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Abstract 49 

Understanding the context-specific role of gene function is a key objective of modern 50 

biology. To this end, we generated a resource for inducible cell type-specific trans-activation 51 

in Arabidopsis thaliana (Arabidopsis) based on the well-established combination of the 52 

chimeric GR-LhG4 transcription factor and the synthetic pOp promoter. Harnessing the 53 

flexibility of the GreenGate cloning system, we produced a comprehensive set of transgenic 54 

lines termed GR-LhG4 driver lines targeting most tissues in the Arabidopsis shoot and root 55 

with a strong focus on the indeterminate meristems. When we combined these transgenic 56 

lines with effectors under the control of the pOp promoter, we observed tight temporal and 57 

spatial control of gene expression. In particular, inducible expression in F1 plants obtained 58 

from crosses of driver and effector lines allows for rapid assessment of the cell type-specific 59 

impact of an effector with high temporal resolution. Thus, our comprehensive and flexible 60 

method is suitable for overcoming the limitations of ubiquitous genetic approaches, the 61 

outputs of which are often difficult to interpret due to the widespread existence of 62 

compensatory mechanisms and the integration of diverging effects in different cell types. 63 

  64 
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 65 

Introduction 66 

The key to the evolutionary success of multicellularity, which arose independently in plants 67 

and animals, is the division of labour between highly specialized cell types. This requires the 68 

robust specification of cell fate through epigenetic and transcriptional programming, despite 69 

the identical genetic makeup of each cell. In plants, cell fate acquisition is largely based on 70 

positional information, which depends on cell-to-cell communication and medium to long 71 

distance morphogenetic signals that cooperate in organ patterning (Efroni, 2017). 72 

Conversely, individual genes, pathways, and metabolites can have diverse or even opposing 73 

roles depending on the tissue context. A prominent example for context-dependency of a 74 

fundamental patterning process is given by the interplay of the auxin and cytokinin 75 

phytohormones (Furuta et al., 2014; Greb and Lohmann, 2016; Truskina and Vernoux, 76 

2017). In the shoot apical meristem, harbouring the stem cell niche ultimately responsible for 77 

most above-ground plant organs, cytokinin signalling is associated with maintaining a 78 

pluripotent, undifferentiated state, whereas auxin signalling promotes differentiation. In 79 

marked contrast, auxin is required for stem cell maintenance in the root apical meristem 80 

(RAM) (Pacifici et al., 2015; Weijers and Wagner, 2016). Therefore, the global effects of 81 

genetic lesions or of knock-ins can dilute and mask specific functions and are often difficult 82 

to interpret.  83 

Routinely, stable genetic gain- and loss-of-function mutants remain the main pillar of the 84 

reductionist approach to biology and the phenotypes of such mutants are assessed to 85 

deduce a function of the mutated locus in the wild type. However, the function of many gene 86 

products is context-specific and thus the phenotypes of mutants or transgenic lines can be 87 

complex. In addition, mutant organisms can undergo life-long adaptation, impeding the 88 

interpretation of their phenotype. Moreover, transgenic and mutational approaches can 89 

interfere with plant vitality, precluding an in-depth analysis.  90 
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Many of these problems can be overcome by inducible, cell type-specific expression 91 

mediated by two-component transcription activation systems (Moore et al., 2006). An 92 

expression cassette is constructed using a heterologous or synthetic promoter and is hence 93 

silent unless a cognate transcription factor is present. An efficient approach is to generate 94 

transgenic plants called ‘driver lines’ that express the transcription factor in a spatially and 95 

temporally controlled manner, and a ‘responder line’ carrying the effector construct. After 96 

crossing of the two lines, expression can be induced and the phenotypic consequences of 97 

the effector can be studied. In the abstract, these expression systems are highly valuable 98 

because they ideally enable cell-type specific or stage-specific complementation or knock-99 

down, facilitate time-resolved monitoring of the response to a given cue, can overcome the 100 

lethality of constitutive expression, and allow to study cell autonomous and non-cell 101 

autonomous effects with high temporal and spatial resolution. However, the considerable 102 

effort and time requirements for DNA cloning and the generation of stable transgenic plants 103 

are a major bottleneck curtailing their use to date. For the same reason and because distinct 104 

tissue-specific promoters were not always available in the past, attention is usually given to 105 

one tissue or cell type of interest at a time and unbiased approaches targeting a larger 106 

spectrum of individual tissues are rarely followed.  107 

Here, we report on the generation of a comprehensive set of Arabidopsis thaliana driver 108 

lines suited for tissue-specific trans-activation of an effector cassette in a wide range of cell 109 

types and with the possibility to monitor gene activation in space and time by a fluorescent 110 

promoter reporter. To ensure rapid, stable induction with minimal adverse effects on plant 111 

growth caused by the inducer, our system takes advantage of the widely used LhG4/pOp 112 

system (Moore et al., 1998; Craft et al., 2005; Samalova et al., 2005) combined with the 113 

ligand binding domain of the rat glucocorticoid receptor (GR) (Picard, 1993) (Craft et al., 114 

2005). LhG4 is a chimeric transcription factor consisting of a mutant version of the 115 

Escherichia coli lac repressor with high DNA binding affinity (Lehming et al., 1987) and the 116 

transcription activation domain of yeast Gal4p (Moore et al., 1998). N-terminal fusion with 117 
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the GR ligand binding-domain renders the transcription factor inactive in the cytosol through 118 

sequestration by HEAT SHOCK PROTEIN90 (HSP90) in the absence of the inducer. 119 

Nuclear import after treatment with the synthetic glucocorticoid dexamethasone (Dex) 120 

(Picard, 1993) results in transcriptional activation of expression cassettes that are under the 121 

control of the synthetic Op 5’ regulatory region consisting of a Cauliflower mosaic virus 122 

(CaMV) 35S minimal promoter and two upstream lac operators (Moore et al., 1998; Craft et 123 

al., 2005). Combining multiple interspersed repeats of the operator elements (pOp4; pOp6) 124 

and localized expression of LhG4 enable strong overexpression of a target gene in a cell 125 

type-specific manner (Craft et al., 2005).  126 

Our work builds on these seminal studies by creating 19 well-characterized and stable driver 127 

lines targeting most cell types in Arabidopsis with a focus on the three main meristems of the 128 

plant, the root apical meristem (RAM), the shoot apical meristem (SAM), and the cambium. 129 

Of note, for several cell types such as the pith in the inflorescence stem or the xylem pole 130 

pericycle cells in the root, inducible expression systems were not available so far. The driver 131 

lines were generated employing the fast and flexible GreenGate cloning system 132 

(Lampropoulos et al., 2013), but are compatible with any vector/transgenic line in which the 133 

expression of an effector is under the control of derivatives of the pOp promoter element 134 

(Moore et al., 1998). An important feature of our driver lines is the presence of a fluorescent 135 

reporter amenable to live imaging, which allows monitoring the spatio-temporal dynamics of 136 

gene induction and may serve as a read-out for any effect on the respective tissue identity. 137 

Similarly, it allows us to assess whether the expression of the effector has an impact on the 138 

transcriptional circuitries targeting the promoter it is expressed from. The material described 139 

here allows testing the effect of genetic perturbations in a broad repertoire of individual 140 

tissues on a distinct developmental or physiological process. As trans-activation efficiently 141 

occurs in the presence of the inducer in F1 plants derived from a cross between a driver and 142 

an effector line, the effect of a given expression cassette can be assessed relatively quickly 143 
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in a wide range of cell types, demonstrating the usefulness of this resource for the broader 144 

research community.  145 

 146 

Results 147 

Design of driver lines with cell type-specific expression of GR-LhG4 148 

To generate a comprehensive set of driver lines expressing the chimeric GR-LhG4 149 

transcription factor under the control of cell type-specific promoters, we made use of the 150 

Golden Gate-type GreenGate cloning system, which enables quick, modular, and scarless 151 

assembly of large constructs (Engler et al., 2008; Lampropoulos et al., 2013). Our design 152 

included, on the same T-DNA, the coding sequence for an mTurquoise2 fluorescent reporter 153 

(Goedhart et al., 2012) targeted to the endoplasmic reticulum (ER) through translational 154 

fusion with an N-terminal signal peptide from sweet potato (Ipomoea batatas) Sporamin A 155 

(SP, (Lampropoulos et al., 2013)) and the ER retention motif His-Asp-Glu-Leu (HDEL) under 156 

the control of pOp6 and a minimal CaMV 35S promoter (pOp6:SP-mTurquoise2-HDEL) (Fig. 157 

1). In our set up, the GR-LhG4 transcription factor is expressed under the control of a tissue- 158 

or cell type-specific promoter (pTS). Consequently, GR-LhG4 activates the expression of the 159 

mTurquoise2 reporter and any other effector downstream of a pOp promoter after Dex 160 

treatment specifically in those tissues (Fig. 1). We anticipate that the most utility can be 161 

obtained from this system if lines harbouring effector cassettes are crossed with driver lines 162 

and analyses are performed with F1 plants. However, other modes such as direct 163 

transformation of multiple driver lines or the introgression into different (mutant) backgrounds 164 

are also conceivable. Notably, even though the mTurquoise2 reporter is expressed from the 165 

same T-DNA as GR-LhG4, there is no mechanistic difference to the activation of an effector 166 

in trans (Fig. 1).  167 

For establishing a rather comprehensive set of driver lines, we first selected respective 168 

tissue-specific promoters based on literature reports and our own expression data (Table 1). 169 
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Subsequently, we generated stable transgenic driver lines in the Arabidopsis Col-0 170 

background using 19 specific promoters that cover most cell types in the RAM, the SAM, 171 

and the cambium. Several of the promoters have been previously shown to work robustly in 172 

cell type-specific mis-expression approaches (e.g. Nakajima et al., 2001; Weijers et al., 173 

2006; Mustroph et al., 2009; Miyashima et al., 2011; Roppolo et al., 2011; Vaten et al., 2011; 174 

Naseer et al., 2012; Cruz-Ramirez et al., 2013; Ohashi-Ito et al., 2014; Wang et al., 2014; 175 

Chaiwanon and Wang, 2015; Serrano-Mislata et al., 2015; Vragovic et al., 2015; Marques-176 

Bueno et al., 2016; Siligato et al., 2016; Doblas et al., 2017). Next, we generated T3 lines in 177 

which the resistance to the selective agent sulfadiazine appeared homozygous after 178 

segregating as a single locus in the T2 generation based on resistance or standard addition 179 

quantitative real-time PCR (SA-qPCR) analyses (Huang et al., 2013).  180 

Validation of the specificity of driver lines.  181 

To confirm the expected expression patterns in the root, driver lines were germinated on 182 

medium containing 30 µM Dex or DMSO and analysed with confocal laser scanning 183 

microscopy (CLSM) five days after germination (DAG). In each case, we recorded 184 

mTurquoise2-derived fluorescence in longitudinal optical sections of the root meristem (Fig. 185 

2 and Supplemental Fig. S1) and, where appropriate, in cross sections through the meristem 186 

or the differentiation zone (Supplemental Fig. S2). To visualize expression in the shoot, lines 187 

were grown on soil in long day conditions and the aerial part of plants with 15 cm tall 188 

inflorescence stems were dipped either in tap water containing 10 µM Dex (Fig. 3) or only 189 

the solvent DMSO (Supplemental Fig. S3). After 24 h, freehand sections of the stem were 190 

stained with propidium iodide (PI) to highlight xylem elements and analysed by confocal 191 

microscopy. To analyse expression in the SAM, inflorescence meristems of 15 cm tall plants 192 

were treated with Dex 48 hours before being dissected and imaged with CLSM, again using 193 

PI as a cell wall counterstain (Fig. 4). Reporter gene activities were consistent with the 194 

expected patterns and strictly dependent on the presence of Dex (Supplemental Fig. S1, 195 

Supplemental Fig.  S3, and Supplemental Fig. S4). In addition, the complete absence of 196 
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reporter activity in tissues adjacent to cells in which activity was expected suggested that the 197 

chimeric GR-LhG4 protein does not move between cells. We did not observe any negative 198 

effect of Dex treatment on plant growth (Supplemental Fig. S5). 199 

Characterization of gene activation. 200 

We next tested whether dose-response and induction dynamics previously observed with the 201 

GR-LhG4 system (Craft et al., 2005) were recapitulated in our set up. To this end we 202 

germinated the pSCARECROW (pSCR) driver line mediating GR-LhG4 expression in the 203 

quiescent centre (QC) and the endodermis (Di Laurenzio et al., 1996; Wysocka-Diller et al., 204 

2000) on plates containing solvent, 0.1 µM, 1 µM, 10 µM, and 100 µM Dex. Visualizing 205 

reporter fluorescence 5 DAG indeed revealed increasing reporter activity with increasing Dex 206 

concentrations (Fig. 5A), arguing for the possibility to fine tune gene expression by adjusting 207 

the levels of the inducer. We noticed that QC cells showed markedly stronger fluorescence 208 

compared to the endodermis, putatively reflecting higher promoter GR-LhG4/reporter 209 

stability in the QC as this was not observed with previously published lines using the same 210 

promoter fragment (Gallagher et al., 2004; Heidstra et al., 2004; Cruz-Ramirez et al., 2013). 211 

We therefore quantified fluorescence separately in the QC cells and the endodermal initials 212 

(Fig. 5C and Fig. 5D). Whereas the QC did not show a significant difference in fluorescence 213 

intensity between any of the treatments (Fig. 5C), the endodermis fluorescence intensity 214 

correlated with the concentration of the inducer until saturation appeared to be reached 215 

between 10 µM and 100 µM of Dex (Fig. 5D). Consequently, we concluded that, to fine tune 216 

gene expression by applying different Dex concentrations, the appropriate concentration 217 

range has to be determined for each promoter and cell type individually. 218 

To further assess induction kinetics, the pSCR driver line was germinated on plates with 219 

control medium and transferred onto plates containing 50 µM Dex after five days. As 220 

expected, a time-dependent increase of reporter activity was observed over a period of 24 221 

hours (Fig. 5B). Combined quantification of fluorescence in the QC and the endodermis 222 

initials detected reporter activity six hours after induction (Fig. 5E) and the activity values 223 
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were close to the values of constitutive Dex treatment after 24 hours (Fig. 5D and Fig. 5E). 224 

These observations suggested that six hours are sufficient to allow nuclear import of GR-225 

LhG4, the induction of gene transcription, and initial protein translation, and that within 24 226 

hours, protein levels reached a steady-state level.  In addition, 5 day old roots that were 227 

either induced at 2 DAG, 3DAG, or 4 DAG showed similar reporter activities, demonstrating 228 

that responsiveness to the inducer is sustainable (Supplemental Fig. S6). To assess the 229 

kinetics of reporter expression after removal of the inducer, we germinated the 230 

pSCR>GR>mTurquoise2 line on Dex-containing medium and transferred the seedlings to 231 

Dex-free medium 2 DAG. Quantifying reporter fluorescence revealed that one day after 232 

transfer, fluorescence intensity was indistinguishable from control plants transferred to 233 

inducer-containing plates, but declined over the course of the next two days to hardly 234 

detectable levels (Supplemental Fig. S7). 235 

To estimate the level of transcription mediated by the GR-LhG4/pOp system we employed a 236 

line expressing PECTIN METHYLESTERASE INHIBITOR5 (PMEI5) (Wolf et al., 2012) 237 

under control of the strong and nearly-ubiquitous 35S promoter (p35S:PMEI5). When 238 

comparing roots from the p35S:PMEI5 line with roots from a Dex-treated GR-LhG4/pOp line 239 

conferring expression of the same PMEI5 coding sequence in xylem pole pericycle (XPP) 240 

cells (designated as pXPP>GR>PMEI5 (Craft et al., 2005)), we observed PMEI5 transcript 241 

levels similar to or slightly exceeding those in the p35S:PMEI5 line (Supplemental Fig. S8). 242 

This was despite the fact that the XPP expression domain contains only approximately six 243 

cell files in the young root (Supplemental Fig. S2). Thus, we concluded that, although 244 

activating transcription in a very local manner, the GR-LhG4/pOp system can lead to strong 245 

expression in the respective cell types.   246 

The ER-localized mTurquoise2 reporter present in our driver lines is transcribed from the 247 

same T-DNA that harbours the GR-LhG4 module (Fig. 1). To analyse the response of an 248 

independent T-DNA insertion carrying the pOp6 element in trans, we generated a transgenic 249 

line carrying an ER-targeted mVenus reporter under the control of the pOp6 promoter 250 
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(pOp6:SP-mVenus-HDEL) and crossed it with the pSCR driver line. The resulting F1 plants 251 

did not show any reporter activity when grown on plates without Dex (Fig. 6), again 252 

confirming that the GR-LhG4/pOp system is fully Dex-dependent. After Dex induction, we 253 

visualized both mTurquoise2 and mVenus fluorescence in the root and the stem and 254 

observed a complete congruence of both reporter activities (Fig. 6). Likewise, transgenic 255 

lines expressing a nucleus-targeted triple green fluorescent protein (GFP) fusion protein 256 

under the control of the pOp6 promoter were generated and crossed with the pCLAVATA3 257 

(CLV3) driver line mediating expression in stem cells of the SAM (Fletcher et al., 1999). As 258 

expected, upon Dex induction, the 3xGFP-NLS signal was observed in a narrow domain at 259 

the tip of the SAM which also expressed the mTurquoise2 marker (Fig. 6). Together, these 260 

observations confirmed robust and specific trans-activation of transgenes in F1 plants.  261 

Cell type-specific induction of VND7 demonstrates efficacy of trans-activation  262 

To explore the potential of our lines to mediate the expression of a biologically active 263 

effector, we crossed the pSCR driver line with a line harbouring the VASCULAR RELATED 264 

NAC-DOMAIN PROTEIN 7 (VND7) effector fused to the VP16 activation domain able to 265 

induce the formation of xylem vessels in a broad range of cell types (Kubo et al., 2005; 266 

Yamaguchi et al., 2010). F1 plants were grown on control medium for five days and then 267 

transferred to medium containing either 10 µM Dex or solvent. Five days later, fully 268 

differentiated vessel-like elements could be observed in the endodermis of the root and 269 

hypocotyl (Fig. 7), whereas in DMSO-treated controls xylem elements were clearly restricted 270 

to the stele. These results demonstrate that this resource for cell type-specific and inducible 271 

trans-activation can be used to study gene function with high spatio-temporal resolution. 272 

 273 

Discussion 274 

In this study, we combined the proven efficacy of the well-established GR-LhG4/pOp 275 

expression system (Craft et al., 2005; Rutherford et al., 2005; Samalova et al., 2005) with 276 
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the ease of cloning enabled by the GreenGate system (Lampropoulos et al., 2013) to 277 

provide a comprehensive toolbox for inducible, cell type-specific expression in Arabidopsis. 278 

The driver lines described here cover a large proportion of the known cell types in the three 279 

main meristems of the plant, the RAM, the SAM, and the cambium. Our analysis 280 

demonstrates that this system achieves non-leaky, adjustable, and robust trans-activation of 281 

effectors in the F1 generation after crossing with effector-carrying plants. Therefore, 282 

generating a line harbouring an effector cassette under the control of the pOp6 promoter 283 

should enable users to rapidly assess a battery of different expression regimes for a wide 284 

range of applications. In most cases, the effector might be the coding region of a gene one 285 

may want to miss-express in a spatially and temporally controlled manner, but other uses 286 

are conceivable, such as adjustable (pulsed) expression of reporters, domain specific knock-287 

down through artificial microRNAs, cell type-specific complementation studies, the 288 

acquisition of cell type-specific transcriptomes/translatomes/proteomes/epigenomes, or the 289 

local induction of genome editing, for example through expression of Cre recombinase or 290 

clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 291 

protein 9 (Cas9) (CRISPR/Cas9) modules (e.g. Birnbaum et al., 2003; Brady et al., 2007; 292 

Dinneny et al., 2008; Gifford et al., 2008; Mustroph et al., 2009; Deal and Henikoff, 2011; 293 

Hacham et al., 2011; Iyer-Pascuzzi et al., 2011; Petricka et al., 2012; Fridman et al., 2014; 294 

Adrian et al., 2015; Vragovic et al., 2015; Efroni et al., 2016; Kang et al., 2017). Thus, this 295 

system should be a valuable tool for the generation of inducible genetic perturbations to 296 

overcome the limitations of “endpoint” genetics and study genetic activities in specific tissue 297 

contexts.  298 

Design of the trans-activation system 299 

Two-component trans-activation and chemically-induced gene expression systems have 300 

been widely used by plant biologist in the past. For example, a large collection of enhancer 301 

trapping lines based on the yeast Gal4 transcription factor (Haseloff, 1999; Engineer et al., 302 

2005) are an invaluable tool for constitutive, tissue-specific trans activation in Arabidopsis 303 
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(Aoyama and Chua, 1997; Sabatini et al., 2003; Weijers et al., 2003; Swarup et al., 2005; 304 

Weijers et al., 2005). In addition, an inducible system based on Gal and cognate upstream 305 

activation sequence (UAS) has been devised (Aoyama and Chua, 1997) but appears to 306 

induce unspecific growth defects (Kang et al., 1999). Trans-activation based on LhG4 307 

(Moore et al., 1998) shows only minimal detrimental effects on plant development, is 308 

thoroughly characterized and optimized (Moore et al., 1998; Baroux et al., 2005; Craft et al., 309 

2005; Rutherford et al., 2005; Samalova et al., 2005; Moore et al., 2006) and has been used 310 

by the plant community in a number of studies (e.g. Schoof et al., 2000; Baroux et al., 2001; 311 

Eshed et al., 2001; Hay and Tsiantis, 2006; Nodine and Bartel, 2012; Sauret-Gueto et al., 312 

2013; Hazak et al., 2014; Serrano-Mislata et al., 2015; Jiang and Berger, 2017). Parallel to 313 

the development of these tools for cell type-specific expression, a number of inducible 314 

systems have been conceived to enable temporal control of gene expression (Gatz et al., 315 

1992; Weinmann et al., 1994; Caddick et al., 1998; Zuo et al., 2000). Subsequently, 316 

combining and optimizing the available technology has succeeded in generating tools to 317 

mediate inducible expression in a cell type-specific manner (Deveaux et al., 2003; Laufs et 318 

al., 2003; Maizel and Weigel, 2004; Craft et al., 2005).  319 

For the generation of this resource, we build on ground-breaking previous work establishing 320 

the LhG4 system in combination with the GR ligand binding domain (Craft et al., 2005), 321 

which has since been proven to be a valuable resource (e.g. Reddy and Meyerowitz, 2005; 322 

Ongaro et al., 2008; Ongaro and Leyser, 2008; Heisler et al., 2010; Jiang et al., 2011; Dello 323 

Ioio et al., 2012; Merelo et al., 2016; Caggiano et al., 2017; Tao et al., 2017). For the 324 

generation of our driver lines, we exploited the power of the GreenGate cloning system 325 

(Lampropoulos et al., 2013). We were able to rapidly assemble a large number of constructs 326 

efficiently, circumventing the bottleneck previously imposed by the challenging generation of 327 

large DNA constructs with varying promoter elements, coding regions, and terminators. The 328 

limiting factor in generating this resource was thus plant transformation, and obtaining single 329 

insertion, homozygous transgenic lines. As a general workflow, we aimed to generate at 330 
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least 40 T1 transformants, then scored segregation rations of antibiotic/herbicide resistance 331 

in the T2 generation and maintained lines in which the resistance segregated as a single 332 

locus. These lines usually showed similar characteristics concerning the response to the 333 

inducer and the expression levels achieved through trans-activation (based on fluorescence 334 

intensity). Nevertheless, reporter expression in any set of newly generated driver lines 335 

should be carefully assessed and compared with the literature and within lines, as genome 336 

integration in the vicinity of endogenous promoter and/or enhancer elements might influence 337 

the expression pattern. As expected, we occasionally observed widespread silencing in the 338 

T2 generation of the driver lines, which did not correlate with any particular DNA element 339 

present in multiple constructs  340 

An important feature of our driver lines is the incorporation of a reporter amenable to live 341 

imaging, which can be used to monitor the induction and visualize the spatial expression 342 

domain. In addition, it allows us to assess whether the expression of the effector has an 343 

impact on the transcriptional circuitries of the cell type it is expressed from. For some 344 

applications, the internal reporter of the driver lines might also serve as an inducible marker 345 

even in the absence of any further effector expression. We chose mTurquoise2 as a 346 

fluorescent reporter, since its spectral characteristics make it compatible with more widely 347 

used green and red fluorophores, and it displays high photostability, fast maturation, and 348 

high quantum yield (Goedhart et al., 2012). The fluorescent protein was N-terminally fused 349 

with a signal peptide and modified with a C-terminal HDEL motif to mediate retention in the 350 

ER, which in our experience is the preferable subcellular localization for a fluorescent 351 

reporter when cross sections through the highly differentiated cells of the stem are required.  352 

Trans-activation characteristics 353 

Our system allows stringent temporal control of gene expression, as indicated by the lack of 354 

reporter expression in the absence of the inducer Dex. Moreover, the trans-activated 355 

reporter faithfully reproduced previously described expression patterns associated with the 356 

respective 5’ regulatory regions, suggesting that the chimeric GR-LhG4 transcription factor is 357 

 www.plantphysiol.orgon October 7, 2018 - Published by Downloaded from 
Copyright © 2018 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

15 
 

not cell-to-cell mobile. However, we noticed that in some cases trans-activation led to slightly 358 

different expression patterns as compared to fusions of the same 5’ regulatory region with a 359 

reporter gene in cis. For example, expression driven from the CLV3 promoter seemed 360 

broader than what was described in pCLV3:XFP lines, but consistent with a similarly 361 

designed pCLV3-driven trans-activation (Serrano-Mislata et al., 2015), possibly because the 362 

multiple binding sites of the pOp6 promoter increase expression in cells where the CLV3 363 

promoter is only weakly active. Alternatively, high protein stability of the chimeric 364 

transcription factor, the reporter, or both, might cause prolonged activity of these proteins in 365 

cells that are already displaced from the stem cell region. This potential issue is less relevant 366 

for organs such as the root, where cells of one cell type also largely have the same clonal 367 

identity (Kidner et al., 2000; Costa, 2016). 368 

Our experiments, in agreement with previous results, suggested that GR-LhG4/pOp-369 

mediated trans-activation can achieve tissue-specific overexpression of the target gene, 370 

dependent on the concentration of the inducer. However, the possibility of “squelching”, the 371 

sequestration of general transcription factors required for other processes by the LhG4 372 

activation domain, must be taken into account at very high expression levels. Consistent with 373 

previous reports (Craft et al., 2005), our analysis of the pSCR driver line revealed a linear 374 

dose-response over at least two orders of magnitude, but the induction kinetics might be 375 

affected by the genomic location of the transgene and thus should be empirically determined 376 

for each line. It should be noted that expression of effectors using LhG4/pOp systems can be 377 

quenched by adding Isopropyl β-D-1-thiogalactopyranoside (IPTG) (Craft et al., 2005), which 378 

would allow pulsing experiments. However, we did not test the effect of IPTG in our lines.  379 

Distribution of driver lines and DNA constructs 380 

The lines described here, as well as DNA constructs, are available to the community upon 381 

request. While GR-LhG4 and the sulfadiazine resistance gene are constitutively expressed, 382 

care should be taken to amplify seeds only from non-induced plants to minimize the chance 383 
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of inducing post transcriptional gene silencing through high expression levels of the reporter 384 

(Schubert et al., 2004; Abranches et al., 2005).  385 

  386 
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Material and methods.  387 

Cloning 388 

All constructs were produced by GreenGate cloning (Lampropoulos et al., 2013) using the 389 

modules described in Supplemental Table S1. The Eco31I (BsaI) sites of the SCR, PXY and 390 

WOX4 promoters were removed by the QuickChange XL Site-Directed Mutagenesis Kit 391 

(Agilent Technologies, USA) using the primers in Supplementary Table S1 following the 392 

manufacturer’s instructions. The Eco31I site of the ATHB-8 promoter was removed by 393 

amplifying the 5’ part of the promoter up to the endogenous Eco31I restriction site, which 394 

was mutated by a single base exchange in the primer. This primer contained an Eco31I 395 

restriction site in the 5’ overhang. The 3’ fragment of the promoter was amplified with a 396 

forward primer directed against the region immediately 3’ of the endogenous Eco31I site 397 

(containing a Eco31I site in the 5’ overhang) and the reverse primer binding to the region 398 

immediately upstream of the ATG. The two fragments were amplified separately, digested 399 

with Eco31I, and ligated afterwards. As Eco31I is a Type IIs restriction enzyme, the 400 

recognition site in the primer overhangs were removed by digestion. 401 

The repetitive sequences of the pOp promoter increase the likelihood of recombination 402 

events while amplifying the plasmids. To discriminate against clones with shorter pOp 403 

sequences, we designed primers that bind in the short flanking sequences at the beginning 404 

and end of pOp6 (pOp6_F TGCATATGTCGAGCTCAAGAA; pOp6_R 405 

CTTATATAGAGGAAGGGTCTT) for PCR amplification and size assessment through gel 406 

electrophoresis. Final constructs were always confirmed by sequencing in E. coli and 407 

Agrobacterium tumefaciens. The occasional recombination events were only detected in E. 408 

coli. 409 

Plant material and growth conditions. 410 

All constructs were transformed by the floral dip method (Clough and Bent, 1998) as 411 

modified by (Zhang et al., 2006) into Arabidopsis Col-0.  Transformed seeds were selected 412 
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on ½ MS plates containing 1.875-3.75 µg/ml sulfadiazine or 7.5 µ/ml glufosinate ammonium. 413 

Only single integration lines based on T2 segregation ratios were propagated to T3, in which 414 

plants homozygous for the resistance were selected. All plants were grown in long day 415 

conditions (L16:D8) at 22ºC. For root analysis, plants were grown vertically in ½ MS plates 416 

containing 1% sucrose and 0.9% plant agar (Duchefa P1001, Haarlem, The Netherlands). 417 

For the induction treatments in plates, the seeds were sown on plates containing Dex 418 

(Sigma_D4903, Missouri, United States) in the indicated concentration while the same 419 

volume of DMSO (D139-1, Fisher Scientific, UK) was added for the mock control. For the 420 

trans-activation experiment, seeds were sown on plates without Dex and seedlings were 421 

transferred to Dex-containing plates at 1, 6 and 24 hours before imaging five DAG. For 422 

analysis of the stem, the aerial parts of 15 cm tall plants were dipped for 30 s in either tap 423 

water containing 10 µM Dex with 0.02% Silwet L-77 (Kurt Obermeier GmbH & Co. KG, Bad 424 

Berleburg, Germany) or water with the same volume of DMSO with 0.02% Silwet. After 24 425 

hours, free-hand sections of the stem were performed with a razor blade. Sections were 426 

transferred to a small petri dish (35/10 mm, Greiner Bio-One GmbH, Germany) with 0.25 427 

mg/ml of propidium iodide for 5 min and mounted on microscope slides to be visualized by 428 

CSLM.  For SAM imaging, the inflorescence meristems of 25-30 DAG plants were sprayed 429 

with 10 µM Dex, whereas an equal volume of DMSO was added to water sprayed onto the 430 

mock controls. 48 h after the treatment, the inflorescence meristems were dissected by 431 

cutting of the stem, flowers and buds. The SAM was stained in 0.25 mg/ml propidium iodide 432 

(Sigma-Aldrich, P4170) for 5 min and mounted in a 3% agarose small petri dish (35/10mm, 433 

Greiner Bio-One GmbH, Germany) and visualized by CLSM. 434 

Microscopy 435 

Root samples were imaged using a Leica TCS SP5 laser scanning confocal microscope with 436 

a HCX PL APO lambda blue 63x water immersion objective. The mTurquoise2 fluorophore 437 

was excited by an argon laser at 458 nm and emission was collected between 460 and 516 438 

nm. The mVenus fluorophore was excited by 514 nm and emission was collected between 439 
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520 and 580 nm. Cells were counter-stained by PI (Sigma-Aldrich, P4170) and imaged with 440 

488 nm for excitation and emission was collected between 590 and 660 nm.  441 

For stem and SAM samples we used a Nikon (Minato, Tokyo, Japan) A1 Confocal with a CFI 442 

Apo LWD 25x water immersion objective. The PI counter-stained cells were imaged with 561 443 

nm for excitation and 570-620 nm for emission. The mTurquoise2 fluorescence was 444 

acquired using excitation at 405 nm and emission was collected between 425-475 nm. For 445 

the trans-activation experiments, the 3xGFP-NLS signal in the SAM was imaged with 488 446 

nm for excitation and 500-550 nm for emission. In the root, mVenus was excited with 514 nm 447 

and the emission was collected between 500-550 nm.  448 

For visualization of the xylem, plants were germinated in ½ MS plates and 5 DAG were 449 

transferred to either 10 µM Dex or mock containing ½ MS plates. To visualise the ectopic 450 

xylem formation, plants were collected five days after induction and fixed overnight in a 1:3 451 

acetic acid:ethanol solution. Then, they were cleared in a 8:1:2 chloral hydrate:glycerol:water 452 

solution for at least 3 hours. Samples were mounted on microscope slides containing 50% 453 

glycerol solution and brightfield images were obtained using an Axioimager M1 microscope 454 

equipped with an AxioCamHRc (Carl Zeiss, Jena, Germany). 455 

qPCR and SA-qPCR analysis 456 

Analysis of PMEI5 expression by qPCR was performed as described (Wolf et al., 2012). For 457 

standard addition quantitative real-time PCR (SA-qPCR), plant DNA extraction was 458 

performed as in (Allen et al., 2006) and SA-qPCR was performed as in (Huang et al., 2013). 459 

Quadruplicate qPCR reactions were performed in a final volume of 12.50 µl, including 6.25 460 

µl of ABsolute qPCR SYBR Green Mix (Thermo Scientific), 0.25 µl of each primer (10 µM), 2 461 

µl of genomic DNA (1.6 ng /µl) with different amounts (0, 1 or 3 µl) of plasmid (0.1 pg/µl) as a 462 

reference. The SulfR resistance gene was amplified with primers SulfR_Fwd 463 

GCATGATCTAACCCTCTGTCTC and SulfR_Rvs GAAGTCACTCGTTCCCACTAG, plasmid 464 
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target sequence was amplified with PL_Fwd  GCCGTACTAAACCTCTCATCG and PL_Rvs 465 

CTGACCGGAAAGTTTGTTATTCG. 466 

 467 

Accession Numbers 468 

The Arabidopsis Genome Initiative numbers of genes used in this study are: SCR ( 469 

AT3G54220), ATHB-8 (AT4G32880), XPP (At4g30450), AHP6 ( 470 

AT1G80100), PXY (AT5G61480), TMO5 (AT3G25710), SMXL5 ( 471 

AT5G57130), CASP1 (AT2G36100), VND7 (AT1G71930), APL (AT1G79430), NST3 472 

(AT1G32770), WOX4  (AT1G46480), PMEI5 (AT2G31430), LTP1 (AT2G38540), AT2G3830, 473 

ML1 (AT4G21750), CLV3 (AT2G27250), REV (AT5G60690), UFO (AT1G30950), CUC2 474 

(AT5G53950). 475 

 476 

  477 

Supplemental Data 478 

Supplemental Figure S1. Analysis of DMSO-treated mock controls for driver line seedling 479 

root induction 5 DAG.  480 

Supplemental Figure S2. Analysis of induced driver lines in 5 DAG seedling root. 481 

Supplemental Figure S3. Analysis of DMSO-treated driver lines in the stem. 482 

Supplemental Figure S4. Analysis of DMSO-treated driver lines in the SAM.  483 

Supplemental Figure S5.  Growth on 50 µM Dex does not impair root growth of Col-0. 484 

Supplemental Figure S6. Reporter activation in the pSCR>GR>mTurquoise2 line is 485 

sustainable. 486 

Supplemental Figure S7. Kinetics of pSCR>GR>mTurquoise2 reporter activity after 487 

removal of inducer. 488 
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Supplemental Figure S8. Quantification of GR-LhG4-mediated trans-activation.  489 

Supplemental Table S1. List of primers used and DNA constructs generated in this study. 490 

 491 
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 500 

Tables 501 

Promoter  Expression Reference 
pSCR SCARECROW Endodermis, quiescent centre in RAM, 

starch sheath in stem 
(Di Laurenzio et al., 1996; 
Wysocka-Diller et al., 
2000) 

pATHB-8 HOMEOBOX GENE 8 Procambium, xylem precursors and 
columella in RAM 

(Baima et al., 1995) 

pXPP XYLEM POLE PERICYCLE Xylem pole pericycle cells (Andersen et al., 2018) 
pAHP6 HISTIDINE 

PHOSPHOTRANSFER 
PROTEIN 6 

Protoxylem precursors, pericycle, 
organ primordia in the SAM 

(Mahonen et al., 2006; 
Besnard et al., 2014) 

pPXY PHLOEM INTERCALATED 
WITH XYLEM 

(Pro-)cambium (Fisher and Turner, 2007) 

pTMO5 TARGET OF MONOPTEROS 5 Xylem precursors (Schlereth et al., 2010; De 
Rybel et al., 2013) 

pSMXL5 SMAX1-LIKE 5 Phloem (precursors) (Wallner et al., 2017) 
pCASP1 CASPARIAN STRIP 

MEMBRANE DOMAIN 
PROTEIN 1 

Endodermis (Roppolo et al., 2011) 

pVND7 VASCULAR RELATED NAC-
DOMAIN PROTEIN 7 

Protoxylem (differentiating) in root, 
vessels in stem 

(Kubo et al., 2005) 

pAPL ALTERED PHLOEM 
DEVELOPMENT 

Phloem (differentiating) (Bonke et al., 2003) 

pNST3 NAC SECONDARY WALL 
THICKENING PROMOTING 3 

Fibres (Mitsuda et al., 2007) 

pWOX4 WUSCHEL RELATED 
HOMEOBOX 4  

(Pro-)cambium (Hirakawa et al., 2010) 

pLTP1 LIPID TRANSFER PROTEIN 1 Epidermis in stem (Thoma et al., 1994) 
pAT2G3830  Pith (Valerio et al., 2004) 
pML1 MERISTEM LAYER 1 L1 layer, epidermis (Lu et al., 1996) 
pCLV3 CLAVATA3 SAM stem cells (Fletcher et al., 1999) 
pREV REVOLUTA SAM central zone (Otsuga et al., 2001) 
pUFO UBUSUAL FLOWER ORGANS SAM peripheral zone (Levin and Meyerowitz, 

1995) 
pCUC2 CUP-SHAPED COTYLEDON 2 Boundaries in SAM and leaf (Aida et al., 1997) 
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Table 1: Overview of promoters utilized in this study.  502 
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Figure Legends 503 

Figure 1. Overview of the Dex-inducible GR-LhG4/pOp system. In driver lines, expression of 504 

the synthetic transcription factor LhG4 is controlled by a tissue-specific promoter (pTS), 505 

whereas translational fusion with the ligand binding domain of rat glucocorticoid receptor 506 

(GR) prevents nuclear translocation in the absence of the inducer (Dex). After crossing with 507 

an effector line harbouring a transcriptional cassette under the control of a pOp element and 508 

a TATA box-containing minimal 35S promoter and addition of Dex, GR-LhG4 drives the 509 

expression of the effector as well as the mTurquoise2 reporter encoded by the driver line. 510 

Figure 2. Analysis of induced driver lines in seedling roots. A, Schematic representation of 511 

root tissue layers. B-I, Induced driver line roots displaying fluorescence from propidium 512 

iodide (PI)-stained cell walls and the mTurquoise2 reporter (see Fig. 1 and Table 1). The 513 

indicated promoters mediate expression in the differentiating endodermis (B, pCASPARIAN 514 

STRIP MEMBRANE DOMAIN PROTEIN 1 (pCASP1)), phloem precursor cells and adjacent 515 

pericycle cells (C, pHISTIDINE PHOSPHOTRANSFER PROTEIN 6 (pAHP6)), xylem 516 

precursor cells (D, pTARGET OF MONOPTEROS 5 (pTMO5)), xylem pole pericycle cells (E, 517 

pXYLEM POLE PERICYCLE (pXPP)), stele initials, cortex/endodermis initial (CEI) and 518 

columella initials (F, pHOMEOBOX GENE 8 (pATHB-8)), endodermis, CEI and quiescent 519 

centre (G, pSCARECROW (pSCR)), stele initials, phloem and procambial cells (H, pSMAX1-520 

LIKE 5, (pSMXL5)), and procambial cells (I, pPHLOEM INTERCALATED WITH XYLEM 521 

(pPXY)). PI fluorescence is false-coloured in magenta and mTurquoise2 fluorescence in 522 

green. Bars = 50 μm. 523 

Figure 3. Analysis of induced driver lines in the stem. A, Schematic representation of 524 

inflorescence stem tissue layers. B-I, Induced driver line stems displaying fluorescence from 525 

propidium iodide (PI)-stained cell walls and the mTurquoise2 reporter (see Fig. 1 and Table 526 

1). The promoters mediate expression in differentiated phloem (B, pALTERED PHLOEM 527 

DEVELOPMENT, (pAPL)), xylem fibres and interfascicular fibres (C, pNAC SECONDARY 528 

WALL THICKENING PROMOTING 3 (pNST3)), starch sheath (D, pSCR), cambium (E, 529 
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pWUSCHEL RELATED HOMEOBOX 4 (pWOX4), xylem vessels (F, pVASCULAR 530 

RELATED NAC DOMAIN PROTEIN 7 (pVND7), epidermal cells (G, pLIPID TRANSFER 531 

PROTEIN 1 (pLTP1)), the incipient phloem (H, pSMXL5), and pith (I, pAT2G38380). PI 532 

fluorescence is false-coloured in magenta and mTurquoise2 fluorescence in green. Bars = 533 

50 μm. 534 

 535 

Figure 4. Analysis of induced driver lines in the shoot apical meristem (SAM). A, Schematic 536 

representation of cell identity domains in the SAM. B-G, Induced driver line stems displaying 537 

fluorescence from propidium iodide (PI)-stained cell walls and the mTurquoise2 reporter (see 538 

Fig. 1 and Table 1). The left and middle panels are maximum projections of confocal stack, 539 

the right panels consist of a single median confocal xy section and xz and yz view of the 540 

stack. The indicated promoters mediate expression in the L1 layer/epidermis (B, 541 

pMERISTEM LAYER 1 (pML1)), the stem cell domain (C, pCLV3), the central zone (D, 542 

pREVOLUTA (pREV)), the peripheral zone (E, pUNUSUAL FLOWER ORGANS (pUFO)), 543 

the boundary domain (F, pCUP-SHAPED COTYLEDON (pCUC2)), and organ primordia (G, 544 

pAHP6). PI fluorescence is false-coloured in magenta and mTurquoise2 fluorescence in 545 

green. Bars = 20 µm. 546 

Figure 5. Dose-response and time course analysis of driver line seedling roots. A, The 547 

pSCR driver line was grown on 0, 0.1, 1, 10 and 100 µM Dex and imaged five DAG. B, 548 

Time-course of pSCR driver line induction for 1, 6 and 24 hours with 10 µM Dex. C, 549 

Quantification of the mTurquoise2 fluorescence intensity dose-response in quiescent centre 550 

cells and CEI (cells outlined in white in panel A). D, Quantification of mTurquoise2 551 

fluorescence intensity of the first 3 endodermal cells after the CEI (cells outlined in blue in 552 

panel A). E, quantification of the induction time-course (B) in quiescent centre cells, CEI and 553 

the first 3 endodermal cells. Significant differences in (C, D, and E) are based on the results 554 

of a two-tailed t test with p < 0.05, p < 0.01, p < 0.001, n=3-6 roots each. Bars = 50 µm. 555 
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Figure 6. Induction of mTurquoise2 and mVenus/3xGFP fluorescence in the root, stem and 556 

SAM of F1 plants from a driver line-effector line cross. Cells are counter-stained with PI 557 

(which, in the stem, highlights lignified vessel elements and fibres). Fluorescence channels 558 

are false-coloured. Bars = 50 µm for the root and the stem, 40 µm for the SAM. 559 

Figure 7. Cell-type specific induction demonstrates the efficacy of trans-activation. Plants 560 

expressing VND7-VP16 as an effector in the endodermal cells (pSCR>GR>VND7-VP16) 561 

show ectopic vessel formation (white arrows) after 5 days of Dex induction in both root and 562 

hypocotyl endodermis, in contrast to DMSO-treated plants. The spiral secondary cell wall 563 

thickening was observed after fixing and clearing the samples and visualized by DIC 564 

(differential interference contrast microscope). E = endodermis, P = pericycle, X = xylem. 565 

Bars = 20 μm. 566 

 567 

 568 
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