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Authors: Triana-Del Ŕıo R, van den Burg E, Stoop R, Hegoburu C

Journal: Psychopharmacology

Year: 2019

Issue: 236

Volume: 1

Pages: 339-354

DOI: 10.1007/s00213-018-5030-5

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains
an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

http://dx.doi.org/10.1007/s00213-018-5030-5


Version - 2018 - Hegoburu   

15  

 

 

Acute and long-lasting effects of oxytocin in cortico-limbic 
circuits: consequences for fear recall and extinction 

 
Rodrigo Triana-Del Río1 & Erwin van den Burg1 & Ron Stoop1 & Chloé Hegoburu1 

 
Abstract 

The extinction of conditioned fear responses entrains the formation of safe new memories to decrease those behavioral responses. 

The knowledge in neuronal mechanisms of extinction is fundamental in the treatment of anxiety and fear disorders. Interestingly, 

the use of pharmacological compounds that reduce anxiety and fear has been shown as a potent co-adjuvant in extinction therapy. 

However, the efficiency and mechanisms by which pharmacological compounds promote extinction of fear memories remains 

still largely unknown and would benefit from a validation based on functional neuronal circuits, and the neurotransmitters that 

modulate them. From this perspective, oxytocin receptor signaling, which has been shown in cortical and limbic areas to 

modulate numerous functions (Eliava et al. Neuron 89(6):1291-1304, 2016), among them fear and anxiety circuits, and to 

enhance the salience of social stimuli (Stoop Neuron 76(1):142-59, 2012), may offer an interesting perspective. Experiments 

in animals and humans suggest that oxytocin could be a promising pharmacological agent at adjusting memory consolidation to 

boost fear extinction. Additionally, it is possible that long-term changes in endogenous oxytocin signaling can also play a role in 

reducing expression of fear at different brain targets. In this review, we summarize the effects reported for oxytocin in cortico- 

limbic circuits and on fear behavior that are of relevance for the modulation and potential extinction of fear memories. 
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ACC Anterior cingulate cortex 

AVP1a-R Vasopressin receptor 

BA Basal amygdala 

BLA Basolateral amygdala 

CBT Cognitive behavioral therapy 

CeA Central amygdala 

CeL Centro-lateral amygdala 

CeM Centro-medial amygdala 

CS Conditioned stimulus 

CSF Cerebrospinal fluid 

dmPFC Dorso-medial prefrontal cortex 

GABA Gamma amino butyric acid 

IL Infralimbic cortex 
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ITCd Intercalated cell masses (dorsal) 

ITCv Intercalated cell masses (ventral) 

LA Lateral amygdala 

NMDAR N-methyl-d-aspartate receptor 

Nacc Nucleus accumbens 

OT Oxytocin 

OTR Oxytocin receptor 

PKCδ Protein kinase delta 

PL Prelimbic cortex 

PTSD Posttraumatic stress disorder 

PVN Paraventricular nucleus of the hypothalamus 

US Unconditioned stimulus 

vmPFC Ventromedial prefrontal cortex 

 

 

Introduction 
 

Anxiety-related disorders are at present a worldwide psychi- 

atric, pharmacological, and economical issue, and according 

to the World Health Organization (WHO 2016), since 1990, 

the number of people suffering from anxiety increased by 

nearly 50%. In fact, close to 10% of the world’s population 
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is affected by mental disorders and this accounts for 30% of 

the global non-fatal disease burden (World Health 

Organization 2016). Thus, reducing anxiety and fear-related 

neuropathologies represents a priority in the current health 

system. 

Fear memories are caused by concrete threats. During fear- 

conditioned learning, an aversive stimulus or unconditioned 

stimulus (US), like a mild electric foot shock in rodents or 

gunfire in humans, is associated with a neutral sensory stim- 

ulus or conditioned stimulus (CS), like a tone, a smell or a 

visual cue, resulting in the creation of a conditioned fear mem- 

ory. When the individual is re-exposed to the CS, the fear 

memory is retrieved or recalled, generating a fear response, 

for example, freezing in rats and mice (LeDoux 2000; 

Alberini 2013), or fear-potentiated startle (often measured in 

humans) accompanied by the activation of a whole series of 

physiological responses (Debiec and LeDoux 2006; Quirk 

and Mueller 2008; Do-Monte et al. 2015). Meanwhile, anxiety 

states can be induced by circumstantial, potential, imagined, 

or anticipated threats, which are more related with the unspe- 

cific generalization of fear. Anxiety states and fear memories 

are brought about in part by the same neuronal circuits, in- 

volving the different subnuclei of the amygdala and the pre- 

frontal cortex (LeDoux 2000, 2014; Davis et al. 2010; Tye and 

Deisseroth 2012; Anderson and Adolphs 2014; Tovote et al. 

2015), so that treatment options of conditioned fear and anx- 

iety can overlap. Furthermore, anxiety and fear memories are 

encoded in an Bengram,^ which  has been represented by a 

specific population of neurons activated during specific learn- 

ing events (Tonegawa et al. 2015). This notion provides a 

cellular substrate that can be subjected to modulation during 

the recall of the original memory, but also during its extinc- 

tion. Efficient therapies at modulating engrams to promote 

fear extinction are therefore needed, and extinction learning 

is at the basis of this. Indeed, extinction of conditioned fear 

responses, which encompasses the formation of new memo- 

ries encoding safety, and thereby inhibiting fear, represents an 

important mechanism in the treatment of anxiety disorders, 

such as posttraumatic stress disorder (PTSD), social phobia, 

panic disorders, and fear generalization. In psychiatry, extinc- 

tion training is commonly used in cognitive behavioral thera- 

pies (CBT) (Cisler et al. 2016; Klumpp et al. 2017; 

Abramowitz 2013). CBT focuses on identifying and modify- 

ing maladaptive patterns of conditioned behavior and is one 

of the most established methods to reduce fear (Stewart and 

Chambless 2009). In addition, it targets the neuronal processes 

that inhibit fear retrieval (Straub et al. 2017; Carpenter et al. 

2018). 

Extinction training involves repeated presentation of the 

CS in the absence of the US, and results in a diminished fear 

response towards the CS (Hofmann et al. 2015; Pavlov 1927; 

Alberini 2013). This is presumed to be the result of a cascade 

of genetic, molecular, and cellular changes (Myers and Davis 

2007; Orsini and Maren 2012) that alter synaptic efficacy and 

neuronal network interactions in the pathways for retrieval 

and extinction of fear memories (Pape and Paré 2010; 

Tonegawa et al. 2015). The strength of extinction memory 

(extinction consolidation) is evaluated after the training, in 

so-called Bextinction retrieval^ sessions, in which the condi- 

tioned fear is decreased, and therefore, also the potential anx- 

iety that accompanies the fear memory is diminished (Quirk 

et al. 2006; Schiller et al. 2013). Extinction training, although 

effective in decreasing the fear response in the short term, does 

not erase the original fear memory trace, but forms a new, 

distinct memory (Milad and Quirk 2002; Quirk et al. 2006; 

Schiller et al. 2013; Kroes et al. 2016; Rashid et al. 2016). As a 

result, the original conditioned fear response can reoccur with 

time through spontaneous recovery, reinstatement, and renew- 

al (Rescorla 2004; Kim and Richardson 2010). Remarkably, 

the extinction memory does not generalize as easily to new 

contexts, as the original conditioned fear memory does during 

anxiety states (Woods and Bouton 2006). Because extinction 

learning does not generalize to situations outside the extinc- 

tion context, it is therefore not the best clinical tool for long- 

lasting fear reduction. 

A different method to reduce the fear response is the use of 

pharmacological agents that target precisely the synaptic plas- 

ticity of neuronal circuits of extinction memories, whose 

downstream signaling pathways can allow fear extinction 

and strengthen extinction memory unremittingly in preclinical 

and clinical models (for extensive review follow: Bukalo et al. 

2014; Singewald et al. 2015). Indeed, pharmacological agents 

applied after retrieval of the fear memory might facilitate fear 

extinction, as evidenced by the apparent amnesic effects of 

propranolol, a beta-adrenergic antagonist, in animals and 

humans (Kroes et al. 2016; Giustino et al. 2016). Although 

propanolol has been accepted as a clinical option for general 

anxiety, its precise mechanism lies in the amnesic effect on 

retrieved fear memories, and are not fully validated in the 

circuits for fear extinction (Debiec and Ledoux 2004; 

Steenen et al. 2016). In the same line, the antibiotics 

anisomycin (a blocker of protein synthesis) and d- 

cycloserine (partial NMDA receptor agonist that works as a 

cognitive enhancer) seem to support fear extinction as well 

(Nader et al. 2000; Ledgerwood et al. 2005; Anderson and 

Insel 2006; Hofmann et al. 2015; Bowers and Ressler 

2015a, 2015b). While the use of anisomycin is limited by its 

high toxicity, as it blocks all protein synthesis, d-cycloserine is 

already being used in combination with CBT to enhance fear 

extinction. On one hand, it is thought to suppress the initial 

fear memory, and on the other hand to promote extinction 

learning through activation of NMDA receptors (Davis et al. 

2006; Bowers and Ressler 2015b; Mataix-Cols et al. 2017; 

Goodman et al. 2018). 

Although these examples show the beneficial effects of 

pharmacological agents, as co-adjuvants of extinction 
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therapies, some other reports suggest that co-adjuvant use of 

anxiolytics provides only modest gains in fear extinction or 

can even impair extinction learning working by acting as po- 

tential anxiogenics (Singewald et al. 2015). An example of 

this can be found in positive allosteric modulation of 

GABAA receptor activity via the benzodiazepine-binding site 

(Clark et al. 2004; Knoflach et al. 2016; Duke et al. 2018). 

Because of the sedating and calming effects of benzodiaze- 

pines, they might in fact hinder extinction via reduced arousal 

and decreased release of noradrenaline and glucocorticoids, 

neuromodulators that support extinction (Otto et al. 2005; 

Bentz et al. 2010). Similar concerns have been raised for the 

use of serotonin selective reuptake inhibitors (SSRI). Chronic 

treatment with some SSRIs (e.g., fluoxetine) but not all (e.g., 

citalopram) enhances extinction in rodents (Burghardt and 

Bauer 2013). However, acute SSRI treatment could on the 

other hand induce anxiogenic effects (Campbell and 

Merchant 2003; Salchner and Singewald 2006). Finally, an- 

other interesting compound is venlafaxine, a combined 5-HT 

and noradrenaline reuptake inhibitor with weaker affinity for 

the noradrenaline transporter (Owens et al. 1997). This com- 

pound improves extinction retrieval and protects against fear 

reinstatement in rodents (Yang et al. 2012). In summary, some 

pharmacological compounds could target the brain networks 

responsible for fear extinction but in a rather unspecific man- 

ner. A more effective and innocuous pharmacological ap- 

proach should therefore be adopted to specifically target the 

consolidation and reconsolidation of extinction memories 

(Alberini 2013) (Fig. 1). 

Here, we discuss the neuropeptide oxytocin (OT) as a po- 

tential endogenous regulator of the neuronal plasticity behind 

fear expression and extinction-related behaviors, and which 

can easily be applied intranasally to improve fear extinction 

learning in humans (Eckstein et al. 2015, 2017). Oxytocin is a 

well-established anxiolytic when exogenously applied or en- 

dogenously released in several brain regions, including the 

PVN where it is synthesized (Blume et al. 2008; Jurek et al. 

2012). In this area, its anxiolytic activity is brought about by 

the recruitment of an oxytocin receptor (OTR)—TRPV2 

channels (and subsequent Ca2+ influx)—MEK1/2 pathway 

(van den Burg et al. 2015). Underlying mechanisms of oxy- 

tocin and fear extinction in other brain regions, like the PFC 

and amygdala, are beginning to be explored, motivated by the 

discovery of OT release and OTR expression in those areas 

(Knobloch et al. 2012; Mitre et al. 2016; Li et al. 2016; Rogers 

et al. 2018). 

 
 

Cortico-limbic circuits for fear 
retrieval and extinction memories 

 
As the modern standpoint in psychiatry pursues a more pre- 

cise circuit-based therapy, a pertinent pharmacological 

methodology must target the neuronal populations, where ex- 

tinction memories are formed and consolidated (Fitzgerald 

et al. 2014; Bukalo et al. 2014). The circuits between the 

prefrontal cortex and the amygdala represent the physiological 

substrate for the recall or retrieval of fear memories, but also 

extinction memories (Fig. 1). Moreover, these brain areas ex- 

press the receptor for oxytocin (OTR). Thus, the physiological 

interactions between the brain areas involved, as well as the 

neuromodulators such as OT that regulate their functions, rep- 

resent a clear anatomical substrate to facilitate strengthening 

of fear extinction memories. 

 

Amygdala 
 

In the classical circuit model of fear conditioning, the lateral 

nucleus of the amygdala (LA) is the primary site where asso- 

ciations between the CS and the US are formed and stored 

(Davis 1992; LeDoux 2000; Maren 2001). LA pyramidal neu- 

rons project to the central nucleus of the amygdala (CeA), 

which then mediates the physiological and behavioral expres- 

sion of conditioned fear responses. CeA output neurons, most 

of which are located in its medial subdivision (CeM), project 

to downstream targets in the brainstem and hypothalamus that 

orchestrate conditioned autonomic and motor responses 

(Krettek and Price 1978; Veening et al. 1984; LeDoux et al. 

1988). Nevertheless, circuits within the CeA have also been 

shown to be important for acquisition as well as expression of 

fear (Ciocchi et al. 2010; Haubensak et al. 2010; Duvarci et al. 

2011; Amano et al. 2012; Li et al. 2013a). 

In these different studies, distinct cell types have been iden- 

tified based on functional and genetic criteria. In the lateral 

subdivision of CeA (CeL), PKCδ+ mRNA-containing neu- 

rons exhibit inhibitory CS responses, also called CeLOFF cells. 

These PKCδ+ neurons receive local inhibitory inputs from 

CS-activated PKCδ− neurons (CeLON), and in turn make in- 

hibitory synaptic contacts with PAG-projecting CeA output 

neurons, thereby gating acute CeA output through disinhibi- 

tion. CeM output cells are under tight inhibitory control of this 

GABAergic microcircuit located in the CeL. This microcircuit 

can be activated by OT, resulting in inhibition of neuronal 

activity in the CeM (Cassell 1999; Huber et al. 2005; 

Ehrlich et al. 2009; Viviani et al. 2011; Knobloch et al. 2012). 

Abbreviations: ACC, anterior cingulate cortex; PL, 

prelimbic cortex; IL, infralimbic cortex; LA, lateral amygdala; 

BA, basal amygdala; ITCd, intercalated cells dorsal; ITCv, 

intercalated cells ventral; CeL, centro-lateral amygdala; 

CeM, centro-medial amygdala; PAG, periaqueducal gray 

While this anatomical arrangement is at the basis of the 

physiological and behavioral expression of fear, recent studies 

have highlighted that the microcircuitry in the CeA is impor- 

tant for fear memory as well. For example, during fear retriev- 

al and accompanying freezing behavior, excitatory synapses 

onto somatostatin-positive neurons (CeLON) in the CeL 
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Excitatory neurons (Glutamate) Extinction neurons 

Figure 1 Hypothetical circuits involved in recall and extinction of fear 

memories. In this hypothesis, two parallel mechanisms are involved to 

induce the CS responsiveness of CeM output neurons after conditioning. 

The balance between excitatory inputs from BA and the inhibitory inputs 

from CeL and ITCv inputs to CeM triggered its CS responsiveness. This 

balance can be modulated by the ACC and prefrontal cortex (PL or IL) 

activities. Recall pathways (upper part of the panel): The CS-activated LA 

neurons projecting to BA neuron subtype (Bfear neurons,^ pink triangle) 

to excite CeM cells, whereas another type of BA neurons (Bextinction 

neurons,^ green triangle) are inhibited. The response from LA and BA 
Bfear neurons^ can be modulated through excitatory interactions with 

each other and/or with prelimbic (PL) cells and anterior cingulate cortex, 
would reinforce the activity in LA during CS presentation. Conversely, 
the activation of LA neurons also leads to the recruitment of ITCd inhib- 

itory cells and of a subgroup of CeL interneurons named CeLOn/PKCδ-. 

ITCd neurons would then inhibit ITCv cells, disinhibiting CeM neurons. 

In addition, ITCd cells would inhibit another subgroups of CeL interneu- 

rons named CeLOff/PKCδ+. These activations cause a further inhibition 

of PKCδ+ neurons and disinhibition of CeM cells leading to freezing 

response. These mechanisms take place only when the threat is inescap- 

able, otherwise the neurons from BA lead to escape behavior. Extinction 

pathways (lower part of the panel): These balance between two parallel 

mechanisms leads to the decrease of fear response to the CS presentation 

and the activation of CeM output neurons during extinction. During this 

new phase of learning, the CS diminished rapidly the recruitment of BA 

Bfear^ neurons leading to a disinhibitions of BA BExtinction^ neurons 

(green). Moreover, the projections from Infralimbic to BA (and recipro- 

cally) might also enhance the excitability of BA BExtinction^ cells. The 

disinhibition of extinction cells induced the activation of a subgroup of 

interneurons in BA inhibiting Bfear^ neurons. In parallel, the reduction of 

activity in LA causes a disaffiliation of ITCd neurons leading to an acti- 
vation by disinhibition of ITCv neurons, and simultaneous activation by 
BA ‘Extinction’ glutamatergic neurons. Moreover, the subsets of CeL 
cells PKCδ+ can be disinhibited leading to the inactivation of CeM neu- 
rons and less fear responses. 
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experience a robust synaptic potentiation (Li et al. 2013a, b). 

Additionally, optogenetic stimulation of basolateral amygdala 

(BLA) terminals in the CeA results in anxiolysis during the 

retrieval of fear context (Tye et al. 2011), possibly brought 

about by activation of CeLOFF cells expressing the OTR 

(Haubensak et al. 2010; Viviani et al. 2011). Thus, the ob- 

served changes in plasticity (the cellular correlate of learning) 

and bidirectional modulation of fear-related behavior through 

CeLON and CeLOFF cell activity establish the CeA as an im- 

portant node in the expression of fear, and a locus for fear 

memory. 

Another relevant mechanism for extinction involves the 

activation of the intercalated cell masses (ITC) of the amyg- 

dala (Royer et al. 1999; Quirk et al. 2003; Paré et al. 2004; 

Amano et al. 2010; Amir et al. 2011; Bukalo et al. 2014). The 

ITCs include clusters of tightly packed, GABAergic neurons 

connected with the fiber bundles that lie between the BA/LA 

and the CeL/CeM nuclei. Further reports have highlighted the 

heterogeneity of diverse ITCs. The dorsal and ventral ITC 

nuclei are heavily interconnected, exhibit miscellaneous elec- 

trophysiological and molecular profiles, and are differentially 

activated by fear and fear extinction, while dorsal ITC activity 

emerge during fear recall, ventral ITC activity is enhanced 

during fear extinction (Geracitano et al. 2007; Kaoru et al. 

2010; Busti et al. 2011; Bukalo et al. 2014). In fact, general 

excitatory synaptic signaling onto the ventral ITC population 

appears to be necessary for fear extinction, as a mouse model 

lacking the serine protease inhibitor protease-nexin-1 (PN-1), 

that modulates NMDAR-mediated synaptic currents in the 

vITC, displays impaired fear extinction (Meins et al. 2010). 

 

Prelimbic versus infralimbic cortices 
 

The fundamental role of the prefrontal cortex to retrieve, con- 

solidate, and extinguish fear memories has been well- 

demonstrated in a plethora of pharmacological, optogenetic, 

and electrophysiological studies. These roles seem to be con- 

served between rodents and humans, and homologous 

subnuclei in the prefrontal cortex have been found in both spe- 

cies (Fig. 2). In rodents, the subnuclei are named, from dorsal to 

ventral: anterior cingulate cortex (ACC), prelimbic cortex (PL), 

and infralimbic cortex (IL). They correspond respectively to the 

human anterior cingulate cortex (ACC), dorso-medial prefron- 

tal cortex (dmPFC), and ventro-medial prefrontal cortex 

(vmPFC) (Milad et al. 2006; Quirk and Milad 2010; Likhtik 

et al. 2014; Duvarci and Pare 2014; Giustino and Maren 2015). 

The PL and IL play opposing roles in encoding fear memo- 

ries, triggering fear retrieval, and fear extinction, respectively 

(Vidal-Gonzalez et al. 2006; Herry et al. 2008; Quirk and Milad 

2010; Milad and Quirk 2012; Little and Carter 2013; Courtin 

et al. 2014; Senn et al. 2014; Dejean et al. 2016; Karalis et al. 

2016; McGarry and Carter 2017). This difference is due to the 

differential functional connectivity patterns of PL and IL with 

unique populations of pyramidal cells in the BLA, and is am- 

plified by mutual inhibition driven by interneuron populations 

in both prefrontal subnuclei (Vogel et al. 2016; Bukalo et al. 

2015; Vertes 2004; Vidal-Gonzalez et al. 2006; Cho et al. 2013; 

Courtin et al. 2014; Saffari et al. 2016; Karalis et al. 2016). The 

BLA pyramidal neurons project back to both the PL and IL sub 

regions, creating a feedback loop (Gabbott et al. 2006; Hoover 

and Vertes 2007; Senn et al. 2014; Burgos-Robles et al. 2017; 

McGarry and Carter 2017). These BLA inputs to the PL and IL 

modulate the excitatory/inhibitory balance on cortical pyrami- 

dal cells, possibly via engagement of local interneurons 

(Ishikawa and Nakamura 2003; Sun and Laviolette 2012; 

Sotres-Bayon et al. 2012; Dilgen et al. 2013). Then, the bidi- 

rectional projections between PL/IL and the BLA encode the 

experience-dependent retrieval versus extinction processing of 

fear memories by balancing PL vs. IL activity. 

 

Anterior cingulate cortex 
 

Besides the PL and IL, the anterior cingulated cortex (ACC) 

also sends projections to the BLA, and modulates the expres- 

sion and retrieval of fear (Vertes 2004; Sierra et al. 2017; 

Webb et al. 2017; Yin et al. 2018). In rodents, this area is 

responsible for the enhancement of contextual fear generali- 

zation after fear conditioning, and for the transfer of socially 

derived fear through its connections with the amygdala 

(Cullen et al. 2015; Pisansky et al. 2017; Allsop et al. 2018). 

In humans, local GABAergic signaling in the ACC promotes 

fear extinction, which suggests that inhibition of the dorsal 

ACC may initially inhibit the retrieval of fear memories, and 

thus facilitates extinction learning (Levar et al. 2017a, 2017b). 

Additionally, some structural and functional deficits in this 

area have been found in fMRI studies in neuropsychiatric dis- 

orders, such as generalized anxiety disorder (Andreescu et al. 

2017) and PTSD (Shvil et al. 2014), which both affect severely 

the extinction of fear memories. In the case of PTSD, interest- 

ingly, the activation of ACC, together with the vmPFC and 

hippocampus, is sexually dimorphic: men with PTSD exhibited 

increased activation in the left rostral dACC during extinction 

recall compared to women with PTSD (Shvil et al. 2014; Yoon 

et al. 2017). Further, animal and human studies (Cullen et al. 

2015; Levar et al. 2017a, 2017b) have positioned the ACC as 

an important hub to trigger fear retrieval alongside the PL, and 

its inhibition might be a way to boost fear extinction. 

 

 
Modulation of fear circuits by 
oxytocin in preclinical animal models 

Rodents 
 

There is quite a lot of evidence that OT acts in different brain 

areas to decrease anxiety responses and conditioned fear 
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Fig. 2 Anatomical locations of 

the anterior cingulate cortex 

(ACC), prelimbic (PL), and 

infralimbic (IL) subregions of the 

medial PFC, showing equiva- 

lence between the human and rat 

brains. The rodent PL region is 

largely associated to Brodmann 

area 32, while the IL is analogous 

to Brodmann area 25. The ACC is 

mainly associated with the 

Brodmann area 24. Usually these 

observations are based on the dif- 

ferent type of thalamic inputs to 

these regions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

responses during retrieval in rodents (Fig. 3). Indeed, OTRs- 

and OT-binding sites have been found in those circuits, espe- 

cially in the ACC, PL, and CeL (Huber et al. 2005; Nakajima 

et al. 2014; Burkett et al. 2016; Li et al. 2016; Sabihi et al. 

2017) (Jiménez et al. 2015), that together constitute the fear 

retrieval network. The OTRs are expressed specifically by 

GABAergic interneurons in all of the brain regions involved 

in fear retrieval (Huber et al. 2005; Owen et al. 2013; 

Nakajima et al. 2014; Marlin et al. 2015; Sabihi et al. 2017). 

Importantly, OT-positive fibers originating from the PVN pro- 

ject to these areas (Knobloch et al. 2012), and, at least in the 

CeL, OT is released from these fibers as observed following 

optogenetic stimulation and application of an OTR antagonist. 

Furthermore, OT release in the CeL is sufficient to decrease 

conditioned fear responses, clearly demonstrating the anxio- 

lytic potential of OT in a pathway that mediates fear retrieval 

when the animals are re-exposed to the conditioned fear con- 

text. It has further been shown that the OTR mRNA is indeed 

present in part of the CeLOFF cells in the CeL (Haubensak et 

al. 2010), and we found that activation of these receptors 

inhibits the CeM and its output to downstream effector regions 

(Huber et al. 2005; Viviani et al. 2011; Knobloch et al. 2012). 

Furthermore, the OTR has been found in the basolateral 

amygdala (BLA), another hub for extinction memories, by 

means of immunohistochemistry and autoradiography 

(Stamatakis et al. 2016; Mitre et al. 2016). In fact, it has been 

suggested that the extinction of conditioned fear is facilitated 

by local infusions of OT or TGOT (specific agonist of the 

OTR) in the BLA, but not in the CeA (Campbell-Smith    et 

al. 2015). 

By using an OTR antagonist, it has further been shown that 

endogenous OT has similar anxiolytic effects in the PL, as it has 

in the CeL (Nakajima et al. 2014; Li et al. 2016; Sabihi et al. 

2017). In addition, optogenetic and pharmacological activation 

of the OTR in the PL reduces anxiety-like behavior, in a gender- 

dependent manner (Li et al. 2016), further characterizing the 

differential role of different prefrontal-amygdala circuits during 

the modulation of fear memories in female and male rodents 

(Shansky et al. 2010; Gruene et al. 2015). Moreover, Mitre et al. 

(2016) found a higher density of the OTR expression within the 

PL of lactating females compared to virgins or males rodents. 

Consistent with this, Sabihi et al. (Sabihi et al. 2014) showed 

that blocking the OTR in this area enhances anxiety in lactating 

but not virgin females. In addition, in the ACC, the OTR is also 

expressed (Mitre et al. 2016), and an OTR antagonist infused 

into this region abolished the partner-directed consolation be- 

havior during fear transfer in prairie voles (Burkett et al. 2016). 

While OT can exert acute anxiolytic effects by reducing the 

activity of the fear retrieval network, especially in the central 

amygdala (Fig. 3), it might also modulate plasticity of the fear 

extinction network to bring about the reduction of fear re- 

sponses. This would require the presence of OTRs for instance 

in the IL, or inhibitory actions in the PL or ACC (as in the 

CeA). Indeed, administration of OT in the IL of fear- 
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    Inhibitory neurons (Gaba) Fear neurons Oxytocin (OT) 

Excitatory neurons (Glutamate) Extinction neurons OT-receptor 

Fig. 3 Modulation by oxytocin signaling of the balance between fear 

recall and fear extinction. In this hypothesis, oxytocin would allow a 

switch from fear recall to fear extinction, based on the hypothetical 

model of circuitry presented in Fig. 1. This model revealed a complex 

mechanism involving always a balance between inhibition and excitation 

leading to increase or decrease the CS responsiveness from CeM neurons. 

In oxytocin model of switching fear to extinction, the presence of 

oxytocin would activate the receptors localized only on the interneurons 

of ACC, PL, and CeL. Interestingly, in CeL the OT-receptors are only on 

cell PKCδ+. During the recall, the CS activated LA neurons projecting to 

BA neuron subtype (Bfear neurons,^ pink triangle) to excite CeM cells, 

whereas another type of BA neurons (Bextinction neurons,^ green trian- 
gle) are inhibited. Oxytocin receptors are localized on interneurons of 

regions (ACC, PL, CeL) involved in recall, thus the activation of these 
receptors by oxytocin leads to inhibit the Bfear^ neurons and to recruit 

more Bextinction^ neurons in BA. Oxytocin would diminish rapidly the 

capacity from the CS to recruit Bfear^ neurons in BA leading to a disin- 

hibition of BA Bextinction^ neurons (green). Moreover, the projections 

from infralimbic to BA (and reciprocally) might also enhance the excit- 
ability of BA Bextinction^ cells. The disinhibition of extinction cells 

induced the activation of a subgroup of interneurons in BA inhibiting 
Bfear^ neurons. In parallel, the reduction of activity in LA causes a dis- 

affiliation of ITCd neurons leading to an activation by disinhibition of 
ITCv neurons, and simultaneous activation by BA Bextinction^ gluta- 

matergic neurons. Moreover, the subsets of CeL cells PKCδ+ can be 
disinhibited leading to the inactivation of CeM neurons and less fear 
responses. Abbreviations: ACC, anterior cingulate cortex; PL, prelimbic 
cortex; IL, infralimbic cortex; LA, lateral amygdala; BA, basal amygdala; 

ITCd, intercalated cells dorsal; ITCv, intercalated cells ventral; CeL, 

centro-lateral amygdala; CeM, centro-medial amygdala; PAG, 

periaqueducal gray 

 

conditioned rats resulted in facilitation of subsequent extinc- 

tion (Lahoud and Maroun 2013). Furthermore, social interac- 

tion during extinction training facilitates the consolidation of 

extinction, and this effect is mediated by the pharmacological 

manipulation of OTR signaling in IL (Brill-Maoz and Maroun 

2016). However, interpretation of these observation is not as 

straight forward as one might think, as OTRs and OT- 

releasing fibers are absent in this region (Knobloch et al. 

2012; Mitre et al. 2016). Nonetheless, a different study 

showed the presence of OTR‐binding sites in IL of rats 

using autoradiography (Hansson et al. 2018). 

 
Non-human primates 

 

While OTR expression has clearly been demonstrated in rodent 

brain regions involved in fear extinction and fear recall, this 
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seems to be different in non-human primates, since the identi- 

fication of these receptors has certain technical limitations. 

Here, OTRs appear rather expressed in brain areas related to 

the integration of visual stimuli (Freeman et al. 2014; Freeman 

and Young 2016) that are upstream of the fear-controlling re- 

gions. For example, the nucleus basalis of Meynert (NBM) 

projects to the amygdala and it is the primary source of cholin- 

ergic input to the BLA (Nagai et al. 1982; Woolf and Butcher 

1982). This cholinergic input is required for memory consoli- 

dation (Power et al. 2003), possibly promoting the oxytocin 

signaling-dependent encoding of memory during sustained at- 

tention to visual stimuli (Freeman and Young 2016), with rele- 

vance for social- and fear-related behaviors. 

In chimpanzees, OT-immunoreactive fibers have been 

found in the ACC, but not in that of macaque monkeys 

(Rogers et al. 2018). In addition, OTRs seem to be 

completely 
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absent in these animals, and then OT is taken over by the 

closely related vasopressin receptor 1. Exogenous OT and 

AVP can bind to AVP receptors in the ACC of male macaques, 

with behavioral consequences (Jiang and Platt 2018), suggest- 

ing that exogenous OT may shape social and fear retrieval 

memories in primates via binding to AVP receptors 

(Terashima et al. 1999; Chini et al. 2008; Loyens et al. 

2012). This finding supports the direct effect of OT in the 

CeA of different non-human primates, where the AVP recep- 

tors are densely expressed, but not the OTRs (Young and 

Flanagan-Cato 2012; Freeman et al. 2014). 

 
 

Modulation of fear circuits by 
oxytocin in humans 

 
In humans, OTR-binding sites have been found in specific 

relays of the fear retrieval pathway in postmortem tissue. For 

example, Hansson et al. (2018) observed OTR expression by 

autoradiography in the ACC and Uhrig et al. (2016) also 

showed OTR mRNA and OT-binding sites in Brodmann 

area 10, which is part of the rostrolateral prefrontal cortex, 

and hence, of the fear retrieval pathway. Furthermore, as in 

the brain of chimpanzees, OT-positive fibers terminate in the 

ACC (Rogers et al. 2018), indicating a possible divergent 

evolution of the OT and AVP systems in more evolved pri- 

mates. Taken together, it seems that OT signaling modulates 

the activity of fear retrieval and recall pathways across many 

species, including humans. 

In humans, although the intranasal route of delivery does 

not allow for a precise targeting of brain regions (Leng and 

Ludwig 2016), it has been indeed the method of choice to 

deliver OT into the brain. Various key reports have even dem- 

onstrated that OT levels increase in the CSF after intranasal 

administration (Chang et al. 2012; Neumann et al. 2013; 

Striepens et al. 2013; Dal Monte et al. 2014; Modi et al. 

2014). In fact, fMRI studies detail widespread changes in 

BOLD signals in the majority of brain regions expressing 

OTRs after this application, among which the amygdala 

subnuclei (Gamer et al. 2010; Paloyelis et al. 2016). Some 

of these fMRI studies highlight the anxiolytic effects, with a 

locus in brain areas and subnuclei that belong to the fear re- 

trieval circuit after intranasal administration of OT (Gamer 

et al. 2010). As in rodents, OT has general anxiolytic acute 

properties in humans, decreasing the reactivity of the amyg- 

dala to fearful faces (Kirsch et al. 2005; Domes et al. 2007; 

Labuschagne et al. 2010). Noteworthy, intranasal administra- 

tion of OT can promote differential behavioral outcomes in 

men and women, in terms of emotional salience (Domes et al. 

2010; Rilling et al. 2014; Luo et al. 2017). Interestingly, in the 

ACC, activation of the dorsal part in response to fearful faces 

is diminished following intranasal OT application in men, but 

increased in women (Luo et al. 2017), indicating a sex- 

dependent outcome of OT modulation in fear retrieval. This 

sexual dimorphism in cortical oxytocin signaling resem- 

bles that observed in the PL of mice (Li et al. 2016). 

Similarly, different reports show that while OT decreases 

amygdala reactivity to threatening faces in men, it rather 

enhances the same amygdala reactivity to similar threaten- 

ing faces in women, when they are in the luteal phase of the 

menstrual cycle (Domes et al. 2010; Lischke et al. 2012). 

This observation suggests a sex-specific difference in OT-

dependent threat processing. It is potentially due to the 

interaction of OTR with gonadal steroids, such as pro- 

gesterone and estradiol, which have a more pronounced 

impact in the female brain. Adding to this idea, intranasal 

OT shows sex-specific functional roles via the amygdala to 

enhance the salience and attractiveness of positive social 

attributes in women but enhancing the salience of the neg- 

ative ones in men (Gao et al. 2016). This is a behavioral and 

functional proof of how this molecule’s network could have 

evolved in a different way in men and women, in order to 

display social relations and threat responses. 

These studies support the idea that OTR signaling can be 

sex-dependent in the modulation of fear circuits, and that its 

role to enhance the sensitivity to salient social stimuli can be 

affected by sex-dependent networks, like the gonadal steroid 

hormones. Importantly, steroid hormones, such as estradiol 

and progesterone have been found to modulate the OTR: es- 

tradiol enhances OTR affinity for OT, while progesterone de- 

creases receptor binding (Gimpl et al. 2002; Choleris et al. 

2008). These hormones regulate synaptic plasticity, 

NMDAR function and LTP, fundamental effectors of learning 

and memory (Milad et al. 2009; Gillies and McArthur 2010; 

Shansky et al. 2010; Zeidan et al. 2011; Milad and Quirk 

2012). Such gender difference might also be quite relevant 

for psychiatric conditions related with disrupted fear extinc- 

tion, like PTSD, that are more prevalent in women than in men 

(Kessler et al. 2017; Ramikie and Ressler 2018). Therefore, 

when applying OT in humans, it is important to consider these 

gender differences, and this also applies to preclinical research 

in animal models, where these differences have not either been 

consistently addressed. 

While research in rodents has clarified many aspects of 

acute anxiolytic actions of OT, and of the inhibition of fear 

retrieval by OT signaling, research in humans has been much 

more ambivalent. Besides potential differences in the way the 

induced behavioral and emotional changes are interpreted, this 

may also be due to the different methods of OT administration 

(Leng and Ludwig 2016; Walum et al. 2016). Indeed, human 

studies typically administrate oxytocin itself by intranasal ap- 

plication route. As a result, in these studies, OT may also reach 

vasopressin receptors through which it is known to often exert 

opposite effects, e.g., in the amygdala (Huber et al. 2005). 

Animal studies, in contrast, often apply the much more spe- 

cific OTR agonist Thr4Gly7-OT (TGOT), or the specific OTR 

https://www.sciencedirect.com/topics/neuroscience/oxytocin-receptor
https://www.sciencedirect.com/topics/neuroscience/binding-site
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agonist (OTA) and target these compounds through local in- 

jection to the brain regions under study. 

Nonetheless, in fear extinction procedures, intranasal 

OT after Pavlovian fear conditioning of healthy subjects 

increases electrodermal responses and vmPFC signals to 

conditioned fear in the early phase, and decreases amyg- 

dala activity in the late phase of extinction (Eckstein et al. 

2015). Similarly, intranasal OT promotes recall of fear 

extinction up to 24 h after fear extinction training 

(Acheson et al. 2013). To promote the consolidation of  fear 

extinction, OT administered in men inhibits amygdala 

responses to negative stimuli, and facilitates left insula 

responses for subsequent memory retrieval (Striepens et 

al. 2012), to form a memory of aversive social stimuli 

(Striepens et al. 2012). This is a very fascinating discov- ery 

that has not been found before in animals and postu- lates 

that OT could have long-lasting effects in memory 

consolidation for socially aversive cues. In addition, 

Eckstein and colleagues showed that exogenous OT in- 

creases the functional connectivity of the BLA with the 

dmPFC, and decreases that of the CeM, output region of the 

amygdala for negative emotional salience (Eckstein et al. 

2017). Together, these examples show that OT could 

modulate memory consolidation to boost fear extinction   in 

a long-lasting manner. This makes OT a promising 

pharmacological agent for the treatment of fear and anx- iety 

disorders. 

However, surprisingly, exogenous administration of OT in 

humans can also have contrasting effects (MacDonald et al. 

2013), for example, facilitating Pavlovian fear learning, cor- 

related with heightened activity in ACC (Eckstein et al. 2016). 

Moreover, in experimental designs using unpredictable 

threats, OT promotes anxiogenic effects by enhancing the po- 

tentiated startle reflex (Grillon et al. 2013). This could be 

explained from the functional role of OT to bind and stimulate 

the BNST (Moaddab and Dabrowska 2017; Dabrowska et al. 

2011; Knobloch et al. 2012; Martinon and Dabrowska 2018; 

Duque-Wilckens et al. 2018), a structure that underlies 

sustained anxiety-like behaviors to uncertainty by directly ac- 

tivating corticotrophin releasing factor neurons. A better un- 

derstanding of the consequences of OT administration in dif- 

ferent brain areas, and in diverse social and non-social con- 

texts, as well as a fully characterization of the dose-response 

function in clinical studies is warranted. Moreover, although 

current data supports the inhibition of cortico-amygdaloid re- 

trieval circuits by exogenous OT applications, more knowl- 

edge about the specific cell types or synaptic modulations in 

those networks are required, for example, in a clinical setting, 

through a PET scan that could screen OT tonic activity in the 

brain, as it exists for the dopaminergic signaling (Volkow et al. 

2005). Indeed, there have recent efforts to develop 

radioligands of OT that can be used for monitoring OT recep- 

tor distribution in humans (Smith et al. 2016a). 

Oxytocin treatment: mode of action 
 

In addition to acting as an acute anxiolytic to diminish fear 

responses, mainly in the CeA  and  other areas (Litvin et 

al. 2016; Viviani et al. 2011; de la Mora et al. 2016; Sabihi 

et al. 2017; Grund et al. 2017; Menon et al. 2018), OTcould 

also act on fear learning, and fear extinction learning in a long-

lasting manner. In other words, it could work on neuronal 

plasticity in the fear-related neural networks. 

Unfortunately, studies describing the mechanism of OT on 

synaptic plasticity in the ACC, PL, IL, BLA, and CeL are still 

scarce. However, a recent report demonstrated that, while in- 

tranasal acute administration of OT increases cellular activity 

in ACC and correlated with the transfer of socially derived 

fear, as in Burkett et al. 2016, chronic administration of OT 

had similar behavioral effects that correlated with decreased 

OTR mRNA in the CeA (Pisansky et al. 2017). Considering 

that intranasal OT could also affect VP receptors, these find- 

ings should be interesting to consider in light of the opposite 

effects both receptors exert in the CeA on expression of fear 

(Huber et al. 2005). 

Furthermore, OT signaling in other brain areas brings about 

plastic synaptic changes that rely on the OTR (Fang et al. 

2008). For example, in the nucleus accumbens, OT acts pre- 

synaptically to induce long-term depression (LTD), which has 

been associated with social reward (Dölen et al. 2013; Gur 

et al. 2014; Marlin et al. 2015; Mitre et al. 2016). Likewise, 

in the medial amygdala, OT induces LTD, which is fundamen- 

tal for social recognition (Gur et al. 2014). Finally, OT has 

been shown to promote long-term potentiation in the auditory 

cortex in response to vocal calls of the pups (Marlin et al. 

2015; Mitre et al. 2016) and in the hippocampus of lactating 

mothers through activation of MEK1/2 and CREB to improve 

spatial learning (Tomizawa et al. 2003). Taken the results of 

these studies together, it appears that OT can induce plastic 

changes in social contexts, in line with its proposed pro-social 

dynamic function (Fang et al. 2008; Marlin et al. 2015; Stoop 

et al. 2015; Modi et al. 2015; Coria-Avila et al. 2014; Triana- 

Del Rio et al. 2015). Therefore, we propose that putative con- 

tributions of OT to neuronal plasticity in the fear retrieval and 

extinction circuits can be best studied in relation to social 

interactions. In agreement with this, OT is released in the 

CeA in lactating mother rats in the presence of their pups 

(i.e., a social stimulus) to reduce freezing and increase active 

defensive behavior to protect the pups (Rickenbacher et al. 

2017). The proof of whether OT release under socially rele- 

vant conditions induces plastic changes in the circuits of fear 

extinction is thus an attractive question waiting to be 

answered. 

Finally, at the clinical level, OT has successfully been used 

to treat PTSD, having an acute anxiolytic effect, but only in 

those patients with less severe symptoms (Sack et al. 2017). 

Anxiolysis might be explained here by restoration of the 
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pathologically low OT endogenous brain concentration in 

those patients (Donadon et al. 2018). At the circuit level, it 

thus appears that the increased release of endogenous OT from 

the PVN can activate different inhibitory neuronal populations 

in the brain expressing the OTR, that collaborate all together 

to diminish conditioned fear responses and anxiety during 

retrieval and, simultaneously, allow for extinction of fear 

memories in a Bsocial^ context-dependent modulatory 

manner. 

Conclusion and perspectives 

Recent research has not only established OT as an acute 

anxiolytic, but also as a modulator of long-lasting synaptic 

plasticity, especially in social contexts. This makes possible 

to combine OT with cognitive behavioral therapy for the treat- 

ment of anxiety disorders and trauma. However, the precise 

contribution of OT to fear extinction learning is hard to dis- 

tinguish from its anxiolytic effects. This is partially due to 

almost a unique behavioral readout to evaluate fear responses 

in animal studies (freezing), and the experimental need to look 

for other outcomes (Blanchard et al. 1991; Myers and Davis 

2007; Hegoburu et al. 2011; Wöhr and Schwarting 2013). For 

instance, we have found that, although OT does decrease 

freezing when released in the CeA, it is without effect on other 

parameters of fear, especially heart rate variability (Viviani 

et al. 2011). Instead, OT might induce a switch from passive 

to active defensive behavior as demonstrated in lactating 

mothers (Bosch et al. 2005; Rickenbacher et al. 2017), in the 

presence of social stimuli. Thus, there is still a lot to be dis- 

covered about the role of OT in anxiety-like behavior, not in 

the least about plastic long-lasting changes in the cortico- 

limbic fear memory circuits. 

Altogether, taking in consideration its region-specific and 

sex-specific effects, OT presents itself as a candidate molecule 

to facilitate fear extinction and anxiolysis, with the advantages 

that it is easy to apply, is endogenous, and its potential use is 

based on well-characterized neural circuitry controlling fear 

and anxiety responses, in animal models as well as in humans. 
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