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a b s t r a c t

Dispersal is often viewed as a process on which the landscape has little effect. This is partic-

ularly apparent in populations’ genetic and ecological studies, where isolation by distance

is generally tested using a Euclidean distance between populations. However, landscapes

can be richly textured mosaics of patches, associated with different qualities (e.g. different

costs crossing patches) and different structures (shape, size and arrangement). An important

challenge, therefore, is to determine if accounting for this additional complexity enriches

our understanding of the dispersal processes.

In this study, we quantify the effect of landscape structure on dispersal distances between

15 populations of the greater white-toothed shrew (Crocidura russula) in a highly fragmented

landscape in Switzerland. We use a spatially explicit individual-based model to simulate

C. russula dispersal. This model is designed to account for movement behavior in hetero-

geneous landscapes. We explore the relationship between simulation results and genetic
enetic differentiation

cological distance

enetic distance

differentiation between actual subpopulations. Finally, we test if simulated dispersal dis-

tances are better predictors of genetic differentiation than traditional Euclidean distances.

The ecological distances measured by the model show a clear relationship with genetic

differentiation between C. russula subpopulations. This relationship is stronger than the one

obtained by the usual Euclidean distance.

species to disperse (Fahrig and Merriam, 1985; Turner, 1989;
. Introduction

ispersal is a key feature to understand many processes
n population dynamics and genetics, behaviour ecology
nd conservation biology (Clobert et al., 1999; Stenseth and
idicker, 1992). It has important demographic consequences

uch as stabilizing densities and maintaining viable metapop-
lations (Hanski, 1999; Hanski and Ovaskainen, 2000). Addi-
ionally, it is a vector of gene flow which may reduce the
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chances of inbreeding, enhance genetic diversity and improve
evolutionary potential (Ralls et al., 1986; Wolff, 1994; Pursey
and Wolf, 1996; Paradis et al., 2002).

In a landscape, landscape features and their spatial
arrangement may guide or potentially inhibit the ability of
ntani@oeb.harvard.edu (P. Fontanillas).
gy, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138,
/41 21 692 41 05.

Peles et al., 1999). Because of this, there is certainly a com-
plex relationship between dispersal success and geographical
distance (Hansson, 1991). By modifying dispersal, landscape
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Therefore Fst represents a measure of the Wahlund effect
(Wahlund, 1928), which can be stated in terms of variance
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fragmentation and heterogeneity affects gene flow (Barton,
1992; Couvet, 2002).

Understanding how individual movement patterns are
affected by the spatial structure of an environment is thus
a key question (Wiens, 1995). The relationship between land-
scape heterogeneities and dispersal between populations can
be estimated by three complementary approaches: field exper-
iments (tracking, capture–recapture), genetic approaches
(genetic differentiation) and modelling approaches (simula-
tions).

Field experiments allow an estimate of rates of movement
among discrete populations as well as estimates of dispersal
parameters with capture–recapture data, mark–resight data,
or tracking measures (Pollock et al., 1974; Brownie et al., 1993;
Pradel, 1996; Bennetts et al., 2001). These methods require a
large quantity of data, are difficult to obtain, and are time con-
suming and expensive (Hestbeck, 1982; Stenseth and Lidicker,
1992; Smith and Peacock, 1990; Koenig et al., 1996; Tischendorf,
1997; Wolff, 1999; Peacock et al., 1999). Other studies point out
the failure of demographic methods to detect long-distance
dispersal (Koenig et al., 1996).

As an alternative, the genetic approaches rely on quan-
tification of genetic variation between populations (Barton,
1992; Slatkin, 1995; Mallet, 2001; Whitlock, 2001; Balloux and
Goudet, 2002; Balloux and Lugon-Moulin, 2002). By assuming
that dispersal occurs preferentially between nearby subpop-
ulations, isolation by distance (IBD) models provide an esti-
mation of genetic distances between populations in spatially
explicit situations (Barton, 1992; Cockburn, 1992; Raymond
and Rousset, 1995; Goudet, 1995; Belkhir et al., 2004). They
have proved to be useful predictors of dispersal rates (Clobert
et al., 1999; Berry et al., 2004). Other models provide estima-
tion of dispersal rates between populations for example like-
lihood estimation (Kuhner et al., 1995; Beerli and Felsenstein,
1999; Bahlo and Griffiths, 2000; Beerli and Felsenstein, 2001)
or assignment tests (Paetkau et al., 1997; Favre et al., 1997;
Dawson and Belkhir, 2001; Cornuet et al., 1999; Piry et al.,
2004). The genetic distance is our focus here, thus, we will
consider methods related to isolation by distance (Raymond
and Rousset, 1995; Goudet, 1995; Beerli and Felsenstein, 2001;
Belkhir et al., 2004).

Animal dispersal models are useful to analyse complex dis-
persal as they allow the interactions of the individual with
the landscape (Berger et al., 1999; Grimm et al., 1999; Hall and
Halle, 1999). They have demonstrated their capacity to simu-
late animal movement and behaviour (Gustafson and Gardner,
1996; Blackwell, 1997; Carter and Finn, 1999; Farnsworth and
Beecham, 1999; Moorcroft et al., 1999; Thulke et al., 1999;
Tyre et al., 1999; Vuilleumier and Metzger, 2006). Additionally,
they are a cost-effective approach to understanding dispersal
dynamics (Koenig et al., 1996; Tischendorf, 1997; Wiegand et
al., 1999; Pretsler et al., 2000; Tischendorf and Fahrig, 2000).

In this study, we use a spatially explicit individual-based
model (Vuilleumier and Metzger, 2006; Vuilleumier and Perrin,
2006) to simulate the dispersal behaviour of the greater white-
toothed shrew, Crocidura russula. The model is used to simulate

the dispersal of C. russula within a heterogeneous landscape,
and to measure the distances between populations consider-
ing length of path used (the ecological distance). We character-
ize the relationship between ecological distance and genetic
2 0 1 ( 2 0 0 7 ) 369–376

distance between C. russula populations and we ask if these
ecological distances estimated by the model provide a use-
ful enhancement to the traditional IBD model using Euclidian
distances.

1.1. C. russula ecology, study area and sampled
populations

C. russula is a small insectivorous mammal. This species is
anthropophile in the central and western part of Europe due
to its energetic needs (Ehinger et al., 2002). Therefore, the eco-
logical distribution of C. russula is associated with inhabited
areas, where they settle in gardens and hedges. In Switzer-
land C. russula rarely appear over 1000 m, but are obligatorily
anthropophilic above 600 m, and are commonly seen at lower
altitudes (400–600 m) (Genoud, 1995).

The study area is a highly fragmented landscape situated
in western Switzerland (Fig. 1). It covers around 260 km2 in an
altitude range of 390–930 m. Lake Geneva (374 m) and the Jura
Mountains limit the distribution of the species in the study
area. To avoid edge effect, the study area has been extended
in the northeastern and the southwestern part, the other parts
of the study area are limited by natural barriers to dispersal,
the lake and the altitude (over 1000 m).

In the study area, 15 subpopulations were sampled (Fig. 1).
Sampling took place in 1999 and 2000 from June to August.
One hundred and seventy individuals were recorded and were
scored for seven autosomal microsatellite loci, for localization
and trapping details see Ehinger et al. (2002) and Fontanillas
et al. (2004).

2. Genetic measurements

In a metapopulation, genetic drift, mutation, selection and
gene flow led to a specific pattern of genetic structure. In
absence of selection, genetic and mutation should induce a
differentiation among populations, unless migration causes a
homogenetization. Several formulae have been proposed for
estimating genetic distance (or similarity) between subpopu-
lations, which vary in terms of their underlying genetic models
or statistical models (see Takezaki and Nei (1996) for details).
Among them the three following will be used for inferences
from the simulation model:

(i) Manhattan metric CM, which is a version of the
Czekanowski’s (1909) distance (Nei, 1987), where the dif-
ference between the frequency of the ith allele at the jth
locus in population X and Y is summed over the number
of alleles at the jth locus and over the number of loci.

(ii) The pairwise Fst, which is one of the F-statistics (statistical
tools used to describe the variance of allele frequencies
by hierarchical partitioning (Wright, 1965)). This estima-
tor measures the proportion of the total genetic variabil-
ity due to genetic differentiation between populations.
in allele frequency (Wright, 1943, 1965). Pairwise Fst can
be estimated and gives the genetic differentiation among
populations (Cockerham and Weir, 1993; Weir, 1996).
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Fig. 1 – Study area and po

iii) Nei et al.’s (1983) DA genetic distance where the square-
root of the product between the frequency of the ith allele
at the jth locus in population X and Y is summed over the
number of alleles at the jth locus and over the number of
loci.

All these genetic distances provide a unique (symmetri-
al) estimation of the genetic differentiation between pairwise
opulations.

. Shrew dispersal modeling

hrew individual movements are simulated with a spatially
xplicit individual-based model. In this model, the landscape
s explicitly represented under the form of an irregular patches
etwork while behavioral traits of species are simulated with
n individual-based model (see Vuilleumier and Metzger, 2006
or details of the model and Vuilleumier and Perrin, 2006 for
heoretical applications).

In the spatially explicit landscape model, two main spa-
ial entities are used: patches and frontiers. Patches represent
omogenous areas of land use (fields, lakes or forest) and

rontiers are linear landscape features (such as river shores,
edges and road sides). At the edge of the study area, we
ssume that boundaries are reflective.

The individual-based model simulates dispersal of individ-

als through the landscape (Vuilleumier and Metzger, 2006;
uilleumier and Perrin, 2006). Dispersal is simulated as a suc-
essive selection of spatial entities at random, which create
ndividual paths between two habitat patches. We assume
tions sampled (in black).

that C. russula uses preferentially the linear structures across
the landscape. This assumption is based on field experiences,
showing that individuals are mostly trapped along linear fea-
tures. The individuals move until they reach a different pop-
ulation or they exceed a maximum dispersal distance. We
consider two scenarios: a “plausible scenario” in which the
maximum dispersal distance is 15 km; and a “maximum con-
nectivity scenario” which will provide maximum connections
between habitat patches and in which the maximum dispersal
distance is 100 km. We simulate the dispersal of 50,000 individ-
uals from each subpopulation. This high number of replicates
of individual movements through the landscape provides a
stable response of the parameters (for details on sensitivity
analysis on the model see Vuilleumier and Metzger, 2006).

The values extracted from the simulations are the dis-
tances of the path length travelled Dxy for each successful dis-
perser. They correspond to the distance an individual covers
to reach a habitat patch y from a habitat patch x. This measure
captures the effect of landscape structure and heterogeneity
in terms of distance. Over n distances obtained by success-
ful dispersers between two habitat patches, the median value
is used and called “ecological distance”. This value is asym-
metric, i.e. Dxy may differ from Dyx, and gives the intensity
of the connection between two habitat patches in a partic-
ular direction. In the case that no dispersers from a patch y
reach a patch x, Dxy is assumed to be the shortest distance of
the path length joining patch x and y via a patch k, therefore

Dxy = Dxk + Dky. However, although one of the interests of using
this individual based model is to provide asymmetric dispersal
between local populations, we used symmetric ecological dis-
tances by averaging the two triangular half-matrices because
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Fig. 2 – Ecological distances between habitat patches: in the figure are displayed the cumulative density frequencies of
se b
imu

mates of genetic distances and geographical distances for all
pairs of populations are presented in Table 1. In this table,
the value of the significance of incongruence probability never
exceeds 0.0006 (Mantel test, �2, 9999 permutation). Two sce-
ecological distances between four pair of patches. In each ca
in cases a and c and symmetric dispersal in cases b and d. S

genetic distances are symmetric as well as the Euclidian dis-
tances between patches.

4. Inferences between genetic and
ecological distance

Relationships between ecological distance and genetic dis-
tance was analysed with correlation tests. We used a clas-
sical non-parametric Mantel test (Manly, 1991; Legendre and
Lapointe, 2004) to compare ecological and geographical dis-
tance matrices. The significance of the results was assessed
by 9999 permutations of the matrices. Correlation results
obtained between genetic and geographical distances were
compared to correlations obtained with genetic and ecolog-
ical distances using the Fisher r-to-z transformation.

5. Results

Simulations of dispersers through the landscape provide dis-
tributions of ecological distances between pairs of patches
(Fig. 2). Ecological distances are computed only when dis-
persers successfully reach a habitat patch. As suggested by
the shape of the cumulative distributions of ecological dis-
tances presented in Fig. 2, no general distribution pattern has
been found to describe all per pairs distributions of ecological
distances (cluster analysis, available under request). The dis-
tribution of ecological distances between two patches can be
similar (Fig. 2a and c) or different (Fig. 2b and d) depending on

the environmental heterogeneity. In most of the cases, flow of
individuals between patches is asymmetric.

The colonization probability is not only related to the dis-
tance between patches but to the environmental heterogene-
oth directions are displayed, showing asymmetric dispersal
lation sets consider dispersal distance up to 15,000 m.

ity (Fig. 3). Some distant patches, for example patches 2 and
8, 2 and 13, 3 and 4 or 11 and 9, are strongly connected even
if their geographical positions do not provide such expecta-
tion. In the opposite, some connections between habitats, for
example patches 4 and 5, 8 and 9, 6 and 7 or 7 and 12 show
that even though these patches are geographically close; they
are not well connected from an ecological point of view.

Correlations between simulated ecological distances, esti-
Fig. 3 – Colonization probability between habitat patches for
the simulation set where dispersal is limited to 15,000 m.
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Table 1 – Matrix of Mantel correlations based upon ranks (Spearman correlations) between three genetic distances,
respectively the Manhattan metric, the pairwise Fst and the Nei et al.’s (1983) and ecological distances produced by
simulation where dispersal is limited to 15 and 100 km and geographical distances

Genetic distances Geographical distance Ecological distance

15 km 100 km

Manhattan 0.55 0.60 0.64
Fst 0.41 0.50 0.52
Nei 0.59 0.67 0.69
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Significance of incongruence probability never exceeds 0.0006 (Mante

arios of simulated ecological distances between populations
re presented, the “plausible scenario”, with maximum dis-
ersal distance set to 15 km, and the “maximum connectivity
cenario” with maximum dispersal distance set to 100 km. The
orrelation values between genetic distances and maximum
onnectivity scenario are higher than those using geographi-
al distance, reaching 0.64, 0.52 and 0.69, respectively for the
anhattan metric, the pairwise Fst and the Nei et al.’s (1983)

enetic distance (Fisher r-to-z transformation, p-values: Man-
attan measure = 0.071, Fst = 0.069, Nei et al.’s (1983) genetic
istance = 0.036).

The “plausible scenarios” show no significant difference
rom correlations obtained with straight geographical dis-
ance (Fisher r-to-z transformation, p-values: Manhattan mea-
ure = 0.32, Fst = 0.14, Nei et al.’s (1983) genetic distance = 0.31).
he effect of distance and landscape structure is in our case
etter explained by Nei et al.’s genetic distance (1983), it pro-
ided systematically better correlation compared to other
enetic distance measures we have used.

. Discussion

esults presented here show that genetic differentiation of C.
ussula between habitat patches is better correlated to one eco-
ogical distance generated by the model than to geographical
istance. Landscape structure and heterogeneity act on indi-
idual exchanges between C. russula populations.

We obtain better correlations with genetic distance when
e assume a dispersal distance limited to 100 km – the “max-

mum connectivity scenario” – than when the dispersal is
imited to 15 km, “the plausible scenario”. Given that the latter
cenario was introduced to emulate realistic dispersal dis-
ances for the species, the model appears not to reproduce
n individual dispersal process. Rather, the model seems to
stimate the connectivity between populations.

While the combination of fine-scale behaviour responses
nd broad-level movement patterns present an improvement
ver existing approaches to analyse factors affecting genetic
ifferentiation among populations, there are some limitations

nherent in the approach. These limitations are related to
ssumptions underlying both genetic estimates and disper-
al.
In dispersal modelling, “dispersal” means one-way move-
ents of individuals away from their habitat patches and
ith no return (Stenseth and Lidicker, 1992). Therefore, ani-
al dispersal differs from gene dispersal (Hanski, 1999), which
, �2, 9999 permutation).

requires subsequent incorporation of genes into a new gen-
eration by reproduction (Endler, 1977; Barton, 1992). There-
fore modelling gene dispersal must account for other aspects
linked to gene incorporation in the population such as pop-
ulation dynamics, sociality, or fitness (Hestbeck, 1982; Smith
and Peacock, 1990; Lidicker and Stenseth, 1992; Koenig et al.,
1996; Lima and Zollner, 1996; Wolff, 1997, 1999).

Finally, time scale is not accounted for explicitly. Indeed,
the rapid landscape change may result in different patterns
of gene flow among populations over time, genetic differen-
tiations between populations might have occurred at a time
when the landscape arrangement was different.

Spatially explicit modelling allows simulation of individual
dispersal with movement behaviour and species interactions
with heterogeneous landscapes (Downing and Reed, 1996;
Beecham and Farnsworth, 1998; Lorek and Sonnenschein,
1999). It provides a quantification of dispersal processes
according to landscape structures (Gustafson and Gardner,
1996; With et al., 1997; Farnsworth and Beecham, 1999; Thulke
et al., 1999; Tyre et al., 1999; With et al., 1999; Bennetts et al.,
2001; Berggren et al., 2001; Gardner and Gustafson, 2004).

As shown in this study, the use of individual-based model
to simulate dispersal in heterogeneous landscape provides a
estimation of asymmetric flow of individuals between habitat
patches, such estimation could be of interest as asymmetric
dispersal and colonisation can affect metapopulation dynam-
ics and evolution (Saether et al., 1999; Whitlock and Mccauley,
1999; Kawecki and Holt, 2002; Vuilleumier and Possingham,
2006) and most of actual models assume symmetric dis-
persal (Dias, 1996; Hanski, 1999; Whitlock and Mccauley,
1999). Indeed, asymmetry has been considered in evolution-
ary and genetic fields but seldom considered in metapopula-
tion dynamics and conservation biology (Morris, 1991; Dias,
1996; Case and Taper, 2000; Kawecki and Holt, 2002). In such
literature, dispersal is tacitly assumed symmetric, even if dra-
matic consequences are predicted when dispersal appears to
be asymmetric (Vuilleumier and Possingham, 2006).

The parameterisation of such models is a crucial issue
(Koenig et al., 1996; Tischendorf, 1997). Estimation of disper-
sal can be performed by genetic and demographic methods.
Some studies conclude on agreement (Eldridge et al., 2001;
Maudet et al., 2002; Berry et al., 2004) but many have indi-
cated discrepancies, (e.g. Hastings and Harrison, 1994; Slatkin,

1994; Ward et al., 1994; Koenig et al., 1996, for reviews). Even if,
due to the complexity of the processes involved, the genetic
measures are not yet completely adapted and unified, we
believe that they offer a new field of investigation for disper-
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sal model simulation parameterisation. Our application with
simple modelling assumptions shows that the genetic dif-
ferentiation among populations can be related to landscape
structure.
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Montpellier (France).

Bennetts, R.E., Nichols, J.D., Lebreton, J.-D., Pradel, R., Hines, J.E.,
Kitchens, W.M., 2001. Methods for estimating dispersal
probabilities and related parameters using marked animals.
In: Clobert, J., Danchin, E., Dhondt, A.A., Nichols, J.D. (Eds.),
Dispersal, Oxford, 3–17.

Berger, U., Wagner, G., Wolff, W.F., 1999. Virtual biologist observes
virtual grasshoppers: an assessment of different mobility
parameters for the analysis of movement patterns. Ecol.
Model. 115, 119–127.

Berggren, A., Carlson, A., Kindvall, O., 2001. The effect of
landscape composition on colonization success, growth rate
and dispersal in introduced bush-crickets Metrioptera roeseli. J.
Anim. Ecol. 70, 663–670.

Berry, O., Tocher, M.D., Sarre, S.D., 2004. Can assignment tests
measure dispersal? Mol. Ecol. 13, 551–561.

Blackwell, P.G., 1997. Random diffusion models for animal
movement. Ecol. Model. 100, 87–102.

Brownie, C., Hines, J.E., Nichols, J.D., Pollock, K.H., Hestbeck, J.B.,
1993. Capture–recapture studies for multiple strata including

non-Markovian transition probabilities. Biometrics 49,
1173–1187.

Carter, J., Finn, J.T., 1999. MOAB: a spatially explicit,
individual-based expert system for creating animal foraging
models. Ecol. Model. 119, 29–41.
2 0 1 ( 2 0 0 7 ) 369–376

Case, T.J., Taper, M.L., 2000. Interspecific competition,
environmental gradients, gene flow, and the coevolution of
species’ borders. Am. Nat. 155, 583–605.

Clobert, J., Piry, S., Luikart, G., Estoup, A., Solignac, M., 1999. New
methods employing multilocus genetotypes to select or
exclude populations as origins of individuals. Genetics 153,
189–2000.

Cockburn, A., 1992. Habitat heterogeneity and dispersal:
environmental and genetic patchiness. In: Stenseth, N.C.,
Lidicker, W.Z.J. (Eds.), Animal Dispersal: Small Mammals as a
Model. Chapman & Hall, London, pp. 65–95.

Cockerham, C.C., Weir, B.S., 1993. Estimation of gene flow from
F-statistics. Evolution 47, 855–863.

Cornuet, J.M., Piry, S., Luikart, G., Estoup, A., Solignac, M., 1999.
New methods employing multilocus genotypes to select or
exclude populations as origins of individuals. Genetics 153,
1989–2000.

Couvet, D., 2002. Deleterious effects of restricted gene flow in
fragmented populations. Cons. Biol. 16, 369–376.

Czekanowski, J., 1909. Zur Diferenzialdiagnose der
Neandertalgruppe. Bl. dtsch. Ges. Antrop. Ethn. Urgesch.,
Braunschweig, 40.

Dawson, K.J., Belkhir, K., 2001. A bayesian approach to the
identification of panmictic populations and the assignment of
individuals. Gene. Res. 78, 59–77.

Dias, P.C., 1996. Sources and sinks in population biology. Tree 11,
327–330.

Downing, K., Reed, M., 1996. Object-oriented migration modelling
for biological impact assessment. Ecol. Model. 93, 203–219.

Ehinger, M., Fontanillas, P., Petit, E., Perrin, N., 2002. Mitochondrial
DNA variation along an altitudinal gradient in the greather
white-tooted shrew, Crocidura russula. Mol. Ecol. 11,
939–945.

Eldridge, M.D.B., Kinnear, J.E., Onus, M.L., 2001. Source
populations of dispersing rock-wallabies (Petrogale tateralis)
identified by assignment tests on multilocus genotypic data.
Mol. Ecol. 10, 2867–2876.

Endler, J.A., 1977. Geographic Variation, Speciation, and Clines.
Princeton University Press, Princeton, New Jersey.

Fahrig, L., Merriam, G., 1985. Habitat patch connectivity and
population survival. Ecology 66, 1762–1768.

Farnsworth, K.D., Beecham, J.A., 1999. How do grazers achieve
their distribution? A continuum of models from random
diffusion to the ideal free distribution using biased random
walks. Am. Nat. 153, 509–526.

Favre, F., Balloux, F., Goudet, J., Perrin, N., 1997. Female-biased
dispersal in the monogamous mammal Crocidura russula:
evidence from field data and microsatellite patterns. Proc. R
Soc. B 264, 127–132.

Fontanillas, P., Petit, E., Perrin, N., 2004. Estimating sex-specific
dispersal rates with autosomal markers in
hierarchically-structured populations. Evolution 58,
2369–2374.

Gardner, R.H., Gustafson, E.J., 2004. Simulating dispersal of
reintroduces species within heterogeneous landscapes. Ecol.
Model. 171, 339–358.

Genoud, M., 1995. Crocidure russula. In: Hausser, J. (Ed.),
Mammifères de la Suisse. Birkhäuser-Verlag, Basel,
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