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ABSTRACT 

The monocarboxylate transporter MCT4 is a high capacity carrier important for lactate release 

from highly glycolytic cells. In the central nervous system, MCT4 is predominantly expressed 

by astrocytes. Surprisingly, MCT4 expression in cultured astrocytes is low, suggesting that a 

physiological characteristic, not met in culture conditions, is necessary. Here we demonstrate 

that reducing oxygen concentration from 21% to either 1% or 0% restored in a concentration-

dependent manner the expression of MCT4 at the mRNA and protein levels in cultured 

astrocytes. This effect was specific for MCT4 since the expression of MCT1, the other 

astrocytic monocarboxylate transporter present in vitro, was not altered in such conditions. 

MCT4 expression was shown to be controlled by the transcription factor Hypoxia-Inducible 

Factor-1α (HIF-1α) since under low oxygen levels, transfecting astrocyte cultures with a 

siRNA targeting HIF-1α largely prevented MCT4 induction. Moreover, the prolyl 

hydroxylase inhibitor dimethyloxaloylglycine (DMOG) induced MCT4 expression in 

astrocytes cultured in presence of 21% oxygen. In parallel, glycolytic activity was enhanced 

by exposure to 1% oxygen as demonstrated by the increased lactate release, an effect 

dependent on MCT4 expression. Finally, MCT4 expression was found to be necessary for 

astrocyte survival when exposed for a prolonged period to 1% oxygen. These data suggest 

that a major determinant of astrocyte MCT4 expression in vivo is likely the oxygen tension. 

This could be relevant in areas of high neuronal activity and oxygen consumption, favouring 

astrocytic lactate supply to neurons. Moreover, it could also play an important role for 

neuronal recovery after an ischemic episode. 

 

Keywords : energy metabolism; HIF-1α; lactate; MCT1; glycolysis 
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INTRODUCTION 

Astrocytes constitutively exhibit an important glycolytic activity, metabolizing a large 

quantity of the glucose available to lactate which is released into the medium (Bouzier-Sore et 

al. 2006; Itoh et al. 2003). Moreover, astrocytes possess a large reserve in glycolytic capacity 

that can be mobilized in certain situations (Pellerin and Magistretti 1994; Walz and Mukerji 

1990). This metabolic phenotype confers to astrocytes a high resistance to pathological 

conditions such as ischemia/hypoxia in which energy supply from oxidative phosphorylation 

is compromised, leading to a strong enhancement of glycolysis (Marrif and Juurlink 1999; 

Vega et al. 2006). In this context, large amounts of lactate are produced and lactate release 

from the cell becomes critical to avoid lactic acidosis and cell death (Callahan et al. 1990; 

Kelleher et al. 1993; Swanson et al. 1995). Thus, the presence of a high capacity lactate 

transporter is likely essential for astrocytes under both physiological and pathological 

conditions. 

 

Cellular lactate transport is ensured by a family of proton-linked carriers named 

monocarboxylate transporters that belong to the larger SLC16A solute carrier family 

(Halestrap and Meredith 2004). Astrocytes have been reported to express two isoforms of 

such lactate carriers characterized by their distinct affinity for lactate: MCT4 (SLC16A3) 

exhibits a low affinity for lactate (Km ~34 mM) as compared to MCT1 (SLC16A1; Km ~5 

mM). Such a kinetic characteristic prevents saturation at high lactate concentrations and thus 

renders MCT4 well-adapted to export large amounts of lactate from highly glycolytic cells 

(Dimmer et al. 2000). Indeed, MCT4 is specifically expressed by highly glycolytic cells such 

as the so-called “white fibers” of skeletal muscle (Wilson et al. 1998) and in cancer cells 

(Brahimi-Horn et al. 2011) where it is responsible for lactic acid efflux.  

 

In this study, we show that although MCT4 is specifically expressed by astrocytes in 

vivo, as previously reported (Pellerin et al. 2005; Rafiki et al. 2003), its expression is almost 

undetectable in primary cultures of mouse cortical astrocytes maintained in classical culture 

conditions. However, exposing cultured astrocytes to a low oxygen tension (1 % and 0 % 

oxygen), restores MCT4 expression via a transcriptional activation involving the 

transcriptional factor HIF-1α, allowing important lactate release and ultimately preventing 

cell death. We suggest that maintaining cultured astrocytes under low oxygen tension may 

Page 3 of 33

John Wiley & Sons, Inc.

GLIA



4 

 

better reflect the physiological situation in vivo, and reveal a putative adaptive mechanism in 

astrocytes to avoid cell death in conditions leading to intense glycolytic activity. 

 

MATERIAL AND METHODS 

 

Primary cultures of mouse cortical astrocytes 

Astrocyte-enriched cultures were prepared from OF1:SWISS mice (Janvier, Le Genest-Saint-

Isle, France). Astrocytes were prepared from 1-2 day-old neonatal mouse cortex as previously 

described (Sorg and Magistretti 1991; Yu et al. 1993). Mice were decapitated, the forebrain 

was removed aseptically from the skull, meninges were excised carefully, and the neocortex 

dissected (hippocampus and white matter were removed from cortices). The cells were 

mechanically dissociated by passage through needles of decreasing gauges (1.2 x 40 mm, 0.8 

x 40 mm, and 0.5 x 16 mm) with a 5 ml syringe. Cells were then seeded on 6-well uncoated 

plates or on 24-well plates containing glass coverslips coated with poly-L-ornithine (15 

µg/ml; Sigma, Buchs, Switzerland) at a density of 50’000 cells/ml and maintained in 

Dulbecco’s Modified Eagle’s Medium-high glucose (DMEM7777; 4500 mg/L glucose, L-

glutamine, and sodium pyruvate; Sigma, Buchs, Switzerland) supplemented with 0.01% 

antibiotic antimycotic solution 100X stabilized (10000 units penicillin, 10 mg streptomycin 

and 25 µg amphotericin B/ml; #A5955, Sigma, Buchs, Switzerland) and 10 % fetal calf serum 

in water-saturated atmosphere at 37°C with 5% CO2:95% air. Medium was renewed 4 days 

after seeding and then twice a week. Microglial cells were detached and removed from the 

astrocyte cultures by shaking plates when changing the medium. Cells were used 3 weeks 

after seeding when the cultures became confluent. 

 

siRNA transfection 

For RNAi experiments, the culture medium was replaced by DMEM with 10 % fetal calf 

serum but without antibiotics. The transfection preparation containing the small interfering 

RNA (siRNA) against MCT4 (200 nM; Qiagen, Hombrechtikon, Switzerland), MCT1 (300 

nM; Qiagen, Hombrechtikon, Switzerland) or HIF-1α (100 nM, #1027423, Invitrogen, Basel, 

Switzerland) and the Lipofectamine™ 2000 reagent (#11668027, Invitrogen, Basel, 

Switzerland) was prepared in Opti-MEM/GlutaMax (#51985-034, Invitrogen, Basel, 

Switzerland) according to the manufacturer’s instructions. After 5 hours of incubation, the 

transfection medium was replaced with DMEM with 10 % FCS and antibiotics. Astrocytes 
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were then used for hypoxia experiments 24 hours after the beginning of transfection. A non-

silencing siRNA with no homology to any known mammalian gene was used as negative 

control (AllStars Negative Control siRNA, #1027281, Qiagen, Hombrechtikon, Switzerland). 

Sense and antisense MCT4 (sense-strand RNA sequence, 5’-

r(GAAGCAUUAUCCAGAUCUA)dTdT-3’; antisense-strand RNA sequence, 5’-

r(UAGAUCUGGAUAAUGCUUC)dTdG-3’) oligoribonucleotides correspond to positions 

324 to 344 of the mouse MCT4 mRNA sequence (target sequence: 5’-

CAGAAGCATTATCCAGATCTA-3’, Embl NM_030696.3). Sense and antisense MCT1 

(sense-strand RNA sequence, 5’-r(GGAAUUCAUCUACACUUAA)dTdT-3’; antisense-

strand RNA sequence, 5’-r(UUAAGUGUAGAUGAAUUCC)dTdG-3’) oligoribonucleotides 

correspond to positions 183 to 203 of the mouse MCT1 mRNA sequence (target sequence: 5’-

TTGGAATTCATCTACACTTAA-3’, Embl NM_009196.3). Sense and antisense HIF-1α 

(sense-strand RNA sequence, 5’-r(CAAGCAGCAGGAAUUGGAACAUUAU)dTdT-3’; 

antisense-strand RNA sequence, 5’-r(AUAAUGUUCCAAUUCCUGCUGCUUG)dTdG-3’) 

oligoribonucleotides correspond to positions 2641 to 2665 of the mouse HIF-1α  mRNA 

sequence (target sequence: 5’-CAAGCAGCAGGAATTGGAACATTAT-3’, Embl 

NM_010431.2).  

 

Hypoxia experiments 

Hypoxia experiments were performed in commercial hypoxic chambers (#29829; Billups-

Rothenberg hypoxic chamber, StemCell Technologies, Basel, Switzerland). Astrocyte 

cultures received fresh DMEM medium supplemented with 10 % FCS prior to be introduced 

in the hypoxic chamber. Humidity inside the chamber was maintained by placing a Petri dish 

filled with deionized sterile water at the bottom of the chamber. The hypoxic chamber was 

then flushed with a gas mixture containing either 1 % O2/5 % CO2/94 % N2 or 5 % CO2/95 % 

N2  (Carbagaz, Lausanne, Switzerland) at a flow rate of 10 L/min during 15 minutes regulated 

by a flow meter (#27311; StemCell Technologies, Basel, Switzerland) (Yu et al. 1989). For 

the control (“normoxic”) condition, the chamber was flushed with a gas mixture containing 21 

% O2/5 % CO2/74 % N2. The chamber was then placed in an incubator at 37°C for the time 

required and it was reflushed with the same gas mixture every 24 hours to maintain the 

imposed environmental condition. The oxygen level in the chamber was measured with an 

oxymeter (StemCell Technologies, Basel, Switzerland); the pH in the medium was measured 

by a SevenGo DUO PRO pH/ION oxymeter   (#51302611, Mettler Toledo, Bussigny-près-

Lausanne, Switerland). For the reoxygenation experiment, the medium was not changed after 
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hypoxia to strictly assess the effect of reintroducing normoxic conditions without reperfusion. 

The reduced L-glutathione (#G6013, Sigma, Buchs, Switzerland) experiment was performed 

in the D7777 medium. The cultures were incubated during 5 hours prior to perform hypoxia 

in order to let the compound enter into the cells and to re-stabilize the pH. 

 

Glutathione, AICAR  and sodium azide experiments 

Glutathione reduced ethyl ester (#G1404, Sigma, Buchs, Switzerland), 5-Aminoimidazole-4-

carboxamide ribonucleoside (AICAR) (#A9978, Sigma, Buchs, Switzerland) and sodium 

azide (#S8032, Sigma, Buchs, Switzerland) treatments were performed in a DMEM medium 

at pH 7.2 (#D5030, Sigma, Buchs, Switzerland) supplemented with Antibiotic Antimycotic 

Solution (#A5955, Sigma, Buchs, Switzerland), 44 mM NaHCO3 and 25 mM D-Glucose 

during 24 hours. For control conditions, phosphate-buffered saline (PBS) was added as 

vehicle (PBS 10X; Laboratorium Dr.Bichsel AG, Interlaken, Switzerland).  

 

Immunochemistry 

For immunofluorescence analysis, astrocytes were washed with PBS and directly fixed 20 

minutes in 4 % paraformaldehyde at room temperature. Fixed cells were washed again with 

PBS and nonspecific sites were blocked with 0.5 % casein for 1 hour at room temperature. 

Double immunostainings were carried out overnight at 4°C in PBS containing 0.3 % Triton 

X-100 and 0.25 % bovine serum albumin with the different antibodies: rabbit anti-mouse 

MCT4 (1:250 dilution; #sc-50329; SantaCruz, Heidelberg, Germany) or rabbit anti-MCT1 

(1:500 dilution; Pierre et al. 2000) and mouse anti-Glial Fibrillary Acidic protein (GFAP) 

(1:500 dilution; #Z0334, DakoCytomation, Baar, Switzerland). After washing three times 

with PBS, cells were incubated in a PBS solution containing a donkey Cy3-conjugated anti-

rabbit (1:500 diltution; #711-165-152, Jackson Immunoresearch, Baltimore, MD, USA) and a 

donkey FITC-conjugated anti-mouse (1:500 dilution; #715-095-150, Jackson 

Immunoresearch, Baltimore, MD, USA) for 2 hours at room temperature. After washing twice 

in PBS, cells were incubated during 5 minutes with DAPI (#D9542, Sigma, Buchs, 

Switzerland) dissolved in PBS (1/100000), rinsed again twice 10 minutes in PBS and then 

mounted with Mowiol mounting medium (#81381, Sigma, Buchs, Switzerland). Preparations 

were then maintained at 4°C until observation with a Zeiss LSM 710 Quasar Confocal 

Microscope (Zeiss, Feldbach, Switzerland). 
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Lactate release assay 

For the lactate release assay, astrocytes were taken out from the hypoxic chamber and the 

medium was replaced with DMEM medium pH 7.2 (#D5030, Sigma, Buchs, Switzerland) 

supplemented with Antibiotic Antimycotic Solution (#A5955, Sigma, Buchs, Switzerland), 44 

mM NaHCO3 and 5 mM D-Glucose. Then, cells were put in an incubator at 37°C under 

“normoxic” conditions. After 20 minutes of incubation, the medium was harvested for lactate 

measurement while protein content was determined on the cell extract. Lactate level in the 

medium was assessed according to the protocol of Rosenberg and Rush (Rosenberg and Rush 

1966). The culture medium was mixed with a 0.33 M glycine-semicarbazide buffer 

supplemented just before starting the incubation with 0.015 M nicotinamide adenine 

dinucleotide (#12342857; Roche, Basel, Switzerland) and 70 U/ml L-lactate dehydrogenase 

(#10127876001; Roche, Basel, Switzerland). The quantification was performed by measuring 

the NADH produced via the L-lactate dehydrogenase-catalyzed enzymatic reaction with a 

microplate reader (SynergyMx; BioTek, Luzern, Switzerland) at 340 nm. The released lactate 

values were normalized to the total protein content for each well; finally lactate release was 

expressed in nmoles/mg protein. 

 

Quantitative real-time PCR analysis 

Total RNA was isolated using RNeasy Protect Mini Kit (#74106, Qiagen, Hombrechtikon, 

Switzerland). For cDNA synthesis, 200 ng of total RNA were reverse transcribed using 

Taqman Reverse Transcription Reagents kit (N808-0234, Applied Biosystems, Luzern, 

Switzerland) with random hexamers according to the manufacturer’s instructions in a total 

volume of 50 µl. Then, 1 µl of cDNA was mixed with the suitable primer (0.3 µM) and the 

SYBR Green PCR master mix (Applied Biosystems, Luzern, Switzerland) to perform the 

PCR reaction in a total reaction volume of 10 µl. Each sample was tested in duplicate. 

Quantitative determination of MCT1 (For, 5’-AATGCTGCCCTGTCCTCCTA-3’; Rev, 5’-

CCCAGTACGTGTATTTGTAGTCTCCAT-3’ (Embl NM_009196.3); Microsynth, Balgach, 

Switzerland), MCT4 (For, 5’-GGCTGTTTTATCATCACGGGTT-3’; Rev, 5’-

GTGTCGCTGTAGCCAATCCC-3’(Embl NM_030696.3); Microsynth, Balgach, 

Switzerland) and HIF-1α (For, 5’- CCC AAA GAC AAT AGC TTC GCA -3’; Rev, 5’- ACA 

GTC ACC TGG TTG CTG CAA -3’(Embl NM_010431.2); Microsynth, Balgach, 

Switzerland) mRNA expression levels was performed with the StepOnePlus™ Real-Time 

PCR System or the ViiA™ 7 Real-Time PCR System (Applied Biosystems, Luzern, 

Switzerland) with β-2-microglobulin (For, 5’- CCC CAC TGA GAC TGA TAC ATA CG-3’; 
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Rev, 5’-CGA TCC CAG TAG ACG GTC TTG-3’(Embl NM_009735); Microsynth, Balgach, 

Switzerland) mRNA used as an endogenous control. For data analysis, the raw threshold cycle 

(CT) value was first normalized to the housekeeping gene for each sample to obtain the ∆CT 

value. The normalized ∆CT value was then calibrated to the control cell samples to obtain the 

∆∆CT value. 

 

Western blotting 

Astrocytes were washed twice in ice-cold PBS, total proteins were extracted by cellular lysis 

in 40 µl of ice-cold buffer containing 50 mM Tris pH 7.5, 1 mM EDTA, 1 % SDS and a 

mixture of protease inhibitors (Complete 11257000; Roche, Basel, Switzerland). About 50 µg 

of proteins were denatured (95°C) during 5 minutes in SDS-PAGE sample buffer (60 mM 

Tris-HCl pH 6.8, 5 % SDS, 6.6 % glycerol, 5 mM EDTA, 5 % β-mercaptoethanol and 0.1 % 

bromophenol blue). Samples were separated on a 10 % acrylamide running gel and a 4 % 

acrylamide stacking gel using an Electrophoresis Unit (Bio-Rad, Cressier, Switzerland). 

Proteins were then electroblotted onto nitrocellulose membranes (0.45 µm; #162-0115, Bio-

Rad, Cressier, Switzerland) using an Electrophoresis Unit (Bio-Rad, Cressier, Switzerland). 

Nonspecific binding sites were blocked for 2 hours at room temperature with a solution of 

Tris-Buffered-Saline (TBS-T; 50 mM Tris-HCl pH 7.5, 150mM NaCl) supplemented with 0.1 

% Tween-20 and containing 10 % (wt/vol) of skim milk. Blots were then incubated overnight 

at 4°C with specific primary antibodies in TBS-T 0.1 % containing 1 % skim milk: rabbit 

anti-mouse MCT4 (1:250 dilution; #sc-50329; SantaCruz, Heidelberg, Germany), rabbit anti-

MCT1 (1:1000 dilution; Pierre et al. 2000), rabbit anti-HIF-1α (1:500 dilution; #NB100-449, 

Novus Biologicals, Cambridge, United Kingdom) and rabbit anti β-tubulin (1:1000 dilution; 

#2128, Cell Signaling, Berverly, MA, USA). Blots were washed three times in TBS-T 0.1%  

and they were subsequently incubated 2 hours at room temperature with horseradish 

peroxidase-conjugated donkey anti-rabbit IgG (#NA9340V, 1:10.000 dilution; GE Healthcare, 

Glattbrugg, Switzerland) and/or horseradish peroxidase-conjugated goat anti-mouse IgG 

(#1858413, 1:10.000 dilution; Thermo Fisher Scientific, Pierce, Lausanne, Switzerland). 

After being washed three times in TBS-T 0.1%, blots were processed using Immun-

Star
TM

WesternC
TM

 Chemiluminescent Kit (#170-5070, Bio-Rad, Cressier, Switzerland). 

Chemiluminescence detection was performed with the ChemiDoc™ XRS System (#170-

8070, Bio-Rad, Cressier, Switzerland) and quantification was made with the ImageLab 3.0 

software (Bio-Rad, Cressier, Switzerland). 
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Statistical analysis 

All results are presented as mean ± SEM from triplicate determinations. All experiments were 

performed at least three times with similar results. Statistical analysis was performed using a 

one-way or two-way ANOVA followed by either a Dunnett’s or a Tukey’s post hoc test 

where appropriate, unless indicated otherwise. A level of P < 0.05 was considered statistically 

significant in all cases; *P < 0.05, **P < 0.01 and ***P < 0.001. All statistical analyses and 

graphical representations were performed with Prism software (version 5.0. GraphPad, San 

Diego, CA, USA). 

 

RESULTS 

 

Expression of MCT4, but not MCT1, is induced in presence of low oxygen levels in 

primary cultures of mouse cortical astrocytes 

MCT4 immunostaining in the adult mouse brain is characterized by an important cell-

specific labeling throughout the hippocampus and the cortex. Cells expressing the glial 

fibrillary acidic protein (GFAP) were found to be labeled for MCT4 (Figure 1, first three 

columns), which confirms previous observations that MCT4 is found predominantly on 

astrocytes in the central nervous system (Pierre and Pellerin 2005; Rafiki et al. 2003). 

However, primary cultures of mouse cortical astrocytes exhibited almost undetectable basal 

MCT4 expression (Figure 1, last column) as previously described (Marcillac et al. 2011). A 

putative difference between in vivo and in vitro conditions that might explain such a 

contrasting level of MCT4 expression by astrocytes could be the degree of oxygenation. To 

assess the effect of oxygen tension on astrocytic MCT4 expression, cultured cortical 

astrocytes were maintained in a modular chamber at 1 % or 0 % oxygen (instead of 21 % as in 

the control condition) during various periods of time. Reduced oxygen tension up to ten days 

led to a highly significant increase in MCT4 mRNA expression compared to the control 

condition. The maximal expression was observed between 24 and 48 hours, for both oxygen 

concentrations tested (Figure 2A). Moreover, a significant difference was observed between 0 

and 1 % oxygen at each time point, highlighting a concentration-dependent effect on MCT4 

expression. Western blot analysis revealed a highly significant increase of MCT4 protein 

expression also up to ten days of incubation with reduced oxygen tension compared to the 

control condition (Figure 2B). MCT4 protein expression became already detectable after 24 
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hours of incubation and continued to rise over the ten days of incubation for both oxygen 

concentrations (Figure 2B). Immunolabellings on cultured astrocytes clearly showed a 

widespread induction of MCT4 expression in all astrocytes, with a more intense expression 

observed under 0 % oxygen compared to 1 % oxygen (Figure 2C). At the subcellular level, 

labeling could be observed over the entire cell body as well as associated with small processes 

extending from it.  

 

Similar investigations were performed for MCT1, the other monocarboxylate 

transporter expressed by astrocytes in vitro. Compared to MCT4, MCT1 is already strongly 

expressed in primary cultures of mouse cortical astrocytes incubated in presence of 21 % 

oxygen, both at the mRNA and protein levels (Figure 3). Interestingly, no significant effect of 

reduced oxygen tension was observed on MCT1 mRNA levels compared to the control 

condition (Figure 3A). In parallel, no significant effect on MCT1 protein expression at both 

oxygen concentrations could be detected compared to the control condition (Figure 3B). 

MCT1 immunolabelings confirmed a similar expression in most astrocytes, but in contrast to 

MCT4, it was present already in the control condition and was not increased by reducing 

oxygen tension (Figure 3C). 

 

Induction of MCT4 expression by low oxygen tension is dependent on Hypoxia-

Inducible Factor-1α. 

The transcription factor Hypoxia-Inducible Factor-1α (HIF-1α) has been described as 

a key cellular oxygen sensor that can coordinate the metabolic response to lowering oxygen 

concentrations. Thus, HIF-1α expression profile was analyzed in cultured astrocytes exposed 

to either 1 or 0 % O2 during different periods of time. HIF-1α protein expression increased 

with time compared to the control condition and reached a maximum after 72 hours, although 

this increase was significant after 48 hours for cultures exposed to both 1 and 0 % O2  (Figure 

4A). Moreover, a concentration-dependent effect on HIF-1α protein expression could be 

evidenced between 1 % and 0 % oxygen, being statistically significant between 72 hours and 

7 days of incubation (Figure 4A). In contrast, no change in HIF-1α mRNA levels could be 

detected under similar conditions (data not shown). Immunostainings for HIF-1α showed both 

cytoplasmic and nuclear expression in almost all cultured astrocytes when exposed to low 

oxygen tension (data not shown). The possible implication of HIF-1α in the transcriptional 

effect of low oxygen tension on MCT4 mRNA expression was evaluated first by knocking 
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down HIF-1α via siRNA interference. Astrocyte cultures were transfected with a siRNA 

targeting HIF-1α or with a universal non-coding siRNA (siscramble) and then maintained at 1 

% O2 during 48 hours. Induction of MCT4 expression was largely prevented at both mRNA 

and protein levels with the siRNA targeting HIF-1α while no significant effect was observed 

with the control siRNA (Figure 4B, C). Analysis of HIF-1α mRNA expression confirmed that 

the siRNA succeeded in downregulating HIF-1α by almost 80% (data not shown). Similarly 

to low oxygen tension, the chemical agent DMOG (dimethyloxalylglycine; a cell permeable 

prolyl-4-hydroxylase inhibitor and thus HIF-1α stabilizer) led to a significant enhancement of 

HIF-1α protein expression when used at concentrations between 1 and 5 mM (Figure 4D), 

without affecting HIF-1α mRNA levels (data not shown). In parallel, a significant induction 

of MCT4 expression at both mRNA and protein levels could be observed with DMOG 

concentrations of 1 mM and above (Figure 4E, F). 

 

Induction of MCT4 expression by low oxygen tension is not dependent on the 

production of ROS, and can not be mimicked by blockade of oxidative phosphorylation 

nor by AMPK activation. 

Reduction in the efficacy of the respiratory chain takes place when oxygen availability 

is compromised. This process leads to an increased production of reactive oxygen species 

(ROS) which may be responsible for HIF-1α protein stabilization and observed increased 

MCT4 expression. In order to assess this possibility, astrocytes were treated with the cellular 

antioxidant glutathione (reduced, cell permeable form) at different concentrations ranging 

from 100 µM to 10 mM prior to incubation at 21 or 1 % oxygen during 48 hours. No 

significant difference could be detected between control and treated conditions, indicating that 

the treatment with reduced glutathione could not prevent MCT4 induction, both at the mRNA 

and protein levels (Figure 5A, B). Similarly, when astrocyte cultures were treated with 

sodium azide (an inhibitor of the electron transport chain complex IV) at concentrations up to 

10 mM during 24 hours, no enhancement in MCT4 mRNA expression was observed (as could 

have been expected since glycolytic activity in astrocytes increases dramatically under such a 

condition) but rather a non-significant decrease was obtained at the highest sodium azide 

concentrations (Figure 5C). Since it was previously demonstrated that an activation of the 

AMP-activated protein kinase (AMPK), an enzyme that play a central role in cellular energy 

homeostasis, is responsible for the NO-induced enhancement of glycolysis in astrocytes 

(Almeida et al. 2004), the possible implication of AMPK in the regulation of MCT4 

expression was investigated in our conditions. For this purpose, cultured astrocytes were 
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treated with the AMPK activator 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) 

at various concentrations up to 300 µM during 24 hours. No significant effect could be 

observed at any concentration tested (Figure 5D), despite a strong activation of AMPK as 

demonstrated by its phosphorylated level upon AICAR stimulation (data not shown). 

 

MCT4 protein turnover is slow upon return to standard oxygen concentration in culture 

The persistence of MCT4 expression after its induction by a transient exposure to low 

oxygen tension and upon reoxygenation has been evaluated. Cultured astrocytes were 

maintained at 1 % O2 during 48 hours, then they were reoxygenated with 21% oxygen during 

various periods of time. Interestingly, mRNA levels decreased significantly in the next hour 

following the beginning of the reoxygenation period, and after 6 hours it had returned almost 

to the control level (Figure 6A). In contrast, the levels of the protein were much more stable, 

since it remained elevated for several days to finally come back near its initial expression 

level only after six days of reoxygenation (Figure 6B). In order to distinguish between slow 

protein degradation or a persistent translational activity, the protein synthesis inhibitor 

cycloheximide was used. First, cultured astrocytes were maintained at 1 % oxygen during 48 

hours, then treated or not with cycloheximide (10 µmol/L) just prior to the reoxygenation 

period of 24 hours. Cycloheximide treatment in this case had no effect on MCT4 protein 

expression upon reoxygenation. However, cycloheximide treatment prior to exposure to 1 % 

oxygen prevented the enhancement in MCT4 protein expression, thus confirming the efficacy 

of the drug on protein synthesis (Figure 6C).  

 

Enhanced MCT4 expression leads to larger lactate release and is essential for long-term 

astrocyte survival under low oxygen tension  

In order to evaluate the functional consequences of enhanced MCT4 expression, 

lactate release was determined in cultured astrocytes after exposure to low oxygen tension. 

After incubation at 1 % oxygen for different periods of time, lactate accumulation in the 

extracellular medium was assessed over a period of 30 minutes under 21 % oxygen. A time-

dependent effect was observed on lactate release which was already significant after 24 hours 

of incubation at 1 % oxygen compared to the control and increased by sevenfold after ten 

days (Figure 7A). While treatment with a control siRNA or a siRNA against MCT1 did not 

prevent the enhancement of lactate release upon incubation of astrocytes at 1 % O2 for 5 days, 

the specific siRNA against MCT4 almost abolished this effect after a similar incubation 

period (Figure 7B). Interestingly, extensive cell death occurred abruptly after 6 days of 
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incubation with 1 % oxygen when astrocytes were treated with the siRNA against MCT4, 

while little effect on the viability was observed when astrocytes where transfected with a 

control siRNA or a siRNA targeting MCT1 for the same period (Figure 7C).  

 

DISCUSSION 

 

MCT4 is a low affinity, high capacity lactate transporter that is present in cells 

exhibiting important glycolytic activity (Halestrap and Meredith 2004). In the central nervous 

system, this is the case for astrocytes, at least in vivo as indicated by our results and previous 

studies (Pellerin et al. 2005; Rafiki et al. 2003). MCT4 is purported to play an important role 

in favoring lactate release from glycolytic cells (Dimmer et al. 2000). Expression of MCT4 

was previously shown to be upregulated, together with many glycolytic enzymes, in several 

tissues and cell types under so-called hypoxic conditions both in vitro (Kay et al. 2007; Perez 

de Heredia et al. 2010; Ullah et al. 2006) and in vivo (Balmaceda-Aguilera et al. 2012; 

McClelland and Brooks 2002; Ngan and Wang 2009; Py et al. 2005). Furthermore, it was 

demonstrated that the enhancement of MCT4 expression under such conditions is dependent 

on the transcription factor HIF-1α and that the promoter region of the MCT4 gene contains 

hypoxia response elements (HREs) to which HIF-1α can bind and activate transcription 

(Ullah et al. 2006). This effect was specific for MCT4 as MCT1 expression was unaffected in 

the same conditions (Ullah et al. 2006). Our data clearly demonstrate that an O2-dependent 

regulation of MCT4 (but not of MCT1) expression via HIF-1α also takes place in cultured 

astrocytes. Interestingly, it was previously shown that MCT4 expression could be induced by 

nitric oxide in primary cultures of mouse cortical astrocytes maintained in classical culture 

conditions (21 % oxygen) (Marcillac et al. 2011) via a mechanism involving also HIF-

1α (Brix et al. 2012). Thus, it appears that astrocytes can undergo HIF-1α-mediated increases 

in MCT4 expression by both O2-dependent and O2-independent mechanisms. 

 

HIF-1α is a major oxygen sensor in eukaryotic cells that is responsible for 

coordinating responses to altered oxygen levels including metabolic adaptations such as 

enhancement of glycolysis (Semenza 2009). Two O2-dependent mechanisms for HIF-1α 

activation have been described. The first one takes place usually upon chronic hypoxia and 

involves a reduction in O2 available for hydroxylation of HIF-1α at proline residues by prolyl 

hydroxylases (PHDs), preventing its ubiquitination and eventual degradation by the 
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proteasome. The second one is classically observed with intermittent hypoxia and involves the 

formation of reactive oxygen species (ROS) that directly inhibit PHDs (by oxidation of a 

ferrous ion in the catalytic site) which leads to HIF-1α stabilization. Failure to prevent low 

oxygen level-induced, HIF-1α–dependent enhancement of MCT4 expression in cultured 

astrocytes by the cell-permeable reducing agent glutathione ethyl ester, or to mimic the effect 

of low oxygen levels by using the respiratory chain inhibitor sodium azide (known to favor 

ROS production), argues against the implication of ROS in this process. This conclusion is 

reinforced by the observation that exposure of cultured astrocytes to hydrogen peroxide (one 

form of ROS) did not lead to enhanced MCT4 expression (Marcillac et al. 2011). It was also 

previously reported that activation of AMPK, a central cellular energy sensor, was necessary 

for stimulating HIF-1α dependent gene expression under hypoxic conditions in some cell 

lines (Lee et al. 2003; Neurath et al. 2006). Moreover, the stimulation of glycolytic activity by 

nitric oxide in cultured astrocytes has been shown to involve an activation of AMPK 

(Almeida et al. 2004). However, our results do not support the hypothesis that AMPK 

activation is sufficient to cause the HIF-1α–dependent enhancement of MCT4 expression, as 

direct activation of AMPK by the chemical agent AICAR was without effect. Thus, the most 

likely explanation for the impact of lowering oxygen levels on MCT4 expression in astrocytes 

is the reduced availability of oxygen for the hydroxylation reaction catalyzed by PHDs, 

leading to stabilization of HIF-1α. 

 

In order to provide an adequate interpretation of our data, some important points must 

be clarified. Which partial oxygen pressure (pO2) can be considered normoxia for brain cells? 

Below which pO2 values hypoxia begins? What are the true correlates in cultured conditions 

of in vivo situations? These questions were very nicely addressed recently by Carreau et al. 

(Carreau et al. 2011). First of all, pO2 in various areas of the brain has been measured by 

different techniques and was found to be heterogeneous (Ndubuizu and LaManna 2007). On 

average, values fall usually within the range 23.8-33.3 mmHg (which corresponds to O2 

concentrations of 3.1-4.4 %) and follow a gradient from the deepest layers to the surface of 

the brain. Because these values are well below the atmospheric pO2 (160 mmHg or 21 %) 

which is often considered as normoxia, the authors have defined a new concept called 

“physioxia”. Physioxia represents the physiological range of pO2 found in situ in a specific 

tissue. Of course, physioxia depends not only of the particular area of tissue considered but 

also of its state (resting or activated), as the local pO2 depends on both O2 delivery and 
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consumption. In these conditions, how can one mimic in vitro the situation in vivo? It is clear 

that classical cultured conditions using a concentration of 21 % O2 cannot be considered 

physiological, as far as brain cells are concerned. Although choosing a value around 3-4 % O2 

might be a good average estimate of the “resting” state, it does not give an idea of the 

dynamic capacity. Although we acknowledge that switching from a supraphysiological 

concentration (21 % O2) down to concentrations (1 % and 0 % O2) on the verge of severe 

hypoxia is somewhat extreme, it simply serves to illustrate the principle that transcriptional 

regulation of the MCT4 gene via HIF-1α by altering oxygen tension not only occurs in 

astrocytes, but represents a graded response most likely covering both the “physioxic” and the 

hypoxic range. Indeed, a previous study has described a less intense but similar increase in 

glycolysis and lactate production together with enhanced expression of glycolytic enzymes 

and transporters in cultured astrocytes exposed to 5% O2 for 24 hours, although MCT4 was 

not specifically investigated in this case (Vega et al. 2006). From these considerations, it 

appears likely that a certain degree of MCT4 expression would be constitutive in astrocytes in 

vivo at resting pO2 values (as shown here and in previous studies) and that such expression 

could vary if local oxygen tension was modified as could occur under pathological 

circumstances (e.g. ischemia). 

 

Expression of MCT4 appears essential to allow appropriate lactate release to occur 

with augmented glycolytic activity. Preventing MCT4 expression has deleterious 

consequences on cell survival as demonstrated here on cultured astrocytes exposed to a low 

oxygen tension. A possible explanation could be the consequence of intracellular lactic 

acidosis likely to occur if lactate release is limited by downregulation of MCT4. Indeed, it 

was previously shown that intracellular acidification induced by exposure to lactic acid causes 

astrocyte cell death in vitro (Goldman et al. 1989). In addition, it was also demonstrated that a 

combination of intracellular acidosis and hypoxia in cultured astrocytes produced more cell 

death than each condition alone (Bondarenko and Chesler 2001). Interestingly, 

downregulation of MCT4 expression in tumor cells (characterized by high glycolytic activity) 

was able to reduce proliferation and tumor growth (Le Floch et al. 2011). Based on this 

finding, targeting glycolytic activity and the associated capacity to export lactate via MCT4 

has become a new anti-cancer therapeutic strategy (Chiche et al. 2013). These observations 

confirm the critical role played by MCT4 in highly glycolytic cells, as a reduction in its 

expression can lead under specific circumstances to cell death. The capacity of astrocytes to 

upregulate MCT4 expression, particularly in pathological conditions involving a reduction in 
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pO2 such as ischemia, might be essential not only for astrocytes survival, but also could be 

protective for neighboring neurons. It was previously shown both in slices and in the intact 

brain that the lactate produced by glial cells during an ischemic episode is necessary for 

neurons upon reoxygenation to recover from the ischemic insult (Berthet et al. 2009; Schurr et 

al. 1997; Schurr et al. 2001). Long-lasting elevation of MCT4 protein expression together 

with enhanced glycolytic activity in astrocytes following a transient hypoxic episode, as 

demonstrated in this study, might be important for neurons in the recovery period following 

the ischemic episode to provide them a sustain supply of lactate. This mechanism may 

participate in the metabolic adaptations offering neuroprotection in such pathological 

situations. 

 

In conclusion, our results establish that the level of expression of the monocarboxylate 

transporter MCT4 by astrocytes is controlled by oxygen tension via a HIF-1α-dependent 

mechanism. Such a finding provides an explanation for the observed difference between in 

vitro and in vivo expression by astrocytes. Moreover, such a regulation could be important 

under physiological conditions to provide the appropriate metabolic environment to sustain 

neuronal activity, and in pathological situations such as ischemia to favor neuronal recovery 

after an insult. 
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FIGURE LEGENDS 

 

Figure 1. Immunocytochemical characterization of MCT4 expression by astrocytes in 

vivo and in vitro. Fluorescent immunolabelings for MCT4 (in red; first and third rows) and 

GFAP (in green; second and third rows). Colocalization appears in yellow (Merge; third row). 

Nuclei were labeled with DAPI (in blue). (First column) Double immunolabelings in the 

mouse hippocampus observed at low magnification. (Second column) Double 

immunolabelings of a single astrocyte in the mouse cortex observed at high magnification. 

(Third column) 3D reconstruction images of the double labeled astrocyte shown in the second 

column.  (Fourth column) Double immunolabelings in primary cultures of mouse cortical 

astrocytes. Images obtained by confocal microscopy. Calibration bar = 20 µm (first and fourth 

columns) or 5 µm (second and third columns). 

 

Figure 2. Effect of reduced oxygen levels on MCT4 mRNA and protein expression in 

primary cultures of mouse cortical astrocytes. (A) Time-dependent changes in MCT4 

mRNA expression by astrocytes exposed to either 1 % or 0 % oxygen. Each data point is the 

mean ± SEM, n = 3. Results were analyzed with a two- ways ANOVA followed by Tukey’s 

post hoc test. *P < 0.05; **P < 0.01; ***P < 0.001. Representative experiment repeated twice 

with similar results. (B) Time-dependent changes in MCT4 protein expression by astrocytes 

exposed to either 1 % or 0 % oxygen. Upper panels show typical Western blots for the MCT4 

protein. β-tubulin was used as reference. Graph shows western blot quantification. Each data 

point is the mean ± SEM, n = 3. Results were analyzed with a two-way ANOVA followed by 

Tukey’s post hoc test. *P < 0.05; ***P < 0.001. Representative experiment repeated twice 

with similar results.  (C) Fluorescent immunolabelings for MCT4 (in red; top and bottom 

rows) and GFAP (in green; bottom row) on cultured astrocytes exposed to different oxygen 

levels for 7 days. Nuclei were labeled with DAPI (in blue). Images obtained by 

epifluorescence microscopy. Calibration bar = 20 µm. 

 

Figure 3. Effect of reduced oxygen levels on MCT1 mRNA and protein expression in 

primary cultures of mouse cortical astrocytes (A) MCT1 mRNA expression by astrocytes 

exposed to either 1 % or 0 % oxygen as a function of time. Each data point is the mean ± 

SEM, n = 3. Results were analyzed with a two-way ANOVA followed by Tukey’s post hoc 

test. ns, not significant vs. control; *P < 0.05. Representative experiment repeated twice with 
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similar results.  (B) MCT1 protein expression by astrocytes exposed to either 1 % or 0 % 

oxygen as a function of time. Upper panels show typical Western blots for the MCT1 protein. 

β-tubulin was used as reference. Graph shows western blot quantification. Each data point is 

the mean ± SEM, n = 3. Results were analyzed with a two-way ANOVA followed by Tukey’s 

post hoc test. ns, not significant vs. control; *P < 0.05. Representative experiment repeated 

twice with similar results.  (C) Fluorescent immunolabelings for MCT1 (in red; top and 

bottom rows) and GFAP (in green; bottom row) on cultured astrocytes exposed to different 

oxygen levels for 7 days. Nuclei were labeled with DAPI (in blue).  Images obtained by 

epifluorescence microscopy. Calibration bar = 20µm. 

 

Figure 4. Involvement of the transcription factor HIF-1α in the oxygen level-dependent 

enhancement of MCT4 expression by cultured astrocytes (A) Time-dependent 

stabilization of the HIF1-α protein in astrocytes exposed to either 1 % or 0 % oxygen. Upper 

panels show typical Western blots for the HIF-1α protein. β-tubulin was used as reference. 

Graph shows western blot quantification. Each data point is the mean ± SEM, n = 3. Results 

were analyzed with a two-way ANOVA followed by Tukey’s post hoc test. *P < 0.05; **P < 

0.01; ***P < 0.001 vs. control. Representative experiment repeated twice with similar results.  

(B) Effect of a siRNA against HIF-1α on the induction of MCT4 mRNA expression in 

cultured astrocytes by a low (1 %) oxygen level. Each data point is the mean ± SEM, n = 3. 

Results were analyzed with a two-way ANOVA followed by Tukey’s post hoc test. ***P < 

0.001. Representative experiment repeated twice with similar results. (C) Effect of a siRNA 

against HIF-1α on the induction of MCT4 protein expression in cultured astrocytes by a low 

(1 %) oxygen level.  Upper panel shows a typical Western blot for the MCT4 protein. β-

tubulin was used as reference. Graph shows western blot quantification. Each data point is the 

mean ± SEM, n = 3. Results were analyzed with a two-way ANOVA followed by Tukey’s 

post hoc test. ***P < 0.001. Representative experiment repeated twice with similar results.  

(D) Concentration-dependent stabilization of the HIF-1α protein in astrocytes induced by the 

prolyl hydroxylase inhibitor DMOG. Upper panel shows a typical Western blot for the HIF-

1α protein. β-tubulin was used as reference. Graph shows western blot quantification. Each 

data point is the mean ± SEM, n = 3. Results were analyzed with a two-way ANOVA 

followed by Dunnett’s post hoc test. ***P < 0.001 vs. control. Representative experiment 

repeated twice with similar results. (E) Concentration-dependent effect of DMOG on MCT4 

mRNA expression in cultured astrocytes. Each data point is the mean ± SEM, n = 3. Results 
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were analyzed with a two-way ANOVA followed by Dunnett’s post hoc test. ***P < 0.001 

vs. control. Representative experiment repeated twice with similar results. (F) Concentration-

dependent effect of DMOG on MCT4 protein expression in cultured astrocytes. Upper panel 

shows a typical Western blot for the MCT4 protein. β-tubulin was used as reference. Graph 

shows western blot quantification. Each data point is the mean ± SEM, n = 3. Results were 

analyzed with a two-way ANOVA followed by Dunnett’s post hoc test. **P < 0.01 or ***P < 

0.001 vs. control. Representative experiment repeated twice with similar results. 

 

Figure 5. Influence of an antioxidant, oxidative phosphorylation blockade and AMPK 

activation on MCT4 expression in primary cultures of mouse cortical astrocytes. (A) 

Effect of the cell-permeable reducing agent glutathione reduced ethyl ester tested at different 

concentrations on MCT4 mRNA expression in cultured astrocytes exposed to either 1 or 21 % 

oxygen. Each data point is the mean ± SEM, n = 3. Results were analyzed with a two-way 

ANOVA followed by Dunnett’s post hoc test. ns, not significant vs. control. Representative 

experiment repeated twice with similar results. (B) Effect of the cell-permeable reducing 

agent glutathione reduced ethyl ester tested at different concentrations on MCT4 protein 

expression in cultured astrocytes exposed to either 1 or 21 % oxygen. Upper panel shows a 

typical Western blot for the MCT4 protein. β-tubulin was used as reference. Graph shows 

western blot quantification. Each data point is the mean ± SEM, n = 3. Results were analyzed 

with a two-way ANOVA followed by Dunnett’s post hoc test. ns, not significant vs. control. 

Representative experiment repeated twice with similar results. (C) Effect of the cytochrome c 

oxidase inhibitor sodium azide tested at different concentrations on MCT4 mRNA expression 

in cultured astrocytes. Each data point is the mean ± SEM, n = 3. Results were analyzed with 

a two-way ANOVA followed by Dunnett’s post hoc test. ns, not significant vs. control. 

Representative experiment repeated twice with similar results. (D) Effect of the AMPK 

activator AICAR tested at different concentrations on MCT4 mRNA expression in cultured 

astrocytes. Each data point is the mean ± SEM, n = 3. Results were analyzed with a two-way 

ANOVA followed by Dunnett’s post hoc test. ns, not significant vs. control. Representative 

experiment repeated twice with similar results. 

 

Figure 6. Long-lasting expression of MCT4 protein in cultured astrocytes upon 

reoxygenation after a transient exposure to 1 % oxygen (A) MCT4 mRNA expression in 

cultured astrocytes after exposure to 1 % oxygen for 48 hours and following various 

reoxygenation periods (at 21 % oxygen). Each data point is the mean ± SEM, n = 3. Results 
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were analyzed with two-way ANOVA followed by Dunnett’s post hoc test. *P < 0.05 or ***P 

< 0.001 vs. 0 hour. Representative experiment repeated twice with similar results.  (B) MCT4 

protein expression in cultured astrocytes after exposure to 1 % oxygen for 48 hours and 

following various reoxygenation periods (at 21 % oxygen). Upper panel shows a typical 

Western blot for the MCT4 protein. β-tubulin was used as reference. Graph shows western 

blot quantification. Each data point is the mean ± SEM, n = 3. Results were analyzed with a 

two-way ANOVA followed by Dunnett’s post hoc test. ***P < 0.001 vs. 0 day. 

Representative experiment repeated twice with similar results. (C) Effect of the protein 

synthesis inhibitor cycloheximide on MCT4 protein expression in cultured astrocytes induced 

by exposure to 1 % oxygen and submitted to reoxygenation with 21 % oxygen. Upper panel 

shows a typical Western blot for the MCT4 protein. β−tubulin was used as reference. Graph 

shows western blot quantification. Each data point is the mean ± SEM, n = 3. Results were 

analyzed with a two-way ANOVA followed by Tukey’s post hoc test. ***P < 0.001; ns, non-

significant. Representative experiment repeated twice with similar results. 

 

Figure 7. Involvement of MCT4 in the enhancement of lactate release by cultured 

astrocytes and in long-term survival upon exposure to 1 % oxygen over several days. (A) 

Effect of low (1 %) oxygen level on lactate release by cultured astrocytes. Each data point is 

the mean ± SEM, n = 3. Results were analyzed with a two-way ANOVA followed by 

Dunnett’s post hoc test. *P < 0.05, **P < 0.01 or ***P < 0.001 vs. control for each oxygen 

concentration. Representative experiment repeated twice with similar results. (B) Effect of 

siRNAs against MCT1 and MCT4 on the induction of lactate release by low (1 %) oxygen 

levels in cultured astrocytes after 5 days of incubation. Each data point is the mean ± SEM, n 

= 3. Results were analyzed with a two-way ANOVA followed by Dunnett’s post hoc test. 

***P < 0.001. Representative experiment repeated twice with similar results. (C) Phase 

contrast microscopy illustrating the effect of MCT1 and MCT4 siRNAs upon incubation at 

low (1 %) oxygen levels during 6 days on cultured astrocyte survival. Scale bar = 40 µM.  
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