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This paper is based on the premise that economic growth is driven by an interplay between

innovation and imitation in an economy composed of interacting ¯rms operating in a stochastic
environment. A novel approach to modeling imitation is presented based on range-dependent

processes that describe how ¯rms consider proximity when imitating peers who are found in a

given neighborhood in terms of productivity. Using a particularly tractable approach, we are
able to analyze how drastically di®erent economic growth scenarios emerge from di®erent im-

itation strategies. These emerging scenarios range from di®usive growth where the variance of

productivity grows inde¯nitely, to balanced growth described by a traveling wave with ¯xed

variance. The latter scenario is sustained only when imitation strength among ¯rms exceeds a
critical bifurcation threshold.
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1. Introduction

Economic growth results from a complex interplay between a plurality of factors and

among these, the ¯rms' productivity innovation activity and/or imitation mecha-

nism of actual technological leaders are strongly determinant (e.g. [24, 30, 33]).

Accordingly, any progress toward a re¯ned understanding of how the innovation

and imitation dynamics operate and coexist, brings us closer to ¯ne-tune (and will

ultimately allow to optimize) one of the key factors underlying economic growth.

This essential objective has motivated mathematical modeling e®orts in the eco-

nomics literature for decades, aiming to isolate a possibly restricted number of para-

meters directly relevant for the growth process (e.g., [7, 25, 42]). This paper falls within

this general scope by unveiling a class of exactly solvable multi-agent dynamics for

which the interplay between innovation and imitation can be analytically discussed.

The log-productivity dynamics of ¯rms (interchangeably referred to as agents in this

paper) co-evolving in an economy is modeled with the help of interacting nonlinear

random walkers evolving in discrete time on discrete productivity echelons. Our ap-

proach o®ers the following three-fold contribution: (i) it provides, in the state-space-

and-time continuous limit, a new class of nonlinear partial di®erential equations which

can be analytically discussed, (ii) it connects economic growth with the imitation

strength between the ¯rms and (iii) it unveils a bifurcating transition from a di®usive

to a propagating growth regime, which is tuned by the relative in°uence played by the

¯rms with productivity close to the technological frontier.

This modeling framework originates from [30]a, which considers a growing

economy resulting from the emergence of a collective dynamic pattern generated by a

large swarm of mutually interacting (and possibly stochastic) agents. The im-

provement in productivity achieved by each ¯rm ultimately generates economic

growth. Speci¯cally, productivity growth is understood to be driven by the joint

action of (i) a sustained °ow of innovative attempts that are subject to random

°uctuations and (ii) an imitation process among the agents that acts as a rectifying

mechanism, thereby ensuring that only productive ideas are ultimately retained.

This highlights that a growing economy has to always be sustained out of equilib-

rium [23], as there is a constant need for technology leaders who, via innovation

attempts that always come along with noise, generate novel ideas and processes. The

innovative breakthroughs are then tested and evaluated, and ultimately, only the

best ones are adopted by concurrents. This dynamic co-action between innovation

and imitation processes is a key factor in sustaining economic growth. Imitation of

leading peers ¯lters out the poor results inherent to any risky innovation moves; it

steadily scavenges positive outputs from the intrinsically noisy innovative environ-

ment. Economic growth, therefore, results from a subtle interplay between a °uc-

tuating mechanism (innovation) and a mechanism that is deterministic (imitation).

Eliminating either of these two basic mechanisms leads to a reduction in (or even a

cancellation of) progress, as it is also expressed in [38].

aThe same vision is later adopted by e.g., [31, 33, 39, 42].
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To proceed toward a mathematical stylization of the above ideas, as in [7, 30, 31,

33], we consider a collection of ¯rms each of which is described by a Markov chain

(MC) evolving on a scalar ladder of log-productivity echelon. While in [7, 30, 31, 33],

several MC echelons can be crossed during a single time step, in this paper we focus

on MCs with jumps con¯ned to the nearest echelon only, i.e., birth-and-death (BD)

processes. The imitation mechanism is constructed by assuming the MC's birth rate

to be monotonously increasing with the imitation intensity in the economy. Specif-

ically, each ¯rm gathers in real-time the productivity level of competitors drawn from

a representative sample, and adjusts its imitation rate accordingly (i.e., the MC's

birth rate). As in [7, 30, 31, 33], we implement an aversion for being a productivity

laggard by imposing each ¯rms' birth rate to be proportional to the (time-dependent)

number of observed leaders. Such an imitation rule implements a nonlinearity into the

MC's dynamics which usually precludes analytical studies of the resulting transient

behavior. However, when examined in a continuous state-space-and-time limit, our

modeling framework illustrates that the log-productivity dynamics of a representative

¯rm can be e®ectively described by a nonlinear di®usion process of the form:

dXðtÞ ¼ ½�þ J ðXðtÞ; �ðx; tÞÞ�dtþ �dWðtÞ;Z
R

�ðx; tÞdx � 1;

8<
: ð1Þ

where XðtÞ stands for log-productivity of a representative ¯rm in a continuous state-

space-and-time limit, the normalized quantity �ðx; tÞ stands for the log-productivity

distribution of the ¯rms in the economy (in other words, �ðx; tÞdx represents the density

of ¯rms with log-productivity located in the interval ½x;xþ dx� at time t), and the drift

component J ðXðtÞ; �ðx; tÞÞ describes the imitation mechanism. Note that J ðXðtÞ;
�ðx; tÞÞ is a positive de¯nite function. The representative ¯rm e®ectively interacts with

the whole economy via the �ðx; tÞÞ-dependency in J ðXðtÞ; �ðx; tÞÞ, which explicitly

implements a nonlinear evolution. The constant drift intensity � � 0 describes a sys-

tematic innovation propensity towards progress, and ¯nally dWt stands for the standard

WhiteGaussianNoise process (WGN)whichmodels the randomness of the environment.

In this general context, the following questions will be addressed.

(a) Exogenous strategy and the sampling size e®ect.

Imitation processes, or the attention that ¯rms pay to their peers' productivity

state, depends on information gathering or technology replication on either sam-

ples of the population or on the whole society. Do stable collective productivity

evolutions emerge (i.e., stationary balanced growth paths) for arbitrary mutual

agent interactions? What is the importance of the sample size, and of the relative

weight that ¯rms attach to the observation of their peers (either ¯rms close to their

own productivity state, or productivity leaders)? Does there exist a critical imi-

tation threshold that di®erentiates between di®erent growth regimes?

To address these issues, we allow the nonlinear imitation drift J ðXðtÞ; �ðx; tÞÞ
in Eq. (1) to e®ectively depend on a parameter U which measures the abstract
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distance separating the ¯rms' log-productivities. More precisely, a ¯rm with log-

productivity XðtÞ adjusts its imitation drift J ðXðtÞ; �ðx; tÞÞ by numbering its

technological leaders located in a range U , namely those with log-productivities

belonging to the interval ½XðtÞ;XðtÞ þ U �. Accordingly, a large neighborhood U

implies that even far remote leaders are in°uential, thus describing strongly

competitive environments. Conversely, when U is small, ¯rms are comparatively

more cautious by being sensitive only to leaders close to their own log-

productivity state. If imitation costs were implementedb, as actually done in [7,

25], small neighborhood U sensitivities would re°ect risk aversion. Not only the

number of ¯rms with log-productivities found within a neighborhood U , but also

their relative distance from the productivity leaders, may in°uence, via ad hoc

weighting factors, the imitation propensity J ðXðtÞ; �ðx; tÞÞ. To highlight this

aspect, we are able to unveil a bifurcation separating two drastically di®erent

economic growth scenarios. When the level of mutual interactions in the economy

is below a critical threshold, a di®usive behavior dominates and growth cannot be

sustained (i.e., an evanescent propagating wave is generated). Conversely, when

the imitation strength exceeds the bifurcation threshold, the di®usive noise e®ect

due to the endogenous environment is counterbalanced by the ¯rms' mimetic

propensity, giving rise to a balanced growth path (i.e., a propagating wave with

constant variance). A similar bifurcation separating the two above propagation

modes was also qualitatively illustrated by de Geus in [11], where an example from

ornithology was borrowed and applied to economics (a more detailed account is

provided in Appendix B). Like what is happening here, a reduction in the agents'

observation range decreases the importance of the mutual interactions, which

ultimately precludes the possibility to generate stable collective scenarios (i.e., for

birds, the tendency to °ock). This illustration con¯rms that below a critical

threshold, mutual interactions are too weak to sustain a °ocked evolution (cor-

responding here to a mirror image of a balanced growth path), [10, 20].

(b) The role of the random environment.

How does the randomness due to the ¯rms' innovation attempts possibly add a

hidden bene¯t to the overall growth process?

(c) Mean-¯eld imitation game as an endogenous strategy.

Can we interpret some of the observed emerging growth scenarios as resulting

from an optimal strategy adopted in a multi-player game? Is it possible to relate

exogenous versus endogenous interaction rules leading ultimately to the same

balanced growth path?

Expressed formally, the drift ½�þ J ðXðtÞ; �ðx; tÞÞ� should itself result from an

optimal control problem involving a large collection of players (i.e., the ¯rms), for

which mean-¯eld games (MFG) framework is naturally suited. Speci¯cally, we

bBy naturally assuming that imitation of a far remote productivity leader incurs a heavier cost compared

to a close one.
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consider the following class of optimal control problems:

dXðtÞ ¼ a�½XðtÞ; t�dtþ �dW ðtÞ;

J að�Þ;Xð�Þð Þ ¼ min
fa2Ag

E

Z T

0

LðaðtÞ; �ð�; sÞ;XðtÞ; tÞ
� �

þ cT ðXðT ÞÞ;
LðaðtÞ; �ð�; sÞ;XðsÞ; sÞ :¼ cðaðtÞ;XðtÞ; tÞ � V ½�ð�; sÞ;XðsÞ�; g;

8>><
>>: ð2Þ

where the operator Ef�g is the expectation over the possible realizations of the

noise source dW ðtÞ, T is a ¯nal ¯xed time horizon, LðxðsÞ; �ð�; sÞÞ is a running

cost functionc, �ðx; tÞ is the density of ¯rms with log-productivity located in the

interval ½x;xþ dx� and A stands for the set of all admissible drifts a½XðtÞ; t�
among which the minimal a�½XðtÞ; t� is to be found. In the sequel, we will make

use of the framework given by Eq. (2) and explicitly calculate the mean-¯eld

interaction potential V ½�ð�; sÞ;XðsÞ� that gives rise to the propagating wave

derived for the exogenous rule evoked above in (a).

The possibility to bridge the gap between statistical physics (involving a large

number of microscopic variables) and thermodynamics (involving a few macroscopic

variables, i.e., those used in the real gas equation of van deWaals) is a major success of

theoretical physics. This achievement is inspiring and leads naturally to the question of

whether a similar program could be achieved for a \gas" of economic agents. Clearly, a

set of interacting gas particles is likely to behave in a far simpler way than a gas of

interacting \intelligent" agents who track an individual goal, namely the maximiza-

tion of a private utility function. In a mathematically stylized way, MFGs o®er one

possibility to bridge the gap between the microscopic and macroscopic collective dy-

namics for large swarms of such intelligent interacting agents. Our model fully belongs

to the ongoing research activity oriented along this general line. Speci¯cally, the new

class of exactly solvable models presented in this paper shares many features with the

celebrated class of Kuramoto coupled phase oscillators (KPOs) [1]. Like for the KPO

dynamics, exogenous long-range mutual interactions produce a behavioral bifurcation

from a desynchronized to a synchronized collective evolution. Similar to the KPO

dynamics, a corresponding MFG can be constructed, thus enabling to unveil the

corresponding endogenous rules obtained from individual utility function optimization

[45]. While for KPOs, the agents evolve on compact states (i.e., oscillator phases are

con¯ned on the circle), in our case the agents evolve on the whole real line. This

unwrapping of the state space is not an innocuous di®erence between our modeling

framework and the KPOmodel. Indeed, a KPO-type bifurcation can only be obtained

at the expense of introducing a barycentric weighting factor of the agent interactions.

The agent evolution on the linear state space o®ers the possibility to de¯ne ranks

between the agents (i.e., laggards and leaders) and hence to complement the list of

existing economic models based on the Schumpeterian quality ladder dynamics.

cThe notation LðxðtÞ; �ð�; tÞ; tÞ means that the function L associates with the density function �ð�; tÞ
another function Lð�ð�; tÞÞ itself evaluated at x. Accordingly, a given agent x interacts with her peers only

via their density function (in the mean-¯eld approach, agents are indistinguishable).
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1.1. Literature review

The economics literature is rich with theories of innovation and imitation dynamics

which attempt to capture many realistic aspects of long-run economic growth.

In [3, 16, 40], models of long-run growth, based on endogenous technological

change in patent-protected environments, enable us to think about the determinants

of technological progress and how the manner in which resources are allocated has

di®erential impact on long-run productivity growth. This axis of research is referred

to as endogenous growth theory and focuses on innovation-based growth dynamics.

While [40] relies on models in which productivity growth is caused by innovative

investments and the creation of new varieties of products, [3] addresses the

Schumpeterian paradigm, following which innovation and creative destruction

(i.e., when innovative technology tends to make older products obsolete) creates

long-run economic growth. To that aim, [3] builds the model on quality ladders, with

respect to which an existing product can be substituted by a new innovative one.

This paper can be seen as a natural generalization of the related Schumpeterian

innovation-imitation dynamics initially introduced in [23], and later extended in

[19, 24]. The common starting point for these studies is an evolution equation for the

agent density �ðx; tÞ representing an abstract productivity level x at a given time t.

However, while in [19, 23, 24], each agent's drift is determined in real-time by the

interactions that follow from an in¯nite observation range (i.e., a given agent is

in°uenced by all of her leaders or all of her laggards), we allow in this paper the

observation range to be an exogenously controlled variable (c.f. Sec. 2). As stated

above, this additional degree of freedom unveils a new, range-dependent, transition

between two drastically di®erent growth regimes. In [19, 23, 24], as the agent inter-

actions are long-range, only stable and stationary balanced growth paths are observed.

Building on the paradigm under which economic ideas can be ranked according to

their productive usefulness on the rungs of a scalar quality ladder, an agent-based

model is proposed in [42] to study some characteristics of economic growth. Economic

agents have an incentive to adopt a higher productive state by jumping at random

times either to a higher rung that is already occupied by another agent (the imitation

process) or to a higher rung without any side considerations (the innovation process).

For a large population of agents and for ladders with a large number of rungs, the

natural approach that is adopted is to describe the aggregated state of the agent swarm

by a measure density function �ðx; tÞ that quanti¯es the density of agents at a given

position x at a given time t. The approach derived in [42] illustrates how for a large

population of agents, �ðx; tÞ solves a deterministic nonlinear reaction-di®usion equa-

tion that is drastically di®erent than the Burgers' equation we will be dealing with in

the present work. Indeed, the density �ðx; tÞ in [42] always exhibits a stable traveling

wave character (i.e., a soliton), which represents a steadily growing economy.

Papers [33] and [34] consider a competitive economy with entry and exit, and

focus on describing the conditions that have to be ful¯lled by new entrants for

growth to be sustained. The randomness which comes along with the ¯rms'
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innovation attempts is also explicitly taken into account, and it is clearly emphasized

that the joint role played by innovation and imitation is essential to ultimately

enable a balanced growth path. While imitation is shown to be a mandatory

ingredient for the emergence of a stationary agent distribution, the speci¯c class of

models constructed in [33, 34] highlight that even a relatively low imitation

strength is already able to produce a balanced growth path where entry and exit

rates are high.

In [7] (see also [6]), an innovation-imitation dynamics is constructed, for which the

innovation states are also stylized by positions on a ladder. The jumps on this ladder

are intermittently driven by an alternating innovation productivity state, and the

alternations themselves are governed by a continuous time two-state MC. This type

of random environment ultimately implies the technological frontier to progress at

¯nite velocity. This has to be contrasted with our present paper, where the use of

White Gaussian Noise (and the unbounded realizations thereof) leads to in¯nite

frontier velocities. In addition, the imitation process, referred to as adoption in [7],

depends on a maximization process which is de¯ned via an ad hoc utility function.

Hence, the modeling framework considered in [7] exhibits a higher degree of com-

plexity since it includes an additional optimization step, which ultimately precludes

the possibility to derive an exact transient analysis.

The model introduced in [31] considers a collection of agents who divide their time

between producing goods and interacting with productivity leaders to improve their

own capabilities. As in the present study, the dynamics is driven by an underlying

stochastic environment, and a mean-¯eld approach in continuous-time is adopted.

The modeling approach adopted in [31] relies on individual utility functions and

focuses on the resulting stochastic optimal control problems (i.e., one deals with an

underlying MFG). In the context of an MFG, all players in the society are mutually

interacting, and thus the observation range between the agents is e®ectively in¯nite.

However, contrary to the class of individual objective functions that are discussed in

Sec. 3 of this paper, a °ocking-di®usive bifurcation does not exist in [31], even when

the imitation intensity decreases with agent dispersion.

Similarly, productivity growth is modeled in [25] as the outcome of two strategies,

namely in-house research and development (R&D; innovation) and replication of

competitors' technology (imitation). Considering an in¯nite imitation range, the

authors focus on the agents' choice between these two strategies, with individual pro¯t

maximization as the objective. It is shown that technology leaders tend to choose in-

house R&Das they get fewer imitation opportunities, while the cost-e®ective choice for

technology laggards is to imitate more productive competitors.

The endogenous strategy that will be developed in Sec. 3 relies on MFGs.

Following the pioneering works of Lasry and Lions [27–29], MFGs and their wide

potential for applications have been triggering sustained interest in the economics

literature (e.g., [2, 9, 14, 18, 26]). For our particular class of models, we use a recent

result exposed in [43] to analytically derive the stationary productivity waves that

correspond exactly to the MFG ergodic states.

Imitation, Proximity, and Growth a Collective Swarm Dynamics Approach
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1.2. Outlook

The remainder of the paper is organized as follows. In Sec. 2, the log-productivity of

an economy consisting of homogeneous interacting ¯rms is modeled via a set of

coupled discrete-time and discrete-space MC. By taking the continuous state-space-

and-time limit and adopting a mean-¯eld approach, our nominal dynamics can be

reduced to a nonlinear and nonlocal partial di®erential equation in 1þ 1 dimensions

(i.e., one dimension for space (productivity) and one for time), which corresponds to

the Chapman–Kolmogorov equation governing a strongly nonlinear di®usive pro-

cess. For speci¯c limiting regimes, characterized either by in¯nitesimal versus in¯-

nitely long imitation ranges in the log-productivity state space, the dynamics is

observed to converge towards the Burgers' equation for which one is able to derive

exact transient solutions. Two drastically propagating growth modes are explicitly

unveiled, namely a di®usive versus a stable propagating wave. A slight generalization

of the nominal model is then discussed in Sec. 2.1, where the in°uence of a leader is

weighted by its log-productivity distance relative to the average of the entire ¯rm

population within the economy. Depending on this weight, which in the sequel is

controlled by a single parameter, we are able to analytically characterize the critical

bifurcation point that separates the di®usive versus the collective stable propagating

wave. In complement to the exact results, intermediate parameter ranges for which

analytical results cannot be worked out are reported in a series of simulation

experiments that are exposed in Appendix E. Section 3 is devoted to the endogenous

MFG approach where we are able to explicitly construct the mean-¯eld potential,

which after dynamic programming, gives rise to the identical collective propagating

wave as the one derived in Sec. 2. Concluding remarks can be found in Sec. 4.

2. Discrete Modeling of Innovation-Imitation Dynamics

To model the innovation-imitation collective behavior of a collection of N ¯rms Ak

with k ¼ 1; 2; . . . ;N , we follow the lines exposed in [25] and consider a collection ofN

scalar stochastic processes XkðtÞ which describe the instantaneous log-productivity

states of the ¯rms. As in [25], we assume that XkðtÞ 2 Za :¼ f. . .� 2a;

�a; 0;þa;þ2a; . . .g. Hence, the log-productivity states are described by a regular

productivity ladder with echelon spacing a. We ¯rst consider a discrete time evo-

lution with time-steps �, and we write XkðtÞ :¼ Xkð��Þ, with � 2 Nþ. Again along

the lines drawn in [25], we assume that the Ak evolution can be stylized by a MC

dynamics in which the jump transition probabilities jointly depend on the underlying

innovation and imitation processes. Speci¯cally, innovation induces an e®ective

positive average, denoted �k � 0, and for the imitation the associated drift reads as

Dk½XðtÞ� > 0, where XðtÞ :¼ ðX1ðtÞ;X2ðtÞ; . . . ;XNðtÞÞ. We emphasize that, while

the innovation process is assumed to yield a constant drift component, the imitation

component depends on the instantaneous productivity states occupied by the Ak

concurrent fellows, as it is re°ected by the informal notation Dk½XðtÞ�. From now on,

O. Gallay, F. Hashemi and M.-O. Hongler
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we limit the discussion to a population of homogeneous ¯rmsd, leading us to write

�k ¼ �;

Dk½Xð��Þ� ¼ D½Xð��Þ�:
�

ð3Þ

The log-productivity dynamics of the ¯rms is now stylized by a set of N inter-

acting nearest neighbor ladder rungse in which the bias in the probability jumps

e®ectively models the innovation and imitation mechanisms. The mutual interac-

tions in our collection of BD processes are due to an imitation mechanism which is

implemented by an \avoid to be a log-productivity laggard" rule

(a) For any k ¼ 1; 2; . . . ;N , agent Ak steadily counts the number N kðtÞ of her log-
productivity leadersfAj for j 6¼ k, j ¼ 1; 2; . . . ;N, this within an observation

range ðUaÞ � 0, and hence N kðtÞ ¼
P

j 6¼kIf0 � ½XjðtÞ �XkðtÞ� � Ugg.
(b) The XkðtÞ jump process is endowed with a positive de¯nite bias monotonously

increasing with N kðtÞ.
Thanks to the homogeneity assumption and for large N , we adopt a mean-¯eld

approach (e.g., [21, 32]), and hence focus on the evolution of a single randomly

selected ¯rm A whose behavior will be representative of the whole population.

Within this picture, NðtÞ :¼ Nð��Þ stands for the number of log-productivity lea-

ders numbered by A within her observation range Ua. De¯ning P ½ðka; ��� to be the

probability of ¯nding A at position ka at time ��, the random evolution is formally

described by the following nonlinear BD master equation:

P ½ðka; ð� þ 1Þ�� ¼ pðka; ��;Xð��ÞÞP ½ðk� 1Þa; ���
þ qðka; ��;Xð��ÞÞP ½ðkþ 1Þa; ���;

pðka; ��;Xð��ÞÞ :¼ 1

2
fð1þ �Þ þ D½ka; ��;Nð��Þ�g;

qðka; ��;Xð��ÞÞ :¼ 1

2
fð1� �Þ � D½ka; ��;Nð��Þ�g;

D½ka; ��;Nð��Þ� :¼ �
Xm¼kþU

m¼k

½P ðma; ��Þ�
( )

2 ½0; 1�;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð4Þ

where the exogenous parameters � � 0 and � � 0 are chosen in an ad hoc range

ensuring that both BD jump probabilities pðka; ��;Xð��ÞÞ and qðka; ��;Xð��ÞÞ
remain positively de¯ned. At this stage, it is worth to explicitly list the analogies and

the di®erences between Eq. (4) and the recentmodeling framework introduced in [25].

dThe same assumption is also implemented in [25].
eThese processes are also known as BD processes in probability theory.
f It is not strictly necessary to observe all other agents, as it would be actually su±cient to consider a

representative statistics of the agent society in order to allow for the use of the mean-¯eld approach.
gThe function Ifzg is the indicator function which takes the value 1 when z is true and 0 otherwise.

Imitation, Proximity, and Growth a Collective Swarm Dynamics Approach
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Both in Eq. (4) and in [25], the economic growth dynamics is measured via the

log-productivity of the ¯rms, which are assumed to evolve according to discrete time

MC. The innovation mechanism is characterized by a constant jump rate in both

these modeling frameworksh. The basic di®erences between Eq. (4) and the approach

derived in [25] are the following:

(1) In [25], the imitation and innovation mechanisms do not simultaneously coexist.

Firms either imitate or innovate, and the alternations between attitudes are

endogenously triggered by the value of an underlying utility function. In Eq. (4)

however, we assume that both the innovation and imitation processes steadily

co-exist. Let us observe that in [7], innovation and imitation (which is referred as

adoption) mechanisms do also coexist.

(2) In [25], the MC is not restricted to be a BD process. Instead, imitation is assumed

to enhance the log-productivity via jumps of random lengths. For a given ¯rm

Ak, the length of the jumps depends on the log-productivity distance betweenAk

and a randomly chosen leader Aj for j 6¼ k. In Eq. (4), we assume that the log-

productivity follows a BD process where the jumps are limited to a single echelon

by time step �. Any ¯rm Ak observes in real-time and within an observation

range ðUaÞ, the log-productivity states of all her concurrents, and it is the

number of found leaders N kðtÞ which triggers the jump rate toward the log-

productivity improvements.

(3) In a single time step�, the imitation mechanism in Eq. (4) does not lead to a log-

productivity increase with certainty, rather imitation incidences are stylized by a

jump probability bias. In this approach, we have that pðka; ��;Xð��ÞÞþ
qðka; ��;Xð��ÞÞ � 1. This extra probability-conservation law will ultimately

enable us to derive exact results.

Let us now us reorganize the terms of Eq. (4) in order to reach a more suggestive

formi:

P ½ðka; ð� þ 1Þ�� � P ½ðka; ���
¼ 1

2
fP ½ðkþ 1Þa; ��Þ� � 2P ðka; ��Þ þ P ½ðk� 1Þa; ��Þ�g

þ �

2
fP ½ðk� 1Þa; ��Þ� � P ½ðkþ 1Þa; ��Þ�g

þ �

2

Xm¼k�1þU

m¼k�1

½P ðma; ��Þ�P ½ðk� 1Þa; ��Þ�
 !(

�
Xm¼kþ1þU

m¼kþ1

½P ðma; ��Þ�P ½ðkþ 1Þa; ��Þ�
 !)

: ð5Þ

hIn Eq. (4), innovation is summarized by the parameter �, while it is denoted by p in [25] (see Sec. 4.1).
iLet us observe that the nonlinear BD dynamics given in Eq. (4) is basically a generalization of the so-

called clannish random walk (see [35, Chap. 2, Sec. 7]).
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We perform now the continuous state-space-and-time limit,� ! 0 and a ! 0, for

which we can write P ðka; ��Þ 7! �ðx; tÞ with x 2 R and t 2 Rþ. When � ! 0 and

a ! 0, we proceed via the standard limiting procedurej by simultaneously

imposing that

� � ffiffiffiffi
�

p
;

a � ffiffiffiffi
�

p
;

� � ffiffiffiffi
�

p
:

8>>>>><
>>>>>:

ð6Þ

Using the identities

gðxþ aÞ � gðx� aÞ ¼
X1
k¼0

a2kþ1

k!

dð2kþ1Þ

dx2kþ1
½gðxÞ�;

gðxþ aÞ þ gðx� aÞ ¼
X1
k¼0

a2k

k!

dð2kÞ

dx2k
½gðxÞ�;

8>>>>><
>>>>>:

ð7Þ

the Taylor expansion of Eq. (5), up to the ¯rst-order in �, and to the second-order

in a, enables us to rewrite:

@t�ðx; tÞ ¼
a2

4�

� �
@ 2
xx�ðx; tÞ �

a�

2�

� �
@x�ðx; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dðx;tÞ

� �a

�

� �
@x

Z xþU

x

�ðy; tÞdy
	 


�ðx; tÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�uðx;tÞ

: ð8Þ

Note that, besides being di®erentiable once with respect to time t and twice with

respect to the variable x, the probability interpretation of �ðx; tÞ imposes thatR
R
�ðx; tÞdx ¼ 1. In Eq. (8), one recognizes a purely di®usive part dðx; tÞ, the origin of

which can be directly traced back from the innovation and a nonlinear and nonlocal

component �ðx; tÞ describing the imitation mechanism. The nonlinear and nonlocal

Fokker–Planck equation (8) is the basic deterministick evolution to be studied in this

present paper.

Remarks.

(1) When pure innovation is considered, namely � ¼ 0 in Eq. (8), we exactly

recover the dynamics studied in [25]l.

jSee Footnote d, and also [13, Sec. 2.A].
k In the mean-¯eld approach, thanks to the law of large numbers, explicit randomness disappears from the

description. It is e®ectively taken into account by the di®usive part of the dynamics.
l In [25], the innovation parameter is denoted by p and in the limit of a large population, the innovation

process is purely di®usive and reads as dðx; tÞ.

Imitation, Proximity, and Growth a Collective Swarm Dynamics Approach
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(2) In absence of innovation, namely when dðx; tÞ ¼ 0 and for the in¯nite

observation range capability (Ua ! 1), we observe that Eq. (8) reduces to

@tĜðx; tÞ ¼ �a

�

� �
@x �Ĝðx; tÞ þ 1

2
Ĝ

2ðx; tÞ
� �

;

1� Ĝðx; tÞ :¼
Z 1

x

�ðy; tÞdy:

8>><
>>: ð9Þ

Up to a rescaling, we note that Eq. (8) reproduces the q ¼ 1 long-range limit of

the modeling framework exposed in [25]. Accordingly, it is also identical to the

knowledge growth dynamics model pioneered by Lucas in [30].

When U > 0 and � > 0, we emphasize that in Eq. (8), the density �ðx; tÞ obeys a
class of nonlinear and nonlocal partial di®erential equations for which exact solutions

are not to be expected in full generality. However, for limiting regimes, explicit

solutions can be analytically worked out.

(A) In¯nitesimal Imitation Range (Cautious Agents)

This regime assumes that interactions are strictly limited to an in¯nitesimal

spatial range U . This allows us to Taylor-expand (up to ¯rst-order in U) the

integral term in Eq. (8) to obtain

@t½�ðx; tÞ� ¼ �@xf½�þ ð�UÞ�ðx; tÞ��ðx; tÞg þ �2

2
@ 2
xx½�ðx; tÞ�;

lim
jxj!1

½�ðx; tÞ� ¼ 0:

8><
>: ð10Þ

(B) In¯nite Imitation Range (Enterprising Agents)

For the extreme opposite case to regime (A), we can again explicitly work out the

dynamics in a di®erential form. Instead of the density �ðx; tÞ, which is involved in

Eq. (10), let us introduce and focus here on the complementary distribution

function Gðx; tÞ with strictly negative partial derivative with respect to x

Gðx; tÞ ¼
Z 1

x

�ðy; tÞdy ) @xGðx; tÞ ¼ ��ðx; tÞ: ð11Þ

When U ¼ 1, using the notation of Eq. (11) allows us to rewrite Eq. (8) as

@ 2
x;t½Gðx; tÞ� ¼ �@xf½�þ �Gðx; tÞ�ð@xGðX; tÞÞg þ �2

2
@ 3
xxx½Gðx; tÞ�;

Gð�1; tÞ ¼ 1 and Gðþ1; tÞ ¼ 0:

8<
: ð12Þ

By integrating Eq. (12) once with respect to x and imposing a vanishing integration

constant (we e®ectively assume as usual that no probability current °ows at in¯ni-

ty), we immediately obtain

@t½Gðx; tÞ� ¼ �f½�þ �Gðx; tÞ�@xGðX; tÞg þ �2

2
@ 2
xx½Gðx; tÞ�;

Gð�1; tÞ ¼ 1 and Gðþ1; tÞ ¼ 0:

8<
: ð13Þ

O. Gallay, F. Hashemi and M.-O. Hongler
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Except for their boundary conditions, we observe that Eqs. (10) and (13) coincide.

To solve these partial di®erential equations (PDEs), ¯rst we introduce the change

of referential: x 7! z ¼ ½x� �t� and accordingly, Eqs. (10) and (13) can be rewritten as

@t½’ðz; tÞ� ¼ ��@z½’ðz; tÞ�2 þ
�2

2
@ 2
zz½’ðz; tÞ�; ð14Þ

where the parameter � in Eq. (14) is suitably identi¯ed as:

� ¼
�U

2
and ’ðz; tÞ :¼ �ðz; tÞ for the model given in Eq: ð10Þ;

�

2
and ’ðz; tÞ :¼ Gðz; tÞ for the model given in Eq: ð13Þ:

8><
>: ð15Þ

Hence, for ’ðz; tÞ, we see that Eq. (14) is the Burgers' equation, which can be

linearized by using a logarithmic transformation and hence explicit solutions are

well-known. Dependent on their boundary conditions, these explicit solutions of

Eq. (14) are recalled in (A) and (B) below.

(A) In¯nitesimal Imitation Range (Cautious Agents), cf. Eq. (10)

For the boundary condition limjxj!1 ’ðz; tÞ½ � ¼ 0 and for the initial condition

’ðz; 0Þ ¼ F ðzÞ, the solution of Eq.(14), and subsequently the agent density

function solving the model described by Eq. (10), is given by (see [12,

Eq. (8.4.14)]):

�ðz; tÞ ¼ ’ðz; tÞ ¼
R
R

z�	
2�t

� �
e�

f
2�ð Þd	R

R
e�

f
2�ð Þd	

; ð16Þ

with the de¯nitions

� ¼ �2

4�
and f ¼ fð	; z; tÞ ¼

Z 	

0

F ðyÞdyþ ðz� 	Þ2
2�t

: ð17Þ

In particular, in the presence of small noise intensity and for the initial con-

dition ’ðz; 0Þ ¼ F ðzÞ ¼ 
ðzÞ�ðzÞ, the asymptotic behavior (i.e., t ! 1) of the

dynamics given by Eq. (16) can be approximately written as

�ðz; tÞ ¼ ’ðz; tÞ ’
z

2�t
¼ z

�Ut
if 0 < z <

ffiffiffiffiffiffiffiffi
4�t

p
;

0 otherwise;

8<
: ð18Þ

which, for this vanishing noise regime, converges toward a shock wave-like

pattern, as shown in Fig. 1.

(B) In¯nite Imitation Range (Enterprising Agents), cf. Eq. (13)

In this case, the boundary conditions are equal to ’ð�1; tÞ ¼ 1 and

’ðþ1; tÞ ¼ 0. For any arbitrary initial condition ’ðz; 0Þ ¼ F ðzÞ, the solution of

Eq. (14), and subsequently the agent probability distribution that solves the

Imitation, Proximity, and Growth a Collective Swarm Dynamics Approach
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model described by Eq. (13), can be written for asymptotic time as the fol-

lowing traveling wave solution (see [12, Eq. (8.3.8)]):

’ðz; tÞ ¼ 1

2
1� tanh

�ðz� �tÞ
�2

� �	 

; tanhðxÞ ¼ ex � e�x

ex þ e�x
¼ sinhðxÞ

coshðxÞ : ð19Þ

Using Eq. (11), by di®erentiating Eq. (19), we determine that the agent density

function solving the model described by Eq. (13) is a soliton-like propagating wave,

as shown in Fig. 2:

�ðz; tÞ ¼ �@z’ðz; tÞ ¼
�

2�2cosh2 �ðz��tÞ
�2

� � ¼ �

4�2cosh2 �ð2z��tÞ
4� 2

� � : ð20Þ

Observe that the larger the noise amplitude �, the °atter the resulting solution.

Remark:

As shown by Eq. (20), and contrary to the reaction-di®usion evolutions such as the

equation derived in [42], the collective log-productivity growth rate � does not de-

pend on the amplitude of the di®usion �, which a®ects only the shape of the traveling

wavem.

It is interesting to observe the fundamentally di®erent dynamic behaviors ema-

nating in the two regimes (A) and (B) exposed above, the solutions of which are

mDue to the so-called Rankine–Hugoniot relation, it is known that for scalar hyperbolic conservation laws,

to which the Burgers Eq. (14) belongs, the propagating speed of the traveling wave depends only on the

boundary values of ’ð�1; tÞ ¼ 1 and ’ðþ1; tÞ ¼ 0 (see [5]).

Fig. 1. Collective dynamics observed for the in¯nitesimal imitation range as given by Eq. (16), when
� ¼ 1, � ¼ 1, � ¼ 0:2, and U ¼ 0:1. The interactions between the agents produce an asymmetric shape for

the density �ðx; tÞ, which propagates at speed ð�þ �U=2Þ. Di®usion precludes the formation of a sta-

tionary dynamic pattern. Thus, for t ! 1, the density �ðx; tÞ °attens while remaining normalized
to unity. Ultimately, the productivity states tend to be widely dispersed (i.e., absence of °ocking). The

short-range imitation mechanism precludes the productivity leaders to give rise to a stable growing

productivity wave.
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given by Eqs. (16) and (20). The variances s2ðtÞ associated with Eqs. (16) and (20)

can be explicitly written as

s2ðtÞ ¼
Z
R

ðz2Þ�ðz; tÞdz

¼
1

6
ð�tÞ for short imitation range; c:f: case ðAÞ;

�2�4

3� 2

�4

�2
for large imitation range; c:f: case ðBÞ:

8>><
>>: ð21Þ

Equation (21) exhibits a structural change for agents that behave with short

versus long imitation ranges. Only long-range imitation mechanisms sustain the

emergence of stable stationary traveling waves (soliton-like) with constant variances.

From shorter rangemimicry, the emergent dynamic pattern is dominated by di®usion.

In that case, the variance of the productivity wave grows with time and ultimately

leads to an evanescent dynamic pattern (i.e., no stable constant variance productivity

wave can survive). These two drastically di®erent productivity evolutions suggest that

there should exist a critical imitation strength below which the stable dynamic growth

pattern cannot survive. This issue is addressed in the next section.

The growth rates that emerge in these regimes are equal to (A) �þ �U
2 (U small)

and (B) �þ �
2. In both cases, the engine of growth is composed of 2 components: the

¯rst term (�) is the result of individual attempts toward innovation, and the second

term (�U2 or �
2) is the consequence of mutual interactions. Aligned with the ¯ndings

exposed in [33], this suggests that innovation and imitation together are ultimately

required to create a balanced growth path.

Fig. 2. Collective dynamics observed for the in¯nite imitation range, as given by Eq. (20), when � ¼ 1,

� ¼ 1, and � ¼ 0:2. The imitation mechanism generates a collective productivity wave with constant

variance, which travels at constant velocity ð�þ �=2Þ, without shape alteration (the transient evolution is

not represented in this ¯gure). Thus, the agents remain spatially tuned together (i.e., presence of °ocking).
They collectively progress on the abstract productivity real line with constant dispersion. The large-range

imitation mechanism favors the in°uence of the leaders and ultimately generates a collective spatio-

temporal pattern.
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2.1. Crowd-based agents' interactions

We have thus far focused on limiting cases that involve in¯nitesimally short and

in¯nitely long-range imitation mechanisms. We now broaden this framework by

considering the following generalization. For an in¯nite observation range, we

extend our mutual interaction rule by introducing a symmetric weighting Gðx�
hXðtÞiÞ ¼ GðhXðtÞi � xÞ factor that depends on the remoteness of each agent with

the swarm barycenter hXðtÞi. When G is a decreasing function of its argument, it

will generate a conformist tendency as the agents attach more importance to

average behavior. Conversely, for increasing G's, agents are more in°uenced by

leaders or laggards. As in our model, the imitation mechanism systematically

depletes the laggard population in favor of the leader population, and increasing

the G-modulation e®ectively describes the strong in°uence of the frontier tech-

nology leaders. To summarize, we assume as before that agents systematically

tend to imitate their leaders, but we modulate the strength of imitation with the

idea that leaders who are far away are either more or less in°uential than those

who are close to the crowd barycenter. Assuming once again the validity of the

mean-¯eld approach and choosing � ¼ 1, we now generalize the interaction kernel

given in Eq. (8) by writing

@t½�ðx; tÞ� ¼ �@x �þ
Z 1

x

G y� hXðtÞi½ ��ðy; tÞdy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
imitation modulated drift

2
6664

3
7775�ðx; tÞ

8>>><
>>>:

9>>>=
>>>;þ �2

2
@ 2
xx½�ðx; tÞ�;

�ðx; tÞ 2 ½0; 1� and lim
jxj!1

½�ðx; tÞ� ¼ 0;

8>>>>>><
>>>>>>:

ð22Þ
where hðXðtÞi :¼ R

R
x�ðx; tÞdx is the swarm barycenter. Let us emphasize that in

Eq.(22), the imitation range is e®ectively in¯nite (i.e., the integral boundary is

þ1). As in Sec. 2.1, we would like to investigate the possible existence of a

stationary density with constant variance and traveling velocity, namely, a

solution of the form �ðx� vtÞ. In general, the nonlinear and nonlocal character of

Eq. (21) precludes us from ¯nding an explicit analytical solution. However, as

shown in Appendix C, the speci¯c choicen:

GðxÞ ¼ Að�; �2Þcosh��ðxÞ;

Að�; �2Þ ¼ ð2� �Þ½�ð1� �
2Þ�2

2��ð2� �Þ �2; � 2 ½�1; 2½;

8><
>: ð23Þ

nWhen � ¼ 0 (and the observation range is in¯nite), the dynamics corresponds to the one studied in [23].

Indeed, the imitation process matches in this case the situation where each agent's imitation activity

consists of randomly observing one of her peers, and replicating the observed productivity (by augmenting

her drift) as long as it is higher than her own productivity.
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leads to the explicit constant variance productivity wave growth:

�ðx; tÞ ¼ N ½ð2� �Þ�coshð��2Þðx� ð�þ w|fflfflffl{zfflfflffl}
v

ÞtÞ; � 2 ½�1; 2½ ;

w ¼ ð2� �Þ �
2

2
;

8><
>: ð24Þ

where N ½ð2� �Þ� is the normalization factor of the density �ðx; tÞ. The traveling

velocity includes two components, namely � which is due to the innovation rate

and w that is due to the mutual interactions. Observe that the smaller is the

� < 0, the more peaked the emerging soliton becomes. Conversely, for 0 < �. 2, a

table-top soliton is obtained.

From Eq. (24), three di®erent regimes can be distinguished depending on the

value of �:

(1) Cautious Agents

When the control parameter � 2 ½2;1½, the e®ective interaction strength is too

limited to give rise to °ocked collective behavior. The decay exhibited by the

function G is strong, implying that only leaders close to the swarm barycenter a®ect

the dynamics. This stylizes cautious behaviors where strong conformism dominates

and where productivity leaders have a negligible in°uence on their peers. Accord-

ingly, in this situation, no °ocking traveling solitonwave can be sustained, and only

a di®usive time-evanescent wave results (with growing variance).

Conversely for � 2� �1; 2�, °ocking soliton waves emerge, and two distinctive

strategies can be highlighted.

(2.a) Weakly Enterprising Agents

For � ¼ ½0; 2½, a cautious attitude still dominates, as the function G given by

Eq. (23) exhibits a slow decay (remember that cosh��ðxÞ ’ ð1=2Þe��x for

x ! 1), meaning that remote leaders, while still in°uencing the dynamics, are

given an importance that decreases remotely. This stylizes a relatively mod-

erate enterprising behavior as agents are ready to take into account outliers,

but with reduced in°uential power.

(2.b) Strongly Enterprising Agents

For � < 0, the space is given by leaders located close to the productivity

frontier (this results from the asymmetry of the model), which highlights a net

progressive-oriented attitude. Agents pay more attention to the productivity

leaders than to their fellow agents situated close to the crowd barycenter. This

produces a decrease in the tail of the agents' distribution and thus sharpens the

soliton wave.

Remark:

The evolution described by Eq. (24) has to be contrasted with the result derived in [7,

Sec. 5.2] (i.e., absence of excludability) where a so-called distortion coe±cient called 


turns out to play a similar role than � in Eq. (23). It is observed in [7] that 


in°uences the shape of the traveling wave but not its speed, whereas in Eq. (24) the
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speed of the productivity growth also depends on �. While in both approaches the

parameter � < 0 (respectively, 
) confers a strong driving in°uence to the leaders

close to the productivity frontier, there exists a drastic di®erence between the

frontier dynamics itself. In our modeling framework, the innovation frontier is de-

scribed by a di®usion process, therefore with a transition probability density obeying

a parabolic Fokker–Planck evolution, with PDE characteristics propagating at in-

¯nite speed (n.b. this is due to the underlying existence of unbounded di®usive

excursions). The unboundedness of the characteristics speed ultimately a®ects the

global productivity growth velocity. This has to be contrasted with the dynamics

studied in [7], where the frontier evolution is driven by a two-state, continuous-time,

MC, hence leading to transition probability densities obeying hyperbolic Fokker–

Planck evolutions with strictly ¯nite velocity characteristics. Due to these char-

acteristics, the driving in°uence of the frontier is weaker and the 
-distortion is

observed to a®ect the shape but not the speed of the log-productivity growth wave.

Phase Transition

Therefore, for the modulation choice given by Eq. (23), the critical decay threshold

� ¼ 2 is a bifurcation parameter, which separates two drastically di®erent growth

regimes. When � > 2, growth cannot be sustained as the mutual interactions are too

limited. Conversely, when � < 2, the imitation strength is large enough to trigger a

stationary balanced growth path with strictly positive growth. This aspect has not

been unveiled yet in the literature.

Agent Dispersion and Inequalities

As shown in Fig. 3, the dispersion of the agents in the stationary state decreases

with the strength of interaction in the economy (i.e., when � decreases). A higher

Fig. 3. Barycentric modulation functions cosh��ðxÞ, for di®erent values of �, and corresponding collective

productivity wave �ðx; tÞ.
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degree of imitation, jointly with larger in°uence of the productivity leaders, decreases

the inequality level between the agentso.

2.2. Relation with the Schumpeterian literature

The objective of this section is to connect our modeling framework with former

related classical economic contributions devoted to economic growth.

2.2.1. Extra drift parameter � and solow residual

In our basic microscopic modeling de¯ned in Eq. (4), we introduce a bias � in the MC

transitions. This gives rise to an extra drift in the subsequent continuous dynamics,

namely Eqs. (8), (10), (13) and (22). Let us now connect the parameter � with the

macro-economic variables as exposed in [4]. From a Cobb–Douglas production

framework, [4] shows how the aggregate instantaneous growth rate of output per

person gðtÞ can be attributed to two separate contributions. The ¯rst one is tech-

nological progress, namely the total factor productivity (TFP) AðtÞ. The second one

is factor accumulation. Following [4], we have

Y ðtÞ ¼ AðtÞKaðtÞL1�aðtÞ ) log
Y ðtÞ
L

	 

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
:¼
Z t

t0

ðgsÞds

¼ log½AðtÞ�|fflfflfflfflffl{zfflfflfflfflffl}
:¼XðtÞ

þa log
KðtÞ
LðtÞ
	 


|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
:¼logðkðtÞ

dXt ¼ gðtÞdt� a½d logðkðtÞ�dt;

8>>>>><
>>>>>:

; ð25Þ

where a 2 ½0; 1� and a½d logðkðtÞ� stands for the capital-deepening contribution.

The so-called Solow residual Xt is derived from a Cobb–Douglas evolution and

hence it is a macro-economic variable with a purely deterministic evolutionp.

Hence, the evolution described by Eq. (25) has to be connected with the average

gðtÞ ¼ R
R
x�ðx; tÞdx and with the probability density of the logarithm of the

TFP �ðx; tÞ. Focusing on stationary regimes, we have gðtÞ 7! g ¼ ð�þ !Þ, where �
isolates all Solow residual contributions that are not imputable to the imitation

mechanism.

2.2.2. Choice of the noise sources

In our nominal microscopic modeling given by Eq. (1), the set of di®usion processes is

driven by independent White Gaussian noise sources. Similarly, the underlying

Markovian dynamics on the set of productivity ladders, as given by Eq.(4), is

oNote that the stationary agents' distribution exhibits an exponential tail. This behavior has to be
contrasted with the one exposed in [33], where a fat tail emerges.
p In a macroscopic description, random °uctuations around average paths are omitted. The law of large

numbers implies that the aggregation of numerous microscopic evolution into a single macro-variable

wipes out the °uctuating contributions.
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characterized by independent jumps performed by the agents. In our dynamics,

randomness is introduced to stylize Hicks' neutral productivity changesq. Generally,

sources of randomness can be multiple and, in particular, one may distinguish be-

tween an ubiquitous single exogenous and endogenous noise sources:

(i) Single exogenous stochastic process, call it �ðtÞ. It originates from the environ-

ment simultaneously shared by all agents. Speci¯cally, random changes in the

set of framework conditions of the economy will be perceived similarly by all

¯rms.

(ii) Endogenous stochastic processes, call it dWiðtÞ, for i ¼ 1; 2; . . . ;N . These pro-

cesses are peculiar to each ¯rm. Randomness due to management decisions, labor

force characteristics such as skills, routines, learning and cognition [36], R&D

expendituresr, probabilistic odds when ubiquitous failures occur in the produc-

tion facilities or in the supply chains, all jointly a®ect the ¯rms' TFP. The

central limit theorem teaches us that the cumulative e®ects of such multiple

random sources can be e±ciently modeled by coloreds Gaussian stochastic

processes. In the sequel, we will always assume that, for the time scales of in-

terest, these Gaussian noise sources have vanishing auto-correlations and hence

the endogenous dWiðtÞ, i ¼ 1; 2; . . . ;N , are White Gaussian noise (WGN)

processes.

Accordingly, our dynamics structurally reads as:

dX1ðtÞ ¼ ½fðX1ðtÞ;XðtÞÞ�dtþ �ðtÞdtþ �dW1ðtÞ;
dX2ðtÞ ¼ ½fðX2ðtÞ;XðtÞÞ�dtþ �ðtÞdtþ �dW2ðtÞ;
� � � � � � � � �

dXNðtÞ ¼ ½fðXNðtÞ;XðtÞÞ�dtþ �ðtÞdtþ �dWNðtÞ:

8>><
>>: ð26Þ

For i ¼ 1; 2; . . . ;N, the N aggregation processes de¯ned by �iðtÞ :¼ ½�ðtÞdtþ
�dWiðtÞ� are clearly cross-correlatedt. Since the �ðtÞ °uctuation process is simulta-

neously a®ecting all components, one may alternatively de¯ne:

f̂ ðXkðtÞ;XðtÞ; �ðtÞÞ :¼ ½fðXkðtÞ;XðtÞ þ �ðtÞ�. This last expression can be rewritten as

dX1ðtÞ ¼ ½f̂ ðX1ðtÞ;XðtÞ; �ðtÞÞ�dtþ �dW1ðtÞ;
dX2ðtÞ ¼ ½f̂ ðX2ðtÞ;XðtÞ; �ðtÞÞ�dtþ �dW2ðtÞ;
� � � � � � � � �

dXNðtÞ ¼ ½f̂ ðXNðtÞXðtÞ; �ðtÞÞ�dtþ �dWNðtÞ;

8>>><
>>>: ð27Þ

qA change is considered to be Hicks neutral if it does not impact the balance of labor and capital in a

production function.
rObserve that °uctuations in the R&D expenditure actually a®ect both endogenous and exogenous noise

sources.
sColored noise processes have ¯nite auto-correlations.
tThis is obviously due to the common component �ðtÞ.
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where theN endogenous noise sources dWkðtÞ are now independent as in our nominal

dynamics given by Eq. (1). Our basic goal being to study the collective interplay of

innovation/imitation in the overall growth process, one would ideally like to isolate

the contributions due to the agent interactions from those resulting from the com-

monly shared exogenous environment. Namely, for a ¯xed realization of the envi-

ronment process �ðtÞ, one is interested in the resulting collective behavior of the

whole swarm. In general, the intrinsic modeling nonlinearities preclude the possi-

bility of such a clear separation analytically. We assume that �ðtÞ ’ 0, as calibrated

in our modeling, is valid either for small exogenous noise sources or possibly for

slowly varying ones. In the latter case, �ðtÞ can indeed be approximated by a piece-

wise deterministic process with long average sojourn times in the successive random

constant states �k
u.

2.2.3. Qualitative e®ect due to ¯rm entry and exit

Basically, our model assumes that entry and exit of ¯rms are absent from the dy-

namics and so the population of ¯rms N is time-independent. Laggards always

imitate leaders and never exit from the economy. This might look as a model

weakness since entry and exit °ows are de¯nitely present in actual situations and

hence naturally enter into many classical growth models, [4].

Let us now assume that N 7! NðtÞ to re°ect the fact that, due to the presence of

entry and exit °ows, the number of ¯rms is allowed to °uctuate with time. Indeed,

technological laggards exit from the economy and ¯rms close to the technological

frontier are allowed to join. Accordingly, the corresponding modeling framework

would require incorporating moving probability sinks (respectively, probability

sources), located near the laggards (respectively, in the leader neighborhood). This

additional complexity destroys the conservative nature of the Fokker–Planck dy-

namics considered in this studyv and has not been addressed in our present approach.

In the presence of such probability sinks and sources, let us assume the existence of a

stationary regime characterized by a vanishing average imbalance between entries

and exits, so that EfNðtÞg ¼ N remains constant. Compared to the nominal density

�ðx; tÞ solving Eq. (8), such entry-and-exit °ows are likely to induce an extra right-

handed skewness in the total factor productivity probability density, let us call it

�skewðx; tÞ. The right-handed skewness weakens the probability weight carried by the

left tail of �skewðx; tÞ compared to the nominal left tail of �ðx; tÞ and, since normal-

ization is assumed to be preserved, this implies:

0 �
Z 1

x

�ðy; tÞdy �
Z 1

x

�skewðy; tÞdy � 1: ð28Þ

uWhen the average sojourn time is much larger than the relaxation time needed to reach equilibrium,

within one period of the noise realization, we recover our nominal dynamics with � 7! �þ �ðtÞ.
v It is a continuity equation which preserves positivity and the probability mass. These properties are

essential to construct analytically solvable models, as those presented here.
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Hence, entry-and-exit would clearly impact the distribution of ¯rms' productiv-

ity, as it would further increase the e±ciency of an imitation mechanism of the type

used in Eq. (8), and hence further enhance the overall growth process.

2.2.4. Fat tail of the total factor productivity distribution

Asymptotically, our soliton solution, as given by Eq. (24), behaves as

�ðx; tÞ ¼ N
cosh2��ðx� vtÞ ’x!1 N eð��2Þðx�vtÞ; ð29Þ

for � 2 ½�1; 2½ with v ¼ ð�þ !Þ, where ! is entirely due to the imitation process,

and N is the normalization factor. At this stage, remember that we have de¯ned

Xt :¼ lnðAtÞ, where At itself is the TFP. Accordingly, to compare with the empirical

results obtained in [25, Fig. 1], we have to calculate

EflnðAtÞg ¼ N ð2� �Þ
Z
Rþ

½lnðaÞ�
cosh2��ðlnðAtÞ � vtÞ d lnðAtÞ ¼ vt;

�2
K ¼ EfðlnðAtÞ � vtÞ2g ¼ N ð2� �Þ

Z
Rþ

	 2

cosh2��ð	Þ d	Þ ¼
1

4
	 2;

2� �

2

� �
;

	 :¼ ðlnðAtÞ � vtÞ and N �1ð2� �Þ ¼ 1

2
4� ½�ð2� �ÞÞ�2

�½2ð2� �Þ� ;

ð30Þ

where 	ð2; 2��
2 Þ stands for the Hurwitz-zeta function (details for the underlying

calculations are provided in Appendix F). Focusing ¯nally on the probability tail,

we have

�ðx� vtÞdx 7!

�ðlnðAtÞ � vtÞd½ðlnðAtÞ� ’ N ð2� �Þeð��2ÞðlnðAtÞ�vtÞd½lnðAtÞ�;
ð31Þ

which in terms of At exhibits a fat tailw with negative slope ð� � 2Þ < 0.

Let us now directly refer to the results exposed in [25] (see Appendix 2B in the

supplementary material), we have

(a) EflnðAtÞg ¼ 0:027

(b) �K 2 ½1:61; 1:67� ) �2
K 2 ½2:5; 2:78�

(c) Slope of the right fat tail �R ¼ �3:73

In Appendix F, we show that �2
K ’ ð2� �Þ�1. Using entry (b) above, we can

determine the corresponding factor � as

� 2 ½�1:6;�1:65� ) �R ¼ ð2� �Þ 2 ½�3:6;�3:65�;

wAs sketched in [25, Fig. 1].
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hence showing a good slope compatibility of the right fat tail with the collected data

in [25]. Since � < 0, we are in the regime (2.b) of Sec. 2.1, thus indicating a net

tendency to belong to the regime of enterprising agents.

Finally, the soliton velocity, as given by Eqs. (24) and (43), reads as

�þ 1

2
ð2� �Þ�2 ¼ 0:027:

Accordingly, once the dynamics sets itself into the traveling soliton equilibrium, we

observe that our model imposes a °uctuation-transport relation connecting the drift

� and the underlying endogenous noise source �.

2.2.5. Technical adoption and the parameter �

In our modeling framework, the control parameter � exogenously weights the relative

in°uence of leaders in the imitation process, thus re°ecting the relative capacity of

¯rms to absorb other ¯rms' technologies. Speci¯cally, � incorporates:

(1) The underlying quality of the legal environment (i.e., patent protection sys-

tem). In environments with well-protected intellectual property rights, the

potentially high bene¯t o®ered by occupying a monopolistic position generates

strong incentives to track the technological frontier, thus implying an ad hoc

choice of a negative �, or conversely. For example, countries where a strong

patent law system is implemented will observe a lower tendency for imitation as

compared to countries where this is not the case. Note that in our approach,

and contrary to [25], we do not explicitly incorporate a utility function that

would enable us to ¯x an optimal value for �.

(2) The speci¯c characteristics of the industry under consideration. As exposed in

[36], industries with di®erent degrees of technological sophistication exhibit

di®erent behaviors with respect to imitation. For example, in science-based

industries, the strongly protected intellectual property environment weakens

the capability of imitation. The present paper hence draws on the building

blocks provided by [36] and complements it with analytical tools.

2.2.6. Auto-catalytic mechanism and growth

We observe in Eq.(10) that for this limiting in¯nitesimal interaction range, the

imitation process e®ectively reduces to an auto-catalytic contribution given by

�U�2ðx; tÞ. While such nonlinearity is commonly encountered in chemistry [37], it

has been less remarked in the context of economics. Nevertheless, a similar mecha-

nism has been clearly identi¯ed in [41], where auto-catalytic nonlinearity is explicitly

pointed out. Quoting the authors: [. . .] Imitation is an auto-catalytic phenomena in

the sense that the higher the rate of imitation, the greater the incentive for other ¯rms

to imitate, at least to a certain point [. . .].
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2.3. Simulations and model generality

To derive the exact results presented in Sec. 2, several analytical limitations have

been imposed, namely:

(a) the agent population is assumed to be very large (e®ectively N ! 1) for the

mean-¯eld approach to be strictly valid,

(b) the interaction range U is either in¯nitesimally small or in¯nitely large,

(c) the use of WGN to drive the evolution,

(d) the homogeneity of the agent population.

This set of hypotheses is barely expected to be strictly realized in actual

situations, and this raises naturally the question regarding the robustness of our

observations and conclusions under slight modi¯cations of our basic hypotheses. To

discuss this fundamental issue, we report in Appendix E an extended set of simu-

lations that illustrate that the analytical results in Sec. 2 are not qualitatively af-

fected by (slightly) relaxing the hypotheses needed to derive the obtained exact

solutions.

3. Endogenous Growth and MFG

In the preceding section, we showed how the imitation mechanism in°uences the

propagation of economic growth in a large population of interacting agents. While in

Sec. 2, the agents' imitation strategy was exogenously de¯ned, we now focus on

MFGs, and more precisely on the collective dynamics that emerge from an optimal

control problem in which agents minimize an individual objective function. In the

MFG context, the objective function depends on the global society of players (i.e.,

agents). In other words, we will now unveil how the behaviors found in Sec. 2 can also

emerge from individual optimization strategies and why MFGs may actually be a

natural mathematical framework to describe economic growth endogenously. In this

section, we will show that the mean-¯eld evolution encapsulated into Eq. (22) and

the resulting propagating growth wave Eq. (24) can alternatively be viewed as the

ergodic solution of an associated MFG, in the sense of [8]. While, in Sec. 2, we had to

study a forward-in-time problem, optimizing individual objective functions as to be

done in this section generates a forward-/backward-in-time structure which is typical

for the MFG context. This re°ects the underlying anticipation mechanism that

animates the players' optimal decisions.

3.1. MFG and sustained growth

We now focus on the cooperative parameter range � 2� �1; 2½. The basic question to

be addressed is to construct an MFG that reproduces the °ocking behavior calcu-

lated in Sec. 2.3. To construct this MFG, we are using the recent development

exposed in [43], which is itself based on the MFG theory given in e.g. [18, 27].
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We consider the class of MFGs de¯ned by

dXiðtÞ ¼ aðXiðtÞ; tÞdtþ �dWiðtÞ; i ¼ 1; . . . ;N

Jðað�Þ;Xið�ÞÞ ¼ E

Z T

0

c aðsÞ;XiðsÞð Þ � V �ð�; sÞ;XiðsÞ½ Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
LðaðsÞ;�ð�;sÞ;XiðsÞÞ

dsþ cT ðXiðT ÞÞ

8><
>:

9>=
>;;

8>>><
>>>:

ð32Þ
where Ef�g is the average over the noise realizations, �ðx; tÞ :¼ N�1

P i¼N
i¼1 
ðx�

XiðtÞÞ is the agents' empirical density, and L is an individual aggregated running

cost due to innovation and imitation. When an agent increases her productivity, it

leads not only to individual improved e±ciency but also to a reduction in the number

of peers she is in competition with. To take advantage of both aspects, there is an

associated cost to be paid for these expected improvements. The time-dependent

incurred cost L di®ers among the agents, depending on their productivity state, since

it is easier for a laggard agent to improve than for one close to the technology

frontier.

In the sequel, we choose

cðaðtÞ;XiðtÞÞ ¼
�

2
½ðaðXiðtÞ; tÞ � b�2;

V ½�ðx; tÞ;XiðtÞ� ¼ V ½�ðx; tÞ� ¼ g½�ðx; tÞ�p; g > 0 and p > 0;

8<
: ð33Þ

where g describes the wish for resemblance and hence the imitation activity of the

agents, the parameter p tunes the imitation strength, � weights the drift adjustment

cost, and b denotes a target productivity growth rate. In a blind (i.e., without in-

teraction) and deterministic economy, each (isolated) agent would have to individ-

ually innovate at rate b. According to Eq. (33), the interaction potential depends on

the population density. This highlights that the growth process is not only due to

innovators but also to the whole economy through the imitation mechanism. Note

that except for the presence of the b term, the objective function appearing in

Eqs. (32) and (33) coincides with the one given in [43].

By de¯ning the value function

uðxðtÞ; tÞ :¼ min
að�Þ

fJðaðtÞ;xðtÞÞg; ð34Þ

the MFG reduces to solving the forward-/backward-in-time set of coupled PDEs:

@t�ðx; tÞ ¼ @x

1

�
@xuðx; tÞ � b

� �
�ðx; tÞ

	 

þ �2

2
@ 2
xx�ðx; tÞ; ðFPÞ

@tuðx; tÞ � @xb uðx; tÞ � 1

2�
½@xuðx; tÞ�2 þ

�2

2
@ 2
xxuðx; tÞ ¼ �g½�ðx; tÞ�p; ðHJBÞ

8>><
>>:

ð35Þ
where the Hamilton–Jacobi–Bellman (HJB) equation describes the optimal control

problem of each individual agent and the Fokker–Planck (FK) equation drives the
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evolution of the agent population. Observe that the b component of the drift can be

straightforwardly removed from Eq. (35) by the Galilean transformation t 7! t 0 ¼ t

and x 7! x 0 :¼ ðx� btÞ. This transformation of variables results in the following set

of coupled PDEs:

@t�ðx; tÞ ¼ @x

1

�
@xuðx; tÞ

� �
�ðx; tÞ

	 

þ �2

2
@ 2
xx�ðx; tÞ; ðFPÞ

@tuðx; tÞ �
1

2�
½@xuðx; tÞ�2 þ

�2

2
@ 2
xxuðx; tÞ ¼ �g½�ðx; tÞ�p: ðHJBÞ

8>>>><
>>>>:

ð36Þ

From this point, we follow the lines exposed in [43] to get the resulting ergodic

agent density, which takes the following formx:

�ðxÞ ¼ N

½coshð�xÞ�2=p ;

N ¼ �

B 1
2 ;

1
p

� � ;
8>>><
>>>: ð37Þ

where Bð12 ; 1pÞ is the Beta function (see [15]), and the constant � is given by Eq. (D.5).

Performing the inverse Galilean transformation, we obtain the following propagating

soliton:

�ðx� btÞ ¼ N

½coshð�ðx� btÞ�2=p ð38Þ

Proceeding to the following identi¯cations:

� ¼ 1;
2

p
¼ 2� � and b ¼ �þ 1

2
ð2� �Þ�2 ¼ �þ �2

p
; ð39Þ

the stationary solution given by Eq. (24) and the ergodic state of the MFG dynamics

given by Eq. (38) are identical.

Since, in Eq. (22), the existence of a soliton is secured for the parameter range

� 2 ½�1; 2½, it implies that a direct comparison with an MFG exists only for

p 2 ½1;1½. Accordingly, for p 2 ½0; 1� in Eq. (39), there is no exogenous imitation

strategy, as de¯ned in Sec. 2, for which an ergodic state soliton that solves an MFG

as de¯ned by Eq. (32) exists.

Solving the MFG determines the players' optimal trade-o® between innovation

and imitation in terms of costs. Ultimately, each agent individually optimizes her

imitation patterns in order to reach the target productivity level b. A closer look at

the speci¯c form of Eq. (39) reveals that the parameter p in Eq. (33) a®ects only the

gravity center modulation strength �, and thus, the agents' imitation behavior. From

Eq. (33), we can transparently observe the complementary roles played by the

individual cost cðaðtÞ;XiðtÞÞ and V ð�ðx; tÞÞ ¼ gð�ðx; tÞpÞ. Speci¯cally, we see that

xFor the convenience of the reader, the main steps of this calculation are shown brie°y in Appendix D.
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V ð�ðx; tÞÞ in°uences only the sharpness of the emerging soliton �ðx; tÞ given by

Eq. (49)) (i.e., the swarm cohesion). Concerning the drift b, it also depends on the

variance �2. From Eq. (39), we emphasize that the sharpness of the soliton is directly

correlated with the propagation speed. Speci¯cally, wide solitons resulting from large

values of p travel with slower velocity compared with thin solitons obtained for

smaller values of p. This is due to the stronger cooperation tendency implemented in

the economy. As a result, the higher strength of mutual interaction between the

players not only increases the growth rate but also reduces the inequality level. This

is aligned with the conclusions of [33].

4. Conclusion

At the interface between exact, life and social sciences, economic growth is an out-of-

static equilibrium process which can be partly understood from a well-balanced

interplay between the ¯rms' innovation capability which randomly drives the

technological frontier, and imitation of the best ideas developed by technological

leaders. This apparently banal ratchet mechanism should conceptually not be

underestimated, since it is truly engrossing to realize how ubiquitous randomness

may, if properly mastered, ultimately o®er bene¯t. Perennial and relevant interdis-

ciplinary models are necessarily based on stylization of simple and strongly universal

underlying mechanisms. It is worth realizing that idealizing economic growth by a

systematic scavenging of the leaders' behavior is very generic, as the mathematical

details of the driving noise and the imitation process do not in°uence the qualitative

behavior. The idea that °uctuations may lead to bene¯t wipes o® the intuitive idea

that noise should be systematically ¯ltered out, and economic growth is a perfect

illustration of this natural paradigm. Developing economically relevant models which

incorporate randomness (due to innovation) and intrinsic nonlinearity (due to imi-

tation), and for which one can explicitly keep track of the transient evolution, is an

ongoing challenge. In this contribution, we propose a novel way to model how ¯rms

learn and imitate from the higher productivity leaders. By its intrinsic nature, imi-

tation stimulates a mimetic tendency (i.e., an actual synchronization) which is

permanently counterbalanced (or even destroyed) by the presence of noise. By

modeling this subtle trade-o®, we are able to explicitly show how imitation

mechanisms based on the proximity existing between concurrent ¯rms in terms of

productivity, actually play a central role in the innovation/imitation economic

growth picture. Sustained growth, here stylized as stable propagating waves, can

only emerge for strong enough imitation propensity.
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Appendix A

A.1. List of the principal variables and notations

. Ak: k
th ¯rm (equivalently also called agent) forming the economy of N entities.

. AkðtÞ: positive de¯nite stochastic process with state space either N (in the

MC description) or Rþ (in the di®usion process description). It describes the

t-dependent position of the total factor productivity of the kth ¯rm at time t.

. AðtÞ ¼ ðA1ðtÞ;A2ðtÞ; . . . ;ANðtÞÞ: vector formed with the N individual ¯rms' total

factor productivity.

. AðtÞ: a representative (i.e., randomly chosen component) of the vector

process AðtÞ.
. aðXkðtÞ; tÞ: general drift of the di®usion process entering into the MFG description.

. �: constant drift component of the XkðtÞ-dynamics for k ¼ 1; 2; . . . ;N; this drift

component is common to all ¯rms.

. �: size of a discrete time step in the discrete time MC describing the random

evolution on a Schumpeterian ladder representing factor productivity.

. DkðXð��Þ : imitation jump probability bias for the kth ¯rm, k ¼ 1; . . . ;N, at the

discrete time ��. This bias is induced by the mutual interactions among the N

MCS describing the economy.

. Gðx; tÞ ¼ R 1
x
�ðy; tÞdy: complementary distribution function.

. Ĝðx; tÞ ¼ R x
�1 �ðy; tÞdy: distribution function.

. �: control parameter tuning the imitation drift sensitivity due to the presence of

leaders.

. �: shorthand notation which, depending on the context, stands either for �U
2 or for

�
2 (see Eq. (15)).

. Gðx� hXðtÞiÞ;R ! Rþ: barycentric weight factor.

. J ðXkðtÞ; �ðx; tÞÞ: interaction kernel describing the MFG imitation process of ¯rm

Ak.

. ka: position of the kth rung on a Schumpeterian ladder representing factor

productivity.

. N kðtÞ 2 ½0;N�: number of leaders ahead of ¯rm Ak at time t on the Schumpeterian

ladder representing factor productivity.

. P ðka; ��Þ: probability to occupy the kth rung at time �� on the Schumpeterian

ladder representing factor productivity. P ðka; ��Þ is the solution of the master

equation associated with the Schumpeterian ladder MC.
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. pðka; ��;Xð��Þ: probability of a single rung jump upward on the discrete time

MC describing the evolution on the Schumpeterian ladder representing factor

productivity.

. ’ðx; tÞ: shorthand notation which, depending on the context, stands either for

�ðx; tÞ or for Gðx; tÞ (see Eq. (14)).

. qðka; ��;Xð��Þ: probability of a single rung jump downward in the discrete time

MC describing the evolution on the Schumpeterian ladder representing the factor

of productivity.

. �ðx; tÞdx :¼ Probfx � XðtÞ � xþ dxg: (normalized) probability density of the

stochastic process XðtÞ.
. �dW ðtÞ: WGN process with variance �2.

. uðx; tÞ: value function solving the Hamilton–Bellman–Jacobi problem resulting

from the MFG approach.

. U 2 ½0;1�: size of the observation window within which ¯rms count the number of

their productivity leaders.

. V ð�ðx; tÞÞ ¼ g�pðx; tÞ: imitation running cost in the MFG description (g; p 2 Rþ

are both constants).

. XkðtÞ :¼ lnðAkðtÞÞ: stochastic process with state space Z (in the MC description)

or R (in the di®usion process description). It describes the t-dependent position of

the logarithm of the total factor productivity of the kth ¯rm at time t.

. XðtÞ ¼ ðX1ðtÞ;X2ðtÞ; . . . ;XNðtÞÞ: vector formed with the N individual ¯rms'

logarithm of their total factor productivity.

. XðtÞ: a representative (i.e., a randomly chosen) component of the vector process

XðtÞ.
. hXnðtÞi � EfXnðtÞg :¼ R

R
xn�ðx; tÞdx.

Appendix B

B.1. Titmice versus robins: How territorial imitation ranges

drastically a®ect collective dynamics

To illustrate the potential role played by the observation range in imitation pro-

cesses, let us turn toward ornithology and consider a situation originally studied by

Wyles et al. in [44]. The authors develop the idea that evolution is essentially driven

by species behavior, rather than by the environment only. To support this view, they

consider the behavior of songbirds in Great Britain. According to [44], at the be-

ginning of the 20th century, British milkmen used to leave milk bottles without caps

outside people's homes. Two species of songbirds, the titmouse and the robin, learned

to feed on cream from these milk bottles. Then came an innovation in the milk
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industry in the 1930s: covering milk bottles with aluminum bottle seals. According

to [44], the titmouse learned to pierce the aluminum seals and, in a matter of two

decades, successfully spread this newly acquired technique across their entire species

throughout all of Great Britain, estimated at the time to be about a million indi-

viduals. In contrast, the robin never widely learned the technique for drilling

through the aluminum seals. The reason behind this was the robin's territorial

inclination and the relative isolation of individuals, which inhibited the spread of

innovation. Further investigation showed that the titmouse is mobile, and its be-

havior promoted the propagation of the new approach. Because robins mainly act

alone, they lacked the capability of exploring new opportunities that existed in their

environment. In contrast, the non-territorial titmouse is able to learn and adapt to its

environment in a quick and agile manner thanks to its natural and e±cient group

mobility. In [11], de Geus exhibits a parallel between this ornithological example and

the capacity to learn and to adapt quickly in economic environments. De Geus shows

that these aspects are determinant features in the long-term survival of companies.

Appendix C

C.1. Solving the dynamics in the presence of the conformism

modulation factor

As in Sec. 2, we are interested in the possibility of observing a constant variance

stable wave of the form �ðx� ð�þ wÞtÞ :¼ �ð�Þ traveling with constant velocity

ð�þ wÞ, for the dynamics given by Eq. (22). As a function of the new variable

� ¼ ½x� ð�þ wÞt�, Eq. (22) takes the form

0 ¼ @� �ð�Þ w�
Z 1

�

G zð Þ�ðzÞdz
( )

þ �2

2
@��ð�Þ

" #
: ðC:1Þ

As the wave is assumed to be stationary with constant variance and with

traveling velocity ð�þ wÞ, this imposes an additional constraint that w has to

satisfy, namely: Z
R

��ð�Þd� ¼ 0: ðC:2Þ

Integrating Eq. (C.1) once with respect to � (with zero integration constant, as no

probability current is sustained in the stationary regime), we get

0 ¼ �ð�Þ w�
Z 1

�

G zð Þ�ðzÞdz
( )

þ �2

2
@��ð�Þ: ðC:3Þ

Then dividing by �ð�Þ > 0, Eq. (C.2) can be rewritten as

� �2

2
@� log½�ð�Þ� ¼ w�

Z 1

�

GðzÞ�ðzÞdz
( )

: ðC:4Þ
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C.2. Modulating G factor for which an exact analytic resolution is possible

Solving the nonlinear integro-di®erential equation given by Eq. (C.3) exactly is not

feasible in general. However, this is possible for symmetric barycentric modulation

functions G of the form (see Fig. C.1 for an illustration):

GðxÞ ¼ A cosh��ðxÞ; � 2 R
þ; ðC:5Þ

with A > 0 2 Rþ and � 2 Rþ.
We now verify that it exists a solution of Eq. (C.4) in the form

�ð�Þ ¼ N ðmÞcosh�mð�Þ m 2 R
þ; ðC:6Þ

where NðmÞ is a normalization factor ensuring that
R
R
NðmÞcoshmð�Þd� ¼ 1.

Namely, here, NðmÞ ¼ �½ðmþ 1Þ=2�= ffiffiffi
�

p
�ðm=2Þ, with �ðzÞ standing for the gamma

function. Note that the existence of NðmÞ is ensured for m < 0. The choice given in

Eq. (C.6) implies that �ð�Þ ¼ �ð��Þ, and therefore, Eq. (C.2) is automatically sat-

is¯ed. Plugging Eq. (C.6) into Eq. (C.4), we ¯nd

�2

2
m tanhð�Þ ¼ w�ANðmÞ

Z 1

�

cosh�ð�þmÞð�Þd�
" #

: ðC:7Þ

Using the identity
R 1
x
cosh ðxÞ�2dx ¼ ½1� tanhðxÞ�, we verify that Eq. (C.7) is

exactly solved, provided that we simultaneously impose that

� þm ¼ 2; A ¼ �2m

2NðmÞ and w ¼ ANðmÞ;

Fig. C.1. Considered class of barycentric modulation functions cosh��ðxÞ. The transition between
propagation regimes emerges at � ¼ 2.
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which can be rewritten as

m ¼ 2� �; A ¼ �2
ffiffiffi
�

p
m�ðm=2Þ

2�½ðmþ 1Þ=2� ¼ ð2� �Þ½�ð1� �
2 �2

2��ð2� �Þ �2; w ¼ 1

2
m�2: ðC:8Þ

From Eqs. (C.7) and (C.8), we conclude that for � 2� �1; 2½) m > 0 (i.e., slow

decay of the GðxÞ modulation, leading to longer-range interactions), NðmÞ exists,

and a stable traveling solitary wave with velocity w is created. Conversely,

when � 2 ½2;1½) m < 0 (i.e., rapid decay of the GðxÞ modulation, leading to

short-range interactions), Eq. (C.8) collapses as A < 0, and �ð�Þ in Eq. (C.6) is not

normalizable. In this case, no stable solitary wave can be sustained for this

�-parameter range.

Appendix D

After performing the Galilean transformation of variables (we omit the primes for

notation convenience), we proceed as shown in [43]. Accordingly, we introduce the

Hopf–Cole logarithmic transformation uðx; tÞ ¼ ���2 ln½�ðx; tÞ� and �ðx; tÞ ¼
mðx; tÞ=�ðx; tÞ [17, 43]), and the coupled PDEs Eq. (35) transform to the set of

nonlinear Schr€odinger (NLS)-like equations

���2@t�ðx; tÞ ¼
��4

2
@xx�ðx; tÞ þ V ½�ðx; tÞ��ðx; tÞ;

þ��2@t�ðx; tÞ ¼
��4

2
@xx�ðx; tÞ þ V ½�ðx; tÞ��ðx; tÞ:

8>>><
>>>: ðD:1Þ

Invoking, as in [43], the fundamental contribution of [8], we focus on

times 0 << t << T , for which the dynamics is essentially insensitive to the

boundary conditions. Focusing on this quasi-stationary ergodic state, as in [43],

we write �ðx; tÞ ¼ e
� �

�� 2
t
�ðxÞ and �ðx; tÞ ¼ e

�
�� 2

t
�ðxÞ which leads to the NLS

equation:

��4

2
@xx�ðxÞ þ V ½�ðxÞ��ðxÞ ¼ ��ðxÞ: ðD:2Þ

Now, we observe that with the speci¯c choice

V ½�ðxÞ� ¼ g½�ðxÞ�p ¼ g½�ðxÞ�2p; g > 0; ðD:3Þ

Equation (D.1) can be integrated by separation of variables, namely:

dx ¼ d�ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�
�� 4 �ðxÞ2 � 2g

ðpþ1Þ��4 �ðxÞ2ðpþ1Þ
q ; ðD:4Þ
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Using the identity cosh2ðzÞ � 1 ¼ sinh2ðzÞ, we can directly verify that Eq. (D.4) is

solved by the soliton-like (normalized) wave function

�ðxÞ ¼
ffiffiffiffiffi
N

p

coshð�xÞ½ �1=p ;
Z
R

dx

�2ðxÞ ¼ 1

� �
;

� ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffi
2gN p

p
p

ðpþ 1Þ
ffiffiffi
�

p
�2

;

N ¼ �

B 1
2 ;

1
p

h i ;
� ¼ gN p

ðpþ 1Þ ;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ðD:5Þ

where Bðx; yÞ :¼ �ðxÞ�ðyÞ
�ðxþyÞ stands for the Beta function. In particular, we may obtain

� ¼ 1 for an appropriate choice of the MFG control parameters �; g; p; �. Finally, the

ergodic agents density itself follows directly as �ðxÞ ¼ ½�ðxÞ�2.

Appendix E

(a) Finite Population of Agents

Strictly speaking, the mean-¯eld approximation made in Eq.(8) requires an in-

¯nite number N of agents to provide exact results. Nevertheless, as highlighted

by the simulation results displayed in Figs. E.1 and E.2, the mean-¯eld popu-

lation dynamics given by Eqs. (16) and (20) is already observed for the limited

population of agents N ¼ 30; 100 and 1000.

Table E.1 provides a characterization of the theoretical and simulated dis-

tributions obtained for the stable growing productivity regime displayed in

Fig. E.2. In accordance with [40], we observe from simulation experiments that

the growth rate displays a small rise when the size of the economy increases.

Conversely, no clear tendency is observed with respect to the variance and the

kurtosis of the ¯rms' productivity, hence suggesting that a rather small economy

(i.e., more than 30 economical agents) will already showcase the general behavior

described by our model. Simulation experiments show however a tendency for

the skewness to diminish as the size of the economy increases. This suggests that

a critical number of economical agents is required to ensure the creation of a

stable growing productivity regime.

(b) Arbitrary Interaction Range U

To appreciate the in°uence of short interaction ranges as considered in Eq. (16),

the situation with U ¼ 0:1 is compared to the strictly myopic situation that

arises when U ¼ 0 (i.e., strictly independent agents evolve as N constant drifted

Brownian motions). As shown in Fig. E.3, the purely di®usive behavior obtained

for U ¼ 0 noticeably di®ers from the interactive dynamics even for a small U .

When the imitation range U lies in-between the two limiting regimes solved in

Eqs. (16) and (20), the propagation speed of the agent population density �ðx; tÞ
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is observed in Fig. E.4 to monotonously increase with U . Augmenting the in-

teraction range U enhances the average traveling velocity of the whole popula-

tion. Speci¯cally, the propagation speed is due to two contributions: (i) the

individual component � and (ii) the interactive component resulting directly

from the agent interactions. The extra drift due to mutual interactions lies

Fig. E.1. Simulated collective dynamics observed for the in¯nitesimal imitation range when U ¼ 0:1,
� ¼ 1, � ¼ 1, � ¼ 0:2, and time discretization�t ¼ 0:1. The simulated histograms con¯rm the absence of a

stable growing productivity wave, as predicted by Eq. (16).

O. Gallay, F. Hashemi and M.-O. Hongler

1950011-34

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
13

.5
5.

22
4.

3 
on

 1
0/

31
/1

9.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



between 0 (when U ¼ 0) and �
2 (when U ¼ 1), and it is observed to increase

monotonically with U . As displayed in Fig. E.5, the simulated traveling speed

obtained for U ¼ 1 perfectly matches the theoretical exact value �þ �
2. For

regimes with U ¼ 1, it is possible to analytically compute only the stationary

propagating regime. Nevertheless, as highlighted in Fig. E.6, the simulations

Fig. E.2. Simulated collective dynamics observed for the in¯nite imitation range when U ¼ 1000, � ¼ 1,
� ¼ 1, � ¼ 0:2, and time discretization �t ¼ 0:1. The simulated histograms con¯rm the generation of a

stable growing productivity wave with constant variance, as predicted by Eq. (20).
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Table E.1. Characterization of the theoretical and

simulated distributions obtained for the stable growing

productivity regime displayed in Fig. E.2 for t ¼ t0 þ 2.

N ¼ 30 N ¼ 100 N ¼ 1000 N ¼ 1
Mean 32.4641 32.6269 32.8130 32.9936

Variance 0.0084 0.0099 0.0079 0.0095

Skewness 0.3153 �0.1337 0.1111 0

Kurtosis 2.2104 4.0779 3.3982 4.1762

Fig. E.3. Simulated collective dynamics observed for N ¼ 1000 agents at t ¼ 20, when � ¼ 1, � ¼ 1,
� ¼ 0:2, and time discretization �t ¼ 0:1. When the imitation range U ¼ 0, purely di®usive behavior is

observed, where �ðx; tÞ is symmetric and propagates at speed �. When U ¼ 0:1, as predicted by Eq. (16),

the interactions between the agents produce an asymmetric shape for the density �ðx; tÞ and cause the
propagation speed to be equal to ð�þ �U=2Þ.

Fig. E.4. Simulated collective dynamics observed for N ¼ 1000 agents at t ¼ 50, when � ¼ 1, � ¼ 1,

� ¼ 0:2, and time discretization �t ¼ 0:1. As the propagation speed gets larger with U , the barycenter of

the agent population increases accordingly.
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clearly show that the transient state before stationarity is reached is de¯nitely

very short. Only a few rounds of observation and imitation processes between the

agents are necessary to reach the stationary regime predicted by Eq. (20).

(c) Colored Noise Source as Stochastic Driving Sources

Strictly speaking, the WGN can be only an approximate modeling of the random

environment (the absence of correlations leading to an in¯nite energy spectrum is

obviously never strictly realized). In actual situations, only colored noise pro-

cesses with ¯nite correlations can be expected. Finite correlations will necessarily

introduce memory e®ects into the dynamics rendering the solutions of the un-

derlying stochastic process non-Markovian. Thus, imposing ¯nite noise correla-

tions enhances the complexity of the analytic discussion. In [20], the dynamics of

Fig. E.5. Simulated collective dynamics observed for N ¼ 1000 agents, when � ¼ 1, � ¼ 1, � ¼ 0:2, and
time discretization �t ¼ 0:1. For U ¼ 1000, the imitation mechanism generates a collective productivity

wave with constant variance, which travels at constant velocity ð�þ �=2Þ.

Fig. E.6. Simulated collective dynamics observed forN ¼ 1000 agents and U ¼ 1000, when � ¼ 1, � ¼ 1,

� ¼ 0:2, and time discretization�t ¼ 0:1. After 5 rounds of observation and imitation process between the

agents, the collective dynamics reaches its stationary state.
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Eq. (8) when driven by a class of colored noise (namely, the Telegraphic process

with exponential correlations similar to the Ornstein–Uhlenbeck process) has

been analytically discussed. The discussion in [20] shows that the presence of

correlations does not qualitatively alter the set of behaviors unveiled in Sec. 2.

(d) Heterogeneous Populations of Agents

In actual populations of agents, heterogeneity may enter in Eq. (8) in many

di®erent ways, including di®erent individual drift functions fkðXk;XðtÞÞ, dif-
ferent noise sources �kðtÞ, and obviously di®erent interaction rules J ðXkðtÞ;
XðtÞÞ (i.e., keeping explicit k-dependences into Eq. (8)). The observations made

in Sec. 2 are not likely to remain valid for arbitrary heterogeneities. However, as

shown in Figs. E.7 and E.8, the introduction of heterogeneity in the agents'

individual drifts does not qualitatively alter the set of behaviors unveiled in

Sec. 2. Furthermore, for the dynamics expressed in Eq. (8), heterogeneity may

Fig. E.7. Simulated collective dynamics observed forN ¼ 1000 agents and U ¼ 0:1, when � ¼ 1, � ¼ 0:2,
and time discretization�t ¼ 0:1. The agents' individual drift �k is uniformly distributed in ½0:95; 1:05� (the
top graph, coe±cient of variation CV ¼ 0:03) and in ½0:7; 1:3� (the bottom graph, CV ¼ 0:17). The sim-

ulated histograms show that the dynamics remains qualitatively robust when the agents' individual drift

becomes heterogeneous.
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arise from the fact that some agents, belonging to a subset E, do not obey the

imitation rule implying that J ðXkðtÞ;XðtÞÞ � 0 for k 2 E. As we observe from

Figs. E.1 and E.2 that the cooperative behavior is qualitatively insensitive to the

number N of agents, we can thus safely conclude that the interacting sub-pop-

ulation (i.e., the agents who do not belong to E) continues to exhibit the col-

lective behaviors detailed in Sec. 2. Other recent analytical discussions for

cooperative evolution of speci¯c heterogeneous populations can be found in [1]

for agents evolving on a circular state space and in [22] for agents interacting via

their ranks.

Table E.2 provides a characterization of the theoretical and simulated distribu-

tions obtained for the stable growing productivity regime displayed in Fig. E.8, when

the agents' individual drift °uctuates (but when the mean inclination towards

progress remains constant). Simulation experiments do not show a clear tendency on

the growth rate in the case of an increase in the variance of the innovation rate of the

Fig. E.8. Simulated collective dynamics observed for N ¼ 1000 agents and U ¼ 1000, when � ¼ 1,

� ¼ 0:2, and time discretization �t ¼ 0:1. The agents' individual drift �k is uniformly distributed in

½0:8; 1:2� (the top graph, coe±cient of variation CV ¼ 0:12) and in ½0:5; 1:5� (the bottom graph,

CV ¼ 0:29). The simulated histograms show that the dynamics remains qualitatively robust when the
agents' individual drift becomes heterogeneous.
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economical agents. As intuitively expected, the ¯rms' productivity is a®ected by

higher °uctuations when the innovation rate of the ¯rm displays higher variance.

Likewise, the asymmetry in the ¯rms' productivity augments with higher di®erences

in the agents' propensity to innovate. This suggests that, in the presence of ¯rms

with particularly high innovation rates, imitation mechanisms are not su±cient for

laggards to be able to catch the technological frontier. Conversely, simulation

experiments do not show a clear trend on the kurtosis of the ¯rms' productivity when

their innovation propensity exhibits more °uctuations.

Appendix F

F.1. Variance of the generalized hyperbolic secant probability laws

To ¯t our ¯ndings with available empirical data (see [25]), we need to calculate the

quadrature

I � :¼ Ið2��Þ ¼ N ð�Þ
Z
R

z2

cosh2�ðzÞ dz; ð2� :¼ 2� � > 0Þ;

N �1ð�Þ ¼ 4�

2

½�ð�Þ�2
�ð2�Þ ;

8>>><
>>>: ðF:1Þ

which enters into Eq. (30). To calculate this quadrature, we ¯rst use the moments

generating functiony:

R�ð�Þ :¼
Z
R

coshð2�zÞ
cosh2�ðzÞ dz ¼

4�

2
B½� þ �; � � ��

¼ 4�

2

�ð� þ �Þ�ð� � �Þ
�ð2�Þ ¼ N �1ð�Þ �ð� þ �Þ�ð� � �Þ

½�ð�Þ�2
� �

: ðF:2Þ

Now, we have

d2

d� 2
½R2�ð�Þ�j�¼0 ¼

Z
R

4z2 coshð2�zÞ
cosh2�ðzÞ dzj�¼0 ¼

Z
R

4z2

cosh2�ðzÞ dz ¼
4I�

Nð�Þ : ðF:3Þ

Table E.2. Characterization of the theoretical

and simulated distributions obtained for the

stable growing productivity regime displayed in
Fig. E.8 for t ¼ t0 þ 2.

CV ¼ 0 CV ¼ 0:12 CV ¼ 0:29

Mean 32.9936 32.8549 32.8762

Variance 0.0095 0.0101 0.4661

Skewness 0 0.3226 −0.5575
Kurtosis 4.1762 5.0038 3.4382

ySee [15], entry 3.512.
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Using the notations:

�	 :¼ �ð� 	 �Þ and �
ðkÞ
	 ¼ dk

d�k
�ð� 	 �Þ;

�ð�ÞðkÞ ¼ dk

d� k
�ð�Þ;

and successive derivations with respect to � of the right-hand-side of Eq. (F.3),

enable us to write:

d

d�
R2�ð�Þ ¼

N �1ð�Þ
½�ð�Þ�2 f� ð1Þ

þ �� � �þ�
ð1Þ
� g;

d2

d�2
R2�ð�Þ ¼

N �1ð�Þ
½�ð�Þ�2 f� ð2Þ

þ �� � �
ð1Þ
þ � ð1Þ

� � �
ð1Þ
þ � ð1Þ

� þ �þ�
ð2Þ
� g;

d2

d�2
R2�ð�Þj�¼0 ¼ 2

N �1ð�Þ
½�ð�Þ�2 f�ð2Þð�Þ�ð�Þ � ½�ð1Þð�Þ�2g;

ðF:4Þ

implying that

d2

d� 2
½R2�ð�Þ�j�¼0 ¼ 2N �1ð�Þ �ð2Þð�Þ

�ð�Þ � �ð1Þð�Þ
�ð�Þ

	 
2� �

¼ 2N �1ð�Þ d2

d� 2
flog½�ð�Þ�g ¼ 2N �1ð�Þ

X1
n¼0

1

ðnþ �Þ2 ; ðF:5Þ

where we have used the well-known identity:

d2

dx2
flog½�ðxÞ�g �

X1
n¼0

1

ðxþ nÞ2 ¼ 	ð2;xÞ; ðF:6Þ

and where 	ð2; �Þ is the Hurwitz zeta-function. Using Eqs. (F.1) and (F.3), we ¯nally

obtain:

4I�

Nð�Þ ¼ 2N �1ð�Þ
X1
n¼0

1

ð� þ nÞ2 ) I� ¼
1

2

X1
n¼0

1

ð� þ nÞ2 :¼ 1

2
	ð2; �Þ: ðF:7Þ

We can approximate the Hurwitz zeta-function by using:

	ð2; �Þ ¼
X1
n¼0

1

ð� þ nÞ2 ’
Z 1

0

dx

ð� þ xÞ2 ¼ 1

�
) I� ’

1

2�
: ðF:8Þ
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