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The T-type Ca2+ channels encoded by the CaV3 genes are well-established electrogenic drivers 

for burst discharge. Here, using CaV3.3-/- mice we found that CaV3.3 channels trigger synaptic 

plasticity in reticular thalamic neurons. Burst discharge via CaV3.3 channels induced long-

term potentiation at thalamoreticular inputs when co-activated with GluN2B-containing 

NMDA receptors, which are the dominant subtype at these synapses. Notably, oscillatory burst 

discharge of reticular neurons is typical for sleep-related rhythms, suggesting that sleep 

contributes to strengthening intrathalamic circuits. 
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Introduction 

T-type Ca2+ channels generate low-threshold discharges essential for neuronal rhythmogenesis 

(Huguenard, 1996), and, additionally, are involved in a variety of physiological and pathological 

conditions, such as sensory transmission, neurotransmitter release, neuronal development and pain 

(Cueni et al., 2009). The three T-channel subtypes (CaV3.1-3) show different expression patterns and 

distinct biophysical and pharmacological properties (Talley et al., 1999; Perez-Reyes, 2003). 

Whether such diversity accounts for specific roles has not yet been fully addressed, mainly because 

the pharmacological tools available are not subtype-specific, and, additionally, exert non-selective 

actions on other Ca2+ channels (Perez-Reyes, 2003).  

A role for T-channels in promoting synaptic plasticity has been suggested by several studies, 

e.g. in cortex and hippocampus (Thomas et al., 1998; Schmidt-Hieber et al., 2004; Nevian and 

Sakmann, 2006; Lanté et al., 2011). Here, we made use of a mutant mouse lacking the CaV3.3 gene 

(Astori et al., 2011) to demonstrate the involvement of CaV3.3 channels in a novel form of 

intrathalamic plasticity. In the nucleus Reticularis thalami (nRt), a component of the thalamocortical 

system, CaV3.3 channels represent a potent source for dendritic [Ca2+]i elevations (Cueni et al., 2008; 

Astori et al., 2011). Moreover, NMDA receptors (NMDARs), another Ca2+ source and trigger for 

synaptic plasticity, are expressed at both thalamoreticular and corticoreticular synapses (Gentet and 

Ulrich, 2003, 2004), but their proplastic role has not been explored.  

We first investigated NMDAR-signaling at thalamic inputs by means of patch-clamp 

electrophysiology on acute slices ex vivo, and found that GluN2B-containing NMDARs (GluN2B-

NMDARs) represent the major NMDAR subtype at both developing and mature synapses. GluN2B-

NMDAR activation associated with oscillatory low-threshold spiking induced long-term potentiation 

of thalamoreticular synapses. Potentiation was lacking in CaV3.3-/- mice, in which burst discharge is 
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largely suppressed. Notably, oscillatory bursting resembles physiological activity patterns typical for 

NREM sleep (Steriade, 2006), suggesting that CaV3.3 channels and GluN2B-NMDARs may 

contribute to strengthen intrathalamic circuits and regulate sleep waves. 

 

Materials and Methods 

Electrophysiological recordings and analyses. All procedures were approved by the Veterinary 

Office of Canton de Vaud. Typically, acute horizontal brain slices (300 μm-thick) were prepared as 

previously described (Cueni et al., 2008) from 3-4 week-old (wk-old) C57Bl/6J and CaV3.3-/- mice 

of either sex. In a subset of experiments, 2 wk-old or 7-8 wk-old animals were used. For comparative 

characterization of cortical vs. thalamic inputs, thalamocortical slices (Agmon and Connors, 1991) 

were prepared. Animals were maintained under 12:12h light/dark schedule (lights on at 7AM), and 

slices were prepared between 11AM and 12AM. The CaV3.3-/- mouse line, originally obtained from 

GlaxoSmithKline, was maintained in the institute’s animal facility and genotyped as previously 

described (Astori et al., 2011). 

Slices were constantly superfused with oxygenated artificial CFS (ACSF) containing (in mM): 

125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 1.2 MgCl2, 2 CaCl2, 25 glucose, 1.7 L(+)-ascorbic 

acid, 0.1 picrotoxin, 0.01 glycine. Recordings were performed at 30°-32°C. Visually identified nRt 

neurons were whole-cell patched with borosilicate glass pipettes (TW150F-4, WPI). Typically, 

pipettes (3-5 MΩ) were filled with (in mM): 140 KMeSO4, 10 KCl, 10 HEPES, 0.1 EGTA, 4 Mg-

ATP, 0.2 Na-GTP, 10 phosphocreatine (290-300 mOsm, pH 7.25). For some recordings, 0.5 mM N-

(2,6-Dimethylphenylcarbamoylmethyl)-triethylammonium-chloride (QX-314) or 2 mM 1,2-bis(o-

aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) were included in the pipette. A liquid 

junction potential of -10 mV was taken into account. For NMDA-EPSCs, pipettes (3-4 MΩ) were 



 

 5

filled with (in mM): 127 CsGluconate, 10 HEPES, 2 BAPTA, 6 MgCl2, 2 Mg-ATP, 0.2 Na-GTP, 10 

phosphocreatine (290-300 mOsm, pH 7.25), 2.5 QX-314. A liquid junction potential of -8 mV was 

corrected for. In horizontal slices, EPSCs were evoked every 30 s by stimulation in the internal 

capsule with an ACSF-filled electrode. In thalamocortical slices, the electrode was placed in cortical 

layer 6 or in the striatum adjacent to the cortex. Paired-pulse ratio (PPR, 50 ms interval) was 

measured from average responses (≥4 sweeps) as peak2/peak1. 

For NMDA/AMPA ratios and NMDAR pharmacology, EPSCs were first evoked at -70 mV. 

Subsequently, cells were depolarized to +40 mV, and DNQX (40 μM) was bath-applied to block 

AMPAR-mediated transmission. NMDA-EPSC amplitude was measured as mean of 1 ms around 

the absolute peak of the average of 4 sweeps. This value was divided by the average EPSC peak at -

70 mV to evaluate NMDA/AMPA ratios. NMDAR-GluN2-directed blockers were bath-applied for 

>4 min. 

For plasticity experiments, baseline EPSCs were recorded for 10 min at -70 mV. Subsequently, 

cells were hyperpolarized to -80/-90 mV in current-clamp with DC injections, to ensure complete T-

channel recovery from inactivation. Induction protocols consisted of sinusoidal current injections for 

3 or 6 min (1 Hz, 0.15-0.3 nA maximal amplitude) to elicit low-threshold bursting, accompanied by 

paired or unpaired synaptic stimulation, as stated. Given the variability of burst onset and duration, it 

was not possible to define a fixed timing for the presynaptic stimulation relative to postsynaptic 

discharge. For series with 3 min or 6 min paired oscillations, we measured post hoc the time interval 

(Δt) between the first action potential and stimulation onset at three time points (beginning, middle, 

and end of the oscillation) to obtain a mean Δt for each cell. Mean Δt values ranged between -73/+76 

ms (on average 23 ± 10 ms, n = 14). No correlation was found between Δt values and extent of 

plasticity induced (Pearson’s correlation coefficient: r = 0.24, p = 0.41). For unpaired induction 
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protocols, stimulation was delivered at the trough of the current injection (Δt = -400/-450 ms). To 

test for tonic firing-induced plasticity, membrane potential was adjusted to ~-60 mV, and 200 ms-

long squared pulses of 0.5/0.6 nA were provided at 1 Hz with synaptic stimulation. 

After induction, EPSC recording was resumed for 30 min. Change in synaptic efficacy was 

calculated by comparing average EPSCs during the last 10 min of recording with baseline average 

EPSCs. Series resistance (Rs) was monitored throughout recordings by brief voltage-pulses, and data 

were rejected for Rs changes >25%. Data were acquired through a Digidata1320 digitizer. Signals 

were amplified through a Multiclamp700B amplifier (Molecular Devices), sampled at 20 kHz and 

filtered at 10 kHz using Clampex10 (Molecular Devices). Clampfit10 (Molecular Devices) and Igor5 

Pro (WaveMetrics) were used for data analysis.  

Data are presented as mean ± SEM. Paired or unpaired Student’s t-test was used as appropriate 

with significance accepted for p < 0.05. For comparison between age groups, one-way ANOVA was 

used followed by post hoc Student’s t-test. 

Chemicals. All standard salts and chemicals were purchased from Sigma-Aldrich, except the 

following: KMeSO4 (ICN Biomedicals), L(+)-ascorbic acid (VWR Prolabo), picrotoxin and DNQX 

(Abcam), QX-314 and PPDA (Tocris). NVP-AAM077 was provided by Novartis Pharma. 

CP101,606 was provided by Pfizer Pharmaceuticals. 

 

Results 

GluN2B-NMDAR-mediated transmission at thalamoreticular synapses  

Gabaergic nRt cells receive glutamatergic inputs from thalamocortical cells and from layer 6 

pyramidal cells. We first verified in the thalamocortical slice preparation that these two classes of 

inputs can be separated based on different short-term plasticity (Fig. 1). When stimulated in layer 6, 
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corticoreticular responses consisted of long-latency facilitating EPSCs of relatively small amplitude. 

In contrast, antidromic stimulation of myelinated thalamic axons elicited short-latency EPSCs with 

larger depressant amplitudes. These findings were consistent with previous literature (Golshani et 

al., 2001; Gentet and Ulrich, 2003, 2004), and allowed identification of thalamoreticular depressant 

EPSCs when stimulating the internal capsule in horizontal slices in subsequent recordings. 

We examined basic properties of NMDAR-transmission at thalamoreticular synapses. In 3-4 

wk-old mice, a significant NMDAR component was present at resting potential, as revealed by bath-

application of 100 μM DL-APV, which accelerated decay kinetics of EPSCs at -70 mV (decay slope: 

223 ± 50 pA/ms vs. 290 ± 60 pA/ms, n = 9, p < 0.01; Fig 2A). NMDAR blockade affected neither 

peak amplitude nor paired-pulse ratio (PPR) of EPSCs (Fig. 2B), indicating that presynaptic 

NMDARs are unlikely to modulate basal transmission. In addition, these findings ensured that the 

pharmacological profile of postsynaptic NMDARs could be assessed without interfering with 

glutamate release. The NMDA/AMPA ratio significantly decreased after the second postnatal week 

from 0.42 ± 0.06 (n = 9) to 0.27 ± 0.04 (n = 14), and remained stable afterwards at least until 7-8 

weeks (0.26 ± 0.03, n = 10, p < 0.05) (Fig. 2C), indicating synaptic maturation, as found in other 

brain structures (Liu et al., 1996; Brill and Huguenard, 2008).  

We next examined NMDAR subunit composition. GluN2 subunit expression is typically 

developmentally regulated such that GluN2B predominates at birth, while GluN2A expression starts 

in the first postnatal week and increases with maturation in most brain regions (Monyer et al., 1994). 

Surprisingly, decay times of NMDA-EPSCs remained constant at the three developmental stages 

examined (p > 0.05) (Fig. 2D), suggesting no major changes in GluN2 content. Indeed, the 

pharmacological profile of NMDA-EPSCs was comparable at all stages (p > 0.05) (Fig. 2E). The 

GluN2A-preferring antagonist NVP-AAM077 (NVP, 50 nM) (Auberson et al., 2002; Berberich et 
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al., 2005) reduced NMDA-EPSCs in 2 wk-old and 3-4 wk-old mice to a similar extent (2 wk-old: 

71.6 ± 3.6% of control, n = 6, p < 0.05 drug vs. control; 3-4 wk-old: 76.6 ± 4.1%, n = 8, p < 0.05). 

Subsequent application of the GluN2B-specific blocker CP101,606 (CP, 10 μM)(Mott et al., 1998) 

provoked a further reduction to 12.9 ± 2.2%  and 22.7 ± 3.4%, respectively (p < 0.01 in both cases). 

Similarly, NVP had a minor effect compared to CP in 7-8 wk-old mice (NVP: 86.5 ± 7.1%, 

NVP+CP: 24.8 ± 4.1%, n = 6, p = 0.36 and p < 0.01, respectively). In 3-4 wk-old mice, we 

quantified the relative contribution of GluN2-subtypes to NMDAR transmission. When CP was 

applied in the absence of NVP, to avoid unspecific actions of NVP on GluN2B-NMDARs 

(Berberich et al., 2005; Longordo et al., 2009), NMDA-EPSCs were reduced to 34.1 ± 3.6% of 

control (3-4 wk-old, n = 8, p = 0.07 compared to NVP+CP) (Fig. 2F). Moreover, NMDA-EPSCs 

were sensitive to the GluN2C/D-preferring antagonist PPDA (500 nM) (Harney et al., 2008), which 

reduced control responses to 71.6 ± 6.6% (n = 7, p < 0.05). Subsequent application of NVP and CP 

further reduced NMDA-EPSCs to 57.6 ± 4.8% (p < 0.05) and 13.3 ± 3.2% (p < 0.01), respectively 

(Fig. 2F). Notably, PPDA, similarly to DL-APV, slightly but significantly accelerated decay kinetics 

of EPSCs at -70 mV (decay slope: 155 ± 47 pA/ms vs. 201 ± 56 pA/ms, n = 8, p < 0.05; Fig 2G), 

whereas CP had no effect (185 ± 42 pA/ms vs. 176 ± 26 pA/ms, n = 6, p > 0.05; Fig 2H). Thus, in 

addition to GluN2B- and GluN2A-NMDARs, GluN2C/D-NMDARs are present at thalamoreticular 

synapses and are likely to be recruited during glutamatergic transmission at resting membrane 

potential. 

In summary, our data suggest a complex composition of NMDARs at thalamoreticular 

synapses. Although a contribution of triheteromeric NMDARs (Rauner and Köhr, 2011) with 

undefined sensitivity to the antagonists employed here cannot be excluded, our results indicate that 
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GluN2B-containing NMDARs remain the predominant subtype throughout development and 

adulthood. 

 

Burst-induced, NMDAR-dependent plasticity in nRt cells  

We hypothesized that rhythmic discharge occurring during sleep waves, which relies on coincident 

activation of neurons in the thalamocortical system, could be conducive for intrathalamic plasticity. 

To mimic these rhythms in acute slices ex vivo, after recording baseline EPSCs, we elicited 

repetitive low-threshold discharge in hyperpolarized nRt cells by sinusoidal current injections in the 

δ frequency range (1 Hz) (see Materials and Methods). Pairing synaptic inputs with burst discharge 

resulted in subsequent EPSC long-term potentiation (Fig. 3A,B). The duration of the pairing protocol 

(3 min vs. 6 min) seemed to affect the time course of EPSC potentiation, but had no significant 

effect on its final extent (38 ± 9%, n = 7 vs. 52 ± 18%, n = 7, p > 0.05 between groups). Lack of 

change in the PPR of baseline EPSCs vs. potentiated EPSCs (Fig. 3G) suggested a postsynaptic 

locus of expression. To assess the requirement of synaptic activity for plasticity induction, we 

elicited burst discharge alone or with temporally unpaired synaptic inputs, both of which resulted in 

no potentiation (Fig. 3C,D). Next, we asked whether pairing-induced plasticity is NMDAR-

dependent. EPSC potentiation was prevented by CP (-0.7 ± 2.9%, n = 9, p > 0.05) (Fig. 3E), but still 

inducible in the presence of NVP and PPDA (36.0 ± 9.3%, n = 10, p < 0.05) (Fig. 3F), indicating an 

obligatory requirement for induction via GluN2B-NMDARs. 

 

Requirement of CaV3.3 channels for burst-induced plasticity  

Low-threshold bursts in nRt cells consist of large Ca2+ spikes crowned by Na+-dependent action 

potentials and arranged in cycles that are sustained by SK2-channel-mediated repolarization (Cueni 
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et al., 2008). On the one hand, Ca2+ spikes alone could sufficiently depolarize nRt dendrites to 

relieve the Mg2+ block of NMDARs. On the other hand, the robust Ca2+ influx mediated by T-

channels could be necessary to induce plasticity in synergy with GluN2B-NMDARs.  

To test for the first hypothesis, we took two complementary approaches. First, we suppressed 

action potentials by blocking NaV channels with intracellular QX-314 (0.5 mM). This concentration 

was chosen to minimize unspecific blockade of T-channels (Talbot and Sayer, 1996), while ensuring 

sufficient NaV channel blockade at the subthreshold potentials reached during current injections (Fig. 

4A, inset). Pairing-induced plasticity could still occur in this configuration (38 ± 13%, n = 7, p < 

0.05) (Fig. 4A), although the time course of the potentiation appeared to be slower compared to 

control. Thus, action potential discharge is not necessary for plasticity induction. Second, we 

modified the induction protocol to promote tonic discharge over low-threshold bursting: we applied 

depolarizing squared pulses to nRt cells held at -60 mV (see Materials and Methods), which resulted 

in robust suprathreshold firing with negligible T-channel contribution (Cueni et al., 2008; Astori et 

al., 2011). No change in synaptic efficacy was induced by pairing tonic firing with synaptic 

stimulation (6 ± 7%, n = 8, p > 0.05) (Fig. 4B), indicating that repetitive action potential discharge is 

not sufficient to induce plasticity. 

To test for the second hypothesis, we included the Ca2+ chelator BAPTA (2 mM) in the 

intracellular solution, which prevented potentiation (8.7 ± 8.8%, n = 6, p > 0.05) (Fig. 4C). Finally, 

we made use of CaV3.3-/- mice, in which nRt low-threshold bursting is largely suppressed (Astori et 

al., 2011). These mice displayed comparable thalamoreticular transmission to wild-type mice 

(NMDA/AMPA ratio: 0.31 ± 0.03, n = 13) and, more specifically, the same NMDAR 

pharmacological profile (NVP: 89.7 ± 9.6%, NVP+CP: 20.1 ± 4.2%, n = 7, p = 0.6 and p < 0.01, 

respectively). Although action potentials could be still elicited by sinusoidal oscillations, plasticity 
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did not occur (7.2 ± 7.7%, n = 7, p > 0.05) (Fig. 4D), indicating that CaV3.3 channel activation is a 

requirement for synaptic potentiation. 
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Discussion 

Within thalamic regions, CaV3.3 channels are restricted to the nRt (Talley et al., 1999) and 

endow reticular neurons with oscillatory properties that are the cellular basis of sleep spindles 

(Astori et al., 2011). In the present study, we have identified a further role for CaV3.3 channels as 

triggers of synaptic plasticity. Repetitive bursting associated with synaptic simulation induced long-

term potentiation of thalamic inputs. Potentiation required GluN2B-NMDARs and could be induced 

even in the absence of Na+-action potentials, indicating that low-threshold spiking was sufficient to 

enable coincidence detection via NMDARs. In contrast, if postsynaptic depolarization was provided 

by Na+-dependent firing without T-channel contribution, or if low-threshold bursting was suppressed 

by CaV3.3 deletion, no potentiation occurred.  

To repetitively co-activate CaV3.3 channels and NMDARs, we applied sinusoidal current 

injections to nRt cells conjointly with stimulation of thalamic inputs. This paradigm mimics some of 

the major electrical patterns occurring in vivo during physiological slow-wave sleep (Crunelli et al., 

2006; Steriade, 2006). In this stage of NREM sleep, the thalamocortical system displays oscillatory 

electrical activity in the δ frequency range (0.5-4 Hz) generated by synchronous neuronal discharge. 

During NREM sleep, nRt cells are hyperpolarized, and low-threshold bursting becomes the 

dominant discharge mode, whereas tonic discharge is detected during waking and REM (Fuentealba 

and Steriade, 2005). Notably, sustained tonic discharge failed to induce plasticity. The modest Ca2+ 

influx generated by high-voltage-gated Ca2+ channels in nRt cells during action potentials (Cueni et 

al., 2008; Crandall et al., 2010) is probably insufficient to trigger plasticity, despite the contribution 

of NMDAR-mediated Ca2+ signaling. An alternative explanation is that a precise timing between 

pre- and postsynaptic signals could be required to generate spike-timing-dependent plasticity, which 

is an interesting subject for future investigations. Altogether, our data provide first evidence that 
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thalamic centers are capable of long-term synaptic plasticity and suggest a mechanism by which 

intrathalamic synapses could boost sleep rhythms. 

The persistence of GluN2B-NMDARs throughout development and adulthood is a remarkable 

feature of thalamoreticular synapses. The lack of a developmental switch in favor of GluN2A-

NMDARs has been documented in only few other glutamatergic synapses, e.g. in the amygdala 

(Lopez de Armentia and Sah, 2003). Notably, thalamocortical neurons have already been reported to 

retain an immature phenotype by showing high expression of the differentiation-promoting 

transcription factor LEF1 (Wisniewska et al., 2010) and of HCN4 channels (Wenzel et al., 1997; 

Kanyshkova et al., 2009) that promote oscillatory discharge. We also found a component of 

NMDAR-currents that was recruited at resting potential and sensitive to the GluN2C/D-preferring 

blocker PPDA. This component is likely to be mediated by GluN2C-NMDARs, that are expressed in 

thalamic regions (Monyer et al., 1994; Wenzel et al., 1997), and our data provide functional 

evidence for their presence at thalamoreticular synaptic sites. The unusual composition of NMDARs 

in nRt might have interesting functional implications. GluN2 composition is highly susceptible to 

sensory experience, environmental enrichment and learning (Kopp et al., 2007). Additionally, in 

different brain areas, GluN2 subunit trafficking has been shown to be sensitive to sleep deprivation 

(Kopp et al., 2007; Longordo et al., 2009) and to be modulated by arousal and sleep-promoting 

agents, such as orexins and adenosine (Borgland et al., 2006; Deng et al., 2011). Whether there are 

factors that modify intrathalamic NMDARs or whether there are protective mechanisms that retain 

the juvenile phenotype is an intriguing question arising from this work that may shed novel light on 

thalamic function and its unusual CaV3.3-gated plasticity. 
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Figure Legends 

Figure 1. Thalamoreticular vs. corticoreticular inputs. A, Scheme of a thalamocortical slice with 

recording electrode in the nRt and stimulating electrode in cortical layer 6. B, Average EPSCs 

evoked by two stimuli (50 ms), showing either paired-pulse depression (black) or paired-pulse 

facilitation (gray). Inset, superimposition of the first peaks reveals different response latencies. C, 

Plot of latency values vs. paired-pulse ratio (PPR), indicating that depressant responses (n = 9, black) 

display shorter latencies than facilitating responses (n = 8, gray; p = 0.01 between groups). Filled 

circles represent mean values. D, Depressant inputs (PPD) display significantly larger amplitudes 

than facilitating inputs (PPF). *, p < 0.05. 

 

Figure 2. GluN2B-NMDARs dominate at thalamoreticular synapses. A, Thalamoreticular EPSCs in 

a cell voltage-clamped at -70 mV in control (black) and in the presence of 100 μM DL-APV (green). 

NMDAR blockade induced an increase in decay slope (bars; n = 9; p < 0.01). B, NMDAR blockade 

did not affect EPSC peak and PPR (n = 9, p > 0.05). Inserted traces are average EPSCs in control 

and in DL-APV. C, Top, examples of AMPAR- and NMDAR-mediated components at -70 mV and 

+40 mV, respectively. NMDA-EPSCs were isolated with 40 μM DNQX.  Bottom, NMDA/AMPA 

ratio significantly decreased after 2 weeks (2 wk-old, n = 9; 3-4 wk-old, n = 14; 7-8 wk-old, n = 10, 

*, p < 0.05). D, Top, overlay of scaled NMDA-EPSCs at different developmental stages, coded in 

gray scale. No change in decay kinetics occurred, as indicated by comparable values of weighted τ 

(τW) of bi-exponential fit (bars: 2 wk-old, n = 6; 3-4 wk-old, n = 16; 7-8 wk-old, n = 6). E, 

Pharmacological profile of NMDA-EPSCs (2 wk-old, n = 6; 3-4 wk-old, n = 8; 7-8 wk-old, n = 6). 

Upper insets, example NMDA-EPSCs showing progressive reduction of control responses (black) 

after superfusion of NVP (red) and NVP+CP (blue). F, Left, mean effects of GluN2-specific 
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blockers in 3-4 wk-old mice (NVP, n = 8; CP, n = 8; PPDA, n = 7). Right, example NMDA-EPSCs 

showing progressive reduction upon blocker superfusion, as indicated. G,H EPSCs in a cell voltage-

clamped at -70 mV in control (black) and in the presence of 500 nM PPDA (G, green) or 10 μM CP 

(H, blue). GluN2C/D inhibition induced an increase in decay slope (bars; n = 8; p < 0.05), whereas 

GluN2B blockade had no effect (bars; n = 6; p > 0.05). *, p < 0.05, **, p < 0.01 drug vs. control. 

 

Figure 3. GluN2B-NMDARs mediate thalamoreticular plasticity. A,B, Time course of EPSCs at 

thalamoreticular synapses. Shadowed insets show pairing protocol applied after 10 min baseline. 

Low-threshold bursts were paired with synaptic stimulation (EPSP) for 3 min (A, n = 7) or 6 min (B, 

n = 7), which induced EPSC potentiation. Traces in the lower insets are average EPSCs evoked 

during baseline (1, gray) and during the last 10 min of recording (2, black). *, p < 0.05, **, p < 0.01 

baseline vs. end of recording. C-F, Same representation as in A,B. Synaptic potentiation was not 

induced when EPSPs were omitted (C, n = 10), or not paired with bursts (D, n = 9). Pairing-induced 

plasticity was prevented by GluN2B-NMDAR blockade with CP (E, n = 9), but not by inhibition of 

GluN2A and GluN2C/D with NVP and PPDA (F, n = 10). G, Potentiation was not accompanied by 

significant changes in PPR, as tested at the beginning of baseline (1) and at the end of the recording 

(2) in a subset of cells from A and B. H, Summary of data presented in A-F. Short horizontal lines 

represent means from series with 3 min (white circles) and 6 min (gray circles) oscillations. 

Asterisks represent significant difference from the corresponding “no EPSP” series (one-way 

ANOVA on log-transformed values, followed by post hoc Student’s t-test; *, p < 0.05, **, p < 0.01). 

 

Figure 4. CaV3.3 channels are required for thalamoreticular plasticity. A, Time course of EPSCs in 

nRt cells patched with a solution containing 0.5 mM QX-314 (n = 7). Shadowed insets show pairing 
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protocols applied after 10 min baseline, with examples of average EPSCs during baseline (1) and at 

the end of recording (2). During induction, low-threshold bursts were largely preserved, while action 

potentials were blocked, which resulted in significant potentiation (n = 7) B, Same representation as 

in A. Sinusoidal current injections were replaced by squared current pulses applied to nRt cell held -

60 mV, to promote tonic firing over low-threshold bursting. No change in synaptic efficacy was 

induced (n = 8). C,D, Same representation as in A. Suppression of burst-induced Ca2+ with 

intracellular BAPTA (n = 6) and in CaV3.3-/- mice (n = 8) prevented potentiation. *, p < 0.05 

baseline vs. end of recording. 
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