential, the pixel-
by-pixel correlation is already quite high. Only a few spread functions allow
to obtain a slightly better correlation factor, and all of them have a range
of 100 or 200 meters only. The square power function used in the gravity
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Figure 3.26: Population 1990 and 2000, and population potential using dif-
ferent spread functions computed based on the population 1990, for the city
of Lausanne and surroundings.
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Figure 3.27: Pixel-by-pixel correlation factor between the Swiss population
2000 and the population potentials based on the population 1990 using dif-
ferent spread functions, and the correlation factor between the population
1990 and 2000.

model yields about the same correlation factor as the one for the population
1990/2000. The gravity model is in this particular case unable to provide
an accurate estimation for the population potential. The small ranges in
the ’best‘ spread functions suggest that population evolution between 1990
and 2000 in Switzerland is a very local process. According to the official
population census, the overall population has increased from 6�873�687 in
1990 to 7�288�010 in 2000, which corresponds to a population growth rate of
around 6% for this decade. The correlation factors for all spread functions
are not very high compared to the one for the population 1990/2000. This
shows the difficulty to model the population evolution at a local scale. The
gravity model is very appealing because of its simplicity and has also proved
its reliability at a smaller scale. However, for local scales, other factors seem
to determine where the population increases or decreases. Another issue is
the measurement of the accuracy of the population estimation. The sim-
ple pixel-by-pixel correlation factor cannot approximate regional matching
between two maps.
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Using the population potential for estimating the population evo-
lution 1850-2007 in Switzerland

In this case study, we estimate the population evolution at the level of one
hectare for whole Switzerland, from 1850 to 2007. The population is known
from census data at the level of a municipality for the whole period at an
interval of approximately 10 years. The population is also known at the
level of one hectare for 1990 and 2000. Based on this data, we use the
population potential of the year t− 1 or t+ 1 from the year t, and then by
removing or adding the difference of population for each municipality using
a random function by respecting the population potential. The process is
then repeated for the year t−2 (or t+2) based on the estimated population
data for year t − 1 (or t + 1). Figure 3.28 shows different states of the
evolution for the city of Lausanne and its surroundings. The estimation has
been computed using an exponential function with a range of 100 meters as
spread function.

If we compute the pixel-by-pixel correlation factor between the estimated
population in 1990 and the real observed population in 1990, we get a value
of 0.720. The population estimation is based on the population in 2000 and
an intermediary map for each year has been computed. The result is correct
at the level of a municipality. For a more local scale, the estimation shows
a typical spread over all the region. This spread can also be observed in
figure 3.26 in the different spread function; these functions cover an area
bigger than the one used by the real population evolution. Additionally, the
population evolution seems to be a process where already populated places
tend to densify, followed by a subsequent expansion in space at adjacent
places. This spatial expansion seems to follow non-random patterns, typi-
cally along already existing transportation axes. The population potential
estimation does not integrate this two-step process or the spatial expansion
patterns. Thus, the estimation of the population estimation should not be
used for analysing differences inside one municipality. However, at smaller
scales, it can be used to show the overall evolution. For example, it can be
used inside a distance circle map at the scale of the agglomeration.

3.5 Discussion

This chapter has shown the importance of well defining the base assumptions
in urban analysis. We have described a method for defining urban clusters
and we have also shown some results that demonstrate the coherence of this
approach. It is also important to be aware of the issues related to the scale of
analysis and take them into account carefully. The urban phenomena vary
in space and time, but also in scale. The percolation approach is basically
a very simple tool, but at the same time, it is a very valuable one. It has
the capacity to discover spatial clusters at different scales and at different
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Figure 3.28: Estimation of the population evolution 1850-2007 for the city
of Lausanne and surroundings.
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functional levels. The percolation algorithm allows at the same time to get
urban clusters at an explicit scale which is very important. However, the
main requirement of such an analysis is the availability of the data on a
regular grid at a sufficient resolution. Rozenfeld et al. (2008) were able to
work on population data with a grid of only 7.74 kilometres of resolution,
and the results seem to be consistent. The percolation algorithm seems
to be a robust method, despite the requirement of data on a regular grid.
Rozenfeld et al. (2009) have also worked on quite high-resolution data not
lying on a regular grid; the results seem still to be consistent even if the
issues of irregular data should be clarified further.

In urban geography, the way to analysis methods not relying on the ad-
ministrative units is open. Multi-scale methods and continuous modelling
of urban phenomena are sufficiently powerful and methodologically well de-
veloped in order to be used by the urban geographer. After the decline of
quantitative geography in the 1980s (Fotheringham, Brundson, & Charlton,
2000), the methods are now powerful enough for being used for a wide va-
riety of real world problems. However, the field of urban geography will
require more skills in statistical analysis, geomatics and modelling as it is
currently the case.
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Chapter 4

Simulation of urban

dynamics

Dynamics in a city are generated by top-down and bottom-up decisions
at the same time. Top-down decisions consist of planning efforts and po-
litical discussions lead by the government, society and the administration.
These efforts try to manage the evolution of the urban structure in order
to optimise the spatial arrangement of the different services and facilities.
Bottom-up decisions on the other hand are made by all the individual actors,
often due to some constraints encountered in the daily life, e.g. for buying
a specific good or for doing some activity. Decisions made by investors and
other economical actors are also bottom-up decisions. Such bottom-up de-
cisions are coming from independent actors taking a the decision on their
own; they are free to do it or not and their decision is based on a utility
function; an action is only executed if there is a positive utility.

Modelling the behaviour of all the actors in a city and to analyse all the
bottom-up decisions is a major challenge in urban modelling. One of the
reasons is the high complexity in these decisions, which can be accompanied
with some irrational and subjective behaviour for some of the actors. An-
other reason is the lack of enough detailed data about the behaviour and the
decisions made by all the different actors; the assessment of such data would
be very difficult because of the high number of actors and different types
of actors. In fact, everybody present in a city becomes such an actor, and
modelling such behaviour becomes rapidly very complex as the amount of
different possibilities is very big; the number of parameters to adjust in the
system increases rapidly, and finding a realistic and stable solution becomes
more difficult.

Cellular Automatas and Multi-Agent Systems have been used for mod-
elling different aspects of urban dynamics, among which we cite two big
categories of models: the first category includes models for urban sprawl
and land-use change, and the second models for traffic simulation. These
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two categories of models can also be combined together. This has been done
for example in the Open Platform for Urban Simulation (OPUS) (Waddell,
Ševćıková, Socha, Miller, & Nagel, 2005) or in UrbanSim (www.urbansim
.org) combined together with Multi-Agent Traffic Simulation (MATSim)
(www.matsim.org). Portugali (2000) presents the concept of ”free agents in
a cellular space“, which is a combination between MAS and CA.

In this chapter, we will provide a brief overview on cellular automata and
multi-agent systems that are two popular simulation approaches, followed
by a short introduction to urban simulation and a more detailed study on
traffic simulation. A case study of traffic simulation for the agglomeration of
Lausanne is presented; this study has been done for assessing the ecological
impact of commuting and to study the relationship with the urban structure
generating the commuting patterns. A particular focus is the calibration of
the multi-agent based traffic simulation.

4.1 Cellular Automata

A Cellular Automata (CA) is a model based on a regular grid of cells. Each
cell has a discrete state; the number of possible states is finite. The automa-
ton evolves in time (which is also discrete), in an iterative process. The state
of each cell is updated at each time step according to its neighbourhood. A
neighbourhood function defines the rules of how the cell changes (or not) its
state. Batty (2005, p. 67) defines the cellular automata in a similar manner:

’Cellular automata are computable objects existing in time
and space whose characteristics, usually called states, change
discretely and uniformly as a function of the states of neigh-
bouring objects, those that are in their immediate vicinity.
The objects are usually conceived as occupying spaces that
are called cells, with processes for changing the state of each
cell through time and space usually articulated as simple
rules that control the influence of the neighbourhood on each
cell.‘

According to Wolfram (2002, p. 876), the concept of CA has been intro-
duced by John von Neumann. Von Neumann tried to develop an abstract
model of self-reproduction in biology. In 1951, after discussion with his col-
league Stanislaw Ulam, he constructed a 2D CA. This work has been com-
pleted together with Arthur Burks and published in 1966 (Von Neumann
& Burks, 1966). In 1970, the ’Game of Life‘, a simple two-state CA cre-
ated by John Conway, became famous after publication by Gardner (1970).
This simple automaton is able to create complex patterns out of very simple
rules, which makes it so appealing. The game of life is a 2D CA where each
cell can take a value of 0 or 1 (or ’dead‘ and ’alive‘). Two simple transition

www.urbansim.org
www.urbansim.org
www.matsim.org
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rules determine the state of the cell after the next iteration. These rules are
based on the state of the eight neighbours of the cell:

• If a living cell has 2 or 3 living neighbours, it remains alive. In all
other cases, it dies.

• If a dead cell has exactly 3 living neighbours, it is getting alive in the
next iterations. Otherwise, it stays dead.

The Game of Life is a deterministic game not requiring any interaction
with a human. The evolution of the game is determined through its initial
pattern. Many different types of pattern occur in the Game of Life, among
them static (still lives) and repeating patterns (oscillators), but also gliding
or escaping patterns (’spaceships‘).

Formally, a cellular automaton can be divided into four different ele-
ments:

1. A regular grid composed by a finite number of cells. This grid space is
typically two-dimensional, rectilinear and homogeneous, even if some-
times, these assumptions are dismissed for a more appropriate repre-
sentation for a given problem at hand (White & Engelen, 2000).

2. A finite number of cell states. The state can represent virtually any-
thing as long as it is discrete. Continuous variables can be transformed
in classes in order to be represented in a cellular automaton.

3. A neighbourhood defining the spatial interactions inside the automa-
ton. The two most common neighbourhoods are the Von Neumann
neighbourhood (the four neighbours sharing a side with the cell) and
the Moore neighbourhood (the eight neighbours sharing at least a com-
mon point). However, it is also possible to enlarge the neighbourhood
and define any type of neighbourhood.

4. The transition rules define how the cellular automaton evolves in time.
This is the heart of the automaton. They represent the logic of the
state change for all cells during one time step. These rules can be very
simple like in the Game of Life, or very complex with some sophisti-
cated probability estimations.

Cellular Automata have been used widely for simulating urban dynamics
such as urban sprawl or land use change. Sometimes, cellular automata have
been used together with multi-agent systems (discussed later). According
to White and Engelen (2000), Tobler (1979a) was the first to suggest the
use of CA for geographical modelling. Subsequently, many researchers used
a CA in a geographical context (e.g. Phipps, 1989, 1992; Couclelis, 1985,
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1997; Phipps & Langlois, 1997; Cecchini & Viola, 1990). Integration of CA
in GIS has also been considered (e.g. Itami, 1994; White & Engelen, 1994).

The concept of CAs has been extended by several authors by modifying
the regular grid and the neighbourhood. For example, it is possible to use
any shape with defined neighbourhood as support for the CA. It is possible
for example to use administrative units (Pinto & Antunes, 2005; Pinto,
Antunes, & Roca, 2009) or a graph (O’Sullivan, 2001), as in both cases the
neighbourhood is well defined.

White and Engelen (2000) present a CA of the Netherlands with a 500
meter resolution for the simulation of the land-use dynamics. This macro-
scale model is driven by economic development and planning projections.
The economic development is translated into need for new infrastructures
and thus a change in land-use. The CA attempts to locate this demand.
However, a major concern in this case is the predictability of economic and
demographic evolution and thus the future changes in land-use.

A similar CA has been constructed for the land-use change and urban
growth in the canton of Vaud (Donzé, 2008; Crevoisier, 2009).

4.2 Multi-Agent Systems

A MAS has been defined by Durfee, Lesser, and Corkill (1989) as a loose
network of entities acting together in order to solve problems beyond the
capacities of the individual entity (Treuil, Mullon, Perrier, & Piron, 2001).
It consists of an ensemble of concepts and techniques where heterogeneous
entities (“agents”) interact according to some defined rules. The relatively
simple agents are built as autonomous units and enable a complex behaviour
of the overall system through the interaction with other agents. The system
itself is designed to solve some problem, to model a real world phenomenon
or to simulate some scenario. As the system is capable of self-organisation
with the sole definition of some simple rules, the domain of multi-agent
systems is a Distributed Artificial Intelligence (DAI) technique.

MASs are often seen as a metaphor of a swarm of social insects (e.g.
Bonabeau, Dorigo, & Theraulaz, 1999). Social insects, e.g. ants, bees or
termites, are relatively simple animals but show very advanced problem
solving capabilities. As Bonabeau et al. (1999) say, the modelling of social
insects [...] can help design artificial distributed problem-solving devices that
self-organise to solve problems and call such a system swarm-intelligent sys-
tem. The difficulty in designing an “intelligent” MAS is to know exactly
what behaviour each agent must have, and which are the interactions neces-
sary for solving a given problem. One of the fundamental hypothesis comes
from the domain of complex systems: the interactions between the small
entities generate emergence and persistence of forms at a more global level
(Holm & Sanders, 2001, p. 191). In geography, spatial interactions like flows
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of people, goods or information are the result of the resources and poten-
tialities of each location. These interactions create differences in space, like
centre-periphery gradients or segregation effects (Holm & Sanders, 2001).

Shoham (1993) defines an agent as ’an entity functioning in a continu-
ous and autonomous way and which is located in an environment in which
other processes happen and where other agents exist‘. This is a very large
definition that may include a lot of systems that we are not going to consider
in our context. Wooldridge (2002, p. 15) defines an agent as ’a computer
system that is situated in some environment, and that is capable of au-
tonomous action in this environment in order to meet its design objectives.‘
He limits his definition to computer systems, which restricts the possible
interpretations and limits clearly the domain. An agent can therefore be
a software or hardware agent. The latter is heavily used in robotics. For
spatial problems, agents are usually a piece of software.

Some of the characteristics of an agent are generally intelligence, au-
tonomy, interaction with other agents, reactivity, adaptability, pro-activity,
ability to communicate, to cooperate and to behave socially:

• Autonomy is probably the most important characteristic of an agent.
According to Kiss (1992), an agent is a local process having its own
private domain on which he is the only one to operate and which he
does not share with another process. Such an agent can be represented
very easily by an instance in a object-oriented programming environ-
ment. The private domain is translated by the private attributes for
this type of object. An autonomous agent should also be capable of
adaptation to a changing environment.

• Reactivity is the capacity of the agent for adapting in a timely fashion
to the environment (Franklin & Graesser, 1997).

• The adaptability of an agent is its capacity to learn, that is to change
its behaviour based on its previous experience.

• A co-operative and social agent is able to communicate with other
agents, and to achieve goals important not only for himself, but also
for others (the society).

• Pro-activity refers to the fact that an agent should be goal-oriented,
and not just be reactive.

For programmers used to object-oriented programming, the difference
between an object and an agent might not be obvious. In the object-oriented
programming literature, we can even find comparisons with agents: ’Objects
are not passive containers for state and behaviour, but are said to be the
agents of a program’s activity‘ (NeXT Computer Inc., 1993). There are a
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lot of parallels between an agent and an object in object-oriented program-
ming. An object has attributes and methods and is embedded in an object
hierarchy. Agents have internal states (attributes) and can perceive and act
upon their environments (through methods). An agent can be differentiated
through its functioning, like asynchronous messaging, structuring of all the
attributes and methods in modules with a generic function (memory, per-
ception, action, communication...) (Treuil et al., 2001). The famous paper
of Franklin and Graesser (1997) discussing the differences between agents
and programs underlines the apparent difficulties to distinguish agents from
objects or simple computer programs. Some programs, for example daemons
on a Unix system, can be seen as agents. But there are some conceptual
differences between an object and an agent. The most important difference
is probably the fact that an agent is autonomous, this means he can decide
on his own whether he wants to execute an action (a method) or not. In
the case of an object, the object will execute a method unconditionally, if
asked to do so. Agents should also be able to learn, this means to adapt
their behaviour. This is not necessarily the case with an object. Agents and
objects are somehow similar concepts, but they are not the same. Agents
can be implemented through an object, but this is not necessarily the case.

4.2.1 Self-organisation with Multi-Agent Systems

A MAS is a bottom-up approach, where a high number of relatively sim-
ple entities interact to form a system capable of complex behaviour. Such
systems organise themselves through the definition of the properties of the
constituent entities. Analogies to colonies of social insects like ants, bees or
termites, have given raise to some quite successful optimisation algorithms.
For example Bonabeau et al. (1999) have reviewed the paradigms behind
such “swarm intelligent” systems, and showed a couple of applications to dif-
ferent problems, e.g. the Traveling Salesman Problem (TSP), the Quadratic
Assignment Problem (QAP), the Job-Shop Scheduling Problem (JSP) or the
Vehicle Routing Problem (VRP).

In order to understand how such a swarm algorithm works, we consider
in more detail the functioning of an ant colony. An insect colony is indeed a
very puzzling structure: each individual seems to have its own task and its
own agenda, and the colony seems to be perfectly organised at a global level,
without some central, deciding instance. As Bonabeau et al. (1999) point
out very correctly: ”An insect is a complex creature [...] [but] the complexity
of an individual insect is still not sufficient to explain the complexity of what
social insect colonies can do.“ Many of the activities of an ant colony, or a
social insect colony in general, is self-organised. Theories of self-organisation
which have been originally investigated especially by physicists and chemists,
can also been applied to ant colonies. They show that complex collective
behaviour can arise from the interactions among individuals that exhibit
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simple behaviour (Bonabeau et al., 1999; Haken, 1983; Nicolis & Prigogine,
1977; Deneubourg, Goss, Franks, & Pasteels, 1989). An ant colony must
solve several important problems like finding food, building and repairing
their nest, defend the nest to external invaders (other insects), divide the
labour etc. What is surprising is the efficiency and robustness of the problem
solving. For example if an exploratory ant has found a new food source, a
pheromone trail is laid between the food source and the nest. Other ants will
follow this trail and enforce the pheromone trail. Like this, many ants will
start to exploit this food source, unless it is exhausted or if there is a nearer
source. Pheromone is a chemical substance laid in different quantities by an
ant and which evaporates slowly. So, if there are many ants passing on a
given trail, the pheromones are very present and other ants will easily take
this path. If there is another food source closer to the nest, the ants will
return more quickly to the nest and can enhance the pheromone trail faster.
More and more ants will visit the closer food source, while the number of
visiting ants at the further source diminishes.

Bonabeau et al. (1999, pp.9–11) identify four basic ingredients on which
self-organisation relies:

1. Positive feedback (amplification). This mechanism allows maintaining
of currently successful behaviour. For example, the pheromone is an
amplification mechanism, as it will encourage other ants to follow this
path. It is used to reinforce the current structure.

2. Negative feedback. This mechanism is needed to counterbalance the
positive feedback and helps stabilise the system. For example the
pheromone evaporation is such a mechanism, as it will allow compe-
tition between different sources to take place. It also allows reducing
crowding, as the ants will need more time if there are too many in-
dividuals at the food source and the frequency of ants passing on the
pheromone trail will be limited in this way.

3. Amplification of fluctuations. A crucial mechanism in self-organising
is some randomness and occurrence of errors. Random walks, er-
rors made by the individuals and random task switching will allow
the discovery of new solutions. For example, if an ant gets lost on a
pheromone trail, it is possible to find a new, closer food source.

4. Multiple interactions. Each individual should be able to take advan-
tage of its previous experience and the experience of all the other
individuals.

Through the mechanisms at work in a self-organising system, the system
is searching permanently the optimal equilibrium. If there is a perturbation
changing the environment, a new optimal solution is found very quickly.
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This continuous adaptation to the current conditions is an important char-
acteristic of a self-organising system and allows the use of such a system in
a wide range of applications.

4.2.2 Multi-agent simulation

Basically, if a multi-agent system is used for representing the reality, we call
it a multi-agent simulation (Treuil et al., 2001, p. 221). More specifically,
a multi-agent simulation is a micro-simulation approach based on a multi-
agent system, where the overall behaviour of the system is formalised at
microscopic level by defining the composing units. Generally, two levels
are considered: the level of the individual, e.g. people, households, firms
in social sciences, and the aggregated, global level, which corresponds in
geography to the study region (Holm & Sanders, 2001).

The modelling of spatial dynamics through a multi-agent simulation
comprises the following steps, according to Treuil et al. (2001):

• Identification, in the reality, of a finite set of types of entities and
relations.

• Characterisation of these types of entities and relations through a finite
number of attributes.

• Identification of the process types and the characterisation of their
effects and mechanisms on an algorithmic level.

• Definition of a control schema controlling the temporal order of the
process execution.

• The programming itself, respecting the defined structures of the enti-
ties, processes and their control.

• Creation of an “initial world” with instances of the different types of
entities, relations and processes.

• Execution of the program producing different simulations according to
different scenarii.

4.3 Traffic simulation

Traffic planning is an important issue in modern cities and agglomerations.
Transportation is necessary for fulfilling the needs of each individual in the
society, and also for goods needed at a given location in space. Traffic is
essential for the economy, but has also some negative effects like noise, air
pollution or injuries caused by accidents. Inefficient traffic, like the occur-
rence of traffic jams, increases these negatives effects and adds additional
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negative effects, particularly time loss for people involved. Individuals using
the transportation system are not concerned about the system itself, but
only about their own benefit. As transportation capacity on such a net-
work is limited, competition for the use of this offer arises (Balmer, 2007).
Transportation planning is therefore an important tool for offering an op-
timal network for the needs of the economy and the people by limiting the
negative effects of traffic.

People generate traffic. But we should keep in mind that people generate
traffic for accomplishing their activities, this means for some purpose. The
traffic planning should ideally integrate the reasons for the transportation
at an individual level. This would enable the planer to monitor each person
and extract information about the time dependant traffic volumes, the modal
split and the reasons for the modal choice, the human density at a given time
or the activity chain (Balmer, 2007). Such detailed real world data does of
course not exist because of privacy protection. In traffic planning, tools and
techniques for dealing with incomplete data are therefore essential.

According to Balmer (2007), the traditional approach for transport plan-
ning is the four step model (see e.g. Sheffi, 1985; Ortúzar & Willumsen,
2001). In this approach, the study zone is divided into subzones. The traf-
fic flow between the different zones is then determined (the demand), and
an equilibrium solution for the flow of vehicles in the network is searched.
The four steps are the trip generation, trip distribution, modal choice and
the route selection. During trip generation, for each zone the incoming
and outgoing trips are defined. The trip distribution creates the Origin-
Destination (OD) matrix; in this step, the origins and destinations are con-
nected together. The modal choice step defines the mean of transportation
used for each trip. Finally, the route selection step assigns a path on the
network for each trip (generally, this step is limited to trips done by car).
However, the four-step model lacks differentiation at the level of an individ-
ual and temporal dynamics. The former allows links between transportation
behaviour and demographic or social characteristics, while the latter is es-
sential in an urban context with peak hours.

Micro-simulation is an important tool in Traffic Simulation (TS) (Balmer,
2007; Vovsha, Petersen, & Donnelly, 2002; Bowman, Bradley, Shiftan, Law-
ton, & Ben-Akiva, 1999; Bhat, Guo, Srinivasan, & Sivakumar, 2004). TS
enables us to have a precise spatiotemporal image of the real traffic. Among
the objectives are understanding of capacity problems (traffic jams) or opti-
misation of the road network through guidance systems (red lights, informa-
tion systems). TS can also be used to understand interactions between the
urban structure and the real traffic. It allows estimating more accurately the
transportation duration with respect to different traffic situations during a
day. And it can be used to simulate the car dependence for different popu-
lations by comparing the simulation transportation duration for private and
public transportation means. Using such a micro-simulation approach, it is
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possible to integrate the individual decision-making process in the TS. This
is important as people do generate traffic for a given purpose, and integrat-
ing elements leading to the choice can enhance the simulation itself. Such
choices can include for example activity location choice (where to go?), ac-
tivity time choice (when should I do a given activity?), activity chain choice
(shopping before or after work?), modal choice (how to get there?) and so
on.

In a micro-simulation approach, the following tasks must be accom-
plished:

1. Generation of a statistically correct synthetic population. This syn-
thetic population is a virtual population that is one possible realisation
of the true population. The synthetic population would give the same
census results as the conducted censuses of the real population. Such
a synthetic population is composed by households having well defined
properties like spatial location, income, car ownership etc. (Beckman,
Baggerly, & McKay, 1996; Balmer, 2007). The households are com-
posed by a given number of individuals having some other properties
like gender, age etc.

It is a good practice to create several realisations of a statistically cor-
rect synthetic population; each realisation is different in some details.
For each of these realisations, the traffic simulation should be run, and
the results compared in order to estimate the sensitivity of our traffic
simulation. However, creating such a synthetic population and run-
ning a traffic simulation are computationally intensive tasks and such
a sensitivity analysis can not be conducted in each case.

2. Generation of a daily activity agenda for each individual. Individu-
als have different day activities: working, shopping, looking after the
children, leisure, visiting friends, etc. An activity chain is a series of
temporally ordered activities for a given individual. These activity
chains have usually more or less known characteristics: most of the
working people do so during day, visiting friends is rather done after
work, etc. Censuses like the Swiss micro-census on traffic behaviour
(Swiss Federal Statistical Office SFSO, 2005a) may help in defining
and calibrating such activity agendas.

Such an agenda contains the temporally ordered list of activities along
with the location of each activity, and information about the begin
and end of a given activity (Vaughn, Speckman, & Pas, 1997; Balmer,
2007).

3. Modal choice for each individual. For each trip an individual has to do
between two activities not located at the same place, a mode of trans-
portation should be chosen. This choice depends on characteristics
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of the transportation offer available for the individual. Demographic
characteristics can also play a role in this choice.

4. Optimal path selection through the simulation of the time-dependant
traffic volume. The simulation of all the trips allows the choice of
the optimal path to take for each trip. This simulation is usually
an iterative process. After each simulation step, the individual may
have the possibility to improve the path, change the activities, or the
transportation mode.

5. Validation of the simulation. Once the simulation has found a sta-
ble simulation result, a validation should be done by checking some
statistical characteristics of the simulation. This can be for exam-
ple statistics on the length of the trips, number of trips by person
etc. These statistics can be compared to census results. A subset of
activity chains should be analysed manually in order to check their
consistency; visual inspection tools are valuable tools for doing this.
If possible, several simulations should be done and compared to check
their sensitivity. If several synthetic populations are available, sim-
ulations between different populations should also be compared and
checked for sensitivity.

Some of the above steps can vary in their order. For example, the trans-
portation mode can be chosen before or after the activity location, or at the
same time (see e.g. Lohse, Bachner, Dugge, & Teichert, 1997; Kutter, 1983;
Balmer, 2007).

Each of the above steps have their own issues. The most crucial are
the creation of the synthetic population, and the traffic simulation (optimal
path selection) itself. The creation of the synthetic population is part of
the calibration process of the traffic simulation and will be discussed in
section 4.4 specifically for multi-agent simulations.

Different types of traffic simulations are known in the literature, e.g.
cellular automata models, queue models or car following models. Each type
of simulation has a different resolution and the need of computation power
varies greatly between the models. Among all the models, we can find the
following:

• Cellular Automata model. In a CA, time and space are divided into
discrete units. In a traffic simulation CA, each cell contains zero or
one vehicle or person. The state of a cell c at time t is defined by the
state of its neighbouring cells at time t − 1. A vehicle can move only
to free neighbouring cells that are part of the network. Additionally,
the vehicle will need some time to cross the cell it is currently on;
this time depends on its speed. Speed may be limited like in real life
traffic (there is a minimum time to cross the cell). A traffic simulation
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CA is simple. As a lot of details can be included into the model, the
simulation may be quite realistic. The drawback of this approach is
the relatively slow computation speed; it is virtually impossible to run
a large simulation using the CA model.

• Car following model. The car following model is based on the interac-
tions between the different vehicles on the road. The model is based on
four different states: free driving (no other car around), following a car
(distance lower than a model dependent upper following distance but
bigger than safety distance), approaching, and danger (safety distance
not respected). The car following model describes the behaviour of a
driver who wants to drive faster than the present speed of the preceed-
ing vehicle; it can be combined with a lane-changing model for describ-
ing the behaviour of overtaking (Fellendorf-1994, 1994). Wiedemann
(1974) developed a car following model based on perceptual thresh-
olds and the physical spacing of vehicles; this model is called psycho-
physical model (see e.g. Wiedemann, 1974; Fellendorf-1994, 1994;
Fritzsche, 1994). The car following model allows very detailed simula-
tion of car traffic, with individual characteristics for each vehicle and
driver. Anticipation and cooperation, as we observe in reality, can be
integrated into this model. The drawback of this approach is the com-
putation speed that is far too slow for big simulations. The commercial
software package ”VISSIM“ implements the car following model as de-
scribed by Wiedemann (1974), together with a lane-changing model
(see http://www.ptvag.com for more information on VISSIM).

• Queue model. The queue model divides, like the CA model, time
and space into discrete units. Unlike the CA model, the queue model
divides the edges (links) of a network into several pseudo-cells. Each
street is one of these pseudo-cells. The model is agent based and
allows very quick computation. The principle of the queue model is
that vehicles on an edge drive with a defined maximum speed vmax
until they encounter a queue. Each link is a First-In First-Out (FIFO)
queue with three restrictions (Balmer, 2007):

1. Each agent has to stay a minimum time amount on each link.
This corresponds to the time needed to cross the link with free
speed (maximum allowed speed on the link).

2. Each link has a maximum capacity. This means the number of
agents (vehicles) allowed on the link is fixed and usually propor-
tional to its length times the number of lanes. If the maximum
capacity is reached, no other agents can enter the link and have
to wait on the previous link.

3. The number of agents leaving a link during a given time is limited;
this is the maximum capacity.

http://www.ptvag.com
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At intersections, there are no priority rules, but a flow defined by the
capacity of each arriving edge. In the queue model, it is not possible to
include some real, individual dynamic vehicle behaviour on each edge,
as this would slow down the computation speed without improving
considerably the model output.

The queue model is used in Stochastic Queue Based Agent Traffic
Simulation (SQSim) (Balmer, 2007; Cetin, 2005; Gawron, 1998; Cetin,
Burri, & Nagel, 2003). It gives rise, despite its simplicity, to a fairly
realistic traffic simulation model and produces useful output for the
purpose of transport planning (Balmer, 2007).

4.3.1 MATSim: a stochastic queue based agent traffic simu-

lation package

MATSim (MATSim-T, 2009; Balmer, Meister, Rieser, Nagel, & Axhausen,
2008) is an open-source toolkit for transport simulation designed as a flexible
developer platform for transport planning software (Balmer, 2007). The
development of MATSim started in 1998 at the Swiss Federal Institute of
Technology in Zurich (ETHZ) (Balmer et al., 2008). It builds on top of more
than 30 years of experience in micro-simulation of travel demand (see e.g.
Poeck & Zumkeller, 1967; Zumkeller, 1989; Axhausen & Herz, 1989; Balmer
et al., 2008). The MATSim package is currently developed jointly by the
ETHZ, the Technische Universität (TU) Berlin and the Centre National de
la Recherche Scientifique (CNRS) Lyon.

The basic idea of the traffic simulation implemented in MATSim is a
relaxation strategy where an initial travel demand is used for the flow simu-
lation in the road network. After this first run, the result is used to update
the activity chains and their timing, the location choice, the transportation
mode and the route choice. This iterative step is done until a stable solution
has been found and the improvement between two iterative update steps is
not significant anymore (Balmer et al., 2008).

A traffic simulation as done by MATSim can be characterised by the
initial conditions (boundary conditions) like for example the transport net-
work, demographics, facility locations or the land use, and some parameters
adapted during simulation. These adaptive parameters are typically used for
making transportation related choices like the modal choice, activity time
and location choice; these parameters are adapted in a re-planning module.
MATSim is built in a modular way that allows to plug very specific user-
defined re-planning modules into the standard simulator. The generation
of the initial conditions is also done separately, which allows for a big flex-
ibility in the simulation. This calibration step is indeed one of the main
issues in multi-agent simulations in general, and therefore in agent based
traffic simulations; the problems related to agent calibration is discussed in
section 4.4.
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4.3.2 Traffic simulation of the agglomeration of Lausanne us-

ing the MATSim package

The agglomeration of Lausanne consists of 70 municipalities with the cen-
tral city of Lausanne counting roughly 125’000 inhabitants. The whole ag-
glomeration counts around 300’000 people. Traffic jams are quite frequent,
especially in the city centre and on the highway crossing the agglomeration.
We have created a multi-agent traffic simulation for the commuting popu-
lation using the car for going to work. Figure 4.1 shows the distribution of
the number of working places against the number of working inhabitants for
the agglomeration. The structure of the agglomeration of Lausanne is quite
classical: the city centre has a high concentration of working places, typi-
cally in the service sector. There is another zone, west of the centre, around
the highway junction, where working places are more important than resi-
dential areas; this is mainly due to its good accessibility for the individual
motorised traffic. In this area, beside a high number of tertiary firms, we
also find big shopping centres and industrial areas. Around the city cen-
tre, and especially towards east (where the protected zone of Lavaux lies
between Lausanne and Vevey), we find mainly residential areas. This seg-
regated structure between working places and residential zones leads to an
important demand in mobility for commuting to work.

The traffic simulation for the agglomeration of Lausanne builds on the
road network extracted from the Vector-25 dataset (Swisstopo, 2008), for
the whole canton of Vaud. The road network was cleaned and attributes
important for traffic simulation defined in a quite general manner; mainly
the maximum speed, the number of lanes (for highways), and the capacity
have been estimated. One-way or pedestrian roads could not been defined
correctly based on the Vector-25 dataset.

The data for the calibration of the agents comes from public censuses
conducted by the SFSO. The population census (Swiss Federal Statistical
Office SFSO, 2005b) and the firms census (Swiss Federal Statistical Office
SFSO, 2005c) are available at a hectare level which provides a good base for
the calibration. Additionally, the micro-census of traffic behaviour (Swiss
Federal Statistical Office SFSO, 2005a) gives a sample of roughly 30’000
people for which a big amount of details related to mobility and some socio-
economic characteristics are known. For establishing the OD matrix for the
commuting behaviour at the level of an agent, the population census pro-
vides an aggregated OD matrix at the level of the commune; this OD matrix
is available for each different mode of transportation. For this traffic simu-
lation, only commuters with a start and/or end point in the agglomeration
of Lausanne and using the car have been considered. These data should
allow a fairly good calibration of the virtual agent population. However,
for sake of simplicity, no activity chains have been generated, and no other
traffic than traffic to work included in the simulation. The traffic starts at
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Figure 4.2: Number of vehicles on the road during the iteration 0, with
starting and end time.

6 AM, agents stay typically around 8 hours at work, and return to home.
This scenario creates two peak hours in the traffic: the first from 6 to 8 AM,
and the second roughly between 2 and 4 PM; the traffic back to home takes
place already in the early afternoon as a consequence of the simplicity of the
simulation. However, as only commuters are considered in the simulation,
this issue does not change the results.

The simulation has been done using the MATSim toolkit with the built-
in re-planning unit. 50 iterations have been allowed for the optimisation
process. At the first iteration (iteration 0), mean travel time was nearly 1
hour, more than 25’000 vehicles were on the way at 8 AM (see figure 4.2).
Mean travel distance was about 12.5 kilometres. Figure 4.3 shows the num-
ber of cars on the road during the last iteration. At the maximum peak,
”only“ about 4200 cars were on the road. The mean travel time was about
10 minutes, which is less than reality. This is probably due to the absence
of other traffic than commuter traffic and to the non-optimal road network
where shortcuts across small roads are possible (no one-way or pedestrian
only roads). The travel distance did not change significantly during the
optimisation process.

For all the agents in our simulation, we know now exactly the distance
between their home and their work. Figure 4.4 shows a map with the mean
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Figure 4.3: Number of vehicles on the road during the iteration 50, with
starting and end time.
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distance to work for all the agents involved in the simulation. The statistic
has been computed within a moving window of 1 kilometre. Note that the
distance to work has been mapped at the place of residence of the agent. A
comparison with figure 4.1 shows that the distance to work is smaller for the
agents with a home in a zone with a surplus of working places. However,
the shortest trips are for commuters living in the west of the Lausanne city
centre. For the centre itself, the trips are slightly longer despite the fact that
the city centre has the biggest surplus of working places; but they are still
shorter than in average. Typical residential areas at the east and northeast
of the agglomeration have longer trips to work. The map in figure 4.4 can be
combined together with an estimation of the trip length using other means
of transportation to an indicator of the economic impact of commuting.

Another statistic that can be retrieved from such a simulation is the
evolution of the human density during a day. Figure 4.5 shows the hu-
man density between 6 and 8 AM for the traffic simulation. It shows a
concentration process mainly from peripheral zones toward the centre of
the agglomeration. However, this result is not comparable to figure 4.1, as
it takes into account only the agents of the traffic simulation, that is the
population commuting to work using the car.

Based on the simulation, it is possible to analyse further the resulting
data and compare with other data coming from other sources. However, the
simulation results must be analysed carefully and the sensitivity evaluated
by running different simulations using several statistically correct virtual
populations. Otherwise, issues similar to the ecological fallacy may occur.
The ecological fallacy is an error in the interpretation of statistical data
based on the assumption that individuals belonging to a group have average
characteristics of this group, which is a wrong assumption if the group is
heterogeneous. The ecological fallacy may occur if aggregated statistics are
used, and is related to the MAUP (see e.g. Gehlke & Biehl, 1934; Openshaw,
1984; Pearce, 2000).

4.4 Calibration of a multi-agent simulation

The calibration of a multi-agent simulation defines the individual charac-
teristics for each agent. In geography, these characteristics vary generally
in space and time. We also need to place the agent at a precise point in
the space-time continuum. A simulation is only viable if the calibration is
done carefully and reflects the observed reality. It is therefore necessary to
find the underlying spatiotemporal structures for each characteristic. If, for
example, we observe a given age structure for the population in our study
region, we have to reproduce this age structure at least approximatively.
Generally, we don’t have the disaggregated population data at each point in
space. Usually, the public census, as for example the Swiss Population Cen-
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Tra!c simulation of the Lausanne agglomeration: Distance to work
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Figure 4.4: Distance to work for all the agents of the traffic simulation.
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sus (Office fédéral de la statistique OFS, 2000), provide only the marginal
distribution for the most important population characteristics over an aggre-
gated region, which may be communes or, for the Swiss Hectometric Census
(Swiss Federal Statistical Office SFSO, 2005b), the hectare. It is therefore
necessary to estimate, for each point in space (and time), the joint distri-
butions. It is important to note that scale and boundaries of geographic
features may considerably modify the results of a spatial analysis.

For the purpose of illustration, we will consider a practical example.
In the area of travel simulation, we need to forecast the travel demand of
the population. This forecast is typically done using activity-based micro-
simulation model systems providing robust behavioural frameworks in a wide
variety of contexts (Ye, Konduri, Pendyala, Sana, & Waddel, 2009). In this
type of simulation, each real person is represented by one agent. The calibra-
tion of such a simulation consists therefore in producing a virtual population
with properties as close as possible to the real population. The agents should
be preferably grouped into households and social networks (see e.g. Balmer
et al., 2008; Hackney & Axhausen, 2006; Arentze & Timmermans, 2006;
Axhausen, 2005).

The most widely used method for virtual population calibration is prob-
ably Iterative Proportional Fitting (IPF) (see e.g. Deming & Stephan,
1940; Papacostas & Prevedouros, 1993; Beckman et al., 1996; Anderson,
1997; Frick & Axhausen, 2004). The crucial step is the creation of a multi-
dimensional table containing all the required attribute variables; the agents
are then generated from this table. The IPF algorithm is demonstrated us-
ing a multiway table in 3 dimensions, but it can used for any number N of
dimensions. It works as follows (as presented by Frick & Axhausen, 2004):

Let π be a 3 dimensional multiway table with unknown components but
known marginal distributions {xij•, xi•k, x•jk}, where a bullet represents
the sum over that index. πijk represents the probability of co-occurrence of
3 different socio-economic categories i, j and k for an agent. The multiway
table π should respect the following straightforward constraints:

nπij• = xij•, nπi•k = xi•k, nπ•jk = x•jk (4.1)

n = π••• = x••• (4.2)

where n is the total sum of observations. The iteration process starts
using an initial solution π(0) for π; this solution comes ideally from a known
subset of the census. One iteration is done by executing the following equa-
tions in turn; the number of equations is equal to the number of dimensions:

π(1) =
xij•π(0)

nπ(0)
ij•

(4.3)
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π(2) =
xi•kπ(1)

nπ(1)
i•k

(4.4)

π(3) =
x•jkπ(2)

nπ(2)
•jk

(4.5)

The iterations continue until the change between two iterations becomes
insignificant. According to Frick and Axhausen (2004), this algorithm con-
verges sufficiently in about 20 iterations.

If a sample from the population is known, and the marginals of the mul-
tiway table are also known, the IPF gives a constrained maximum entropy
estimate of the multiway table (Ireland & Kullback, 1968; Frick & Axhausen,
2004).

One problem that can be encountered with the IPF procedure is that
the spatial variations of the population characteristics can be important in
some cases if data are only available aggregated for larger areas. Aggre-
gate data should be available at a rather fine resolution in order to not
cause important distortions in the calibration result. If data are available
at a municipality level, such problems can typically occur in bigger cities
where the socio-economic differences are important in some cases between
different residential areas and typically travel behaviour varies a lot. Spa-
tial variations should then be included, for example using methods of area-
to-point interpolation (see e.g. Tobler, 1979b; Kyriakidis, 2004, and also
section 4.4.1).

Another issue that has to be addressed separately is the spatial distribu-
tion of the agents inside the aggregated zones for which data are available.
This will be discussed in the next section.

4.4.1 Estimation of the spatial distribution of the agents

The methods for estimating the population distribution or the population
density for a given area are numerous. We can estimate the number of
people directly, or the population density: it is trivial to change from one
measure to the other, using the study area for which we want to know the
number of people or the density.

The simplest approach is to distribute the population uniformly for the
whole extent of the geographic unit for which we know the population count.
However, population is generally not distributed uniformly in space, and this
method won’t give a satisfactory result. If we take the case of a municipality
– the smallest geographic unit for most censuses – population is generally
concentrated into a small part of the whole territory that often includes
agricultural land, forests, rivers etc. Figure 4.6 shows an example of a
typical structure of a village.
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Figure 4.6: Structure of a typical village.

Wu, Qiu, and Wang (2005) separate all the different approaches into two
categories: the methods of area-to-point interpolation and the statistical
models.

• Area-to-point interpolation allows solving the problem of area-to-area
interpolation illustrated in figure 4.7 and the zone transformation
problem where we have to estimate a variable known only for a set
A of spatial units (the 2 polygons in figure 4.7) for another generally
bigger-scaled set B of spatial units (the red square in figure 4.7). Such
a transformation involves the estimation of the spatial distribution of
the measured phenomenon.

• Statistical models try to apply urban geography theories in order to
estimate the population distribution. These approaches try to estab-
lish a (statistical) link between the population and another variable
(built area, land use, satellite imagery pixels, etc.).

Area-to-point interpolation allows the estimation of the population inside
a spatial unit smaller than the one used by the census. We call source zone
the set of units where we know the population, and target zone the set of
usually (but not necessary) smaller units for which we want to estimate the
population (Lam, 1983).

The methods with or without auxiliary data are numerous; some of them
are briefly described here:
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Figure 4.7: The problem of the area-to-area interpolation involves estimating
the population in the red square with the population known only for the 2
polygons.

• Martin (1989) proposes a kernel-based interpolation method using the
source zone centroid as a control point. He uses a distance weight-
ing function for estimating the population for each node of a regular
grid. This method supposes that each geographic unit is more or less
symmetric, which is in reality rarely the case. This method, as other
methods using the centroid as a control point, cannot guarantee that
the total population is the same after interpolation, which is a big
inconvenience (Wu et al., 2005).

• Tobler’s pycnophylactic interpolation is a well-known area-to-point in-
terpolation method (Tobler, 1979b). A smooth, continuous density
function is computed in space that takes into account the neighbour-
hood and guarantees the respect of the total population after interpo-
lation. The estimated surface approximates the neighbourhood mean.

• Kyriakidis (2004) presents a geostatistical approach for the area-to-
point interpolation. His method is a generalisation of Tobler’s pycno-
phylactic interpolation (Tobler, 1979b). His geostatistical framework
allows the estimation of the value at each point in space using the area
values and with respect to the total population. Kyriakidis (2004)
considers the area-to-point interpolation as a special case of change
of support and refers to Gotway and Young (2002). The proposed
method is a special case of Kriging (Matheron, 1971), even if Kriging
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has more often been applied to classical point-to-point interpolation
problems.

• Wright (1936) has developed the ”dasymetric method“ which uses
auxiliary information for restricting the domain where the uniform
distribution can be applied. Poulsen and Kennedy (2004) define this
approach as follows: ”Dasymetric mapping involves estimating the dis-
tribution of aggregated data within the unit of analysis, by adding addi-
tional information that provides insights on how these data are poten-
tially distributed.“ The idea is to ignore regions without population,
which is the same as to make a binary distinction between presence
or absence of population. Using GIS, this approach has become very
widespread and easy to implement. The method has also been ap-
plied to the non-binary case, for example by Maantay, Maroko, and
Herrmann (2007) who uses a cadastral-based expert system, or by
Langford, Maguire, and Unwin (1991) who use a regression analysis
in order to refine the density in populated places. More case studies,
some with variants to the dasymetric approach, are known in the lit-
erature, see e.g. Wu et al. (2005) for some of them. The advantage of
the dasymetric interpolation is the ease of integration of several fac-
tors in order to get a probability map characterising the population
distribution.

Example of population modelling in the Lausanne agglomeration
using topographic maps, LIDAR elevation data and land manage-
ment maps

In this example, we present a variant of dasymetric interpolation using the
following auxiliary data:

• Buildings. The buildings can be extracted from a topographic map
(see e.g. Tuia and Kaiser (2007)), from aerial photos or satellite im-
agery. The distribution will still be uniform, but only inside inhabited
zones, which improves considerably the result. This approach is iden-
tical to the one of Wright (1936). Figure 4.8 illustrates the advantage
of including this information comparing to figure 4.7 where such infor-
mation was not considered.

• Land use maps. Some types of buildings, like factories or other in-
dustrial buildings, are not inhabited. A land management map for
example can help in excluding inhabited buildings. This type of data
allows to further restrain the zone where the population can be dis-
tributed uniformly.

• Building heights. With an easier access to the Light Detection And
Ranging (LiDAR) technology, it has become possible to get the build-
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Figure 4.8: Auxiliary information alleges considerably the problem of the
area-to-area interpolation.

ing heights for a whole, even quite large, study region. LiDAR allows
determining the distance to an object using laser pulses. Deployed on
a plane with Global Positioning System (GPS) and Inertial Navigation
System (INS), it can be used for acquiring a digital elevation model
with a resolution of only a few centimetres. The building heights al-
low the distribution of the population proportionally to the building
volume instead of the area only. We are able to use 3D data; the
third dimension can be seen as a probability map for the population
distribution.

For the population distribution estimation, we use essentially two ele-
ments: a validity domain where people may potentially live, and a density
layer that allows estimating the population density at each point in space.
In our case, the density layer contains the building heights, but it might
also incorporate other information. Algorithm 1 outlines how we can find
a location for each person respecting the validity domain and the density
layer.
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Algorithm 1 Distributing the population
Require: A bounding box bbox enclosing our region,

a polygon layer with our validity domain vdom,
a raster layer with the density probability p

1: Initialise an empty population array pop
2: repeat
3: get a random location loc inside bbox
4: if loc inside vdom then
5: get a random probability value pval
6: get p at location loc
7: if pval ≤ p then
8: add location loc to pop
9: end if

10: end if
11: until the whole population is located

The outlined procedure has been applied to the 70 communes composing
the agglomeration of Lausanne. About 300’000 people live in the agglomer-
ation. Population is distributed in a very unequal manner, with the city of
Lausanne and its neighbouring communes having a much higher population
density than surrounding areas. Generally, population is concentrated in the
commune’s centre. Figure 4.9 shows the density according to the popula-
tion census 2000, with a resolution of one hectare (Swiss Federal Statistical
Office SFSO, 2005b).

In this example, we will estimate the population distribution based on
data at the level of the commune. Based on the estimated individual loca-
tions, we will aggregate the estimated population distribution according to
the hectometric grid used in the population census; this enables us to val-
idate the approach. Basically, we try simply to reproduce the same image
as in figure 4.9.

Figure 4.10 shows the result of algorithm 1 at an individual level. Visu-
ally, the parallels between the model and the statistical reality are obvious.
A validation using the hectometric data allows a quantitative measure of
the estimation quality. The aggregation of the estimated individual data
according to the hectometric grid (figure 4.11) allows comparing the esti-
mation with the statistical reality. We have computed Person’s correlation
coefficient between the hectometric data from the population census and
three different population estimation methods:

• Method 1. A uniform distribution inside of each commune, without
validity domain or density layer.

• Method 2. A uniform distribution with the residential buildings as
validity domain, but without density layer.
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Figure 4.9: The population distribution in the Lausanne agglomeration.

Figure 4.10: The result of the location estimation for about 300’000 people
in the Lausanne agglomeration.
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Figure 4.11: Random population distribution inside residential buildings
and respecting the density layer containing the building heights.

• Method 3. The distribution computed using all available information,
this is a uniform distribution with the residential buildings as validity
domain, and the building heights as a density layer.

The comparison of these different methods allows the estimation of the
contribution of each piece of information for the accuracy of the estimation.
Table 4.1 shows the different correlation coefficients for the three methods.
All coefficients are statistically significant. Comparing with the dasymet-
ric interpolation using only a validity domain, the use of a density layer
(method 3) improves appreciably the correlation coefficient. The simple
uniform distribution (method 1) shows a clearly unsatisfactory result.

Note that these correlation coefficients are based on a pixel-by-pixel com-
parison. An eventual similarity or difference in the neighbourhood has not
been assessed.

Even with a quite big number of included data in our estimation process,
the resulting distribution does not correspond entirely to the reality. Fig-
ure 4.12 shows the areas with over- or under-estimation of the population. A
qualitative analysis of this map allows the conclusion that we have a slight
over-estimation of the population for large zones. These zones are often
residential districts with a relatively low density. These districts, probably
with a richer population, have a building volume per person higher than the
overall mean. This results in an over-estimation of the population in these
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Method 1
Uniform

distribution

Method 2
Uniform

distribution
with validity

domain

Method 3
Uniform

distribution with
validity domain
and probability
density layer

Pearson’s correla-
tion coefficient

0.374 0.561 0.603

Confidence inter-
val 95%

0.367
0.378

0.557
0.565

0.599
0.606

Table 4.1: Correlation coefficients between the real population values and
each of the simulated population values.
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Figure 4.12: Difference between the simulated population distribution (as
in figure 4.11) and the real population distribution (as in figure 4.9).
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Figure 4.13: Density curves for the real population distribution (as in fig-
ure 4.9), in red, and the simulated population distribution (as in figure 4.11)
.

zones. We have also an over-estimation in Lausanne’s city centre, which
is due to the presence of a high number of offices, commercial activities
and other, e.g. administrative buildings being partly residential. Under-
estimated zones are present mainly in the western periphery of the city of
Lausanne. These are residential districts with slightly poorer population
classes where the population density per volume is higher than expected.

The density curves of the estimated distribution and the real population
distribution (figure 4.13) show also a slight difference. The real distribution
has clearly more cells (hectares) with only very few people (typically 3 or
less), and some cells with a very high number of people, the maximum
being 1842. The algorithm generating the estimated distribution is not able
to reproduce this characteristic. A much less pronounced and smoother
density distribution is the result. We can explain this effect with the use of
a uniform distribution inside the constraints defined by the validity domain
and the density layer. This behaviour seems normal and can be expected. At
the same time, this analysis shows the fact that the population distribution
is clearly not uniform, even within quite restrictive constraints; we have
emergence of clusters. Figure 4.12 can be used in this context as a population
cluster map.

The major difference of the presented population density estimation
method with classical mapping such as dasymetric mapping is the random
component in the algorithm. Thus, the result of the density estimation
varies from one run to another. However, each estimation is one possible
realisation of the population distribution, and they are all correct at the
aggregated level. This procedure allows estimating the variations between
different runs and estimating the stability of the resulting population dis-
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Figure 4.14: Histogram for the standard deviation for each hectare between
different runs of the population distribution estimation
.

tribution (Kaiser & Kanevski, 2010). We have run 100 estimations and
computed the standard deviation for each hectare. The mean value for all
standard deviations inside the validity domain is 5.1. Figure 4.14 shows the
density histogram of the standard deviations. In this particular case, the
variations between different runs seem to be quite low. This analysis can
be done without knowledge of the real distribution and should therefore be
performed for each population distribution estimation as a proxy for the
estimation stability.

As a conclusion, we can say that this analysis has clearly shown the
necessity to use auxiliary information for a more or less realistic population
distribution. This is confirmed by Langford, Higgs, Radcliffe, and White
(2008) who have studied the impact of the urban population distribution
modelling on service accessibility: ”. . . it has been shown that the choice
of population distribution model [. . . ] can exert a significant influence on
outcomes.“ Even with the most sophisticated model, it is important to be
careful and perform a sensibility analysis for the model used. The use of
population density models issued from urban geography may improve the
result. A lot of researchers have noted a decrease of the population density
from the city centre towards the suburbs. Clark (1951) has described this
relation mathematically (Wu et al., 2005). However, this simple concentric
model does not consider functional differences between the city districts.

4.5 Discussion

MASs can provide an interesting and very powerful framework for simulating
a complex system like the urban dynamics. It is a bottom-up approach
and self-organised. Computer simulations try to make a virtual copy of
the reality. With the increasing capacity of modern Personal Computers
(PCs), such simulations become increasingly available to the researcher in
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urban geography. Testing changes in a simulated real world model becomes
possible and can constitute a very valuable tool for researchers and planners.
The most important issue for working with a micro-simulation model is the
calibration of the agents. Generally, statistical data are only available at
an aggregate level, and a MAS needs quite a big amount of detailed data.
The agents have generally to be calibrated using some approximations, and
validation of the simulation becomes an important issue. The sensitivity of
the model has to be assessed by running several simulations and compare
the variability of the result.

In order to get a reasonably good calibration of the agents, as much
data sources as possible should be used and combined together. The spatio-
temporal relationships of the data have to be analysed and modelled. These
relationships can be very complex; they can be linear or non-linear, and
they can be continuous or showing breaks in space and/or time. Some more
research effort is needed in this field. Correct modelling of the data and
incorporating some real world logic into the data model is a first step nec-
essary for developing further the data integration using advanced statistical
methods.

Another important issue in Agent Based Models (ABMs) is the exis-
tence of finite size effects. Alfi, Cristelli, Pietronero, and Zaccaria (2009)
have showed that some characteristics of an ABM exist only within well
defined limits for the number of agents involved. If the number of agents
is too small or too big, these effects may disappear. This means that there
is a critical point for obtaining the self-organising behaviour of a system.
Alfi et al. (2009) have showed that in their minimal ABM for financial mar-
kets, the results are not coherent with real world behaviour and that the
number of agents was an intrinsic parameter of the system. It has to be ex-
plored whether such effects are also present in other socio-economic systems;
currently, there is no evidence that this is not the case.
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Chapter 5

Visualisation techniques

Visualisation of spatio-temporal data is essential for all researchers and prac-
titioners using some kind of geographical data. It allows rapid understanding
of a phenomenon. Thematic maps are the spatial counterpart of charts. A
good thematic (statistical) map should allow to identify in a few seconds
the spatial pattern of the mapped phenomenon. Recent advances in GIS,
GPS and Web technology leaded to an increased use of cartographic repre-
sentations. The new web mapping tools available freely on the Web are an
example of this evolution; we can cite the Google Maps (maps.google.com)
or Bing Maps (from Microsoft, www.bing.com/maps) as typical interfaces
of the new generation with even the integration of 3D visualisation (Google
StreetMap). The launch of Google Earth (earth.google.com) had also a big
impact in the domain of GIS and cartography. This fast evolution allows
new representation types, especially for the dynamic mapping. However, as
more non-cartographers start making maps, errors occur more frequently
and the theory on how to represent spatial data is mostly not known or
ignored.

Interactive maps offer new possibilities in the field of geovisualisation.
Many interactive atlases are available on the Web. Some of the most ad-
vanced are based on Geoclip (www.geoclip.fr) which is a statistical mapping
solution based on the Adobe Flash plug-in. One such example is the Atlas
of Romania (mesoscaphe.unil.ch/atlas/roumanie, available in French only;
figure 5). It is possible to select several themes separately, to navigate in
the map, query the polygons and display additional information.

Another interesting example for interactive mapping is the real-time tem-
perature map of Switzerland (www.geokernels.org/services/meteo/spatial
meteo.html; figure 5) where dynamic data are included in a model and up-
dated automatically at a regular time interval. The thematic map can be
queried using the mouse, and it is possible to zoom and pan very easily. The
interesting point in this map is the combination of an automatic modelling
approach and interactive mapping. The application is based on the Google
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Figure 5.1: Screenshot of the Interactive Atlas of Romania

Maps framework, with the possibility to export the map to Google Earth.
Google Maps is a very popular framework for mapping as it is easy to use,

it contains already a huge amount of maps and aerial and satellite imagery,
and it is very flexible and powerful. Another similar framework, less known
but open-source, is the OpenLayers framework (www.openlayers.org).

An interesting option for thematic mapping is the very recent library
”Cartographer“ (cartographer.visualmotive.com). As it is in an early de-
velopment state, it lacks some important features for interactive mapping.
However, it also contains some very interesting ideas. One such idea is
the ”point clusters“ (see e.g. cartographer.visualmotive.com/cluster.html).
This is basically a map of proportional circles; each circle is located at a
precise location, a statistical value is associated and the circle drawn pro-
portionally to this value. However, when zooming out, the individual circles
are clustered together in order to reduce the number of displayed circles.
This is interesting especially in the context of a map that can be zoomed
from the level of the whole world down to a few square metres.

Another example also dealing with different representation scales has
been developed at the Institute of geography of the University of Lausanne
by Pascal Briod and myself (mesoscaphe.unil.ch/atlas/gmaps; figure 5). It
is an experimental choropleth map of Switzerland with some toy data. At
small scale, the geographic units are the 26 Swiss cantons, and when zooming
into the map, the administrative units are switched automatically to the

http://www.openlayers.org
http://cartographer.visualmotive.com
http://cartographer.visualmotive.com/cluster.html
http://mesoscaphe.unil.ch/atlas/gmaps
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Figure 5.2: Interactive mapping of the real-time temperature of Switzerland

communes (around 2900 for the whole country). An interesting feature
is also that only the visible polygons are loaded in the map accelerating
considerably the speed for showing the map. Even if some major problems
persist, notably with the complex polygons, it shows the power of the new
interactive maps on the Web. Of course, some more administrative levels
should be integrated and a legend integrated. It would also be interesting
to cluster together automatically statistically and spatially coherent regions
when zooming out, and display always an optimal number of polygons.

Interactive maps also allow animation of map elements. One possibility
is to move one or several elements on the map. I have created a small
toy example for testing the animation of points on a Google Map (http://
www.clusterville.org/gmaps pt anim). The example draws just 50 dots
at random in a pre-defined rectangle. And on a simple event, the dots
can then be moved to a new location; in our example, the dots move to
a new random location after a click on a link. The movement of the dots
is not linearly, but sinusoidal. This means the point ”accelerate“ at the
beginning smoothly, and at the end, it ”slows down“ smoothly. This example
is entirely written in JavaScript and can be run on virtually every modern
browser. One of the purposes of this example is to test the number of points
that can be moved simultaneously using this technique. With 50 points, the
animation is still quite smooth, but it is not possible to animate hundreds or

http://www.clusterville.org/gmaps_pt_anim
http://www.clusterville.org/gmaps_pt_anim
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Figure 5.3: Experimental interactive choropleth map based on the
GoogleMaps API (by Pascal Briod).

even thousands of points. It could for example be used for vehicle tracking,
showing the progress of a bicycle or sailing race, or visualisation of bird’s
migration.

The evolution in time of a phenomenon could also be animated in an
interactive map. This would mean to simply animate the elements in a
thematic map, for example the colours in a choropleth map, or the symbol
size in a proportional symbol map. Several examples can be found on the
Web, even if they are not frequent or usual. One example is the USA hospital
atlas1 which is an example application for Geoclip. It shows an animated
choropleth map for the number of visits to hospital emergency per 1000
inhabitants between 1999 and 2006.

For cartograms (presented in section 5.2), it is also possible to apply the
polygon morphing technique for transforming a regular polygon layer to a
cartogram. This technique can help the user to read cartograms which is
not always straightforward (we will discuss this issue also in section 5.2).
I have created a simple example for the 70 municipalities of the agglom-
eration of Lausanne using the Scalable Vector Graphics (SVG) technology.
The example is available at the address http://www.clusterville.org/

1http://www.geostat.ca/realisation/sqlusa/carto.php?lang=
en&nivgeos=state&curCodeDom=d01&curCodeTheme=hosp&typind=C&curCodeInd=
emergency&curserie=2006

http://www.clusterville.org/cartogram_morphing
http://www.clusterville.org/cartogram_morphing
http://www.geostat.ca/realisation/sqlusa/carto.php?lang=en&nivgeos=state&curCodeDom=d01&curCodeTheme=hosp&typind=C&curCodeInd=emergency&curserie=2006
http://www.clusterville.org/cartogram_morphing
http://www.geostat.ca/realisation/sqlusa/carto.php?lang=en&nivgeos=state&curCodeDom=d01&curCodeTheme=hosp&typind=C&curCodeInd=emergency&curserie=2006
http://www.clusterville.org/cartogram_morphing
http://www.geostat.ca/realisation/sqlusa/carto.php?lang=en&nivgeos=state&curCodeDom=d01&curCodeTheme=hosp&typind=C&curCodeInd=emergency&curserie=2006
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cartogram morphing. However, as the animation feature in SVG is only
implemented in Safari, Chrome and Opera, one of these browsers is needed
for viewing this example.

In future, the interactive mapping techniques will more and more get
associated with statistical or spatial analysis of real-time data in order to
provide the user with useful information for decision making (e.g. Yuan &
Hornsby, 2007; Guo, 2007). This very fashionable field is called ”visual ana-
lytics“. Methods of the areas of Knowledge Discovery in Databases (KDD)
and Data Mining (DM) for geospatial databases are combined with interac-
tive visualisation. Such a system can be very useful for conducting spatio-
temporal analysis (see e.g. Peuquet, 2009; N. Andrienko, Andrienko, &
Gatalski, 2003). If the analysis tools are combined with techniques from
GISc, the ”visual analytics“ becomes ”geovisual analytics“ (G. Andrienko
et al., 2007); such a system can be very useful for example for urban plan-
ners. In future, it will also be possible to combine the data analysis or
simulations with virtual landscapes for 3D visualisation of the results.

In the next two sections, we will discuss two innovative map types, car-
tograms and density circle maps. Cartograms have recently gained more
attention in the media and are becoming more popular. We will present the
issues around the cartograms, and the new implementation of a cartogram
algorithm into the user-friendly application ScapeToad. Density circle maps
are a new map type useful for visualisation of centre based spatial data.

5.1 Spatially continuous data representation

In the field of thematic mapping, we can distinguish spatially discrete from
continuous maps. Choropleth and proportional symbol maps are examples
of discrete representation. Spatially aggregated data are used for this type
of maps. Typically, official population census data are usually published
using some aggregation according to administrative boundaries. However,
most real world phenomena do not present clear breaks at the administra-
tive border, even if such examples may be found in some cases. Typically
socio-economic phenomena inside an urban agglomeration do not present
clear limits at the commune’s borders. Sometimes, the difference inside one
commune is even bigger than between two neighbouring communes. Or in
some cases, aggregated data may be misleading. One such example is the
population density in the agglomeration of Lausanne where the northern
part of the central commune of Lausanne has virtually no population (see
figures 3.1 and 3.2 and map 4 in chapter 1). If the population density is
then computed at the aggregate commune level, the communes of Renens or
Prilly present a higher density which is misleading as the density is in reality
higher in some parts of Lausanne. In this case, a continuous data represen-
tation is more adapted, or the density should be computed using a ”validity

http://www.clusterville.org/cartogram_morphing
http://www.clusterville.org/cartogram_morphing
http://www.apple.com/safari
http://www.google.com/chrome
http://www.opera.com
http://scapetoad.choros.ch
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domain“. A validity domain is a spatial region where the phenomena under
study has the possibility to occur. In the case of the population density, this
would be the zone where the population can potentially live. In practice,
one possibility would be to delimit the built zone using a topographic map
or remote sensing, and then to compute the population density based on
this validity domain instead of the simple polygon surface. It would also be
possible to use an areal interpolation technique for spatial disaggregation
of the data. Areal interpolation is a variant of the more general change of
support problem (see e.g. Gotway & Young, 2002) with the source and tar-
get values both being areas, but of different extent. One of these methods
it the smooth pycnophylactic interpolation of Tobler (1979), or the more
general geostatistic framework for area-to-point interpolation presented by
Kyriakidis (2004) based on the works of Matheron (1971) and Journel and
Hujbregts (1978). This geostatistical approach could also be extended to
include a validity domain.

With the increasing availability of more and more detailed data, the
problem is shifting from a situation where data were very sparse to a situa-
tion where very detailed data is available. In this case, methods for filtering
out local variations have to be used for visualisation. Methods for averaging
the data in a given neighbourhood can be used for this; the moving window
approach and the kernel density estimation are two candidates for this task.

5.1.1 The method of the moving windows

The principle the moving windows is to define a circle or sometimes a square
of a given size, to compute the sum or average of the points lying inside this
geometry, and to associate this value with the centre of the shape. This
window is then moved all over the study area to provide at each location
the sum or average. Figure 5.4 shows the principle of these moving windows
used for analysis in continuous space. It is of course possible to compute
other statistics than the sum or average inside the moving window, like the
median, minimum, maximum or variance. The moving window approach is a
method for computing local statistics; all the points lying inside the selected
window have the same weight. The size of the moving window defines the
scale of analysis, while the raster cell size only defines the resolution of
the resulting image. The moving window is implemented in all major GIS
software packages. It is applied to raster data, where each raster cell will
be the centre of the moving window. The size of the window can then be
expressed in number of cells and has to be an odd number as the centre
would not lie inside one cell in the other case.
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38 points inside the circular window 31 points inside the circular window

Figure 5.4: The moving window principle. The raster cell at the centre of
the window contains the number of elements inside the window.

5.1.2 Kernel density maps

Instead of simply computing unweighted local statistics as with the moving
window approach, we can use a kernel for weighting the points according
to the distance from the centre. This kernel can be bounded (size of the
window is limited) or unbounded. The most frequent kernel is the normal
distribution function (Gaussian kernel), which is a bell-shaped curve going
to infinity on each side (see e.g. De Smith, Goodchild, & Longley, 2009).
Other functions can of course also be used instead of the normal distribution
function. An important issue is the selection of the bandwidth, this is the
size of the bell-shaped curve in the case of the Gaussian function. In the
case of the normal distribution, it can be associated to the standard devia-
tion and is frequently denoted as σ. The bandwidth defines the amount of
”smoothness“ of the resulting kernel density map. Fotheringham, Brund-
son, and Charlton (2000, p.149) suggest the following estimation for the
bandwidth in the case of a variable that is normally distributed:

hopt =

�
2

3n

1
4

�
σ (5.1)

where hopt is the optimal bandwidth, n the number of points and σ the
spatial spread of the points to estimate, e.g. the standard deviation of the
geographic coordinates in the case of two dimensions. This estimate gives
rather a too large bandwidth resulting in over-smoothing of the phenomenon.

Most of the maps in section 5.4 use the kernel density to provide a smooth
view of the original gridded data. However, the bandwidth has usually been
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defined manually to find the best representation of the phenomenon. The
kernel density map has the advantage over the moving window approach to
present more local details as the nearer points have much more importance
in the local statistic procedure.

Kernel density maps can be created using some GIS software, or using
statistical software. For example, the ”spatstat“ module of the statistical
software R or the scientific tools library SciPy for Python provide algorithms
for computing the kernel density. The maps in section 5.4 have been com-
puted using our own Python-based module for the open-source GIS software
GRASS.

5.2 Cartograms

Traditionally, proportional symbols are used in thematic maps for represent-
ing size values. As an example, population maps as the one in figure 5.5
are widely used. This type of map presents some visual problems. One
problem are the overlapping circles that might reduce the ’visual size‘ of
one of the circles and therefore modify the perception of the phenomenon.
Another problem is that aggregation of several smaller entities may form
a big entity; the perception of the phenomenon is again modified (see e.g.
Slocum, McMaster, Kessler, & Howard, 2009, p.89). Finally, care must be
taken to scale the symbols properly using perceptual scaling. If the area of
the symbols are scaled mathematically proportional to the statistical value,
the human reader will underestimate large symbols (e.g. Monmonier, 1993;
Slocum et al., 2009). A perceptual correction is needed. Several empirical
studies have been conducted and different formulas for correcting the sym-
bols have been found (e.g. Slocum et al., 2009; Flannery, 1971; Crawford,
1973). And as in every thematic map, optic illusions may also occur with
proportional symbols. However, proportional symbols remain very useful
for thematic maps, and really better alternatives do not exist.

One alternative is the cartogram. A cartogram is a thematic map where
the polygon of a geographical entity does not correspond to its physical
shape, but where its area is proportional to a given quantitative number
describing the entity. Therefore, a distortion of the geometrical shape is
necessary. Figure 5.6 shows an example of a cartogram; it represents the
same values as the proportional symbols map in figure 5.5.

The creation of the cartogram involves the computation of this trans-
formation. As no exact or unique solution exist to the cartogram creation
problem, several different algorithms have been proposed since the early
1960’s (see Tobler, 2004). All algorithms have in common that they need a
considerable amount of computer capacity, even if modern PCs are able to
do the necessary computations in a very reasonable time.

A cartogram is a distorted (or projected) map where the polygons are

http://www.r-project.org
http://www.scipy.org
http://www.python.org
http://grass.osgeo.org
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Number of inhabitants

Map: SFSO, ThemaKart, 2008
Data: SFSO, Population census, 2000
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Figure 5.5: Example of a traditional proportional symbols thematic map.

Number of inhabitants

The polygons are deformed.
Their area is proportional
to the population.

Map: SFSO, ThemaKart, 2008 (deformed)
Data: SFSO, Population census, 2000

100'000
50'000
10'000

Swiss municipalities
Permanent population (2000)

Figure 5.6: Example of a population cartogram.
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resized according to a given statistical parameter, and where the main vi-
sual properties like shape, orientation and contiguity are respected as much
as possible (Keim, North, & Panse, 2005). Mathematically, the creation
of a cartogram in the plane involves finding a transformation (projection)
r → T (r), this is from one plane into another plane. We are looking for a
transformation where the Jacobian δ(Tx, Ty))/δ(x, y) is proportional to the
density ρ(r) of the statistical value we want to map (Gastner & Newman,
2004).2 In order to preserve the total area before and after transformation,
a normalisation with the mean density ρ should be made:

δ(Tx, Ty)

δ(x, y)
=

ρ(r)

ρ
(5.2)

Equation 5.2 does not define the cartogram projection in a unique way.
Other constraints are needed for doing so. Typically, the limitation of the
shape deformation is a good candidate for such constraints. We can see the
cartogram creation problem also as finding a function that minimises the
area and shape errors (Keim et al., 2005):

f(S,A) → min (5.3)

where S and A are the shape and area error respectively.
In the next section, we give an overview of some of the existing car-

togram algorithms. Then, we will discuss the problems which are related
to the creation of cartograms. Finally, we will discuss our approach that is
implemented in the ScapeToad application and describe how we try to solve
some of the problems.

5.2.1 Cartogram algorithms

In Dorling’s circle cartogram, each geographical entity is represented by a
proportional circle (Dorling, 1996). The circle’s size is proportional to the
variable value. At the beginning, the centre of the circle is placed on the
centroid of the polygon. In an iterative procedure, overlapping circles are
pushed away while circles without direct neighbour are approached to the
nearest circle. This algorithm is implemented in the Mapresso application
(Herzog, 2005). There is also a demo of the algorithm on the Mapresso
homepage (http://www.mapresso.com). This algorithm has the advantage
of being simple and quick. However, it is not possible to apply the deforma-
tion to polygons. Figure 5.7 shows an example of a circle cartogram for the
population in the 70 municipalities of the Lausanne agglomeration.

The algorithm of Dougenik, Nicholas, Chrisman, and Niemeyer (1985)
is probably the most frequent algorithm implemented in a program or a

2For sake of simplicity, we will consider only population cartograms from here on, but
of course, every other raw number could be used.

http://scapetoad.choros.ch
http://www.mapresso.com
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Figure 5.7: Example of a Dorling’s circle cartogram for the agglomeration
of Lausanne.

script. It is already known since 25 years, which has surely contributed
to its popularity. The algorithm enables the deformation of polygons. For
each vertex of each polygon, a force is computed directed from the centre
or to the centre depending on whether the shape’s size has to increase or
shrink. The algorithm is running iteratively and converges to the result.
The number of necessary iterations depends on the strength of the forces.
Too big forces can produce errors in the polygon topology. This algorithm
is implemented in the Java program Mapresso (Herzog, 2005), in a Avenue
script for ArcView 3 (Du & Liu, 1999; Jackel, 1997) and in a VisualBasic
script for ArcGIS 9 (CartogramCreator, Wolf, 2005). The algorithm is quite
simple in its conception but needs some computation power especially for
maps with a big number of polygons. For creating a cartogram with the
about 30’000 municipalities of France using the CartogramCreator script,
a computation time of several days is needed. The topology is not always
guaranteed, intersecting polygons or holes between two previously adjacent
polygons may occur.

The diffusion algorithm of Gastner and Newman (2004) is based on
the physical process of gas diffusion. A regular grid is laid on the origi-
nal map and for each grid point, the density is computed. The grid de-
formation can be computed analytically with the knowledge of the phys-
ical laws of gas diffusion. At the end, the grid deformation is applied to
the polygon layer. Michael Gastner and Mark Newman have each imple-
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mented this algorithm in a freely available C program with source code (www
.santafe.edu/~mgastner/ and www-personal.umich.edu/~mejn/cart/,
last checked 2008-05-22), and Frank Hardisty has created a Java version
with a graphical interface (people.cas.sc.edu/hardistf/cartograms/,
last checked 2008-05-22). There is also an add-on for MapInfo (www.griddle
-gidata-analysis.com, last checked 2008-05-22). We have used this algo-
rithm also for the implementation in ScapeToad. The algorithm shows an
acceptable performance and the topology remains generally quite intact.
The grid size is limited by the amount of available computer power.

The algorithm of Keim et al. (2005) moves in an iterative process all
vertices of all polygons on a basis of a polygon skeleton (the medial axis).
The cartograms produced with this algorithm have a good quality, and the
algorithm is reasonably fast. The authors have implemented this algorithm
in their CartoDraw program, which is freely available as a Unix binary
(http://infovis.uni-konstanz.de/~panse/CartoDraw/CartoDrawIndex
.php, last checked 2009-12-06). However, the source code is not available
and the algorithm is, at least partially, covered by a US patent owned by
AT&T.

There are some other algorithms described in the literature. Gusein-Zade
and Tikunov (1993) use a continuous displacement field for every point on
the map. Areas of high density produce a repulsive force. The result is
computed using a differential equation for the displacement field. The car-
tograms produced with this algorithm are quite attractive. Kocmoud (1997)
has developed a constraint-based approach in his thesis. Appel, Stein, and
Evangelisti (1983) and Dorling (1996) have developed a cartogram algorithm
based on a CA. Henriques (2005) suggests a cartogram algorithm based on
SOM. Some more general non-linear magnification methods are described
in the literature and can also be applied for creating cartograms (Keahey,
1997, 1999; Langlois, 2003).

5.2.2 Problems of cartogram creation

One of the main concerns in cartogram creation is the conservation of topol-
ogy. In GIS, the topology is mainly about the perfect contiguity of adjacent
polygons, and there must be no self-intersecting polygon as well. During the
cartogram creation process, the original geometrical shapes are sometimes
heavily deformed. Besides the self-intersection problem, there can be gaps
and overlaps between polygons (see figure 5.8). During the cartogram cre-
ation process, we have to ensure that the topology is conserved correctly, in
spite of the eventually important transformation.

For solving this problem, we have introduced in ScapeToad the use of a
regular grid for the deformation instead of the irregular polygons. Indeed,
it is much easier to check the topology of a ”simple“ grid. However, the
introduction of such a regular grid implies the estimation of the density for

www.santafe.edu/~mgastner/
www.santafe.edu/~mgastner/
www-personal.umich.edu/~mejn/cart/
people.cas.sc.edu/hardistf/cartograms/
www.griddle-gidata-analysis.com
www.griddle-gidata-analysis.com
http://scapetoad.choros.ch
http://infovis.uni-konstanz.de/~panse/CartoDraw/CartoDrawIndex.php
http://infovis.uni-konstanz.de/~panse/CartoDraw/CartoDrawIndex.php
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Figure 5.8: Topology concerns for cartograms

each grid cell based on the polygons. This is a typical example of areal
interpolation (Wu, Qiu, & Wang, 2005; Lam, 1983) or change of support
(Gotway & Young, 2002, 2005). In ScapeToad, it is currently admitted
that the population is distributed uniformly in each polygon; the change of
support is done proportional to the polygon areas in each cell. This weakness
may be corrected in future, even if it is not clear whether there will be a
noticeable difference in the resulting cartogram.

Once the deformation of the regular grid computed using one of the
cartogram algorithms, we can use this grid for the projection of one or
several layers from the geographic into the cartogram space. Figure 5.9
shows an example of such a deformed grid. The projection of the geographic
(metric) space into the cartogram space, and vice-versa, can be defined using
a continuous function in space, just like each other projection. However, it
is easier to work with a discrete approximation, this means our regular but
continuous grid. This grid is regular in the geographic space, and deformed
in the cartogram space. It can be use for projecting each point from the
geographic space into the cartogram space (see figure 5.10).

Another current problem for the cartogram creation is the speed of com-
putation. Tobler (2004) thinks that the computational complexity of a car-
togram should be the same as for any map projection and expects it to be
polynomial in nature, even if there seems to be no empirical results in this
direction. Keim et al. (2005) consider the cartogram problem as an opti-
misation problem as stated in equation 5.3. They mention that a simpler
variant of the cartogram called ”integer cartogram“ is NP-hard.

Some well known implementations may take very long in order to achieve
the computation process. As already stated, the algorithm of Dougenik et
al. (1985) may take very long, especially in its implementation as a script
(e.g. Wolf, 2005). This is also the case of the algorithms based on a CA (e.g.
Dorling, 1996). The algorithm of Gastner and Newman (2004) however is
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Figure 5.9: An example of a deformed cartogram grid.
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Figure 5.10: The principle of the deformation grid.
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reasonably fast; computationally the most heavy part is the Fourier trans-
form and back-transform. In ScapeToad, this part has been parallelised and
allows therefore the use of multiple processors.

Another problem in current implementations of cartogram algorithms is
that is is difficult or impossible to apply the computed transformation to
several layers (also non-polygon layers). This may be a problem in some
situation where we want to present more than just the spatial importance
of a given variable. Figure 3.13 (page 57) shows an example of such a case.
The cartogram deformation is based on the population; the urban areas have
been drawn on top of the population cartogram in order to represent the
share of population living in urban areas. In this cartogram, the urban areas
have been defined using the “City Clustering Algorithm” (Rozenfeld et al.,
2008). The cartogram contains also the deformed lakes which are necessary
for a map of Switzerland. It would also be possible to overlay a road- or
railway-network, or the river network. The simultaneous transformation
of accessory layers might thus be useful and helpful for map readability.
We have integrated this feature into ScapeToad, as it simply needs the
application of the computed projection grid to several layers. The projection
grid is chosen nearly twice the size of the base polygon layer to ensure that
secondary layers can be transformed without problem.

5.2.3 Are cartograms useful?

Cartograms are often used in media because of their impact; the reader will
be intrigued of the strange shape of the map. Slocum et al. (2009) argue
that an area cartogram should not be used if the cartogram is not sufficiently
deformed as this will destroy their dramatic impact. One of the problems of
cartograms is the difficulty to identify some of the shapes and to represent
the mapped phenomenon in a useful manner. Cartograms should therefore
ideally be accompanied by a non-deformed map for improving the orientation
in the map. In a interactive map, it is possible to query the cartogram
using the mouse and make a dynamic link with the non-deformed map,
and vice-versa. Another possibility is to include an animation where the
user can switch from the deformed to the non-deformed map (see http://

www.clusterville.org/cartogram morphing for an example).

Currently, there seems to be no study on the perception of cartograms
by the users. It is difficult to say whether cartograms are a better rep-
resentation than proportional symbols. Probably, they should be used in
a complementary way. In some cases, it might also be useful to map the
density instead of the raw values (see e.g. figure 2.3 on page 21).

http://www.clusterville.org/cartogram_morphing
http://www.clusterville.org/cartogram_morphing
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Figure 5.11: Gradient of the building density around Lausanne.

5.3 Distance circle map

In urban geography, it can be interesting to study the differences of some
densities, for example population or jobs, from the city centre to the periph-
ery. Figure 5.11 shows the gradient in building density between the centre
of Lausanne to the periphery, at a maximum distance of 30 kilometres. This
figure shows clearly the range of the city centre itself, and there can also
be seen a number of secondary centres. The base data of this plot are the
building heights on a raster image (resolution of 1 metre). For each pixel,
the distance is computed to the centre. This gives a point plot of the build-
ing height against the distance to the centre. Then, for a regular distance
interval and within a small distance window, the sum of the building heights
is computed and the average value plotted. This method is something like
a circular moving window starting at the centre and then growing.

In the plot in figure 5.11, no difference is made according to the direction;
it is an omni-directional plot. However, the development of cities is usually
not concentric, but rather organised in sectors. It is straightforward to make
a sectorial map of the same data; figure 5.12 shows an example of such a
plot. This plot gives more detailed information on the distribution of the
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Figure 5.12: Sectorial building density around Lausanne.

buildings around the city centre. In this plot can be seen, that the city of
Lausanne develops itself rather in western direction, which is due mainly to
topographic reasons. We will call this type of map ”distance circle map“.
Such a distance circle map is a centre-based, map-like, exploratory data
visualisation technique.

Instead of dividing the map into sectors, it is also possible to make a
continuous image. Figure 5.13 shows an example of such a continuous map.
Basically, it is a choropleth map with a centre, where the data is presented
in an aggregated manner according to the characteristics of the circle. The
continuous distance circle map shows for each point on the map the mean
of the values in a defined neighbourhood around this point, whereas the
sectorial distance circle map divides the circle in sectors and each sector
gets the mean of the values inside. The representation as colours of the
mean values can be done using a discrete or continuous colour scale; this
topic is the same as for choropleth maps.

A distance circle map has of course, like every other map, a scale and
an orientation. It also has a centre which we should mention on the map.
We can also link the distance circle to another representation of the same
space, e.g. a topographic map or a map of administrative units (fig. 5.14).

The original data source of a distance circle map should be a set of points
for which we associate a statistical value. If the data source is not available
as a point data set, a change of support is required and the appropriate
techniques should be applied.

The creation of a continuous density circle map implies the estimation
of the values at a given number of locations, typically for each pixel of a
raster image grid. Figure 5.15 shows the principle of this estimation; the
value should be estimated at the location zi. Basically, the value at zi is
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Figure 5.13: Distance circle map showing the population density around
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the average of the values of all points in a given neighbourhood of zi. This
neighbourhood is defined based on a parameter s defining the maximum
distance of the points to consider from zi. This is the principle of the
moving window. However, a directional parameter is also considered; an
angle ρ defines the sectorial wideness from the centre. And there is also a
maximum distance dmax beyond which points are not considered anymore.

A distance circle map can be an additional visualisation technique useful
for the urban geographer who wants to visualise the sectorial differences in
a city where the centre is known. In these cases, it is an interesting tool
as it focuses on the centre-based aspect of the phenomenon. At the same
time, it is close to the moving window technique, at least if the angle ρ
is sufficiently big. The distance based character of the map allows also
comparisons between different cities.
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Map source: SFSO, ThemaKart, 2008

Figure 5.14: Distance circle drawn on a map of administrative units (munic-
ipalities and canton), together with the major roads. The circle is centred
on the city of Lausanne with a distance step of 2 kilometres.
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5.4 Cartoscopy of Lausanne

After a review of some advanced mapping methods, we make a cartographic
trip to Lausanne, at the lake of Geneva, in Switzerland. Through a series
of maps, we explore this urban agglomeration and show at the same time
some examples of visualisation techniques.

The urban geographer studies the city and its agglomeration for under-
standing the development processes and provides the knowledge for planning
the city in a sustainable and efficient way. An urban area is a place where
people live and work. The network of cities form the economic backbone
of a country, as most economic activities occur in or around the big ag-
glomerations. Planning the development of a city is an optimisation process
for providing the population with high quality living space and the econ-
omy with the necessary communication infrastructure for being efficient. At
the same time, the environmental resources have to be respected. A city
is a complex system and understanding all the ongoing processes is not an
easy task. Providing the urban planner with relevant information needs
the use of powerful analysis, modelling, simulation and visualisation tech-
niques. Quantitative geography provides a good base framework that has
emerged over the last decades. Today, more and more georeferenced data
are available, due to the GPS and progress in computer and communication
technology. A new challenge for the quantitative geography is to process effi-
ciently this data flood. New techniques have to be developed for integrating
different data sources.

The following maps should provide an overview of what kind of analysis
and visualisation is possible and useful for the urban geographer. It is not
exhaustive, but should illustrate some proposals we will discuss throughout
this work.
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Map source:
Swisstopo, Vector 200, 2006

Author:
Christian Kaiser, 2 January 2010

This map was rendered using Mapnik 
(www.mapnik.org)
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The agglomeration of Lausanne is located in the 
Western part of Switzerland, at the border of the 
lake of Geneva. It has a little more than 300’000 
inhabitants and is the !fth agglomeration of the 
country, after Zurich, Basel, Geneva and Berne. It 
has a very good transportation infrastructure with 
fast train connections to the main Swiss cities and 
highspeed train connection to Paris. The highway 
network guarantees a good accessibility by the 
road, with the A1 going to Geneva and Yverdon-
Berne, and the A9 to the Valais and further to 
Italy.

The city of Lausanne is the olympic capital, 
the International Olympic Comitee and several 
international sport organisations have there 
headquarter in this city. There is also a strong 
presence of multi-national !rms in the region 

o"ering high quali!ed job opportunities. 
The École Polytechnique Fédérale (EPFL) 
and the Univserity of Lausanne make of the 
agglomeration an important place for research 
and studying.
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!""#$%&'!()$*+$,+#!-.!**&map 2 _ Typology of the communes _ 2000

The typology of the communes has been 
established based on 31 socio-economic 
variables by Bochet, B. (2005). Étalement 
urbain, formes urbaines et structures so ciales: 
les !gures de l’urbain dans l’agglomération 
lausannoise. Élabo ration d’une typologie 
des com munes de l’agglo mération. Urbia, 
1, 23–39, http://www.alphilrevues.ch/f/
revue/5/11/51 (last checked on 2010-01-03).

Map source: 
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SFSO, Population census, 2000

Author:
Christian Kaiser, 2 January 2010

This map was rendered using Mapnik 
(www.mapnik.org)
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Over the last 150 years, the agglomeration of 
Lausanne has known a huge evolution with a 
population growing from roughly 50 000 people 
to over 300 000 in 2000. The city of Lausanne is 
the centre of the agglomeration, with around 
125 000 inhabitants. Since the 1970s, the 
population of the centre is stable, while the 
development of the agglomeration occurred 
mainly in suburban communes, and later also 
in periurban communes. The agglomeration 
is organised in several more or less concentric 
zones. The growth is going from inside and then 
progressively to the neighbouring concentric 
rings. The newly urbanised regions are less 
densely populated as the increase in mobility 
due to cars and an e"cient road network allow 
to go further using the same amount of time. This 
decrease in density is called «urban sprawl» and is 
accompanied by a car dependance.
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The volume of the buildings across the 
agglomeration is typically a gradient going from 
the hyper-centre and decreases with growing 
distance. Concentric circles show the distance to 
the centre of Lausanne which is considered to be 
at the Place Saint-François. The historic centre 
of Lausanne becomes visible very well with its 
alignment going roughly from south-east to 
north-west, from Saint-François to Bel-Air and 
direction of Prilly. There is also a high-density 
area going from St-François down to the lake 
of Geneva, at Ouchy, which is part of Lausanne. 
Several secondary centres are visible over the 
whole agglomeration. They correspond either 
to a historical town centre or sometimes to 
industrial building complexes. The buildings of 
the École Polytechnique Fédérale (EPFL) are also 
very visible.  Residential areas in the periurban 
fringe are less visible. Typical cases are Saint-
Sulpice, at the lake west of Lausanne, Echandens 
a little bit more north, or Epalinges north-east of 
Lausanne.  This map integrates the history of the 
evolution of the agglomeration, with its centre 

and the suburban and periurban zones around 
the centre.  The agglomeration is organised in 
a built zones alternated with interstitial green 
zones becoming more and more important 
with a growing distance to the centre. With the 
urbanisation process, the growing agglomeration 
includes still further rural areas in the in!uence 
zone. The rural villages become residential zones 
of the population working in the city, with the 
advantage of being in the countryside and with 
lower housing prices than in the urban centre 
itself. The downside is a higher use of space for 
the modern residential houses and longer ways 
to work usually done by car. Tra"c problems, 
air pollution and noise are the consequences of 
this evolution. The challenge is to change this 
evolution to a more sustainable development, 
with a more compact city reducing distances to 
work and services. Di#erent secondary centres 
should be linked together with e"cient but 
ecological public transportation systems.

The volumes of the buildings have been 
computed based on a digital elevation model 
for the terrain and the surface (without objects 
like buildings and trees), using an airborne 
laser technique (LiDAR). The di#erence of the 
two elevation models clipped by the buildings 
gives the building height. A Gaussian kernel 
density function with a bandwidth of 80 me-
tres has been applied for better visualisation. 

Map source:
Swisstopo, Vector 200, 2006 

Swisstopo, GG25, 2006 
Swisstopo, MNT25, 2005

Data source:
Swisstopo, MNT-MO & MNS, 2005

Author:
Christian Kaiser, 3 January 2010

This map was rendered using Mapnik 
(www.mapnik.org)
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The permanent population contains all the 
people living mainly at the indicated place. The 
census date was the 5 December 2000. People 
being present only during a limited amount of 
time, or only during the week, for example for 
study, are not considered in these data.

The map shows the most dense residential zone 
going roughly from Renens to Pully and Lutry. 
However, the highest density are not found in 
the hyper-centre itself which is located in this 
case at Place Saint-François in the heart of the 
city of Lausanne. Concentric circles show the 
distance to this point. The city centre of Lausanne 
seems to be divided in a northern and southern 
part, separated by the Flon valley, which is today 
mainly used for service and administration 
buildings. North-west of the centre, in the zones 
of Bel-Air, Bellevaux and direction Prilly, the 
highest population densities are found. Typical 
higher standing residential zones like Pully or 
Lutry show a smaller population density, but 
still much higher than in residential communes 
further away.

Several secondary population centres are visible 
in the map. These centres are separated by a 
space becoming bigger with distance. Further 
away, other centres provide some services to the 
zone around; among these centres, we can !nd 
Echallend and La Sarraz in the north, Moudon 
in the north-east, Aubonne and Rolle in the 
west, and Chexbres and Vevey in the east. Vevey 
is already a small city with important services 
and its own in"uence zone apart from the 
agglomeration of Lausanne.

The main development zones of the 
agglomeration are from Lausanne going north-
west to Renens and Bussigny, and then direction 
Morges and Rolle along the lake of Geneva; 
another zone goes from Renens / Bussigny 
to Penthalaz, Cossonay and La Sarraz, along 
the highway A9 direction Yverdon. Another 
transportation axis is from Lausanne in direction 
of Romanel, Cheseaux and Echallens.

The number of inhabitants according to the 
population census 2000 conducted by the 
Swiss Federal Statistical O#ce. The base 
data is a regular grid with a cell size of 100 
metres (the hectometric census dataset). The 
population values have been computed using 
a Gaussian kernel density function with a 
bandwidth of 150 metres.
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SFSO, Geostat, Population census, 2000
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The number of jobs in secondary and tertiary 
sectors has been computed as the number of 
jobs equivalent to a full time job. A part time 
job of 80% for example is accounted for only 
with 0.8 job. The data is coming from the !rms 
census 2001 conducted by the Swiss Federal 
Statistical O"ce. The base data is a regular grid 
with a cell size of 100 metres (the hectometric 
census dataset).
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The distribution of the jobs in the agglomeration 
of Lausanne is very di#erent from the residential 
population distribution. By far the biggest 
number of jobs are located straight in the hyper-
centre of the agglomeration, inside a circle of 
even not 2 kilometres of radius. The density of 
jobs at this place is more than the double of 
the maximum population density. Around this 
extremely mono-centric peak, only very few 
secondary centres persist.  Among them, we 
can !nd Morges, Renens and Pully. Less strong 
centres are Echallens, Crissier and the industrial 
zone «En Budron» in the north of Le Mont. These 
secondary centres could become in the future 
stronger if the agglomeration evolves toward a 
polycentric model.

The city of Vevey presents a quite high density of 
jobs which shows its relative independence of the 
agglomeration of Lausanne. Firms visibly consider 
Vevey as a smaller alternative to Lausanne for 
their location choice. Inside the agglomeration of 
Lausanne, no real alternative to the hyper-centre 
seems to exist, at least at this stage.
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map 6 _ Human density _ 2000
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This image has been computed using a 
Gaussian kernel density with a bandwidth of 
150 metres and the visualisation is done using 
a continuous logarithmic color scale. The base 
data is a regular grid with a cell size of 100 
metres (the hectometric census dataset).

Map source:
Swisstopo, Vector 200, 2006 

Swisstopo, GG25, 2006

Data source:
SFSO, Geostat, Population census, 2000 

SFSO, Geostat, Firms census, 2001

Author:
Christian Kaiser, 5 January 2010

This map was rendered using Mapnik 
(www.mapnik.org)
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The human density is the sum of the residential 
population and the number of jobs. It shows the 
places where most of the human activity occurs. 
The elongated ellipse of the centre going roughly 
from Pully to Renens is clearly visible. The human 
density is highest around the hyper-centre of the 
agglomeration located at Place Saint-François. 
This fact is mainly due to the strong presence of 
a high number of jobs. The main residential areas 
in the centre are direction north-west from Saint-
François. Also secondary centres can be detected 
easily, namely the communes of Bussigny, 
Morges and Ecublens in the west, Echallens in the 
north, Moudon in the north-east, and Chexbres 
and Vevey in the east.
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 map 7 _ Polarity of active population against jobs _ 2000

The number of inhabitants according to the 
population census 2000, and the number of 
jobs according to the !rms census 2001, both 
conducted by the Swiss Federal Statistical 
O"ce. The base data is a regular grid with 
a cell size of 100 metres (the hectometric 
census dataset). The visualisation is done 
using a Gaussian kernel density function 
and a logarithmic scale for both positive and 
negative values.

Map source:
Swisstopo, Vector 200, 2006 
Swisstopo, GG25, 2006

Data source:
SFSO, Geostat, Population census, 2000 
SFSO, Geostat, Firms census, 2001

Author:
Christian Kaiser, 10 January 2010

This map was rendered using Mapnik 
(www.mapnik.org)
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The polarity of active population against the 
jobs is simply the di#erence between the 
number of jobs minus the working population. 
This di#erence allows to highlight economically 
important zones and mainly residential zones.

The main economic area in the agglomeration 
is by far the centre of Lausanne. There is a 
«ridge» going in direction of Renens and the 
zone along the lake with the university and 
the École Polytechnique Fédérale EPFL at its 
western and also begin dedicated to mainly 
economic or educational activities. East of the 
city centre of Lausanne and the «ridge» from 
Lausanne to Prilly and then Renens, parallel to 
the previously mentioned economic «ridge», are 
residential areas. Most of the surface is dedicated 

to diverse residential zones, with some islands 
with job surplus, like the centre of Morges and 
several industrial zones.  The most important is 
stretching from Ecublens north to Crissier, along 
the highway intersection between A1 and A9. The 
global picture shows a high concentration for the 
economic activities in few zones among them the 
city centre of Lausanne, and the spatial spread 
of the residential zones. This segregated city 
model is possible thanks to a high mobility of the 
population. Concentration of services seems to 
be economically interesting, and the population 
reaches these points easily because of the relative 
accessibility either by public transportation or car.

The area around the centre is a continuous zone 
of residential or economic zones without big 
transition zones. Further away, the pattern is 
sparser, with sometimes big interstitial zones. 
This shows the global decrease in density with 
increasing distance from the centre.
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map 8 _ Jobs in tertiary sector _ 2001

Number of jobs 
per hectare

The economy of the agglomeration of Lausanne 
is mainly based on the tertiary sector. It is not 
surprising to see that the spatial structure of 
the jobs in the tertiary sector is very similar to 
the one for all jobs. Again, the hyper-centre of 
the agglomeration hosts a big number of jobs 
and shows its importance in the service sector. 
Some secondary centres are visibly thanks to the 
logarithmic colour scale. These centres are mainly 
Morges, Renens and Pully.

The number of jobs in tertiary sector has been 
computed as the number of jobs equivalent 
to a full time job. A part time job of 80% for 
example is accounted for only with 0.8 job. In 
order to better visualise secondary centres, a 
logarithmic scale has been applied. The base 
data is a regular grid with a cell size of 100 
metres (the hectometric census dataset).

Map source:
Swisstopo, Vector 200, 2006 
Swisstopo, GG25, 2006

Data source:
SFSO, Geostat, Firms census, 2001

Author:
Christian Kaiser, 9 January 2010

This map was rendered using Mapnik 
(www.mapnik.org)
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map 9 _ Jobs in secondary sector _ 2001

Number of jobs 
 per hectare

The density of jobs in the secondary sector is very 
di!erent from the tertiary sector. First of all, the 
density is much lower as the agglomeration has 
globally more jobs in the tertiary sector. However, 
there are several industrial centralities, among 
them a zone in the city centre itself, along the 
Flon valley. There are several other «hotspots» 
around, notably in the north of Le Mont with the 
industrial zone «En Budron». Other centralities 
are in Prilly, Renens or Crissier.

The industrial sector seems to be attracted by 
the strong centrality of the city of Lausanne. 
However, there are some other points in the in 
the suburban communes around the centre.

Political questions may arise from the presence 
of industrial activities in the city centre, as these 
usually need a lot of space. However, these 
patterns may also been created for historical 
reasons, as most of the cities have made the 
transition from a economy focus on industrial 
activities to a tertiary sector based economy.

The number of jobs in secondary sector has 
been computed as the number of jobs equiva-
lent to a full time job. A part time job of 80% 
for example is accounted for only with 0.8 job. 
In order to better visualise secondary centres, 
a logarithmic scale has been applied. The base 
data is a regular grid with a cell size of 100 
metres (the hectometric census dataset).

Map source:
Swisstopo, Vector 200, 2006 
Swisstopo, GG25, 2006

Data source:
SFSO, Geostat, Firms census, 2001

Author:
Christian Kaiser, 3 January 2010

This map was rendered using Mapnik 
(www.mapnik.org)
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map 10 _ Population evolution _ 1860–1920

Map source:
Swisstopo, Vector 200, 2006 
Swisstopo, GG25, 2006

Data source:
SFSO, Geostat,  
Population census, 2000 
University of Lausanne 
(downscaling)

Author:
Christian Kaiser,  
10 January 2010

This map was rendered using 
Mapnik (www.mapnik.org)

The population evolution has been estimated using a downsam-
pling algorithm for simulating the population distribution at the 
hectare level. The census data provide the population for each year 
at the commune level only. A kernel density function has been ap-
plied, and visualisation is done using a logarithmic scale. The base 
data is a regular grid with a cell size of 100 metres (the hectometric 
census dataset).

N

S

W E

0 5 km

1

5
10

50
100

500
1000
1800Permanent 

population per 
hectare

The evolution of population density 
estimated for the period of 1860 to 1920 for 
the agglomeration. The development of the 
population during this period is important 
mainly in the centre of the agglomeration. 
The population «ridge» between Lausanne 
and Renens is developing during this period, 
due to industrial activities in this sector. While 
the town east of Lausanne, Pully, Lutry, Cully 
or Chexbres, evolve only in a limited manner, 
the secondary centrality of Bussigny is already 
emerging during the !rst years of the 20th 

century. This evolution pattern shows that 
the spatial population structure was already 
present 150 years ago, and that evolution goes 
from the centre to the periphery by a more or 
less complex expansion process.





map 11 _ Population evolution _ 1940–2000
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Map source:
Swisstopo, Vector 200, 2006 
Swisstopo, GG25, 2006

Data source:
SFSO, Geostat,  
Population census, 2000 
University of Lausanne 
(downscaling)

Author:
Christian Kaiser,  
10 January 2010

This map was rendered using 
Mapnik (www.mapnik.org)
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This map shows the continuation of map 10. 
It shows a rapidly growing agglomeration 
centre and the way this growth impact on 
the surrounding towns that still where rural 
in 1940. From 1960 on, the space between 
Lausanne and Morges gets !lled progressively 
with population, and expansion direction 
north (Romanel, Cheseaux) starts after 1960. 
This expansive evolution reaches also further 
communes between 1980 and 2000, notably 
Echallens which is quickly growing in this 
period. While the development until 1940 is 
mainly concentrated inside the agglomeration 
centre located roughly from Lutry / Pully to 
Lausanne and Prilly / Renens, the development 
takes place a little bit further after 1960. This 
urban sprawl process is mainly due to the 
increase of mobility of the population.

The population evolution has been estimated using a downsam-
pling algorithm for simulating the population distribution at the 
hectare level. The census data provide the population for each year 
at the commune level only. A kernel density function has been ap-
plied, and visualisation is done using a logarithmic scale. The base 
data is a regular grid with a cell size of 100 metres (the hectometric 
census dataset).
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5.5 Discussion

The visualisation of spatial and spatio-temporal data is important in geog-
raphy. Recently, there has been a lot of activity in this field, with some
progress mainly in the domain of interactive mapping, but also in the rep-
resentation techniques. This is mainly due to the the rise of the Web, the
progress of the animation technology, and also the availability of computa-
tion power and modern GIS software. However, the downside of this rapid
development is the lack of professionalism in choosing the way how to rep-
resent the spatial data. The result are maps difficult to read or even with
misleading information. More effort should be put in future in the discussion
on how to represent spatial and spatio-temporal data in interactive and dy-
namic maps. The technological evolution raises some theoretical challenges
for the professional cartographer. This progress should also be accompanied
by some methodological research on how to represent the data. In a world
where more and more spatial data is available, algorithms for feature selec-
tion will be important and should be integrated into interactive visualisation
devices. There are also still challenges related to the scale of representation,
and the dynamic aggregation of data. The scale-dependent representation
of data is especially important when the user is able to zoom easily into the
map, as this is the case for example with the Google Maps.

Another issue in spatial data visualisation is also the documentation of
the maps. Very often, the legend is not enough precise, and explications
concerning the content of the map not available. The reader of the map can
then misinterpret the content. It is known that ”an image says more than
1000 words“. This shows the importance of making the image right and to
accompany the reader of the map by providing the relevant elements for the
interpretation of the map. Each cartographer should also bear in mind that
the content of a map should be assessed in only a few seconds.
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Chapter 6

Advanced exploratory

geospatial data analysis

A pattern is a characteristic of the spatial arrangement of objects given by
their spacing in relation to each other (Unwin, 1996). The space might con-
sist of real surfaces, but also of of statistical surfaces where the statistical
variables make the dimensions. The latter is called the ’feature space‘. Pat-
terns might consist of points distributed more regularly or more grouped
than random, trends or anomalies. As Unwin (1996) points out, patterns
come and go according to how we project the data. Statistics try to look
for the right number of (orthogonal) dimensions with the factor analysis
techniques. There are also other computer-based techniques known as ’pro-
jection pursuit‘ which try to reduce the dimensionality of high dimensional
data (Friedman, 1987; Friedman & Tukey, 1974). Unwin (1996) mentions
also the projection given by an area cartogram used by Dorling (1992, 1994)
to show detailed variations in the social geography of Britain or studies by
Gatrell (1979, 1983, 1991) using Multi-Dimensional Scaling (MDS).

6.1 Machine learning

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that is
concerned with the design, development and application of algorithms and
techniques that allow computers to learn from data (Kanevski, Foresti, et
al., 2009), that is to adapt to the data presented to the algorithm. The
focus of ML algorithms is mainly to model complex patterns in a generalised
fashion, and to recognise a pattern. ML algorithms are generally applied to
regression or classification problems. ML is strongly related to statistics and
computer science.

ML algorithms have the ability to learn from data. They have the ability
to handle complex pattern and can show a very good performance. However,
they need generally a quite high amount of data for the learning process.
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172 6. Advanced exploratory geospatial data analysis

The fact that the algorithm can learn directly from the data is very useful
for insufficiently known and/or complex phenomena. This is typically the
case with socio-economic phenomena.

We can distinguish between supervised and unsupervised algorithms. A
supervised technique requires labelled training data, this means for some of
the data points, the desired result must be known. The algorithm creates
then a mapping function between the input and output points by minimis-
ing the discrepancy between the two. An unsupervised algorithm does not
require a labelled training data set; it is based only on the structural differ-
ences inside the provided data set. It is typically used for data clustering. A
combination of the two types is the semi-supervised algorithm where labelled
and unlabelled training data points are used for learning.

Different ML techniques like ANNs or Support Vector Machines (SVMs)
are very popular. They have been used in a wide variety of different appli-
cations. Among the successful applications are also geography, geosciences
and environmental problems (e.g. Kanevski & Maignan, 2004; Kanevski,
Podznoukhov, & Timonin, 2009; Agarwal & Skupin, 2008; Bação, Lobo,
& Painho, 2004b; Demyanov, Gilardi, Kanevski, Maignan, & Polishchuck,
1999). The ANN comprises several types of techniques, among them, we
can cite the Multi Layer Perceptron (MLP), Radial Basis Function (RBF),
General Regression Neural Network (GRNN) or SOM. In the next section,
we describe in more detail the SOM, as this is a ML technique that suits
very well socio-economic problems where we generally need an unsupervised
method. The other mentioned ANN techniques are supervised methods and
need therefore a labelled data set.

6.2 Self-organising map

A SOM is an artificial neural network for unsupervised classification and
dimensionality reduction. It is basically, at least in its standard form, an
unsupervised neural network with competitive learning and no hidden lay-
ers. Self-organising maps are also called Kohonen map, after the Finnish
professor Teuvo Kohonen who has invented the concept.

The principle of competitive learning is based on the competition be-
tween the different output neurones when a data sample is presented. The
best matching neurone is activated; it is called the winner-takes-all neurone
(Haykin, 1999). In order to get a competition between the neurones, the
winner adjusts himself to reduce his distance to the training data sample
and the neighbouring neurones are inhibited by drawing them nearer to the
winner. According to Haykin (1999), this idea has been first proposes by
Rosenblatt (1958).

The objective of a SOM is to represent in a organised manner a number
n of entities characterised by m features (variables) in a space of m� dimen-
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sions, where m� ≤ m. Most of the time, m� = 2 which allows an easy graphic
representation of the SOM result. The fact that a SOM is able to pass from
m to m� dimensions allows its use for dimensionality reduction, and the fact
of organising the data allows the classification of the input entities.

A high number of variants of the base algorithm exist for a lot of different
problems; among them we also find algorithms adapted for specific spatial
problems. The base SOM algorithm was conceived by Teuvo Kohonen in
1982 (Kohonen, 2001, p. 106) and is always the most widespread SOM
algorithm. We will shortly describe this base algorithm, even if there are
numerous other descriptions around, among them the excellent monograph
from Kohonen itself (Kohonen, 2001).

A SOM converts the nonlinear statistical relationships between high-
dimensional input data into simple geometric relationships in a low-dimen-
sional space (Kohonen, 2001, p. 106). In the case of a 2D SOM, the SOM can
be considered as a nonlinear projection of the probability density function of
the high-dimensional input data onto the two-dimensional display (Kohonen,
Hynninen, Kangas, & Laaksonen, 1995). And still Kohonen (2001, p. 106):
“The SOM may be described formally as a nonlinear, ordered, smooth map-
ping of high-dimensional input data manifolds onto the elements of a regular,
low-dimensional array.” A SOM is composed by a given number of neurones
organised according to a defined neighbourhood in a space of m� dimensions.
The two most frequent topologies are the rectangular and hexagonal grid
in two dimensions (fig. 6.1), where each cell represents a neurone. A vector
of m dimensions is associated to each neurone. This vector has therefore
the same dimension as the input data. During the training phase of the
SOM, the competitive learning tunes the neurones in a way that they get
arranged in an ordered fashion in respect to each other and corresponding
to the statistical properties of the training data set.

The size of the SOM has a big impact on the result. There is the pos-
sibility to build a big or very big map where the number of neurones is
much bigger than the number of input patterns (Ultsch & Siemon, 1990;
Ultsch & Li, 1993; Bação, Lobo, & Painho, 2008). The so-called Emergent
Self-Organising Map (ESOM) uses huge maps in order to detect emergent
phenomena (Ultsch, 1999). A second option is to build a medium sized SOM,
but big enough to represent all clusters present in the data (Kohonen, 2001;
Bação et al., 2008). The last option is to use a small sized SOM, with only
one neurone for each expected cluster (Bação, Lobo, & Painho, 2004a; Bação
et al., 2008).

In a SOM, the number of neurones and their topology must be defined
at the start. This inflexibility is not always wanted. Several variations of
the original algorithm exist and try to relax one of the constraints of the
original SOM. The Growing Neural Gas (GNG) allows to add or remove
neurones during training; the problem of the rigid topology is solved (Fritzke,
1994). In the case of the Adaptive Subspace Self-Organising Map (ASSOM)
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Figure 6.1: Rectangular and hexagonal topologies of a SOM in 2D. The
small grey circles are the neurones of the neural network.

described by Kohonen (2001), the vectors associated to each neurone don’t
have the same dimension as the input units, but a smaller one. In this case,
only the distance measure between the input vectors and the neurones is
different. The ’Growing SOM‘ allows the growth of the SOM into a cube
of n dimensions in order to take into account the intrinsic dimension of the
data (Bauer & Villmann, 1997).

The construction of a SOM can be schematised as follows:

1. In the first step, all the neurones laying on the intersections of the
lattice (see figure 6.1 for an example) are initialised, associating to
each of them a data vector of the same dimension m as the input data
vectors. This initialisation can be done randomly, or based on some
criteria. The initialisation has an impact on the final orientation of
the SOM.

2. The second step is the ordering phase. Each training data sample is
compared to all the neurones and mapped to the most similar one
(the winner or best matching unit). The data vector of this activated
neurone is then updated in order to match better the training data
vector. Using some defined neighbourhood rule, the neighbours of the
winner are also updated to correspond better to the winning neurone.
The neighbourhood role is a distance decay function for the importance
of the update. This step is then repeated iteratively, in order to map
completely the probability density function of the high dimensional
training data to the output space. The rate of the update of the
neurones (the learning rate) decreases during the learning process.

3. The third and final step, the convergence phase, is basically the same as
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the second step, except that the neighbourhood role includes a smaller
number of neighbours (the distance decay function is steeper). The
learning rate is smaller, but the number of iterations higher. After
the second step, the neurones should be already quite well ordered.
The third step is only for refinement of the neurone’s vectors to better
represent the training data vectors.

6.2.1 U-Matrix and P-Matrix

The U-Matrix is the canonical display of a SOM (Ultsch, 1992). The distance
relationship between the neurones in the high-dimensional input space are
displayed as a height value, thus creating a 3D visualisation of the high-
dimensional space (Ultsch & Mörchen, 2005). ”Mountain ranges“ on a U-
Matrix point to cluster boundaries while ”valley“ indicate cluster centres.
While the U-Matrix is a distance-based visualisation, the P-Matrix (Ultsch,
2003) is a density-based visualisation showing the local density measures
using the Pareto Density Estimation (Ultsch, 2005).

6.2.2 Choice of the grid topology

SOMs use a neighbourhood function and are therefore able to preserve the
topological properties of the feature space. This property makes a SOM
useful for the visualisation of a high-dimensional feature space in a low-
dimensional (typically 2D) representation space. The shape of the SOM grid
restricts the possible topological arrangements. It is therefore important to
make a reasonable choice for the grid shape. However, there are several
decisions to take. First, the number of neurones in each dimension will
define the overall shape of the SOM grid. Second, the grid topology can be
rectangular (four nearest neighbours) or hexagonal (six nearest neighbours).
Finally, a 2D grid can be planar or toroid. In a planar grid, the number of
neighbours decreases at the borders of the grid and border effects may occur.
In order to avoid border effects, it is possible to use a finite but border-less
map topology (Ultsch & Mörchen, 2005). One possibility is to connect the
left map border to the right and the upper to the lower border in order to
form a toroid map space. Such a toroid allows easy representation in two
dimensions. Figure 6.2 shows three possible grid topologies. Note that the
toroid grid can also have four or six neighbours.

The choice of a good SOM grid topology is not straightforward. Kohonen
et al. (1995) enumerate some advice for constructing stable maps:

1. A hexagonal grid is to be preferred on rectangular ones for visual
inspection. However, as in GIS the use of (rectangular) raster data is
widespread, it can be observed that for geographic applications, the
rectangular grid is used more often. This choice may be suboptimal.
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Figure 6.2: Three different grid topologies. A square SOM grid (left), a
hexagonal one (centre), and a toroid grid where each cell has four neighbours
(right).

2. The overall grid should be rather rectangular than square. In an op-
timal SOM, the probability density function p(x) of the input data
vectors x is mapped in the most ’faithful‘ fashion, trying to preserve
at least local structures of p(x). The ’elastic network‘ of neurones has
to be oriented along with the p(x) to stabilise the learning process. In
a circular or square grid design, no stable orientation exists. The grid
size should roughly correspond to the major dimensions of the proba-
bility density function. One might do a visual inspection of the rough
form of p(x) for example using Sammon’s mapping (Sammon Jr., 1969)
or MDS.

Figure 6.3 shows the quantisation error for the same dataset by just
varying the number of neurones in each direction, for the two different
grid topologies (rectangular and hexagonal grid). The dataset represents
75 socio-economic variables for 427 municipalities in Western Switzerland
(see 6.3.1 for more details concerning the dataset). All SOMs have 400
neurones in total. Figure 6.4 presents the Sammon mapping of the initial
dataset; the resulting map is nearly square in this particular case. A grid
of 1 x 400 neurones has a less compact neighbourhood than a grid of 20 x
20 neurones; there are less constraints coming from neighbouring neurones
for the 1-row grid and consequently, the quantisation error is lower. The
figure 6.3 illustrates well the fact that the neighbourhood plays a crucial
role for the quantisation error and the ’stiffness‘ of the map. It is therefore
logical that the hexagonal grid yields higher quantisation errors. We should
also note that the comparison of the quantisation errors across different grid
sizes does not help in the choice of the grid size itself; it only shows the
constraints occurring in the map during the self-organisation process. A
higher quantisation error also means a higher generalisation or smoothing
effect of the input data; the probability density function is represented in a
somewhat simplified manner in such a case.
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Figure 6.3: Quantisation error for different number of neurones in each of
the two dimensions of the SOM. The total number of neurones is constant.

This discussion gives us some indications for the choice of the SOM grid
size. The choice of the grid size depends on the use of the SOM one wishes
to make. If one want to retrieve the full information for visualisation or
visual classification, one should use sufficiently big grids, as mentioned by
Ultsch and Mörchen (2005) in their ’Emergent SOM‘ approach. If however,
we want to achieve some generalisation and smoothing of the data along
with the topological ordering, the grid size can be smaller. However, if the
SOM is used for clustering, the number of neurones should never be the
same as the number of clusters. For example, if looking for 6 clusters in a
data set, the SOM should not have only 6 neurones; this would be almost
equivalent to traditional k-means clustering (Ultsch & Mörchen, 2005). If
an appropriate grid size is chosen, the SOM can be used just for non-linear
data transformation, for example in combination with a traditional linear
analysis method.

If the grid cells are hexagonal, more neighbourhood constraints are oc-
curring in the SOM. The shape of the grid cells can therefore be used to
increase or decrease the constraints and therefore the generalisation effect.
If one wants the complete unfolding of the input data in the SOM, a grid
with hexagonal cells should be bigger than one with square cells.

The overall grid shape should generally be slightly rectangular. Sam-
mon’s mapping or multidimensional scaling can give indications on the shape
of the Probability Density Function (PDF). The rectangular shape allows
the SOM to adapt itself to the PDF. However, in some cases, a square grid
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Figure 6.4: Sammon mapping of the 75 socio-economic variables for 427
municipalities in Western Switzerland.



6.3 Case studies for urban analysis 179

can also be used, but the SOM must be given more time for finding a stable
solution.

6.3 Case studies for urban analysis

In this section, we present two different applications of exploratory data
analysis using a SOM for the field of urban geography. In the first case,
a SOM is coupled with the HAC method for clustering the municipalities
of the cantons of Vaud and Geneva in Western Switzerland according to
their socio-economic structure. In the second case study, all municipalities
of Switzerland are clustered according to a similar data set, but using an
ESOM instead of a smaller grid; the grid topology is also changed and a
border-less grid is used.

6.3.1 Socio-economic status of municipalities of Vaud and

Geneva cantons

The metropolisation process (see e.g. Da Cunha & Both, 2004; Da Cunha,
1996; Schuler & Bassand, 1985; Bassand, 1997) changes the urban patterns
and organizes the socio-economic urban landscape. Increased mobility has
led to peri-urbanisation and sub-urbanisation. The relationship between the
city and the countryside has been deeply modified, and the socio-economic
structure has been changed. This evolution is complex and often subtle
as it is a ’creeping‘ process. New analysis methods can help improve the
understanding of what is going on and provide urban planners and politicians
with valuable information for their decisions.

Understanding such a system in terms of socio-economic features is the
analysis of their distribution in space. Socio-economic features are not
equally spread over the territory and form generally groups of several spatial
entities; in our case, we will base our study on the municipalities. Therefore,
it makes sense to group similar units together, depending on their socio-
economic profile in feature (variable) space. This feature space is complex
and high-dimensional, the classification into a limited number of groups can
be very effective for the understanding of the spatial structure and the func-
tional relationships between the different entities. Ideally, the number of
classes would lie somewhere between 4 and 8 for a visualisation of the result
and for the interpretation of the classes. Classification of such data is a typ-
ical unsupervised problem, also called clustering, as the number of classes
is not known in advance and examples to train the model are not available
(there are no predefined classes). Several clustering models exist for such
problems. The hierarchical methods aggregate the observations depending
on their similarity in the feature space by optimising an objective function,
e.g. the HAC (Ward, 1963). Hard partitionment methods, e.g. the k-Means
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Figure 6.5: Schema of the Hybrid SOM algorithm

(Jain & Dubes, 1988) or SOM, cut the feature space into distinct regions,
based on the maximisation of some similarity measure.

For the study of the socio-economic status, we use a HSOM, where the
SOM is post-processed using a HAC. In this case, the SOM is used for
classification; the visualisation is only a by-product. One of problems of the
SOM algorithm is the unknown optimal number of neurones. If the number
of neurones is very small, i.e. equal to the number of final clusters (4-8), the
SOM algorithm produces virtually the same result as the k-Means algorithm
(Ultsch & Mörchen, 2005). Large SOM are better able to represent the
input data structure. As Ultsch and Mörchen (2005) point out, emergent
phenomena involve by definition a large number of individuals. They think
of ’at least a few thousands‘ for the number of neurones, and call this type
of large SOM ”Emergent Self-Organising Map“. It has been showed that
using a large SOM (an ESOM) is a significantly different process from using
k-Means (Ultsch & Mörchen, 2005; Ultsch, 1995).

The algorithm of the HSOM can be schematised as follows (see also
figure 6.5 and Kaiser and Kanevski (2007); Tuia, Kaiser, Da Cunha, and
Kanevski (2009); Tuia, Kaiser, Kanevski, and Da Cunha (2009); Tuia,
Kaiser, Da Cunha, and Kanevski (2008)):

1. Pre-processing of the socio-economic data using the SOM. This step
corresponds to a non-linear transformation and a generalisation of the
data. The degree of generalisation is determined by the size of the
SOM. A small grid will generalise more than a bigger one. On the
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other hand, as already stated, a too small grid is not a wanted solution
neither.

2. Classification of the neurones of the SOM using a traditional HAC.
The advantage of this step is the possibility to determine the num-
ber of classes with standard methods, for example the analysis of the
dendrogram.

3. The original data are mapped onto the classified neurones of the SOM.
Each data sample is assigned to one neurone that in turn has been
assigned to one of the classes. Finally, a thematic map of the spatial
distribution of the groups is drawn. The analysis of the class profiles
enables labelling and interpretation of each group, which is a valuable
tool for the urban planner.

In this case study, the HSOM has been applied to the 427 municipalities
of the cantons of Geneva and Vaud, in Western Switzerland. The socio-
economic structure is described in 75 variables; 54 variables contain infor-
mation about the number of employments per economic domain in 2000,
20 variables are about the age structure in 2000, and 1 variable represents
the percentage of foreigners. The economic domains are defined through
the General Classification of Economic Activities (NOGA: nomenclature
générale des activités économiques) of the SFSO (Swiss Federal Statisti-
cal Office SFSO, 2002). For all variables, the percentage and the standard
scores have been computed for each municipality.

A planar grid of size of 16 x 16 cells has been chosen; the cells are square
and have 4 nearest neighbours. The SOM has therefore 256 neurones for
427 municipalities, this is a ratio of 1.65. The neurones have been initialised
with random values. The ordering phase has been done with 1000 iterations
and an initial learning rate of 0.1. The convergence phase has taken 10’000
iterations with an initial learning rate of 0.01. The Gaussian function has
been used for the neighbourhood function, with a radius of 8 cells (half of
the grid) for the first phase, and 2 for the second.

The ordered code vectors resulting from the SOM have been classified
using HAC. The obtained dendrogram suggests the creation of 5 classes (fig-
ure 6.6, left). The HAC enables us to visualise the classified SOM (figure 6.6,
right).

In order to assign one of the 5 classes to each of the 427 municipalities,
we determine the best fitting code vector in the SOM for which the class
is known. With the class known for each of the municipalities, we are able
to compute the mean profile for each class (fig. 6.7). These profiles allow
finding an interpretation and a meaning for each class. They also show
that the classification is able to highlight different characteristics of the
municipalities. As the variables are z-scores, the unit of the y-axis is the
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Dendrogram for the five 
resulting classes.
The length of the class boxes
represent the number of
municipalities belonging to
this class.

Resulting Self-Organizing
Map with the classification
according to the Hierarchical
Clustering.

Figure 6.6: The resulting dendrogram from the HSOM process and the
classified SOM.

standard deviation, and 0 the global mean value. A positive value shows
the presence of a specific characteristic.

The HSOM classification map is shown in figure 6.8. As the socio-
economic status is linked with the population, a bivariate map showing
the population values and the socio-economic classification may be more
appropriate (figure 6.9).

Typical spatial structures of the region can be seen on the map. The first
class, in dark blue on the map, represents municipalities characterised by the
working class and commuters, with an percentage of foreigners higher than
the global mean. Such municipalities are typically in the attraction radius
of the cities of the region and represent mostly workers that can afford living
out of the cities in peri-urban areas and at the same time make profit from
the urban amenities.

The second class, in light blue on the map, represents municipalities
classified as residential. These are typically small municipalities with only
low population, but they are quite numerous lying around the cities. These
places are generally not along the main transportation networks and allow
typically families to dispose of enough space for an affordable price while
enjoying the tranquillity of the countryside, which makes them a good place
for children.

The third class, in orange on the map, comprises only a few municipal-
ities and is associated to some industrial particularities of the region: the
regions of Vallorbe, Vallée de Joux, Moudon or Payerne are characterised by
strong employment related to particular industries. For instance, the Vallée
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Figure 6.8: Thematic map for the resulting classification.



6.3 Case studies for urban analysis 185

Socio-economic status of municipalities
Vaud & Geneva

Workers, foreigners,
service activities

Families, residential
areas

Young workers,
industry

Retired people,
associations

Elder people,
service activities

Classification hierarchy

Map data source:
OFS, ThemaKart, 2008

Map created using ThemaVis
www.361degres.ch/themavis

L a k e  o f  G e n e v a

  10'000
  50'000
  100'000

Population
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economic classification resulting from the HSOM.
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de Joux is well known for its clock industry. Consequently, the profile of
these municipalities is somewhat atypical in the socio-economic landscape,
and they are grouped together in a separate class.

The fourth class, in light red on the map, is more difficult to interpret
and seems to group together mainly rural municipalities associated to retired
people.

The last class, in dark red on the map, contains service-related munic-
ipalities, like the cities of Lausanne, Geneva, Yverdon or Montreux. The
higher number of employments in some sectors of services is the common
denominator of these cities. Another common characteristic is the over-
representation of elderly people. It is well known that this population group
has the tendency to move into the city where the facilities are usually closer
and where good public transportation is available. However, there are also
rural regions in the Eastern part of the canton of Vaud in this group; this is
the most mountainous area of the region. The over-representation of elderly
people can in some cases also be explained by the fact that younger people
have to move for finding some work.

As a conclusion, we can say that a SOM can be used in a conventional
analysis process as an additional step. In this case, it takes the role of a
non-linear data transformation engine. The generalisation effect of the SOM
leads generally to a quite robust classification. The size of the grid should
be adapted to the number of entities present, but should not be smaller than
half the number of entities in order to get acceptable results. However, the
assessment of the classification quality is not trivial as the most methods rely
on linear indicators. In our case, we were able to reduce the dimensionality
of the space from 75 original variables to a unique map consisting of 5
groups. The SOM allows to embed nonlinearly the original data set into
a lower dimensional feature space by taking into account the non-linear
relationships learned by the self-organisation algorithm. The coupling of
the HAC with the SOM allows an easy decision of the number of classes to
retain. An interpretation of the classes is possible by constructing the mean
profiles. Note that these mean profile can be built either from the initial
data, or from the code vectors resulting from the SOM. The SOM is a useful
method for the unsupervised classification of socio-economic profiles and has
showed its potential in this small case study.

6.3.2 Socio-economic landscape of Switzerland

This case study is similar to the one presented in 6.3.1 in the sense that it
also tries to classify municipalities according to some socio-economic criteria.
The study area however comprises all the 2896 municipalities of Switzerland.
The used approach is still the Hybrid Self-Organising Map combining SOM
and HAC. But an ESOM is used, this means the number of neurones in
the map is quite big. Additionally, a border-less topology has been used for
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avoiding border-effects.
A SOM is useful for visualisation of multivariate data, but can also be

used for classification. In the case of classification, two different approaches
can be found. The first are SOMs where each neurone corresponds to a
cluster which has been shown to be almost identical to a k-means clustering
(Ultsch & Mörchen, 2005). The second are SOMs where the map space is
used as a tool for characterising high-dimensional data (Ultsch, 2003). In the
latter, the SOM is composed by several thousand neurones describing the
feature structure; this type of SOM is called Emergent SOM by Ultsch and
Mörchen (2005), as it explicitly allows the structure to emerge. Since the
difference between SOM and ESOM is basically just the size of the network,
we will continue to use the terminology SOM in this study case.

Large SOMs are able to represent quite good the input data structure,
but there is a need to group together similar neurones in the SOM. This
can be done by visual inspection of the U-Matrix, or alternatively by the
P-Matrix. Another possibility is to use another clustering technique for
grouping together the similar neurones; this is the approach of the HSOM. A
comparison between the HSOM result and the U- and P-Matrix is therefore
possible.

The data of this case study contain 56 socio-economic variables, com-
posed by 32 economic variables regarding employment per economic sector
and position and 24 demographic variables about the age structure for both
genders. All the data values come from the Swiss population census 2000.
For all variables, the percentage for each municipality has been computed
and the values have been reduced to standard scores. When the distribu-
tion of the features was skewed, a log transform has been applied. Extreme
values have been discarded.

In order to enable emergence of the data structures, a sufficiently big grid
of 100x60 cells has been chosen with square cells (4 neighbours). For avoiding
border effects, a toroid grid topology has been selected (see figure 6.2, right).
6000 neurones are use for about 3000 municipalities. The learning rate
decreases from initially 0.5 to 0.1 at the end by using a linear cooling rate.
The Gaussian function has been used for the neighbourhood function, with
a starting value of 24 neurones for the radius and a final value of 1.

The resulting SOM is a series of connected neurones representing the
input space embedded into a 2-dimensional grid. Figure 6.10 shows 4 of
the 56 input variables in the SOM. Note that the SOM is border-less, this
means the lower edge is connected to the upper one, and the left edge to the
right.

The code vectors of the resulting SOM are then classified using classical
HAC. The dendrogram (figure 6.13, in the upper left corner) suggests the
creation of 5 classes. Applied to the SOM, this classification gives a partition
of the embedded space as shown in figure 6.11a. The classification result
can be compared to the U-Matrix and P-Matrix that could have been used
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4 of the 56 SOM planes

Managers working in !rms o"ering specialized services

Men aged between 60 and 64 years Men aged between 65 years or more

Farmers

Figure 6.10: SOM representation of 4 of the 56 input variables. Dark zones
correspond to higher percentage of occurrence.

for visual classification. These two matrices give additional details on the
different classes issued from HAC. For example, the cluster E, in dark blue
on the map, is located in a zone with high values in both U- and P-Matrix.
This indicates that this class contains features with a higher variability than
some of the other classes.

As the SOM geometry is based on a border-less toroid, upper and lower
ends of the grid are connected. Thus, it is possible to represent the SOM
by exploiting the coherent regions highlighted by the HAC. In this case,
the neurones belonging to the same group are represented side by side, and
the global grid shape becomes irregular. Figure 6.11 and 6.12 represent the
same information. In the latter, the grid is reorganized by using the HAC
cluster limits. The same transformation has been applied to the U-Matrix
and the P-Matrix, which become a U-Map and a P-Map respectively (Ultsch
& Mörchen, 2005). The classification map could be visualised in 3D using
the U-Map as elevation data (figure 6.14, see also (Ultsch, 2003) for another
example).

The thematic map resulting from the HSOM process (figure 6.13) par-
titions the socio-economic landscape of Switzerland into 5 distinct classes.
Again, like in the case study presented in 6.3.1, typical spatial structures of
the country can be detected.
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a. Classi!ed SOM b. U-Matrix c. P-Matrix

Figure 6.11: The classified SOM (left), the U-Matrix (centre) and P-Matrix
(right).

Figure 6.12: The reshaped versions of the SOM (left), the U-Matrix (centre)
and the P-Matrix (right).

Cluster A, in orange on the map in figure 6.13, mainly represents munic-
ipalities with firms active in production services and that attract a young
population. The main urban agglomerations of Switzerland belong to this
category, with all the main cities and some touristic regions. Surprisingly,
workers in specialised services are not particularly present in this group.
An explanation to that may be the overall strength of these services in the
country whereas production services are mainly present in urban areas only.

Cluster B, in dark red on the map, is marked by a strong presence of
retired people (more than 65 years).

Cluster C, in light red on the map, is characterised mainly by managers
and a population aged roughly between 50 and 64 years. Municipalities
belonging to cluster C are mainly located in peri-urban areas. Clusters A
to C form together the main economic regions of Switzerland.

Clusters D (in light blue on the map) and E (in dark blue) comprise more
agricultural municipalities. Cluster E presents however a quite big variety.

It is noteworthy that the cluster boundaries from HAC correspond roughly
to the visual clusters from the SOM. However, there is no perfect match,
which reminds us the complexity of socio-economic data. However, the
method highlights in a very clear way the main urban areas, and the main
economic regions are correctly detected.

The results presented give an insight into the socio-economic landscape
of the country. Such cartography allows simplifying interpretation about
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Figure 6.13: Thematic map for the resulting classification.
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Figure 6.14: 3-dimensional view of the classified SOM with the P-Map as
third dimension.
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local and regional specificities. The dimensionality of the feature space has
been reduced from 56 original variables to a unique map consisting of 5
groups only. The SOM has been used as a non-linear transformation step
during the clustering process, as in the previous case study.
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Chapter 7

Conclusions

7.1 Contributions of the thesis

Each chapter of this thesis presents a specific aspect of the problem outlined
in the introduction. This can be the development of a method, or simply a
feasibility study. In this section, a short overview is given of the particular
contributions of this thesis to the field of GISc:

• Chapter 3 presents the percolation approach for socio-economic and
demographic data. The scale dependent study of the phenomenon
was considered for the first time. The intensity of the phenomenon
was studied using the functional threshold. This approach provides a
promising tool for a wide variety of applications, including the defini-
tion of spatial clusters, and the study of the statistical characteristics
of these clusters in function of the scale and intensity. One such exam-
ple is the Zipf’s law for the city size distribution, clearly demonstrated
for the case of Switzerland.

Some command line tools written in C for making analysis using
the percolation approach are available inside the SpatialTools toolbox
http://www.clusterville.org/spatialtools. The percolation al-
gorithm is also used in the user-friendly Windows application ”GeoP-
ercolation“ http://www.clusterville.org/geopercolation.

• The population dynamics are also studied in chapter 3. The difficulties
of modelling the population evolution is clearly shown. Command line
tools written in C are available also for estimating the population
evolution http://www.clusterville.org/spatialtools.

• Chapter 4 contains a feasibility study for a multi-agent traffic simu-
lation of the agglomeration of Lausanne. It shows the problems and
challenges of the simulation approach for urban phenomena.
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The data for the traffic simulation are held in a PostGIS database
with one row for each agent (person). The algorithms for calibration
are written in Objective-C using a specific library (SpatialAgents) in-
corporating many GIS algorithms for raster and vector data. The li-
brary itself could also be developed further towards an object-oriented
GIS and simulation software. For the traffic simulation, the MATSim
toolkit (http://www.matsim.org) has been used; this toolkit is writ-
ten in Java and uses XML files for input and output. The conversion
algorithms from PostGIS to XML and back have been written in Shell
scripts, PHP code and Python scripts, using GRASS GIS for some
tasks.

• Chapter 5 shows the principle of area cartograms. The user-friendly
application ScapeToad was developed in Java using the GIS frame-
works JTS (http://www.vividsolutions.com/jts) and JUMP (http://
www.vividsolutions.com/jump). It allows the easy creation of multi-
layer cartograms.

• Chapter 5 describes also the distance circle maps, a novel way of rep-
resenting centre-based data. This is especially useful for urban ge-
ography, as an urban agglomeration has usually a quite well defined
centre. A command line tool written in C has been developed for
creating distance circle maps.

• Chapter 5 contains some references to other projects and experiences
as well. The dynamic mapping of meteorological data on the GeoK-
ernels web site is an interesting example as it combines the visuali-
sation using GoogleMaps with dynamically updated models. While
the GoogleMap API uses JavaScript, the interface with the dynamic
mapping is written in PHP, and the modelling tools are written in C
and C++ mainly for performance reasons.

• Section 5.4 in chapter 5 shows examples of the agglomeration of Lau-
sanne and how demographic and socio-economic variables can be rep-
resented using spatially continuous maps. It opens also the door to a
cartography where the representation scale of the data is more explicit,
and the same over all the mapped region. All the maps have been cre-
ated using GRASS GIS, using also some newly developed modules,
and the rendering library Mapnik (http://www.mapnik.org).

Another research project is the creation of thematic maps based on
the GoogleMaps API, and the use of animated elements in the same
environment.

The Interactive Atlas of Romania was another project of interactive
web mapping. This project is using the Geoclip environment (http://
www.geoclip.fr), built on top of Flash.
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The animation of the cartogram representation in SVG, where switch-
ing from the topographic representation to the cartogram view is pos-
sible is another interesting example.

• Chapter 6 shows an innovative clustering method for high-dimensional
socio-economic data using SOM and HAC. The SOM acts as a non-
linear transform of the socio-economic data.

7.2 New methods and techniques for dealing with

complex spatial systems

In section 2.4 of chapter 2, we have outlined some important scientific ques-
tions in quantitative urban geography. A discussion on the contribution of
this thesis to these different and difficult questions is given in this section.

• Question 1. Does the use of spatially continuous data allow a better
analysis and representation of the information at hand? Which meth-
ods can be used for making data continuous? What is the accuracy of
such an estimation?

It seems to be clear that the visual representation of continuous data
is more accurate and promising than aggregated data. Interpretation
is easier and the spatial distribution of the intensity of the represented
phenomenon is better visible. However, the analysis of such data is
not easy, as it implies dealing with continuous spatial fields. Especially
classification is not easy in such a case; using a regular grid is probably
the best solution. However, the problem of choosing the grid resolution
(the scale of analysis) is then occurring. Better ways for dealing with
scale are definitely needed.

Methods for change of support exist. However, it is difficult to evaluate
the accuracy of such a procedure. It depends mainly on the source
zones (e.g. administrative units) and the scale of the target zones.
A big difference gives not very accurate information, and a seemingly
good resolution can be misleading. If possible, additional information
on the distribution of the studied phenomenon has to be included in
the change of support procedure. Some more research is clearly needed
in this field. It is surprising to see that such techniques that are a very
common problem in geography are not more advanced. This is partly
due to the difficulty to deal with this problem.

• Question 2. Scale is an important issue in geography and in urban
studies. The analysis of a phenomenon may give different results if
conducted at a different scale. Some information or relationships can
only be detected at a given scale. However, there are currently no
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methods for finding the appropriate scale of analysis or representation,
and only few methods exist for analysing a phenomenon at multiple
scales. An important research question is therefore how to find a good
scale studying a given phenomenon. Can we detect automatically the
best scale? Which methods allow conducting multi-scale analysis? Is
it sufficient to find an appropriate scale and use classical methods, or
are adapted methods needed?

The percolation analysis of the urban clusters in Switzerland how it
is possible to deal with several scales at the same time, and how the
scale of analysis affects the result. However, the question about the
best scale cannot be answered in a global manner. For each research
question and phenomenon, the scale can vary. The only way to deal
with this issue is to use methods that allow ”scanning“ of a range of
different scales and to analyse the results simultaneously. Classical
methods can probably in some cases be integrated into a new ”scale-
aware“ method. And the use of fractal geometry allows to account for
some additional scaling properties of a given spatial pattern. This the-
sis shows that the scale has to be integrated into the analysis methods,
and it shows also some approaches on how to do it.

• Question 3. Can the spatial support of the dataset be changed without
loosing the characteristics of the phenomenon under study? Can new
information be detected after a change of support? These questions
are very important as they give indications about how useful methods
for analysing and visualising continuous and multi-scale data are.

Change of support methods should more widely be used in urban ge-
ography and further developed to integrate for example the concept of
validity domain. All additional information related to the phenomenon
under study should be integrated into a downscaling process. In cases
where data has to be aggregated, care should be taken to the scale of
aggregation. Additional research is clearly necessary in this field.

• Question 3. Visualisation methods are crucial as they give an easy
access to the result of an analysis. As such, they deserve special con-
sideration. Spatio-temporal and multi-scale analysis need sophisticated
and often interactive and dynamic visualisation tools. What kind of
visualisation method is adapted to complex geographic information?
How can different visualisation methods help in accessing the infor-
mation extracted by different analysis methods? Are new visualisation
techniques needed, or should existing methods be adapted?

Visualisation methods should become more interactive and dynamic.
Complex systems such as the city need sophisticated visualisation
methods together with advanced analysis methods for extracting the
information. Additional, easy to understand methods of mapping the
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spatial information should be found. This thesis shows some ap-
proaches, but the presented methods are far from being exhaustive.
The field of (geo-)visual analytics will become more important in the
next few years and will address these questions. However, a lot of re-
search is still needed in this field. Existing visualisation methods are
only the starting point for a new kind of science.

7.3 General discussion and future research

This theses shows some applications of quantitative methods to urban ge-
ography. It includes simple examples of spatially continuous mapping for
demographic and socio-economic variables. But it shows also how to treat
complex high-dimensional data in an efficient way. It is a fact that the fields
of quantitative and urban geography are currently evolving very fast. This
is mainly due to the availability of more detailed data and the increasing
availability of computational resources. Therefore, it is important to develop
methods to analyse and visualise complex data sets.

The chapter on visualisation shows some interesting approaches that
could lead to automatic mapping systems. The field of visual analytics link-
ing the analysis of phenomena using for example different clustering tech-
niques with the interactive visualisation is a very fashionable topic. There
are many candidate methods for automatic analysis. The presented clus-
tering technique using a SOM is one of them. The percolation approach is
another. The cartogram creation process is now sufficiently efficient to be
implemented in user-friendly, interactive mapping systems where the user
can switch from one representation to the other.

Let us remind that the percolation approach is very powerful and flex-
ible; it allows the assessment of the concept of ”continuous space“ in a
straightforward manner. A continuous space is in this case the space where
a given phenomenon has at least a given strength; this minimum intensity
is defined by the functional threshold. This continuous space – a spatial
cluster – can be considered for a given feature (e.g. population) for a given
scale (resolution, cell size) and associated to a functional threshold defining
whether flowing (continuity) occurs or not. Thanks to the simplicity of the
percolation approach, it is possible to build an automated analysis system,
where the user – an urban geographer or planner – can explore the space
interactively.

However, the percolation approach should be explored further. It is
possible to extend the concept to other supports than a regular grid. One
could also use another regular geometry shape to form a lattice (see e.g.
Stauffer & Aharony, 1992, p.16). It would even be imaginable to use an
arbitrary graph linking two neighbouring objects and assigning a weight
or distance to the link. Two neighbouring objects are then connected if
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the distance does not exceed a given threshold. There is also the concept
of ”directed percolation“ where the percolation process has to ”choose“ a
preferential direction for flowing (Maignant, 2009). Directed percolation
can occur in time or space, or both. One example is a forest fire where the
spread has to be considered in space and time. In this case, the diffusion
process occurs only in one direction, and is generally not reversal. Processes
occurring in the urban agglomerations can be analysed using this flexible
percolation approach.

Urban simulation is a powerful technique, but requires a big amount of
data for calibration and important resources of computation power. Addi-
tionally, a validation is needed to assess the reliability of the result. However,
if an accurate simulation can be conducted, it becomes a very valuable tool
for decision makers. In order to be widely used widely, advances in the
automation of such models should be made. There is a high potential for
distributing on many computers such a model, but practical questions on
the implementation have to be solved first. Cloud computing systems will
probably used in the future to host and run complex simulations on a big
number of computers.

It would then be possible to implement the simulation models in a dis-
tributed computer system and constantly update and re-calibrate the agents
according to newly arriving data. These data can come from very different
data sources. The user is then able to ”program“ a simulation for a scenario
and test some hypotheses for future development. The urban planner will
be able to simulate the effects of a particular project. However, a lot of
research has still to be done to achieve such a system in production use.

One open question in urban simulation in general and in MASs and CAs
in particular is the calibration and validation of the simulations. Machine
learning algorithms are a promising way to investigate further this ques-
tion. In the case of MAS, the question on what an agent should represent
is not completely clear. In our traffic simulation, it seems straightforward
to consider one person as one agent. However, Alfi, Pietronero, and Zac-
caria (2008) have showed that the number of agents is an important factor
in agent-based models. Further research should be done in this direction,
as we don’t have a clear idea on the effect of the number of agents on the
behaviour of the model. It is also clear that a very high number of agents,
as it is typically the case in individual-based simulations, is very demand-
ing in computation power. A too individualistic model may destroy the
generalisation capacities of the model.

More generally, the complex urban system should be further analysed by
combining current methods with optimisation techniques. Maignant (2009)
develops the idea of optimisation and shows how the constructual theory
(Bejan, 2000) may help designing more sustainable cities. The optimum is
close to a critical point in a dynamic system, and it is not always the objec-
tive to achieve if a more stable situation is needed. However, the question
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about the optimum should be integrated in geographic models and simu-
lations. It could be, for example, very helpful for calibrating or validating
simulations.

The city is a complex system difficult to analyse and to model. A lot
of actors play a role, and there are numerous conflicting interests. New
methods should be tried out for improving dynamic models and simulations.
Machine learning algorithms may be helpful in these cases to model socio-
economic variables in space and time. Kanevski, Podznoukhov, and Timonin
(2009) explain some advanced machine learning algorithms that could be
applied also for socio-economic problems in urban systems.

The goal of this work was not to provide a complete picture of the
complex urban system, but rather to add a few elements to a global picture.
Many doors are wide open for future research. A better understanding of
the city will help urban geographers in developing new strategies for making
the city more sustainable and to improve the quality of life for the citizens.
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Chapter 8

Addendum: Spatial Tools

Spatial Tools are a collection of simple command line programs written in C
and available under the GNU General Public Licence (GPL) (see http://

www.gnu.org/licenses/gpl.html for more details). The programs allow
to achieve some very basic tasks that are difficult to achieve using common
GIS software. The source code of all programs is available at http://

www.clusterville.org/spatialtools.

r.clusters.stats

Purpose

Computes statistics for different clusters. The clusters are defined in a raster
file where the value corresponds to the cluster ID. The statistics are com-
puted for the statistic raster file according to the spatial clusters defined
in the cluster raster file. The statistics include the sum, number of cells,
average, minimum and maximum.

Synopsis

r.clusters.stats [--help] [--nodata 0] --clusters

clusters raster --values statistics raster --output output text file

Description

The following options are available:

-h,--help :
Shows the usage note.

-n,--nodata :
Indicates which values in the clusters raster file should be considered
as no data.
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-c clusters raster,--clusters clusters raster :
The raster file containing the clusters. It should contain the IDs of
each cluster. The raster file should contain integer values. Only the
first band of the file is considered.

-v statistics raster,--values statistics raster :
The raster for which we should compute the cluster statistics. Only
the first band of the raster is considered. Both clusters and values
raster file must have the same dimensions.

-o output text file,--output output text file :
The path to the output text file which will contain the cluter statistics.

r.comparison.plot

Purpose

Creates a text file with two columns, the first containing the values of raster
1, and the second the values of raster 2. Only values different from NULL
are considered. This file can be used for creating a comparison plot between
two different raster files.

Synopsis

r.comparison.plot [--help] --raster1 raster1

--raster2 raster2 [--band1 band1] [--band2 band2]

[--null1 nullValue1] [--null2 nullValue2]

[--output output text path]

Description

The following options are available:

-h,--help :
Shows the usage note.

--raster1 raster1 :
The path to the raster 1 file used for the comparison plot.

--raster2 raster2 :
The path to the raster 2 file used for the comparison plot.

--band1 band1 :
The band of raster 1 to use. Default value is 1.

--band2 band2 :
The band of raster 2 to use. Default value is 1.
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--null1 nullValue1 :
The NULL value for the raster 1. If both rasters have a NULL value
at a given location, the values are not printed out. Default value is
-DBL MAX.

--null2 nullValue2 :
The NULL value for the raster 2. If both rasters have a NULL value
at a given location, the values are not printed out. Default value is
-DBL MAX.

-o output text path,--output output text path :
The path to the output text file. If you don’t provide an output file,
the result is written to the standard output.

r.downscale

Purpose

Takes aggregated values and distributes them according to a provided spa-
tial probability distribution inside the spatial units according to which the
values have been aggregated. This is useful for downsampling data from an
administrative level to a larger scale pixel level.

Synopsis

r.downscale [-h] [-f format] [-p prior raster]

[-v validity domain raster] aggregated stats.txt

aggregate raster probability raster output raster

Description

All raster files must cover the same region and have the same resolution.
The following options are available:

-h :
Shows the usage note.

-p prior raster :
Raster which contains the prior distribution. This must be an integer
raster dataset.

-v validity domain raster :
Raster which contains 0 and 1 values. Regions of value 0 are excluded
from the downscaling process.



208 8. Addendum: Spatial Tools

-f format :
Format for the output raster file. Default is HFA. The following for-
mats are supported: GTiff (GeoTIFF), HFA (Erdas Imagine (.img)),
AAIGrid (Arc/Info ASCII Grid), PNG (Portable Network Graphics),
JPEG (JPEG image), GIF (Graphics Interchange Format), PCIDSK
(PCIDSK Database File), PCRaster (PCRaster Raster File), GMT
(GMT NetCDF Grid Format), JPEG2000 (JPEG-2000), RST (Idrisi
Raster A.1), ENVI (ENVI .hdr Labelled).

aggregated stats.txt :
Text file containing the aggregated statistics. It is a tab-separated file
with 2 columns. The first column contains the feature id, the second
the aggregated statistical value (a sum, which must be an integer).
The first line should contain a header, it is ignored.

aggregate raster :
A raster file containing the spatial locations of the features. It is
simply a raster containing the feature id’s per pixel. Feature id’s must
be integer values.

probability raster :
Raster which indicates the spatial probability distribution. This raster
may contain double values.

output raster :
The output raster containing the downscaled statistics. It is an integer
raster dataset.

r.fdim.boxcount

Purpose

Estimates the fractal dimension using the boxcounting method.

Synopsis

r.fdim.boxcount [--help] [--band raster band] [--minbox 1]

[--maxbox 20] [--vdom raster] [--plot output plot]

--raster input raster

Description

Computes the fractal dimension for a given raster file. The following options
are available:

-h,--help :
Shows this information and quits.
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-b raster band,--band raster band :
The raster band number for which we should estimate the fractal di-
mension. Default is 1.

--minbox integer value :
The minimum number of boxes to use for the box counting. Default
is 1.

--maxbox integer value :
The maximum number of boxes (in 1 dimension) to use for the box
counting. Default is 20.

-v validity domain raster,--vdom validity domain raster :
A raster file where 0 values are outside the allowed region. If present,
a corrected fractal dimension is also computed.

-p output plot,--plot output plot :
Path to an output SVG file containing the fractal dimension output
plot.

-r input raster,--raster input raster :
Raster for which we should estimate the fractal dimension. Values of
0 are considered as no occurence values, all others as occurences.

r.groupcells

Purpose

Groups several cells of a raster together; this is a special case of resampling,
or a sort of spatial group by.

Synopsis

r.groupcells -r value [-f format] [-s statistic] input raster

output raster

Description

The following options are available:

-r value :
The number of cells to group into one cell.

-s statistic :
Statistic to use for grouping the cells together. Following options are
available: sum, min, max, mean. Default is mean.
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-f format :
Format for the output raster file. Default is GTiff.

r.lacunarity

Purpose

Computes the lacunarity for a raster.

Synopsis

r.lacunarity [--help] [--spatial] [--3d] --input input raster

[--band input band] [--binary] [--binaryThreshold 1] [--mwin 5]

[--gbox 3] [--gboxMin 3] [--gboxMax 30] [--gboxStep 1]

[--output output raster path] [--format format]

Description

The following options are available:

-h,--help :
Shows this usage note.

-s,--spatial :
Produces a spatial image of lacunarity using a moving window tech-
nique. If this flag is selected, an output image raster (–output) must
be provided. This flag is not compatible with the gboxMin, gboxMax
and gboxStep options. You may want to provide the moving window
size using teh mwin option, and an output raster format using the
format option.

--3d :
For non binary images, considers the gliding box in three dimensions.
This flag is therefore not compatible with the binary flag. Preference
will be given to the binary flag. If selected, the image is considered as
being 3D instead of the layered analysis approach.

-i input raster,--input input raster :
The raster for which we should compute the lacunarity.

-b band,--band band :
The raster band for which we should compute the lacunarity. Default
is 1.

--binary :
The input raster should be treated as a binary image instead of grayscale.
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--binaryThreshold :
The pixel value used as a threshold for binary images. Pixels smaller
than this value are converted to 0, pixels greater or equal than the the
threshold are converted to 1. This option is ignored if the binary flag
is not set. Default value is 1.

-m moving window size,--mwin moving window size :
The size of the moving window. If you specify a value for this, you
must also choose the spatial flag, otherwise this value will be ignored.
The default value for this option is 5.

-g gliding box size,--gbox gliding box size :
The size of the gliding box used for estimate the lacunarity.

--gboxMin gliding box minimum size :
The minimum gliding box size if you want to compute the lacunarity
for more than one gliding box size. This option is not compatible with
the gbox option and with the spatial option as it is not possible to
compute the spatial lacunarity for several gliding boxes.

--gboxMax gliding box maximum size :
The maximum gliding box size if you want to compute the lacunarity
for more than one gliding box size. This option is not compatible with
the gbox option and with the spatial option.

--gboxStep gliding box step size :
If you give a value for the gboxMin and gboxMax options, you can
specify a step size for the gliding box size. Default is 1.

-o output raster path,--output output raster path :
The path to the output raster file. You need to select the spatial flag
in order to make something useful.

-f format :
Format for the output raster file. Default is HFA.

r.percolation

Purpose

Computes the spatial clusters in a raster map based on percolation.

Synopsis

r.percolation [-x] [-s stat] [-b value] [-m value] [-f format]

input raster output raster [output statistics]
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Description

The following options are available:

-x :
Use extended neighborhood (next nearest neighbors instead of nearest
neighbors)

-s stat :
Use the statistical value in the output raster rather than the cluster
number. The following options are available: id (default), mean, sum,
min, max. Note that id is a 32 bits integer, while the other statistics
are double float (64 bits). Not all output formats may support these
data types.

-b band :
The raster band to be considered. First band has number 1. Default
is 1.

-m value :
Bias value. This is the minimum raster value which is considered as
being part of a cluster. Default is 0.

-c value :
Cluster value. This is the minimum value (sum) for a cluster for being
retained. Default is 0.

-f format :
Format for the output raster file. Default is HFA as it supports all
needed data types.

input raster :
Input raster file.

output raster :
Output raster file.

output statistics :
Statistics for the clusters are computed and stored in a text file.

r.potential

Purpose

Computes a potential surface based on an input raster and a spatial vari-
ogram.
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Synopsis

r.potential [-m model] [-r range] [-s sill] [-n nugget]

[-p power] [-f format] [-b band] input raster output raster

Description

The following options are available:

-m model :
The model type to use for the variogram. Possible options are: exp
(exponential), spher (spherical), gauss (gaussian), power.

-r range :
The range is measured in number of pixels (a range of 5 means 5 pixels,
with a resolution of 100 meters per pixel, this is 500 meters.

-s sill :
The sill should be 1 for the computation of the potential. (The poten-
tial is 1 - y, where y is the variogram value).

-n nugget :
You may want to include some noise. E.g. if you have a nugget of 0.2,
the potential at distance 0 is weightet with 0.8 instead of 1.

-p power :
For power model only, where is replaces the nugget. Default is 2.

-f format :
Format for the output raster file. Default is HFA as it supports all
needed data types.

-b band :
The band to be considered for the potential estimation. Default is 1.

input raster :
The input raster file.

output raster :
The output raster is a 64-bits floating point raster.

r.to.geoeas

Purpose

Writes a raster file into a GeoEAS text file.
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Synopsis

r.to.geoeas [-h] [-n value] input raster output eas

Description

Converts the input raster file into a GeoEAS text file. The following options
are available:

-h :
Shows this information and quits.

-b 1 :
The band to convert. Default is 1.

-n 0 :
No data value which is not written to the output file.

input raster :
Raster file to convert.

output eas :
The output GeoEAS file.
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