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Summary
Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and

in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has
recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the
directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not

decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic
blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel
open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of

galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable
lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric
field, supporting a role for ENaC in skin wound healing.
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Introduction
Skin functions as an important protective organ, shielding the

body from infections, and fluid or thermal loss. The presence of a

transepithelial electrical potential is an interesting physiological

feature of healthy intact skin, observed to be present in human

skin as early as the 19th century (reviewed by McCaig et al.,

2005). A 20–65 mV potential difference is measured between the

surface of the epithelium and dermis (Barker et al., 1982; Foulds

and Barker, 1983) with the inside positive relative to the surface.

The non-conductive stratum corneum and polar distribution of

higher concentrations of cations including calcium, potassium

and sodium within the upper level of the epidermis (Denda et al.,

2000; Leinonen et al., 2009) are hypothesized to maintain this

transepithelial potential.

When the skin is wounded, the transepithelial potential collapses

to zero at the cut site, while the persistence of the higher potential

within the adjacent intact epidermis at the wound edge generates a

weak electric field (EF) which then drives current flow toward the

center of the wound (the cathode) (Barker et al., 1982; Ojingwa

and Isseroff, 2003; Reid et al., 2007; Nuccitelli et al., 2008). The

wound EF can be measured within several millimeters from the

wound edge in newt (Borgens et al., 1977), guinea pig (Barker et

al., 1982), mouse (Reid et al., 2007; Nuccitelli et al., 2008) and

human (Mukerjee et al., 2006; Reid et al., 2007) skin and cornea,

and ranges from 90 mV/mm in human to 180 mV/mm in rodent

skin wounds. The EF persists until the wound is fully resurfaced

with new epithelium (Borgens et al., 1977; Nuccitelli et al., 2008),

and thus has been proposed to be an important component of the

wound repair process.

The directional migration of cultured epithelial or corneal

keratinocytes toward the cathode in an applied EF has been

well documented and provides a strong mechanistic link for the

purported role of the endogenous wound EF in healing. When

exposed to an EF of the magnitude of those found within wounds

(100 mV/mm), cultured human skin keratinocytes migrate

directionally toward the cathode (the negative pole) within

15 minutes of EF exposure (Nishimura et al., 1996). As an early

and persistent feature of the wound, the wound EF provides a

directional signal to guide migrating epithelial cells toward the

wound center (Nishimura et al., 1996; Sheridan et al., 1996; Zhao

et al., 1996; Zhao et al., 1997; Fang et al., 1998; Fang et al., 1999;

Zhao et al., 1999; Farboud et al., 2000). How the wound EF

mediates directional migration of epithelial cells is, as yet, not fully

understood, and that is what this investigation addressed.

The epithelial sodium channel, ENaC, is a non-voltage-gated,

amiloride-sensitive sodium channel highly expressed in kidney,

lung, and distal colon. ENaC is a heterotrimeric channel

comprising three homologous subunits, a-, b-, and c-, each of

which shares about 35% amino acid sequence homology

(McDonald et al., 1994; Voilley et al., 1994; McDonald et al.,

1995; Voilley et al., 1995). The alpha subunit (aENaC) is the

major pore forming subunit, and beta- and gamma- subunits

mediate degradation of the channel (Benos et al., 1996; Awayda

et al., 1997; Garty and Palmer, 1997; Alvarez de la Rosa et al.,

2000). The major function of ENaC is to mediate trans-epithelial

sodium transport and water balance in polarized epithelia, yet

ENaC is also expressed in non-sodium absorbing epithelia, such

as the epidermis. aENaC mRNA and protein are detected in
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human primary keratinocytes (Brouard et al., 1999) and murine
epithelium (Mauro et al., 2002). Although the genetic ablation of

the aENaC gene in mice results in a postnatal lethal phenotype
due to an inability to clear lung fluids (Hummler et al., 1996), the
role of this channel in skin epithelial biology is not yet

elucidated. aENaC knockout mice do have abnormal lipid
composition in their stratum corneum (Mauro et al., 2002;
Charles et al., 2008), but these animals do not survive long
enough to perform in vivo skin investigations. In humans, loss-of-

function mutations of aENaC genes cause a rare autosomal,
recessive disease: pseudohypoaldosteronism type 1 (Chang et al.,
1996; Strautnieks et al., 1996), resulting in salt loss,

hyperkalemia and metabolic acidosis in newborns. Although
cutaneous lesions have been described in case reports of the
pseudohypoaldosteronism type 1 patients, these lesions are

possibly related to the high concentration of salt in sweat
glands (Urbatsch and Paller, 2002; Martı́n et al., 2005).

Several recent studies suggest that aENaC is involved in cell

migration in vitro. Inhibition of aENaC activity in bovine corneal
endothelial (BCE), rat aortic vascular smooth muscle cells, and
human BeWo cells decreases the rate of scratch wound closure

compared to the control (Chifflet et al., 2005; Grifoni, et al.,
2006; Grifoni, et al., 2008; Del Mónaco et al., 2009).
Additionally, an ENaC-dependent Na+-influx at the wound
edge of BCE cells was observed upon the generation of the

scratch wound (Chifflet et al., 2005), suggesting that opening of
ENaC channels may be the initial step in migration and wound
closure for these cells. However, little is known about how, or if,

aENaC mediates cell motility or directional migration such as
galvanotaxis.

In the current study, we examined the hypotheses that ENaC

mediates the directional migratory galvanotaxis response in skin-
derived keratinocytes, thus contributing to cutaneous wound
repair. We found that ENaC expression is required for the

galvanotaxis directional response: knocking down ENaC or
blocking ENaC channels does not alter overall cell motility yet
remarkably inhibits the directional response of keratinocyte

galvanotaxis. Overexpressing ENaC could drive galvanotaxis in
cells that are ordinarily non-responsive to an applied EF.
Additionally, preferential lamellipodial protrusion at the

cathodal side of the cell is dependent on ENaC expression, and
in ENaC-deficient cells, no cathodally dominant lamellipodia are
established. Our findings suggest a novel function for ENaC in
mediating the directional migration of keratinocyte, by

stabilizing protrusions at the cathodal side during galvanotaxis.
These findings help explain the elusive mechanism of cellular
directional responses to physiological electrical fields.

Results
ENaC-depleted keratinocytes lose directionally in
galvanotaxis

To investigate the role for ENaC in keratinocyte galvanotaxis, we

examined the directionality of the migratory response in an EF of
physiologic magnitude in murine and human keratinocytes that
had been genetically depleted of aENaC. The morphology of

aENaC knockout mouse epithelial keratinocytes (aENaC-KO-
MEK) (2/2) is similar to that of the wild-type MEK (+/+)
(Fig. 1A; supplementary material Movies 1, 2) (Hummler et al.,

1996) (aENaC depletion in the knockout MEK is shown in
supplementary material Fig. S1A). Although aENaC-KO-MEK
migrated significantly faster than the wild-type MEK

(0.8660.04 mm/minute versus 0.7360.03 mm/minute for wild-

type keratinocytes, P,0.05), the directional response was

essentially absent (decreased by 94%, P,0.05) in the aENaC-

KO-MEK, with resultant random, rather than cathodally directed

migration in the EF (Fig. 1B, right). Similar results were obtained

from siRNA knockdown of aENaC in human keratinocytes. The

total aENaC expressed in NHK is decreased by 50% after

72 hours of siRNA treatment (supplementary material Fig. S1B),

at which time the migratory response to the EF was examined

(Fig. 1B, left; supplementary material Movies 3, 4). As in the

aENaC-KO-MEK, aENaC siRNA-treated NHK demonstrate a

significant decrease in cathodally-directed galvanotaxis (Fig. 1B,

left) compared to the control cells, indicating the loss of a

directional migratory response to the applied EF.

Fig. 1. Depletion of ENaC inhibits galvanotaxis of keratinocytes, but

overexpression of EGFP-ENaC promotes galvanotaxis. (A) Representative

images from the wild-type MEK and the ENaC-depleted MEK in EF (also

supplementary material Movies 1–4). (B) The migration speeds of

keratinocytes are between 1 and 2 mm/minute. Left: The directionality

decreases by 80% in human NHK treated with aENaC siRNA (120 cells

tracked). Right: aENaC-KO-MEK also lose 94% of their directionality in the

EF (+/+ wild type, 104 cells tracked; 2/2 aENaC knockout, 93 cells

tracked). Although aENaC-KO-MEK migrate faster than wild-type MEK, the

migration speed of the ENaC siRNA-treated NHK is similar to that of

scrambled siRNA-treated NHK (1.260.46 mm/minute versus 1.160.47 mm/

minute; not significantly different; migration speed not shown).

(C) Galvanotaxis of parental H441 cell lines H441 (80 cells tracked), GFP7

(EGFP expressing H441, 165 cells tracked) and aC3-3-GFP (EGFP-aENaC

expressing H441, 165 cells tracked) were examined. The H441 and GFP7

lines that express very low levels of endogenous aENaC do not respond with

directional migration to the EF (cosine is close to zero). However,

introduction of a functional aENaC channel (in the aC3-3-GFP) significantly

increases the cathodal directionality (cosine) of the cells. *P,0.05.

ENaC mediates keratinocyte galvanotaxis 1943
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Overexpression of active aENaC promotes galvanotaxis

To further examine whether aENaC is sufficient to drive the

cellular galvanotaxis response, we tested galvanotaxis in cells
overexpressing aENaC. A human lung epithelial cell H441 line
(parental), its EGFP- tagged aENaC overexpressing cell line

derivative (aC3-3-GFP) as well as a control EGFP expressing cell
line (GFP7) were examined for their directional migration
in response to an applied EF. The aC3-3-EGFP ENaC

overexpressing line demonstrates increased levels of total
aENaC relative to the parental cell line H441 or the control
EGFP expressing line (the endogenous and the GFP-aENaC,

supplementary material Fig. S1C) (Woollhead and Baines, 2006).
All three cell lines H441, GFP7 and aC3-3-GFP migrated with
similar speeds of 0.5560.04, 0.5760.02, and 0.6060.02 mm/
minute (insignificantly different) in the EF. However, the cosine

values for the H441 and GFP7 lines are close to zero, indicating no
directedness of migration (Fig. 1C), demonstrating that these cells
migrated randomly without a directional response to the EF. On

the other hand, the aC3-3-GFP cells overexpressing active aENaC
showed a significant increase in cosine value (cosine50.35,
P,0.05) compared to control GFP7 and the parental line

(cosine50), indicating a directional cathodal response to the EF.

The open state of ENaC is involved in NHK directionality
in galvanotaxis

In addition to genetic manipulations of levels of expression of
aENaC, we investigated whether ENaC in the open state is

required to drive galvanotaxis, using pharmacologic modulation
of its channel activity. Previously we showed that amiloride, a
blocker of the open state of the ENaC channel at a low

concentration of 10 mM has no effect on galvanotaxis (Trollinger
et al., 2002); therefore, we treated the cells with a more potent
and ENaC-specific amiloride analog, phenamil (IC50 is 284 nM

for amiloride and 75 nM for phenamil tested on human bronchial
epithelial cells; Hirsh et al., 2004) and monitored the NHK
migration in the EF. Migration speeds of control and 20 mM
phenamil-treated NHK are similar at 1.0260.43 mm/minute.

While control cells demonstrate robust cathodal directional
migration, in the presence of phenamil, the cosine value of
NHK migrating toward the cathode is decreased by 30%

(Fig. 2A, P,0.05), suggesting that the sodium influx via ENaC
channel is involved in, but is not the major signal for the NHK
directional migration in an electric field.

The inhibitory peptide derived from aENaC cleavage
impairs NHK galvanotaxis

Activation of the ENaC channel by proteases releases a short
self-inhibitory sequence from the mouse aENaC of amino acids
182–190, LPHPLQRL (Carattino et al., 2006; Carattino et al.,

2008). The cleaved ENaC channel is constitutively active and
stays in the open state; treating mouse cortical collecting duct
cells and human airway epithelial cells with synthetic

LPHPLQRL peptide blocks the opening of ENaC (Carattino
et al., 2006; Carattino et al., 2008). We used this inhibitory
peptide to further confirm the role of open ENaC channels in

galvanotaxis. Addition of the peptide to the cells did not alter
migration speed, since NHK cultured with either the inhibitory
peptide or the scrambled control peptide migrated at the same

speed. Similar to the phenamil inhibition, with the pre-treatment
of 20 mM aENaC inhibitory peptide, the net cosine value of NHK
galvanotaxis decreased by 30% (Fig. 2B, P,0.05) from control

values. These results provide additional support to the notion that

the ENaC channel in open state is required for galvanotaxis.

Opening ENaC channels promotes NHK directional

migration in an EF

On the other hand, if ENaC in the open state is required for

galvanotaxis, it is reasonable to propose that constitutively active

ENaC should promote NHK directional migration. An ENaC

activating agent, S3969, increases the open probability of the

channel by activating the beta subunit (Lu et al., 2008). When

normal human keratinocytes are pre-treated with S3969 prior to

the EF exposure, they demonstrate a 17% increase in the net

cosine value from 0.65 to 0.76 (P,0.05) at the end of the

60 minutes galvanotaxis assay (Fig. 2C) compared to the control,

while maintaining similar migratory speeds. Opening ENaC by

S3969 also increases the slope of the track cosine in the first

20 minutes during galvanotaxis (0.019 in DMSO versus 0.027 in

S3969, Fig. 2D), indicating that the S3969 treated keratinocytes

migrate on a more persistent, directional route toward cathode in

the EF than control cells. These results indicate that ENaC

channel at the open state could promote galvanotaxis.

Since the accumulated data support a role for ENaC in

keratinocyte galvanotaxis in vitro, and skin wounds generate an

Fig. 2. Blocking the open state of ENaC prevents keratinocyte

galvanotaxis, whereas increasing the open state of the ENaC channel by

S3969 increases galvanotaxis. (A) In the cells pre-treated with 20 mM

phenamil, the directionality of NHK in galvanotaxis is inhibited by 30% (110

cells tracked in each group). (B) NHK treated with a control peptide or 20 mM

ENaC inhibitory peptide migrate at similar rates (migration speed not shown),

but the cathodal directionality is decreased by 30% in the cells treated with

the aENaC derived peptide (235 cells tracked in control and 275 cells tracked

in the treatment with the inhibitory peptide). Therefore, the open state of

aENaC channel is required for NHK galvanotaxis. (C) S3969 was added to

NHK 30 minutes prior to the EF exposure. The migration speed was not

affected (migration speed not shown), but the directionality (net cosine) of

cells increased by 17%. (D) S3969 treatment (open triangles) also increased

the slope of the track cosine compared to the DMSO control group (solid

circles) in the initial 20 minutes of EF exposure, which suggests that opening

the ENaC channel promotes a more persistent, directional migration of NHK

in the EF (167 cells tracked). *P,0.05.

Journal of Cell Science 126 (9)1944
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EF of the magnitude used in these studies, we examined how
wound healing is affected by the ENaC inhibitor phenamil using

an organotypic, ex vivo human wound assay, in which the early
stage of wound re-epithelialization, dependent on keratinocyte
migration, can be quantitated (Kratz, 1998; Lu and Rollman,

2004). Wound re-epithelialization of control wounds was 90–
95% complete after 7 days of ex vivo cultivation and a single
layer of NHK covered the original wound area (supplementary
material Fig. S2A,B). However, in the presence of 10 mM

phenamil, the re-epithelialization is blocked by 70% compared to
the control solvent DMSO treatment at day 7 (87.8% in DMSO
versus 28.2% in phenamil, P,0.05, supplementary material Fig.

S2B–D) and the NHK migrated only minimally into wound. The
results suggest that inhibiting ENaC activity by phenamil
inhibited keratinocyte migration and re-epithelialization of the

wound in the first 4 days of healing, and at later times, impaired
viability may have contributed to the decrease in wound re-
epithelialization (PCNA staining and extracellular lactate
dehydrogenase activity in supplementary material Fig. S3).

NHE1 is not involved in keratinocyte galvanotaxis

Another sodium transporter, NHE-1, present in cultured NHK and
skin epithelium mediates the pH homeostasis and the epithelial
barrier function (Hachem et al., 2005). It is also required for

establishment of fibroblast polarity during directional migration
(Denker et al., 2000; Frantz et al., 2007). Amiloride or phenamil,
inhibitors of ENaC activity and galvanotaxis, can also inhibit

NHE-1 at high concentration (Frelin et al., 1988) and theoretically
could impair galvanotaxis by this mechanism. Therefore, we
examined whether NHE1 is involved in galvanotaxis by using the
NHE1-specific inhibitor cariporide to treat keratinocytes and also

by examining galvanotaxis of PS120 fibroblast strains expressing
wild-type NHE1 (PSN) or the dead NHE1 transporter (E266I, a
mutant NHE1 containing an isoleucine substitution to glutamate

266, Denker et al., 2000).

NHK migration speeds were not inhibited in a high
concentration of 50 mM cariporide (cariporide KIs50.05 mM

for NHE-1, Scholz et al., 1995) (10 mM cariporide inhibits a
melanoma cell line MV3 migration, Stock et al., 2005) (Fig. 3A,
left), and the directionality in response to an applied EF was also

not altered (Fig. 3A, right). Similar results were observed when
we compared the fibroblasts expressing the defective NHE1
(E266I) to wild-type NHE1 (PSN). Galvanotaxis of the

fibroblasts expressing either wild-type NHE1 or the deficient
NHE1 show the same degree of directionality in the EF (Fig. 3B,
right), suggesting that unlike ENaC, the sodium transporter NHE-

1 is not required for galvanotaxis.

ENaC translocates to the leading edge of NHK after 60
minutes exposure of the EF

One mechanism by which EF may guide directional migration is
to induce asymmetric relocalization of pro-migratory signals to

the leading edge of the cell, as has been shown for the EGF
receptor (Fang et al., 1999; Zhao et al., 1999) and PI(3)K gamma
(Zhao et al., 2006). To study if ENaC translocates to the cathodal

edge of the cell during galvanotaxis, aENaC was immunolocalized
in both NHK and MEK at different time points after exposure to
the EF, using antibodies that detect all forms of aENaC: the full-

length 80–85 kDa and the cleaved, active 60–65 kDa (Fig. 4B)
(Carattino et al., 2006; Carattino et al., 2008). At time zero, aENaC
was randomly located at the cell periphery and in perinuclear areas

(Fig. 4A). When keratinocytes are exposed to the EF, aENaC is

not detected at the leading edge of NHK until 60 minutes after

exposure (Fig. 4A,C). At this time, the staining intensity is 14%

higher at the cathodal side than at the anodal side in NHK (Fig. 4C,

P,0.05). Since the directional migratory response to the applied

EF is detected as early as 15 minutes after exposure (Nishimura

et al., 1996), the temporal lag in relocalization of ENaC to the

lamellipodium suggests that polarization of ENaC to the leading

edge of the lamellipodium may not mediate the galvanotaxis

response.

ENaC stabilizes lamellipodial protrusion at the cathodal
side during galvanotaxis

The role of lamellipodial dynamics in mediating the directional

migratory response in galvanotaxis has not yet been investigated.

However, in the directional response in chemotaxis, analysis of

lamellipodial and pseudopodial dynamics has provided two

models for directional cell steering. A chemoattractant could

induce (1) de novo formation of cell protrusions toward the

gradient or (2) the differentiation of existing protrusions and

stabilization of the ones facing the gradient (Andrew and Insall,

2007).

Similar to chemotaxis, keratinocytes could orient their cell

bodies during galvanotaxis using lamellipodial steering. NHK in

the control galvanotaxis groups, were not always polarized to the

Fig. 3. NHE1 is not required for keratinocyte galvanotaxis. (A) NHK

galvanotaxis was examined in the presence of DMSO or 50 mM cariporide in

DMSO. The NHK migration speed (left) and directionality (right) were not

inhibited in DMSO or in 50 mM cariporide (180 cells tracked in each group).

(B) Fibroblasts expressing wild-type NHE1 (PSN) or the E266I-NHE1 were

exposed to the EF to examine galvanotaxis. Both fibroblast lines

demonstrated statistically equal migration speeds and directionality (110 cells

tracked in each group), further supporting the conclusion that NHE1 is not

required for keratinocyte galvanotaxis. Note the difference in scale on the

y-axis in A and B.

ENaC mediates keratinocyte galvanotaxis 1945
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fan shape. Before EF exposure, the ratio of different cell shapes

were: 34.1610.3% for fan-shaped cells, 26.169.5% for bipolar-

shaped cells and 39.9612.1% for other cell shapes including

round cells or cells with multiple protrusions. After a 60 minutes

EF exposure resulting in a cosine value of 0.58, the ratios are

38.2612.0% for fan-shaped, 27.466.3% for bipolar-shaped, and

34.1612.3% for others. There is no significant difference

between the ratios of keratinocyte cell shape types with or

without EF exposure. This observation suggests that the EF may

not promote de novo formation of protrusions toward the cathode,

since EF exposure resulted in no change in the observed ratio of

the fan-shaped, polarized keratinocytes. Therefore, we tested the

second possibility, that physiologic EFs could stabilize existing

cathodal-facing lamellipodia in keratinocytes resulting in gradual

change of the direction of migration toward the cathode. This

mechanism would result in smooth turns, and increase the cosine

value slowly until the cathodally oriented lamellipodia dominate

and guide the migratory response in that direction, and fit our

observation of the kinetics of galvanotaxis (for example, Fig. 2D,

DMSO control). To analyze whether the data fit this model, we

selected polarized keratinocytes whose fan shaped lamellipodia

were situated perpendicular to the axis of the EF, and therefore

half of the cell could be defined as anodal-facing and the other

half as cathodal-facing (Fig. 5A). Kymographic analysis of the
leading edge was performed (Fig. 5B–D) to compare the

lamellipodial protrusion and retraction distances and rates while
cells migrated in an applied EF.

In wild-type MEK, the protrusion distance is 50–65% further

at the cathodal as compared to anodal-facing side of the cell
(Fig. 5A, 12.561.9 mm at line 9 versus 7.861.4 mm at line 1;
similar results at line 8 versus line 2, the distance panel in

Fig. 5C, P,0.05) and the protrusion speed of cathodal-facing
lamellipodia is faster within the first 10 minutes of EF exposure
than at the anodal-facing side (the speed panel in Fig. 5C, line 9

versus line 1), which results in a further extension of lamellipodia
at the cathodal side. The switching frequency between protrusion
and retraction is similar on both sides. However, in the aENaC-
KO keratinocytes the distances of protrusion or retraction are

very similar at the distal end of the cells, preventing an
asymmetric extension of the lamellipodia during application of
the EF, and thus, no directional migratory response develops.

These results suggest that the cathodal lamellipodia are more
stable and extend faster and further in the wild type,
galvanotactically responsive keratinocytes, as compared to the

cells in which aENaC is genetically depleted. Based on this
analysis, we propose that aENaC in wild-type keratinocytes is
required for establishing stable lamellipodia at the cathodal side
during galvanotaxis and that the directional stabilization of the

lamellipodia is an important mechanism to orient and steer
keratinocyte migration in galvanotaxis.

A difference between the overall protrusion speed of the
lamellipodia in the wild type and in the aENaC-KO-MEK was
observed as well. There is an 18% significant increase of the
migration speed of the KO cells (0.86 mm/minute in aENaC-KO-

MEK versus 0.73 mm/minute in wild-type keratinocytes), and
24% and 45% increases of the protrusion and retraction distance
in the aENaC-KO-MEK compared to the wild-type cells

(Table 1, rows 1 and 4). The overall protrusion speed is also
increased by 47%, the duration of retraction increased by 17%,
and the switching between protrusion and retraction is more

frequent in the aENaC-KO-MEK (Table 1, rows 2, 6 and 7).
These results suggest that the function of aENaC in wild-type
keratinocytes may be not only to stabilize a dominant,

directionality-determining lamellipodium, but also to inhibit,
rather than promote, multidirectional lamellipodial extension,
and, thus in the absence of aENaC this control mechanism for
lamellipodial outgrowth is impaired and cells move faster, but

with less directionality.

Discussion
Summary

Although we have known for over a century that EFs exist within

wounds, as well as during limb regeneration and embryogenesis,
(Borgens et al., 1977; Burr, 1941) it is only recent work that has
demonstrated that these EFs provide directional cues to guide

migration of cells to accomplish tissue remodeling required for
these physiologic events (Nishimura et al., 1996; Sheridan et al.,
1996; Zhao et al., 1996; Zhao et al., 1997; Fang et al., 1998; Fang

et al., 1999; Zhao et al., 1999; Farboud et al., 2000). While
intracellular signaling mediators of the directional response have
been identified, including the kinase domain of the EGF receptor,

PI3K, PTEN, phosphorylated ERK, phosphorylated Src, Rac-1,
and cAMP (Fang et al., 1999; Zhao et al., 2002; Pullar and
Isseroff, 2005; Zhao et al., 2006; Pullar et al., 2006), the proximal

Fig. 4. aENaC polarizes to the cathodal side of keratinocytes after

60 minutes of galvanotaxis. (A) Immunostaining shows that aENaC is

distributed randomly at cell periphery of NHK and MEK before exposure to

the EF (0 minutes, cathode on right of the image). After 60 minutes in the EF,

ENaC is concentrated at the cathodal side of cells. (B) Both uncleaved (,80–

85 kDa) and cleaved aENaC (60–65 kDa) bands were detected with western

blotting on three strains of NHKs. (C) At 0 minutes, the fluorescence

intensity between the cathodal side and anodal side of keratinocytes is similar

(left), but at 60 minutes, the fluorescence is increased at the cathodal side

(right, *P,0.05, 20 human keratinocytes analyzed in each group).

Journal of Cell Science 126 (9)1946
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cellular sensor that detects the EF and initiates the signaling

cascade to initiate directional migration has remained elusive.

Our study demonstrates that ENaC plays a novel role in

keratinocyte galvanotaxis and may indeed function as the

proximal EF sensor, initiating directional keratinocyte

migration ultimately required for wound healing. Keratinocytes

in which aENaC is genetically depleted completely lose their

ability to respond to an applied EF with directional cathodal

migration, although their random locomotory speed is unaffected.

ENaC is sufficient to establish galvanotaxis when expressed in

cells that do not respond with directional migration to EFs.

Mechanistically, aENaC regulates directional migration by

establishing stable lamellipodial protrusions at the cathodally

facing pole of cells exposed to an EF, maintaining cellular

polarity that directs the migratory response toward the cathode.

Although ENaC has been shown to mediate migratory speed in

other types of cells (Chifflet et al., 2005; Grifoni, et al., 2006;

Grifoni, et al., 2008), this is the first study to show that ENaC is

required for the directional cell migration in an EF and provides

an important mechanistic insight as to how electrotaxis is

accomplished.

ENaC protein mediates galvanotaxis

Depleting aENaC from keratinocytes abolished galvanotaxis,

suggesting that aENaC or aENaC-associated proteins mediate

the directionality of the cell migration in the EF. We also tested

the hypothesis that the open state of ENaC is required for

keratinocyte galvanotaxis. Blocking the open state of ENaC with

either phenamil or the ENaC-derived inhibitory peptide decreases

the keratinocyte galvanotaxis response. The high dosage of 10,

20 and 40 mM phenamil treatments did show a dose-dependent

inhibitory response of galvanotaxis of 20–50%, but the ENaC

control of sodium ion transport may not be the major signal for

guiding directional migratory galvanotaxis responses in

keratinocytes. Another interesting observation is that opening

the ENaC channel by pre-treatment with the ENaC activator

S3969 increases the galvanotactic response (cosine) by 17%.

These results further support the observation that opening the

ENaC channel on the cell surface enhances the directionality, but

Fig. 5. ENaC is required to establish stable lamellipodia at the

cathodal side of galvanotactic keratinocytes. (A) Mouse keratinocytes

were exposed to the EF and filmed for 10 minutes. Fan-shaped cells

were selected and a 1-pixel wide line at cell periphery was drawn every

10% of the length (lines were aligned from anode to cathode, numbered

0–10) across the MEK to generated kymographs. (B) The protrusion and

retraction of the lamellipodia were tracked and plotted from either wild-

type MEK or aENaC-KO-MEK. (C,D) Wild-type MEK lamellipodia

protrude faster and further at the distal cathodal side compared to the

anodal side (C, n513). The asymmetric protrusion is ENaC-dependent

and the lamellipodia extended at a similar rate and to a similar distance at

the distal sides in the aENaC-KO-MEK (D, n57). Quantitative data are

presented in Table 1. *P,0.05 for the comparisons indicated.

Table 1. Comparison of the lamellipodial dynamics between

wild-type MEK and aENaC-KO-MEK within the first

10 minutes in the electric field

Parameter
Wild-type MEK

(mean 6 s.e.m. n513)
ENaC knockout MEK
(mean 6 s.e.m. n57)

MEK protrusion§

Distance (mm) 11.060.6 13.660.7*
Speed (nm/second) 61.063.0 81.366.0*
Duration (seconds) 201.0610.5 186.5611.4

MEK retraction§

Distance (mm) 6.860.4 9.860.6*
Speed (nm/second) 36.962.3 37.163.9
Duration (seconds) 176.9611.0 207.1611.2*

Switching frequency§ 3.460.2 4.060.2*

§Combined data of lines 1–9 in Fig. 5C.
*P,0.05 compared with wild-type MEK.
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it is not the sole requirement to steer the keratinocyte in

galvanotaxis.

In the Trollinger et al. (Trollinger et al., 2002) paper, we
previously proposed that an unidentified calcium channel is
required for galvanotaxis. Calcium channel blockers such as Sr2+

and Gd3+ inhibited the directionality of keratinocytes, but the
localization or the timing of the activation of the calcium channel
remains unclear. In the current study, we found ENaC also

mediates galvanotaxis. There could be several pathways involved
in galvanotaxis, including sensing of the electric field,
determining the direction to migrate, maintaining a persistent

direction of migration, and the controlling of cell adhesion and
migration speed. ENaC appears to be important in sensing of the
electric field and determining the direction of migration (see
below). Calcium and the postulated calcium channel might be

involved in cell adhesion and migration rate. Future studies will
be required to test if a calcium channel is downstream of ENaC in
guiding the directional response, or whether they are parallel

pathways that control different cellular responses in galvanotaxis.

Although the Na+/H+ exchanger NHE1 has previously been
shown to be involved in fibroblast galvanotaxis, this was detected
only when cells were exposed to supra-physiological EF

strengths (400 mV/mm, Zhao et al., 2006). Under the
physiological strength of the 100 mV/mm EF used in the
current study, NHE1 does not mediate galvanotaxis in either

normal human fibroblasts or keratinocytes. Our finding of ENaC-
mediated galvanotaxis in normal human keratinocytes implies a
physiologic role for this mechanism in guiding directional

migration of these cells in vivo, especially since it is well-
documented that wounding generates an endogenous EF to which
the wound edge keratinocytes are immediately exposed. Thus, we

propose that ENaC-mediated sensing of the EF plays a
fundamental physiologic role in directing cell migration and
contributing to wound repair. Additionally this work describes a
novel role for ENaC in the epidermis, beyond the previously

described function of modulating epidermal barrier formation
(Charles et al., 2008).

ENaC localization during galvanotaxis

Because re-localization of some downstream mediators of the
galvanotaxis response has been reported upon exposure of cells to
an EF, we investigated whether there is a polarized localization

of ENaC in the cells. During galvanotaxis, the directional
response (cosine value) of keratinocytes starts increasing as soon
as 15 minutes after exposure to the EF (Nishimura et al., 1996).

Unlike the rapid polarization of EGFR and PI3K to the leading
edge of galvanotactic keratinocytes (Fang et al., 1999; Zhao
et al., 2006) or the Par-3 and Tiam-1 at the leading edge of
migrating keratinocytes (Pegtel et al., 2007), ENaC does not

polarize at the cathodal side of keratinocytes until a later time
point (60 minutes) in the galvanotaxis response, suggesting that
the polarization of ENaC does not initiate the directional

migration of keratinocytes in response to the EF. It is possible
that the late ENaC polarization we observe could be secondary to
its known association with actin (Mazzochi et al., 2006), since

actin reorganizes at the leading edge of migrating cells, in this
case, the cathodal-facing edge of the cells. Similar results are
found in the chemotactic Dictyostelium and neutrophils (Xiao

et al., 1997; Servant et al., 1999). By time-lapsed imaging of the
GFP-tagged chemoattractant receptor, the distribution of the
chemoattractant receptors does not polarize at the leading edge

when cells migrate and turn toward the attractant source, which

suggests the polarization of the chemoattractant receptors is not
required for the directional response of the cells.

ENaC and lamellipodial protrusion

We also examined if EFs induce the formation of dominant
protrusions at the cathodal sides of exposed cells to polarize
them, or if EF exposure can result in the asymmetric stabilization

of protrusions thus promoting directional migration. The
keratinocytes do not polarize immediately toward the cathode
in an EF. Instead, kymographic analysis of the leading edge of
galvanotactic cells shows that wild-type keratinocyte cells

stabilize their cathodal protrusions, whereas ENaC-deficient
cells cannot differentiate the cathodal and anodal sides of the
cells in an EF in terms of lamellipodial protrusion. Lamellipodial

protrusion depends on actin polymerization and depolymerization
at the leading edge (Watanabe and Mitchison, 2002; Pollard and
Borisy, 2003; Ponti et al., 2004). Asymmetric protrusion rate and

distance between the cathodal side and anodal side could be an
important mechanism to re-orient keratinocytes towards the
cathode in the EF. At the present time there is not sufficient
information to fully understand the mechanism by which ENaC

may mediate lamellipodial dynamics. However, several studies
suggest that ENaC associates with actin filaments and actin
regulators. The c-terminus of aENaC has been shown to bind to

F-actin in MDCK cells (Mazzochi et al., 2006) and the
association is proposed to anchor ENaC at the plasma
membrane. ENaC also binds to cortactin, an actin regulator to

promote stable branching of F-actin (Ilatovskaya et al., 2011).
Thus, we speculate that ENaC could also regulate actin dynamics
via its binding to newly assembling actin filaments in the

lamellipodium and thereby regulate lamellipodial protrusions.
Further investigations will be required to elucidate these potential
interactions.

ENaC could be a cell sensor of an electric field

We propose the overall hypothesis that ENaC functions as a
proximal, cell membrane sensor of the EF. Several lines of
evidence from the current study suggest that ENaC is a good

candidate of the EF sensor on keratinocytes. First, ENaC is a
membrane channel penetrating the well-insulated plasma
membrane. The extracellular domain of ENaC is exposed to the

medium where the EF is carried and the intracellular c-terminus is
associated with actin (Mazzochi et al., 2006). Second, depleting
ENaC from keratinocytes abolishes the galvanotaxis responses in

keratinocytes (90% diminution in directedness). Inhibiting or
deletion of other molecules known to be involved in the
galvanotaxis response, such as PI3K-c/p110c and pTEN or
b4-integrin only result in a loss of 50% of the directionality

(Pullar et al., 2006; Zhao et al., 2006). Partial loss of directionality
when these signaling pathways are impaired suggests that parallel
pathways converge to mediate galvanotaxis. However, the almost

complete loss of directionality of ENaC knockout or knockdown
cells implies that ENaC might be the most proximal signal of
galvanotaxis signaling cascade initiating the directional response,

and thus in the absence of ENaC, none of the downstream
signaling pathways can be activated to induce galvanotaxis. Also,
unlike the other mediators noted above, ENaC is not involved in

the migratory machinery. Knocking out ENaC from keratinocytes
does not impair cell motility and the cells maintain lamellipodial
extension, albeit in a non-directional, random migration pattern in
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the EF, by an ENaC-independent mechanism. ENaC in the wild-
type cells may function to orient the persistent migration much like
a steering molecule, which then directs the ENaC-independent

mechanism of locomotion. ENaC can also be opened by shear
stress from stretch activation or fluid flow (Awayda et al., 1995;
Carattino et al., 2004; Carattino et al., 2005; Wang et al., 2009;

Fronius et al., 2010). Therefore, one may speculate that ENaC on
the keratinocyte cell surface is susceptible to other mechanical
forces and that voltage change generated by the EF may induce

conformational changes in ENaC, resulting in a galvanotaxis
response.

In summary, we found that ENaC plays an important, and until
now undiscovered, role in mediating the directional migration of

keratinocyte in an EF. Here we propose a model for ENaC in
mediating galvanotaxis. When an EF such as those endogenously
generated in wounded skin is applied to keratinocytes, ENaC in

the open state, located at the surface of migrating cells senses the
field and promotes galvanotaxis by stabilizing the lamellipodial
protrusions of the cathodal side and inhibiting the extensions at

the anodal side. Galvanotactic cells then orient and turn slowly
toward the cathode by means of their stable cathodal protrusions.
Further studies are required to fully elucidate the mechanism by

which ENaC mediates the protrusion process in response to an
EF. Nevertheless, this novel function for the channel in the
epidermis has broad implications for epithelial wound repair and
the broad range of physiological responses of cells to endogenous

EFs.

Materials and Methods
Cell culture and aENaC knockout mice
Human and mouse keratinocytes
Isolation of human foreskin keratinocytes was as described (Pullar and Isseroff,
2005) using a protocol approved by the UC Davis IRB. Neonatal human
keratinocytes (NHK) were cultured in EpiLife medium with 16 HKGS and 16
Antibiotic–Antimycotic (Invitrogen, Chicago, IL). The generation of aENaC
knockout mice was described in Hummler et al. (Hummler et al., 1996).
Keratinocytes were isolated from newborn mice (mouse epithelial keratinocytes,
MEK) using a protocol approved by the UC Davis IACUC. Briefly, 12- to 24-hour-
old pups were sterilized with Betadine/Triadine, and the skin was removed,
incubated in dispase II solution (10 mg/ml, Roche Mol. Biochem, Indianapolis,
IN) overnight at 4 C̊. The epithelial layer was separated from dermis, soaked in
0.25% Trypsin–EDTA for 10 minutes at 37 C̊, neutralized with 10% fetal bovine
serum (FBS, Atlanta Biologicals, Lawrenceville, GA), gently agitated, filtered
through 40 mm cell strainers, and centrifuged. MEK were maintained in low-
calcium EpiLife (20 mM CaCl2) with 10 ng/ml mouse EGF (EMD Bioscience,
Philadelphia, PA), 100 pM cholera toxin (EMD Bioscience), 0.5% FBS and 16
Antibiotic–Antimycotic.

H441 epithelial cells
H441 and stably transfected sub-lines expressing EGFP (GFP7) or EGFP-tagged
human aENaC (aC3-3-GFP) were generated as described (Woollhead and Baines,
2006). H441 lines were cultured in RPMI 1640 custom medium (Invitrogen)
containing l-glutamine (2 mM), sodium pyruvate (1 mM), insulin (5 mg/ml),
transferrin (5 mg/ml), sodium selenite (10 nM), 10% FBS and antibiotics
(penicillin/streptomycin). Cells transfected with the plasmids were maintained
by Geneticin selection (500 mg/ml, Sigma–Aldrich, St. Louis, MO).

NHE1-expressing fibroblasts
NHE1-expressing fibroblasts PSN and E266I were kindly provided by Dr Diane
Barber at UCSF. The fibroblasts carrying the wild-type NHE1 (PSN) and the
E266I-NHE1 are derived from a NHE1-null parental cell line PS120 (lung
fibroblasts from Chinese hamster). Expression level of the wild-type and mutant
NHE1 in the cells are comparable and the H+ efflux was examined to confirm loss
of the ion transport function of E266I mutant protein (Denker et al., 2000). The
PSN and E266I cells were cultured in DMEM (high-glucose, Invitrogen) with 5%
FBS, 16 Antibiotic–Antimycotic and 500 mg/ml Geneticin (Sigma–Aldrich). For
the galvanotaxis assay, PSN and E266I cells were starved from FBS for 24 hours,
seeded to the collagen I coated chambers for 12 hours and switched to CO2-
independent medium (Invitrogen, supplied with 16L-glutamine, 10% FBS and 16
Antibiotic–Antimycotic) during the filming.

Chemicals, siRNA and antibodies
Chemicals
Phenamil (Sigma–Aldrich), Cariporide (a NHE1 specific inhibitor, gift from Dr
Juergen Puenter, Sanofi–Aventis, Germany), S3969, (an ENaC activator, gift from
Dr Bryan Moyer, Senomyx, CA) and DMSO (final dilution of 1:2500 to 1:5000)
were added to NHK for 30 minutes before the electric field was applied.

siRNA
SilencerH Pre-designed siRNA, CyTM3 labeled (Cat#AM16811, siRNA ID# 6972,
human SCNN1A, 59-/Cy3/GGUACCCGGAAAUUAAAGATT-39) against aENaC
and SilencerH CyTM3 labeled Negative Control #1 siRNA (Cat# 1621) were
purchased from Ambion (Austin, TX). The siRNA was applied to NHK using the
provided protocol and an additional treatment of the siRNA was followed 24 hours
after the first treatment. Protein levels of ENaC and galvanotaxis were monitored
72 hours after the second siRNA treatment.

ENaC inhibitory peptides
Scrambled control peptide (QLHLLPPR) and ENaC inhibitory peptide
(LPHPLQRL) (Carattino et al., 2006; Carattino et al., 2008) with acetylated and
amidated ends were ordered (HPLC purified, purity .90%) from GenScript
(Piscataway, NJ). NHKs were pre-treated with 20 mM peptides for 1 hour before
the galvanotaxis assay.

Antibodies
Anti-aENaC aa627-643 rabbit antibodies (Calbiochem/EMD Chemicals,
Gibbstown, NJ, 1:1000 for Western blotting and 1:200 for immunostaining),
anti-rabbit secondary antibodies, HRP-linked (Cell signaling Tech., Danvers, MA,
1:1000 for western blotting) or Alexa Fluor 488 donkey anti-rabbit IgG (H+L)
secondary antibodies (Invitrogen, 1:500 for immunostaining) were used.

Galvanotaxis
Galvanotaxis was performed on passage 2–5 cells from the primary cultures as
described (Pullar et al., 2006). The galvanotaxis chambers were pre-coated with
100 mg/ml collagen I solution (Sigma–Aldrich) for cell migration. Cells were
detached by 0.25% trypsin–EDTA (Invitrogen), neutralized with 10% FBS,
centrifuged, seeded on the pre-coated galvanotaxis chambers at 6–86104 cell/ml
until cells are attached (2–3 hours for human and mouse keratinocytes; 6 hours for
H441, GFP7, and aC3-3-GFP, and 12 hours for PSN and E266I). Chemical
treatments were applied to the cells for 30–60 minutes prior to the exposure of a
100 mV/mm DC electric field (EF), comparable to the physiological range at the
wound field. Cell migration in the electric field was monitored for 60 minutes
except in the experiments with NHE1 expressing fibroblasts PSN and E266I,
where galvanotaxis was monitored for 3 hours in an electric field of 200 mV/mm.
In each treatment group, 80–120 cells from 3–4 primary cell culture strains (n5

3–4) or from three repeats of a cell line (n53) were tracked.

Western blotting and immunostaining
Western blotting
NHK were rinsed with PBS and scraped from the culture plates with Costar Cell
Lifters (Corning, Corning, NY) in 100–200 ml of lysis solution containing protease
inhibitors: RIPA buffer (Sigma–Aldrich), 50 mM NaF (Sigma–Aldrich), 1 mM
Na3VO4 (Sigma–Aldrich), 16 Complete Protease Inhibitor Cocktail (Roche,
Basel, Switzerland), 0.2 mg/ml PMSF (Sigma–Aldrich), and 0.5% Triton X-100
(Sigma–Aldrich). Cell lysates were spun at 12,000 rpm at 4 C̊ for 10 minutes and
the supernatants were stored at 220 C̊. Protein concentration in the lysates was
determined by Bio-Rad protein assay (Bio-Rad, Hercules, CA) and 30 mg protein
from each sample was loaded. SDS-PAGE and western blotting were performed
with NuPAGEH Novex Gel Electrophoresis system (4–12% gels, Invitrogen) and
iBlotH Dry Blotting System (Invitrogen). The blot was then blocked with 5% skim
milk, incubated with primary antibodies for overnight at 4 C̊, washed and
incubated with secondary antibodies for 2 hours at room temperature. ECL
Western Blotting Detection Reagents (GE Healthcare, Little Chalfont, UK) was
used to develop signals on X-ray films (Fujifilm, Tokyo, Japan). The protein bands
on the blots were scanned and quantified by ImageJ program.

Immunostaining
After the exposure to the EF for different time periods, NHK attached to coverslips
were fixed in 10% formaldehyde for 15 minutes. Cells were blocked by 4% BSA
(BSA, Sigma–Aldrich), incubated with primary antibodies overnight at 4 C̊,
washed, and incubated with secondary antibodies conjugated with fluorochromes
for 2 hours at room temperature. The coverslips were mounted with ProLongH
Gold antifade reagent with DAPI (Invitrogen).

Image acquisition and analysis
Image acquisition
Images were acquired on a Nikon TE-2000 microscope with a motorized stage, an
environmental chamber to maintain at 37 C̊, 206 (Nikon Plan Fluo, NA50.45, for
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time-lapse imaging) and 606 (Nikon Plan Apo VC, NA51.40 oil, for
immunofluorescenct imaging) objectives, a Retiga EX camera (Qimaging,
Canada) and Openlab and Volocity imaging software (PerkinElmer, Waltham,

MA).

Quantification of galvanotaxis
For the fast moving cells, such as keratinocytes and H441 cells, time-lapse
sequences of cell locomotion were obtained at 5-minute intervals for 1 hour. For
slow moving cells, such as the NHE1 cells, the time-lapse movies were acquired at
15-minute interval for 3 hours to allow the cells to move a distance of at least 40–
50 mm. Dividing cells in the movies were excluded from analysis since they were

not motile until the end of mitosis. Cell tracking was performed with OpenLab
software and the cell migration rate and directionality of galvanotaxis were
calculated and shown as mean 6 s.e.m. In galvanotaxis, cell directionality was
represented by the cosine value of trajectory of cell migration relative to the
orientation of the EF. If the cells migrate directly toward the cathode or anode

(galvanotaxis), the cosine value will be +1 (for cathodal migration) or 21 (for
anodal migration). If cells migrate with random directionality, the average of net
cosine will be close to zero. The final data were calculated and plotted with
FileMaker Pro 8 Advanced (FileMaker, Santa Clara, CA) and Excel (Microsoft,
Redmond, WA). The range of the keratinocyte migration speed is 1.0–2.0 mm/
minute and the range of the cosine values for keratinocyte galvanotaxis is 0.6–0.9

depending on the cell strains from different donors.

Quantification of immunostaining
To quantify the immunostaining, fan-shaped or bipolar-shaped cells extending
lamellipodia to both the cathodal and the anodal sides symmetrically in the EF
were selected for comparison. Cathodal and anodal sides of the keratinocytes were
defined by a line bisecting the cell relative to its orientation in the electric field.
For the peripheral staining of aENaC, the fluorescence intensity at the keratinocyte

edge was measured and averaged.

Kymograph analysis
To track lamellipodial dynamics during galvanotaxis, fan-shaped cells facing

perpendicularly to the axis of the electric field were filmed under a 606 oil
objective. The change of the leading edge of the cells was monitored every
2 seconds for 10 minutes in the electric field. To analyze the images of the leading
edges, the cell length was divided to 10 portions and 11 of the 1-pixel wide lines
were drawn parallel to the migration direction at the cell periphery. Each cell is

divided in half from the middle line to delineate the right, cathodal side and the
left, anodal facing side. The kymographs were generated from the images of the
stacked lines from the time-lapse movies with NIH ImageJ software (Fig. 5A).
Protrusions are defined as extensions of the cell periphery and the retractions as
shrinking of the cell periphery (Libotte et al., 2001; Borm. et al., 2005; Taboubi

et al., 2007). The distance and slope (the speed) of protrusions and retractions in
each kymograph were calculated with the kymograph tools in ImageJ. To perform
the statistical analysis, the kymograph data from the anodal side were compared to
the counterpart from the cathodal side. For example, the kymograph data from line
1 is compared with line 9, line 2 with line 8 and line 3 with line 7 etc. Nine to
thirteen cells were analyzed in each group.

Statistics
All the experiments were repeated 3–4 times and the bar graphs compared using
the Student’s t-test in Excel. If the P value is smaller than 0.05, the results between

the two treatment groups are considered significantly different.

Acknowledgements
We thank Dr Juergen Puenter (Sanofi–Aventis, Germany) for
providing Cariporide, Dr Bryan Moyer (Senomyx, CA) for
providing S3969, and Dr Diane Barber at UCSF for the NHE1
expressing fibroblasts. We also thank Dr Rich Nuccitelli for
facilitating the collaborative effort, and Dr Alex Mogilner at UC
Davis for helpful discussions on the manuscript.

Author contributions
H.-y.Y. designed and performed the experiments, analysed the data,
and wrote the manuscript; R.-P.C. and E.H. generated and provided
the aENaC KO mice and cells, and contributed to the discussion and
revision of the manuscript; D.L.B. generated and provided the H441
ENaC expressing cell lines, and contributed to the discussion and
revision of the manuscript; R.R.I. contributed to the designs and
discussions of the experiments and revised the manuscript.

Funding
H.-y.Y and R.R.I. were supported by the National Institute of
Arthritis and Musculoskeletal and Skin Diseases, National Institutes
of Health (NIH) [grant number R01AR044518]. This research
received no other funding for R.P.C., E.H. and D.L.B. Deposited in
PMC for release after 12 months.

Supplementary material available online at

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.113225/-/DC1

References
Alvarez de la Rosa, D., Canessa, C. M., Fyfe, G. K. and Zhang, P. (2000). Structure

and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol. 62, 573-
594.

Andrew, N. and Insall, R. H. (2007). Chemotaxis in shallow gradients is mediated
independently of PtdIns 3-kinase by biased choices between random protrusions. Nat.

Cell Biol. 9, 193-200.

Awayda, M. S., Ismailov, I. I., Berdiev, B. K. and Benos, D. J. (1995). A cloned renal
epithelial Na+ channel protein displays stretch activation in planar lipid bilayers. Am.

J. Physiol. 268, C1450-C1459.

Awayda, M. S., Tousson, A. and Benos, D. J. (1997). Regulation of a cloned epithelial
Na+ channel by its beta- and gamma-subunits. Am. J. Physiol. 273, C1889-C1899.

Barker, A. T., Jaffe, L. F. and Vanable, J. W. Jr. (1982). The glabrous epidermis of
cavies contains a powerful battery. Am. J. Physiol. 242, R358-R366.

Benos, D. J., Awayda, M. S., Berdiev, B. K., Bradford, A. L., Fuller, C. M., Senyk,

O. and Ismailov, I. I. (1996). Diversity and regulation of amiloride-sensitive Na+
channels. Kidney Int. 49, 1632-1637.

Borgens, R. B., Vanable, J. W., Jr and Jaffe, L. F. (1977). Bioelectricity and
regeneration: large currents leave the stumps of regenerating newt limbs. Proc. Natl.

Acad. Sci. USA 74, 4528-4532.

Borm, B., Requardt, R. P., Herzog, V. and Kirfel, G. (2005). Membrane ruffles in cell
migration: indicators of inefficient lamellipodia adhesion and compartments of actin
filament reorganization. Exp. Cell Res. 302, 83-95.

Brouard, M., Casado, M., Djelidi, S., Barrandon, Y. and Farman, N. (1999).
Epithelial sodium channel in human epidermal keratinocytes: expression of its
subunits and relation to sodium transport and differentiation. J. Cell Sci. 112, 3343-
3352.

Burr, H. S. (1941). Field Properties of the Developing Frog’s Egg. Proc. Natl. Acad.

Sci. USA 27, 276-281.

Carattino, M. D., Sheng, S. and Kleyman, T. R. (2004). Epithelial Na+ channels are
activated by laminar shear stress. J. Biol. Chem. 279, 4120-4126.

Carattino, M. D., Sheng, S. and Kleyman, T. R. (2005). Mutations in the pore region
modify epithelial sodium channel gating by shear stress. J. Biol. Chem. 280, 4393-
4401.

Carattino, M. D., Sheng, S., Bruns, J. B., Pilewski, J. M., Hughey, R. P. and

Kleyman, T. R. (2006). The epithelial Na+ channel is inhibited by a peptide derived
from proteolytic processing of its alpha subunit. J. Biol. Chem. 281, 18901-18907.

Carattino, M. D., Passero, C. J., Steren, C. A., Maarouf, A. B., Pilewski, J. M.,

Myerburg, M. M., Hughey, R. P. and Kleyman, T. R. (2008). Defining an
inhibitory domain in the alpha-subunit of the epithelial sodium channel. Am. J.

Physiol. Renal Physiol. 294, F47-F52.

Chang, S. S., Grunder, S., Hanukoglu, A., Rösler, A., Mathew, P. M., Hanukoglu, I.,

Schild, L., Lu, Y., Shimkets, R. A., Nelson-Williams, C. et al. (1996). Mutations in
subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic
acidosis, pseudohypoaldosteronism type 1. Nat. Genet. 12, 248-253.

Charles, R. P., Guitard, M., Leyvraz, C., Breiden, B., Haftek, M., Haftek-Terreau,
Z., Stehle, J. C., Sandhoff, K. and Hummler, E. (2008). Postnatal requirement of
the epithelial sodium channel for maintenance of epidermal barrier function. J. Biol.

Chem. 283, 2622-2630.

Chifflet, S., Hernández, J. A. and Grasso, S. (2005). A possible role for membrane
depolarization in epithelial wound healing. Am. J. Physiol. Cell Physiol. 288, C1420-
C1430.

Del Mónaco, S. M., Marino, G. I., Assef, Y. A., Damiano, A. E. and Kotsias, B. A.
(2009). Cell migration in BeWo cells and the role of epithelial sodium channels.
J. Membr. Biol. 232, 1-13.

Denda, M., Hosoi, J. and Asida, Y. (2000). Visual imaging of ion distribution in human
epidermis. Biochem. Biophys. Res. Commun. 272, 134-137.

Denker, S. P., Huang, D. C., Orlowski, J., Furthmayr, H. and Barber, D. L. (2000).
Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical
cytoskeleton and cell shape independently of H(+) translocation. Mol. Cell 6, 1425-
1436.

Fang, K. S., Farboud, B., Nuccitelli, R. and Isseroff, R. R. (1998). Migration of
human keratinocytes in electric fields requires growth factors and extracellular
calcium. J. Invest. Dermatol. 111, 751-756.

Fang, K. S., Ionides, E., Oster, G., Nuccitelli, R. and Isseroff, R. R. (1999). Epidermal
growth factor receptor relocalization and kinase activity are necessary for directional
migration of keratinocytes in DC electric fields. J. Cell Sci. 112, 1967-1978.

Farboud, B., Nuccitelli, R., Schwab, I. R. and Isseroff, R. R. (2000). DC electric fields
induce rapid directional migration in cultured human corneal epithelial cells. Exp. Eye

Res. 70, 667-673.

Journal of Cell Science 126 (9)1950

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.113225/-/DC1
http://dx.doi.org/10.1146/annurev.physiol.62.1.573
http://dx.doi.org/10.1146/annurev.physiol.62.1.573
http://dx.doi.org/10.1146/annurev.physiol.62.1.573
http://dx.doi.org/10.1038/ncb1536
http://dx.doi.org/10.1038/ncb1536
http://dx.doi.org/10.1038/ncb1536
http://dx.doi.org/10.1038/ki.1996.237
http://dx.doi.org/10.1038/ki.1996.237
http://dx.doi.org/10.1038/ki.1996.237
http://dx.doi.org/10.1073/pnas.74.10.4528
http://dx.doi.org/10.1073/pnas.74.10.4528
http://dx.doi.org/10.1073/pnas.74.10.4528
http://dx.doi.org/10.1016/j.yexcr.2004.08.034
http://dx.doi.org/10.1016/j.yexcr.2004.08.034
http://dx.doi.org/10.1016/j.yexcr.2004.08.034
http://dx.doi.org/10.1073/pnas.27.6.276
http://dx.doi.org/10.1073/pnas.27.6.276
http://dx.doi.org/10.1074/jbc.M311783200
http://dx.doi.org/10.1074/jbc.M311783200
http://dx.doi.org/10.1074/jbc.M413123200
http://dx.doi.org/10.1074/jbc.M413123200
http://dx.doi.org/10.1074/jbc.M413123200
http://dx.doi.org/10.1074/jbc.M604109200
http://dx.doi.org/10.1074/jbc.M604109200
http://dx.doi.org/10.1074/jbc.M604109200
http://dx.doi.org/10.1152/ajprenal.00399.2007
http://dx.doi.org/10.1152/ajprenal.00399.2007
http://dx.doi.org/10.1152/ajprenal.00399.2007
http://dx.doi.org/10.1152/ajprenal.00399.2007
http://dx.doi.org/10.1038/ng0396-248
http://dx.doi.org/10.1038/ng0396-248
http://dx.doi.org/10.1038/ng0396-248
http://dx.doi.org/10.1038/ng0396-248
http://dx.doi.org/10.1074/jbc.M708829200
http://dx.doi.org/10.1074/jbc.M708829200
http://dx.doi.org/10.1074/jbc.M708829200
http://dx.doi.org/10.1074/jbc.M708829200
http://dx.doi.org/10.1152/ajpcell.00259.2004
http://dx.doi.org/10.1152/ajpcell.00259.2004
http://dx.doi.org/10.1152/ajpcell.00259.2004
http://dx.doi.org/10.1007/s00232-009-9206-0
http://dx.doi.org/10.1007/s00232-009-9206-0
http://dx.doi.org/10.1007/s00232-009-9206-0
http://dx.doi.org/10.1006/bbrc.2000.2739
http://dx.doi.org/10.1006/bbrc.2000.2739
http://dx.doi.org/10.1016/S1097-2765(00)00139-8
http://dx.doi.org/10.1016/S1097-2765(00)00139-8
http://dx.doi.org/10.1016/S1097-2765(00)00139-8
http://dx.doi.org/10.1016/S1097-2765(00)00139-8
http://dx.doi.org/10.1046/j.1523-1747.1998.00366.x
http://dx.doi.org/10.1046/j.1523-1747.1998.00366.x
http://dx.doi.org/10.1046/j.1523-1747.1998.00366.x
http://dx.doi.org/10.1006/exer.2000.0830
http://dx.doi.org/10.1006/exer.2000.0830
http://dx.doi.org/10.1006/exer.2000.0830


J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

Foulds, I. S. and Barker, A. T. (1983). Human skin battery potentials and their possible
role in wound healing. Br. J. Dermatol. 109, 515-522.

Frantz, C., Karydis, A., Nalbant, P., Hahn, K. M. and Barber, D. L. (2007). Positive
feedback between Cdc42 activity and H+ efflux by the Na-H exchanger NHE1 for
polarity of migrating cells. J. Cell Biol. 179, 403-410.

Frelin, C., Barbry, P., Vigne, P., Chassande, O., Cragoe, E. J., Jr and Lazdunski, M.
(1988). Amiloride and its analogs as tools to inhibit Na+ transport via the Na+
channel, the Na+/H+ antiport and the Na+/Ca2+ exchanger. Biochimie 70, 1285-1290.

Fronius, M., Bogdan, R., Althaus, M., Morty, R. E. and Clauss, W. G. (2010).
Epithelial Na+ channels derived from human lung are activated by shear force.
Respir. Physiol. Neurobiol. 170, 113-119.

Garty, H. and Palmer, L. G. (1997). Epithelial sodium channels: function, structure,
and regulation. Physiol. Rev. 77, 359-396.

Grifoni, S. C., Gannon, K. P., Stec, D. E. and Drummond, H. A. (2006). ENaC
proteins contribute to VSMC migration. Am. J. Physiol. Heart Circ. Physiol. 291,
H3076-H3086.

Grifoni, S. C., Jernigan, N. L., Hamilton, G. and Drummond, H. A. (2008). ASIC
proteins regulate smooth muscle cell migration. Microvasc. Res. 75, 202-210.

Hachem, J. P., Behne, M., Aronchik, I., Demerjian, M., Feingold, K. R., Elias, P. M.

and Mauro, T. M. (2005). Extracellular pH Controls NHE1 expression in epidermis
and keratinocytes: implications for barrier repair. J. Invest. Dermatol. 125, 790-797.

Hirsh, A. J., Sabater, J. R., Zamurs, A., Smith, R. T., Paradiso, A. M., Hopkins, S.,

Abraham, W. M. and Boucher, R. C. (2004). Evaluation of second generation
amiloride analogs as therapy for cystic fibrosis lung disease. J. Pharmacol. Exp. Ther.

311, 929-938.
Hummler, E., Barker, P., Gatzy, J., Beermann, F., Verdumo, C., Schmidt, A.,

Boucher, R. and Rossier, B. C. (1996). Early death due to defective neonatal lung
liquid clearance in alpha-ENaC-deficient mice. Nat. Genet. 12, 325-328.

Ilatovskaya, D. V., Pavlov, T. S., Levchenko, V., Negulyaev, Y. A. and Staruschenko,

A. (2011). Cortical actin binding protein cortactin mediates ENaC activity via Arp2/3
complex. FASEB J. 25, 2688-2699.

Kratz, G. (1998). Modeling of wound healing processes in human skin using tissue
culture. Microsc. Res. Tech. 42, 345-350.
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