Appeared in Computing 68, No.4, 289-311 (2002)

RISK THEORY WITH A NON-LINEAR DIVIDEND BARRIER*

H. ALBRECHER AND R. KAINHOFER, GRAZ

Abstract

In the framework of classical risk theory we investigate a surplus process in the presence of
a non-linear dividend barrier and derive equations for two characteristics of such a process,
the probability of survival and the expected sum of discounted dividend payments. Number-
theoretic solution techniques are developed for approximating these quantities and numerical
illustrations are given for exponential claim sizes and a parabolic dividend barrier.
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1 Introduction
N(

Let us consider the classical risk process Ry = u+ct — ) ,_ H X;, where c is a constant
premium intensity, N(¢) denotes a homogeneous Poisson process with intensity A\ which
counts the claims up to time ¢ and the claim amounts X; are iid random variables with
distribution function F(y). In this context R; represents the surplus of an insurance
portfolio at time ¢ (for an introduction to classical risk theory see for instance GERBER [13]
and THORIN [24] or more recently ASMUSSEN [4]). As usual we assume p = FE(X;) < o0
and ¢ > X [[*ydF(y). A reasonable modification of this model is the introduction of a
dividend barrier by, i.e. whenever the surplus R; reaches by, dividends are paid out to the
shareholders with intensity ¢ — db; and the surplus remains on the barrier, until the next

claim occurs. This means that the risk process develops according to

dR; = cdt—dS; if Ry<b; (1)
dR, = db—dS, if R,—b, (2)
N(t)

where we have used the abbreviation S; = >°,"Y’ X;. Together with the initial capital
Ry =wu, 0 <u < by < oo, this determines the risk process {Ry, t > 0} (cf. Figure 1).
Two quantities of particular interest in this context are the probability of survival ¢(u, b) =
Pr(Ry > 0Vt > 0|Ry = u,bp = b) (or alternatively the probability of ruin ¢ (u,b) =
1 — ¢(u, b)) and the expected sum of discounted dividend payments W (u,b).

Dividend barrier models have a long history in risk theory (see e.g. [9, 7, 13]). For a
survey on the relation between dividend payments and tax regulations we refer to [3, 5].
GERBER [12] showed that barrier dividends constitute a complete family of Pareto-optimal
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FIGURE 1: A typical sample path of R;

dividends. In the case of a horizontal dividend barrier by = b, =const., it is easy to see
that ¢(u,b) =0V 0 < u < b. SEGERDAHL [21] used the technique of integro-differential
equations to derive the characteristic function of the time to ruin in the presence of a
horizontal dividend barrier for exponentially distributed claims. This approach was gen-
eralized by GERBER AND SHIU [15]. PAULSEN AND GJESSING [19] calculated the optimal
value of b, that maximizes the expected value of the discounted dividend payments in an
economic environment. Recently IRBACK [17] developed an asymptotic theory for a high
horizontal dividend barrier.

If one allows for monotonically increasing b; in the model, a positive probability of survival
can be achieved. The case of linear dividend barriers is fairly well understood: GERBER
[11] derived an upper bound for the probability of ruin for by = b+ at by martingale meth-
ods and in [14] he obtained exact solutions for the probability of ruin and the expected
sum of discounted dividend payments W (u,b) in terms of infinite series in the case of
exponentially distributed claim amounts. This result was generalized to arbitrary Erlang
claim amount distributions in SIEGL AND TICHY [22] by developing a suitable solution
algorithm. The convergence of this algorithm was proved by ALBRECHER AND TICHY [1].

Apart from mathematical simplicity there is no compelling reason to restrict the model
to linear dividend barriers. Moreover, simulations indicate that by choosing an appropri-
ate dividend barrier, the expected value of discounted dividend payments W (u,b) can be
increased, while the probability of survival ¢(u, b) stays constant (cf. ALEGRE ET AL. [2]).

In this paper non-linear dividend barrier models are investigated. In Section 2 we derive
integro-differential equations for ¢(u, b) and W (u,b) and discuss the existence and unique-
ness of the corresponding solutions. Our main focus is on the development of efficient nu-
merical algorithms to obtain those quantities. More precisely, we adapt number-theoretic
solution methods in the spirit of [25] to the current situation (Section 3). Finally Section 4
gives numerical results for the special case of a parabolic dividend barrier and exponential
claim amount distributions.



2 The Model

Model A: We consider a classical risk process extended by a dividend barrier of type

1/m
bt:(bm+é) (a,b>0,m > 1).

Note that m = 1 corresponds to the linear barrier case.
The probability of survival ¢(u,b) can then be expressed as a boundary value problem in
the following way: Conditioning on the occurrence of the first claim, we get for u < b

dt 1/m
$(u,b) = (1 — Adt)¢ (u + cdt, (bm + E) ) +

u+tcdt dt 1/m
—i—)\dt/ ¢l u+cdt—z, (bm—l—g) dF(z). (3)
0

Taylor series expansion of the functions ¢ on the right-hand side of (3) and division by dt
shows that ¢ satisfies the equation

99 1 9

¢ ou ' ambml b

—/\¢+/\/Ou¢(u—z,b)dF(z):0, )

which, for reasons of continuity, is valid for 0 < u < b. For u = b we get along the same
line of arguments

me=u—xﬁw(@m+%)wﬂ(m+@gwm)+

(07

bm—l—% 1/m 1/m 1/m
—I—)\dt/( ) ¢(<bm+%) 2 (b’u%) )dF(z), (5)
0

from which it follows that

1 0¢ 1 0¢ v
s, - @ _ A —2z,b)dF(z) =0. 6
amb™=1 Ju  ambm™1 0b AG+ /0 $lu =2 b)dF(2) (6)
Comparing (4) and (6) we thus obtain the boundary condition
o¢
— =0. 7
ou lu=b ( )
A further natural requirement is
Tim ¢(u,b) = ¢(u), (8
—» 00

where ¢(u) is the probability of survival in absence of the barrier.

Contrary to ruin, the crossing of the dividend barrier is a much desired event. For equal
slopes of the barrier at time 0, the expected time until the first crossing of the dividend



barrier will be considerably less for sub-linear barriers as introduced above than for the
linear case. A quantitative result in this direction follows from BOOGAERT ET AL. [6] who
used a martingale technique to derive upper bounds for the probability Pr(D > t) that
the surplus process does not reach a given barrier before time ¢t. Adapting these results
to our situation, we obtain

At

Pr(D>t) <
( )< w— (b + t/o)/™ + ct

for all ¢ that satisfy u+ ct > (b™ +t/a)"/™,

Let furthermore W (u,b) denote the expected present value of the future dividend pay-
ments, which are discounted with a constant intensity ¢, and stop when ruin occurs.
Then, in a similar way to (3) and (5), one can derive the integro-differential equation

oW 1w u
“Bu T ambnT ab ‘(5“)“’“/0 W (u— 2 b)dF(z) =0, 9)
with boundary condition
ow
. = 1. 1
ou lu=b (O)

In the actuarial literature [11, 26] there has been some interest in models where dividends
can also be paid after a ruin event (this makes sense since ruin of a portfolio is a technical
term used in decision making and does not necessarily imply bankruptcy). If we allow
for dividend payments after ruin in our model, then along the same line of arguments as
above, we obtain the following equation for the expected value V (u,b) of the discounted
dividend payments

ov 1 oV *©
—  ——— — — (6 4+ A A — 2, b)dF(2) = 11
G+ T gy~ NV [ Vl—mnare) =0, )
and the initial condition ‘?,—Z = 1. Note that for a linear dividend barrier the corre-

u=
sponding integro-differential equation was much simpler, because V could be expressed as
a function of one variable only (cf. [26]); for a non-linear barrier this is no longer the case.

Model B: In addition to Model A, we will also consider a “finite-horizon” version of
the model, namely we introduce an absorbing upper barrier b,,,, = const. If the surplus
process Ry > by,q, for some ¢t > 0, it is absorbed and the company is considered to have
survived. From an economic point of view this can be interpreted that the company will
then decide to pursue other forms of investment strategies. Mathematically, this model
has some nice features (e.g. the process stops in finite time with probability 1). The
boundary value problem for the probability of survival can now be formulated by (4), (7)

and
¢ (u)
¢(bma$) ’

where 0 < u < b < bye, and as before ¢(u) is the probability of survival in absence of the
barrier.

¢(U,bmaac) = (12)



Example: For exponentially distributed claim amounts (F(z) = 1 — e %), equation (4)
can be expressed as a hyperbolic partial differential equation with variable coefficients

0?%¢ 1 0% 0¢ 1 ¢
hal s ANt — = 1
“ou T ambm1 9b u +le=X ou  ambm 1l ob 0 (13)
and with boundary conditions (7) and
0¢ 1 0¢ B
(c 9 + ambnT 9b )\qﬁ) = 0. (14)
u=0
Since ¢g(u,b) = e~ ~"(8)% i a solution of (13), where 7(s) satisfies
cr2+(s/a+/\—c)r—s/a=0, (15)

one can try to obtain a solution of the form

o0 o
¢(u’ b) — / e—sbmAl(S)e—Tl(S)u ds +/ e—sbmA2(s)e—T2(S)u ds + ¢(u)’
0 0
where 71(s),72(s) are the solutions of (15) and the A4;(s) have to be determined according
to (7) and (14). However, this turns out to be an intricate problem.
Similarly, the integro-differential equations for W(u,b) and V(u,b) can be expressed as
second-order PDE’s in the case of exponentially distributed claims.

3 Solution techniques

The above example shows that even for the simple case of exponentially distributed claim
amounts it is a delicate problem to obtain analytical solutions. Thus there is a need for
effective algorithms to obtain numerical solutions to these problems. In this paper we
focus on the development of number-theoretic solution methods.

Following a procedure developed by GERBER [14] for the case of linear barriers, we first
show that the boundary value problem (9) together with (10) has a unique bounded
solution. For that purpose, we define an operator A by

*

t u+tct ¢ 1/m
Ag(u,b) = / )\e_()""‘s)t/ glu+ct—z, (bm + a) dF(z)dt+
0 0

+\1

0 (bmt2) ™ £\ Ym AN
n )\e—(,\+6)t/ g (bm + _> -z, (bm + —) dF (z)dt+
t* 0 @ «

00 t 1
+ )\e’\t/ e - i/m ds dt. (16)
t t ma (b + £)

Here t* is the positive solution of u + ct = (bm + %)1/ ™ (since m > 1, b; is concave and
u < b, so this number is unique). Note that (16) can be interpreted as a conditioning on




whether a claim occurs before the surplus process hits the dividend barrier (¢ < ¢t*) or after
this event (in which case we have an additional term representing the discounted dividends
paid until the claim occurs). The solution W (u, b) of (9) with its initial condition (10) is
a fixed point of the integral operator A. For any two bounded functions g1, g2

o A
|Agi (u,b) — Aga(u,b)| < llg1 — 920 /0 A=t < ol —galloe (17)
for arbitrary 0 < u < b < oo, where ||-||, is the supremum norm on 0 < u < b < 0o, and
thus it follows that A is a contraction and the fixed point is unique by Banach’s theorem.

Proceeding in the same way as for W (u,b) above, one can easily show that equation (11)
together with its initial condition has a unique bounded solution.

In the case of Model B we can proceed in a similar way to obtain a contraction map for
the probability of survival as its fixed point: Like in equation (16), let ¢* be the time when
the surplus would reach the dividend barrier given that no claim occurs. Let furthermore
t** = a(b,; — b™) be the time when the dividend barrier reaches the absorbing barrier,
and ¢ = (byez — u)/c the time when the surplus would reach the absorbing barrier in
the absence of a dividend barrier and of claims. As the dividend barrier is an increasing
function on Rt, ¢** is uniquely determined, just as is . Combining the two possible
scenarios 0 < t** < < t* and 0 < t* <t < t** (depending on the values of u and b), we

define the operator A as

T Zmin (U,b,t) t %
Ad(u,b) = /0 e M /O é | Zmin(u,b,t) — 2, (bm+a) dF(z) dt +e T,

(18)
where T' = max (f, t**) is the time when the surplus process would reach the absorbing
upper barrier b4, and

1
Zmin (U, b, t) = min (u + ct, (bm + i) m) . (19)

(67

Let ¢1 and ¢ now be two bounded functions on 0 < u < b < by, then

T
A1 (u,b) — Ado(u,b)| < b1 — ol /0 Ae Mt = |1 — ollo (1- 7T .

Since T' = T'(u,b) < M < oo, this operator is a contraction, and Banach’s fixed point
theorem establishes the existence and uniqueness of the solution. Here, the absorbing
barrier and the resulting restriction to the finite area 0 < u < b < by, ensures that the
solution is unique in contrast to the case without the absorbing barrier.

Correspondingly, the contraction map for the expected sum of dividend payments in Model



B is given by

t* u+tct ¢ 1/m
Ag(u,b) = / /\e_()‘M)t/ glu+ct—z, (bm + —) dF(z)dt+
0 0

(67

t\1

A (6m4 L)/ 4\ L/m £\ L/m
+ / de~ (A0 / g (bm + —) -z, (bm + —) dF (z)dt+
t* 0 (04 (0%

t**
+ / e O e ! —m | 4 (20)
t* mo (bm + é)

if t** > t* and Ag(u,b) = 0 otherwise, because then the surplus reaches the absorbing
barrier before the dividend barrier. The last term in (20) represents the dividends that
are paid out until ** and is a simplification of the original expression

P*

g 1
/ )\e_M/ e % | c— i/m ds dit+
t* * mao (bm _I_ %)
o) t** 1
/ )\e’\t/ e |- i/m ds dt.
e e ma (7 + 2)

A _ * %
P (1 — e~ (AF0) ) g1 — 92l >

for any two bounded functions g1, go and we again have a contraction in the Banach space
of bounded functions equipped with the supremum norm, which implies the existence and
uniqueness of the solution.

From (20) it follows that

|1 Ag1(u, b) — Aga(u,b)[|, <

The following algorithms are now efficient ways of approximating the corresponding fixed
point:

3.1 Double-recursive Algorithm

This procedure will be described for the operator (16); it can easily be adapted to the other
integral operators introduced above. Moreover we will restrict ourselves to the case of ex-
ponentially distributed claim amounts (with parameter ); the extension of the method
to other distributions is straightforward.

The fixed point of (16) can be approximated by applying the contracting integral operator
A k times to a starting function h(u, b) which we choose to be the inhomogeneous term in
the corresponding integral operator (where k is chosen according to the desired accuracy
of the solution):

g®) (u,b) = A¥¢O) (u,b),

0) VY L 1
9" (u,b) = h(u,b) := e e c— ds dt.
t* t* mo (

4 2)' T



This leads to a 2k-dimensional integral for ¢\¥)(u, ), which is calculated numerically us-
ing Monte Carlo and Quasi-Monte Carlo methods. For that purpose we transform the
integration domain of operator (16) into the unit cube:

Ag(u,b) = h(u,b)+

11 1
(1 — ef()‘”)t*) //g (u + ct1 — 21, (bm + t—1> m) (1 — 6_7(“+Ct1)> dvidwy
o
0 0
11 1 i N
o (8 2] e o]
o
00

LA
A+4

with
log (1 — 1 — e~ A+t e
t1 = — og( w1>€ e )) o= — og( vl( e )) o
+46 5
1
log(1 — we) log (1 — g (1 _ e_y(bm+%2)m>>
— w2
t - t* T+ 8 = — . 22
’ (A+9) 22 : o)

The Monte Carlo-estimator of W (u,b) for given values of u and b is

Ic
W (u, b) NZg()ub (23)

(k)

where the g5, ' (u,b) are calculated recursively for each n by
95 (u,5) = h(u, )

and

>
>,

gy (u,b) = h(u, b) + 5

) ) m
: { (1 _ ettt ) (1 - e_()‘M)t*) g [ u+ ety , — 2, (bm + tl—") +

thin . L
B bm+7‘ 2 2 m
(oo 0 Y () s (%) )}

Here t;,n and z;'-jn ( = 1,2) are determined according to (21) and (22) for (quasi-)random
deviates v;, w; of the uniform distribution in the unit interval (1 <17 < k).

3‘,_. N——" +
3=

Since in every recursion step the function g is called twice, the number of evaluations of
g doubles in every recursion step. Thus, in order to keep the computations tractable, in
what we will call the double-recursive algorithm in the sequel, the double recursion is only
used for the first two recursive steps and for the remaining recursion steps the recursive
algorithm described in Section 3.2 is applied.



3.2 Recursive Algorithm

Instead of calculating the first two integrals occurring in operator (16) separately, one can
combine them to one integral. A suitable change of variables then leads to

Ag(u,b) = h(u,b)+

1
_'Yzmin(uabat) . _ m E m
/ / Y + (5 )g (me(uaba t) 2, (b + a) ) dvdw (24)

where ¢ and z are given by

¢ _log(1 —w)
(A+9) -
log (1—v(1- e—’yzmin(u,b,t)))
2= —

v

and zmin(u,b,t) is determined by (19). Like in the double recursive case, this integral
operator is now applied k£ times onto g(o), and the resulting multidimensional integral
g%) (u, b) is again approximated by

g® (u, b) (26)

||M2

where each gq(lk) (u,b) (n=1,...,N) is based on a pseudo-random (or quasi-random, resp.)
point x,, € [0,1]%* and calculated by the recursion

g (u,b) = h(u,b),

o1
. A PR o AN
S)(u,b) — 13 (1 —e 7zmzn(u;b;tn)> g; 1 (zmm(u,b, t:z) _ Z;L“ (bm + En) > + h(u, b),

with 1 < i < k. !, and 2% are given by (25) with v and w being the value of the 2i-th
and 27 + 1-th, component of x,,, respectively. Note that for this algorithm, the number of
integration points needed for a given recursion depth is one fourth of the corresponding
number required for the double-recursive case.

3.3 Simulation

Since there are no analytical solutions available for the above problems, we need simulation
estimates of the ruin probabilities and discounted dividend payments to compare them to
the results of the integration methods that were described in the last sections.

We sample N paths of the risk reserve process in the following way: Starting with ¢y := 0,
bo := b and xy := u, where % is the initial reserve of the insurance company, we first
generate an exponentially distributed random variable #; with parameter X\ for the time
until the next claim occurs and set #;41 :=t; + t;. The claim amount is sampled from an
exponentially distributed random variable z; (with parameter 7), and the reserve after the
claim is ;41 := min{z; + cf;, (" +#;/a)'/™} — 2. Due to the structure of the dividend



barrier, we can reset the origin to t;41 in every step, if we also set b; 11 = ( b + b
We then have to discount the dividend payments between the i-th and (i 4+ 1)-th clalms

by the factor e~%%.

A simulation estimate for the survival probability ¢(u,b) can now be obtained by

m

¢(u7 b) ~ Na

where m is the number of paths for which ruin does not occur (ie. z; > 0V i). We

consider a path as having survived, if for some ¢ the condition z; > Z,, is fulfilled, where

Tmaz 18 a sufficiently large threshold. This can be viewed as an absorbing horizontal bar-

rier at T4, and so the process stops with probability 1. Using this stopping criterion, we

overestimate the actual probability of survival ¢(u, b); for sufficiently large x4, however,
this effect is negligible.

For the simulation of the expected value of the dividend payments, we proceed as descrlbed
above and whenever the process reaches the dividend barrier, i.e. z; +ct; > (b7 +1;/ a)
we need to calculate the amount of dividends that are paid until the next clalm 1 occurs:

t; 1
v = v + e % / P T ds, 1>1
- ma o+ 2)'
and vy = 0, where ¢* is the positive solution of z; + ¢t = (bm )l/m, i.e. the time

when the process reaches the dividend barrier. The process is stopped, if ruin occurs (i.e.
x; < 0 for some ) or at some sufficiently large time ¢,,4,, after which the expected value of
discounted dividends becomes negligible due to the discount factor e . Let v(j) now be
the final value of v; for path j. The expected value of the dividends is then approximated
by

3.4 Quasi-Monte Carlo Approach

The use of deterministic uniformly distributed point sequences (instead of pseudo-random
sequences in crude Monte Carlo) has proven to be an efficient extension of the classical
Monte Carlo method. A well-known measure for the uniformness of the distribution of a
sequence {Xp}, .,y in U® :=[0,1)® is the star-discrepancy

Dy (xz) = sup | A0 )

— (D),
Y R )

where J; is the set of all intervals of the form [0, %) = [0,y1) X [0,y2) X ... X [0,ys) with
0<wy; <1,i=1,...,s and A(xp;I) is the number of points of the sequence {x,},, <y
that lie in 1. X\;(I) denotes the s-dimensional Lebesgue-measure of I. -

The notion of discrepancy is particularly useful for obtaining an upper bound for the error
of quasi-Monte Carlo integration:

10



Lemma 1 (Koksma-Hlawka Inequality). Let the function f : [0,1)* — R be of bounded
variation V([0,1)%, f) in the sense of Hardy and Krause. Then for any set of points

{:vl,. .. ,.’BN} C [0,1)5

SV([Oal)saf)D}kV ('Tla"',xN) : (27)

1 N
— Tp) — d
N S /[O’I)Sf(u)u

For a proof of this famous inequality we refer to [10]. This error bound is deterministic
(opposed to error bounds obtainable for crude Monte Carlo). Especially for s not too
large, certain Quasi-Monte Carlo sequences have turned out to be superior to pseudo-
Monte Carlo sequences in many applications. This is in particular the case for so-called
low discrepancy sequences, i.e. sequences for which

(log N)*

= (28)

Dy (z1,...,2n) < Cs
with an explicitly computable constant Cs, holds. Bounds for Cs are usually pessimistic
and often the actual error made by Quasi-Monte Carlo integration is much lower than the
bound implied by C; (see e.g. [8]). Some low discrepancy sequences will be given in the
sequel:

e The Halton sequence [16] is defined as a sequence of vectors in U® based on the digit
representation of n in base p;

fn = (bpl (n)’ bp2 (n)a s ’bps (n))’ (29)

where p; is the ith prime number and b,(n) is the digit reversal function for base p

given by
o o0
bp(n) =Y mp ™, =) et
k=0 k=0

where the nj are integers. One could also use pairwise coprime base numbers, but
the error estimate turns out to be the best possible for prime bases p,.

Better error bounds can be obtained for low-discrepancy sequences based on so-called
(t, m, s)-nets or nets for short. These nets are based on the b-adic representation of vectors
in U®. Instead of optimizing the discrepancy itself, one considers the discrepancy with
respect to elementary intervals J in base b only, i.e. J = [[7_;[a;b~%, (a; + 1)b~%) with
integers d; > 0 and integers 0 < a; < bt for 1 < 4 < s, and tries to construct point
sequences in U? such that the discrepancy with respect to these intervals J is optimal for
subsequences of length N = p™.

Let #(J, N) denote the number of points of a sequence {x;,},., . that lie in J. A point
set P with card(P) = b™ is now called a (t,m, s)-net, if -

#(J,0™) = b

for every elementary interval J with \;(J) = b*=™. The parameter t is a quality param-
eter. For ¢ = 0 we have the minimal discrepancy of the point set P with respect to the

11



family of elementary intervals.

Definition: Let t > 0 be an integer. A sequence £1,&s,... of points in U? is called a
(t, s)-sequence in base b, if for all integers k& > 0 and m > ¢, the point set consisting of the
&n, with kb™ < n < (k+1)b™ is a (t,m, s)-net in base b.

Examples of (t,m, s)-nets are:

e The Sobol Sequence is a (t, s)-sequence in base 2 with values ¢ that depend on s.
For a construction of this sequence we refer to [23].

e The Niederreiter sequences (cf. [18]) yield (¢, s)-sequences in arbitrary base; among
them there are (0, s)-sequences in prime power bases b > s. In particular, for Nieder-
reiter sequences the constant Cy in (28) tends to zero for s — oo .

Following a technique developed in [25], we can now use (27) to find an upper bound for
the error of the recursive algorithm estimate introduced in Section 3.2 in terms of the
discrepancy of the sequence used:

Theorem 1. If the expected value W (u,b) of the discounted dividends is approzimated by
") (u,b) as given in (23) using a sequence w of N elements, the error is bounded by

< b))l

HW(u,b) - g(k)(u,b)Hoo —

(" + aDn(w)) (30)

with q := /\%_6

Proof. Since we have g(® (u,b) = h(u,b), it follows from Banach’s fixed point theorem
together with the estimate (17), that

HW(u,b) — ¥ (q, b)Hoo < HW(u, b) — A*h(u, b)Hoo + HAkh(u, b) — ¢®)(u, b)Hoo

< 1T D)l + 40D~ W n) 6

Iterating the integral equation (24) k times leads to

k i—1
ARR(ug, by) = Z// 11 Cia | hlui, bi)dvi 1dw; 1 ... dvodwo + h(ug,bo)  (32a)
i=1 j=0
[0,1)2

1]2k/ i

[0, !

11 Cia | h(ui, bi)dve_1dwg_s .. . dvodwo + h(ug, bo)  (32b)

k i—1

12



where for 0 < j < k — 1 we have

1
t; = —X]Og(l — wj),
zj = 1 log (1 —vj (1 - e_7zm""(“j’bf’tj))) )
Y
A
me(uj,bj,tj) = cutj := min (Uj + Ctj, (b;n + E]) > , (33)

Cj = (1= e 7o),

uj1 = cut; — zj,
1

t:\m

In our recursive algorithm the 2k-dimensional integral (32b) is approximated by quasi-
Monte Carlo integration and in order to use Koksma-Hlawka’s inequality for bounding the
error, we have to determine the total variation of the integrand in (32b). For that purpose
we investigate each of the summands separately and define F; to be the integrand of the
i-th term in (32a):

i1
F;(vo, wo, - - -, Vi1, Wi1) 1= ¢" H (1 - efvzmi"(uj’bj’tj)) h(u;, b;). (34)
j=0

We now show that this function is increasing in all the variables w; and decreasing in all
the variables v; (j = 1,..,¢ — 1):

Choose a j € {1,..,i — 1} and let v; be increasing (while all the other variables are fixed),
then Cj, ug, and ¢ remain constant for all £k < j. Furthermore z; remains constant
for all k& < j and so does by, for arbitrary k. But then it is easy to see that w;;; and
Zmin (Uj41,0j41,tj41) are decreasing. By induction and some elementary monotonicity
investigations it follows that w;;, and zpin(ujik,bjik,tj+x) are decreasing for all k > 1.
But since h(u, b) is an increasing function of u it follows from (34) that F; is a decreasing
function of v; (j = 1,..,4 — 1). Similarly it can be shown that F; is an increasing function
ofw; (j=1,.,i—1).

This monotone behavior now allows to bound the variation of Fj:

By summing up the variations of the F; we get an upper bound for the total variation of
the integrand F' of (32b)

k k A ¢ 1—gF q
].2 'F < _ = < — .
VPP <3 (375) Wl = 0= Il < 72 Tl

If we use this estimate together with Lemma 1 we get

|45 w.b) = 6 w.h)| < bl 72 D)
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and inserting this into equation (31) finally gives

q
1—g¢

(D)l 7 Div(e) = 10 (5 4 gD ()

Wb - g )| < : e

O

4 Numerical results for the parabolic case

In this section numerical illustrations for a parabolic dividend barrier of the form b, =
/b2 + t/a and exponentially distributed claim amounts (F(z) =1 — e ?) are presented.

Note that in this case
o 1 U 1 w\? N b? — u?
T 2ac® ¢ 2a¢? ¢ c?

and the inhomogeneous term h(u,b) in (16) can be calculated explicitly to

— o t"(A+0) c il i f
h(u,b) =e (A-I—é ‘/()\+(5)a 5 erc(z))

with 2 = /(A + 6)(ab? + t*) and thus we have ||h(u,b)||, < 5
The parameters are set to ¢ = 1.5, § = 0.1, a = 0.5, A = v = 1 and the absorbing upper
barrier in Model B is chosen at by,x = 4.

The MC and QMC estimators are obtained using N = 66 000 paths for the recursive case
and for the simulation and N = 33000 for the double-recursive calculations. The corre-
sponding "exact” value, in lack of an analytic solution, is obtained by a MC-simulation
over 10 million paths for each choice of u and b.

For the recursive and double recursive calculations we use a recursion depth of &k = 66,
which leads to a 132-dimensional sequence needed for the MC- and QMC-calculations,
while for the simulation we take a 400-dimensional sequence so that 200 consecutive claims
and interoccurrence times of a risk reserve sample path can use the different dimensions of
one element of the sequence and correlations among the claim sizes and claim occurrence
times are avoided.

We use so-called hybrid Monte Carlo sequences for all our QMC-calculations, where the
initial 50 dimensions are generated by a 50-dimensional low discrepancy sequence and the
remaining dimensions are generated by a pseudo-random number generator. Throughout
this paper, we use ran2 as our pseudo-random number generator, which basically is an
improved version of a Minimal Standard generator based on a multiplicative congruential
algorithm (for a description we refer to [20]). The use of hybrid Monte Carlo sequences has
proven to be a successful modification of the QMC-technique, since for low discrepancy se-
quences typically the number of points needed to obtain a satisfying degree of uniformness
dramatically increases with the number of dimensions.

14



The different methods and sequences used are compared via the mean square error (MSE)

1 B 2
s= | 2 (o) -an)
(u,b)eP
where g(u,b) and g(u,b) denote the exact and the approximated value, respectively, and
the set P is a grid in the triangular region (b = 0..[0.1]..1,u = 0..[0.1]..b). In addition,
for each method we give the maximal deviation of the approximated value from the cor-

responding exact value [|All ) = max, pep (g(u, b) — g(u, b))

4.1 Survival probability

In Model A the survival probability can only be calculated using the simulation approach.
Table 1 gives the mean-square and the maximal error of the simulation results (together
with the corresponding calculation time in seconds) for each of the sequences used (with
N = 66 000):

Monte Carlo Halton Niederr. (t,s) Sobol
Simulation S 0.001307 0.001798  0.001706 0.0009
Al | 0.003741 0.003619  0.003472 0.002451
(163.16 s) (149.58 s) (281.61 s) (150.09 s)

TABLE 1: MSE and maximum error for ¢(u,b) in Model A

Figure 2 shows a log-log-plot of the mean square error S as a function of N. To quantify
the effect of using a low discrepancy sequence, we perform a regression analysis by fitting

logs(S) = ap + a1 logy(N) + a2 logy(logy(N)) + €

to the data using a least square fit. Note that Koksma-Hlawka’s inequality (27) could be
interpreted as implying a; = —1 and as = s, where s is the dimension of the sequence
used. However, since we use a hybrid sequence and since the effective dimension may
differ from the theoretical dimension, the values of a; and ay deviate from the ones above.
Figure 3 gives these fitted curves. In the sequel all figures on simulation results will be
given in terms of their regression fits.

In Model B approximate solutions for the survival probability can be obtained by the
recursive method using the operator (18) and by simulation. The numerical errors and
the corresponding calculation time are given in Table 3 and the fitted curves for the mean
square error are depicted in Figure 4.

Figure 4 shows that while the recursive Monte Carlo method is favorable to the Monte
Carlo simulation, for larger values of NV the simulation technique using the Halton and the
Sobol sequence, respectively, gives even better results. However, the best results in terms
of convergence rate of the error are obtained for the recursive method using Quasi-Monte
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FIGURE 2: Mean square error of the simulated survival probability in Model A
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FIGURE 3: Regression fits for the MSE of the simulated survival probability in Model A

b\z | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 | 10.28

0.1 | 10.28 10.75

0.2 | 10.32 10.77 11.19

0.3 | 1040 10.86 11.27 11.63

0.4 | 10.51 10.99 1142 11.75 12.04

0.5 | 10.62 11.12 11.56 11.94 1224 12.44

0.6 | 10.78 11.28 11.74 12.16 1248 12.75 12.90

0.7 | 10.94 11.48 1197 1237 12.74 13.01 13.25 13.35

0.8 | 11.13 11.69 12.19 12,65 13.02 13.34 13.60 13.79 13.86

09 | 11.33 1191 1244 1291 1331 13.67 13.95 1422 1437 14.43

1.0 | 11.54 12.14 12.68 13.18 13.60 14.02 14.35 14.62 14.83 14.97 15.01

TABLE 2: Exact values of the survival probability in % in Model A
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Monte Carlo Halton  Niederr. (t,s) Sobol
Simulation S 0.001796 0.000676 0.001621 0.00062
|1A]l o | 0.004066 0.001813 0.002529 0.001217
(99.71 s) (86.92'5) (87.21s) (86.91 s)
Recursive S 0.000934 0.000155 0.000168 0.000128
1Al | 0.002504 0.000365 0.000392 0.000317
(386.445)  (374.3s) (3744 s) (374.21 5)

TABLE 3: MSE and maximum error for ¢(u,b) in Model B

Carlo sequences. To quantify this effect, we introduce the efficiency gain

N (5)

I = TN (S)

where Ny (S) is the number of paths needed in the Monte Carlo simulation to reach
a given error of S, and N;(S) is the corresponding number of paths (the number of
summands in approximations (23) and (26), respectively) using an alternative method.
Figure 5 shows that except for the (0, s)-nets all methods are an improvement in efficiency
compared to Monte Carlo simulation, and the gain increases with smaller errors.

4.2 Expected value of the dividend payments

The exact values of W (u,b) in Models A and B are given in Tables 5 and 6, respectively.
The numerical results given in Table 7 and Figures 6 and 7 show that the performance
of the various solution techniques is similar to the case of survival probabilities. For a
moderate choice of N (N < 2!0) the Monte Carlo methods have a smaller mean square
error than the QMC simulation techniques; for larger N, however, all Quasi-Monte Carlo
methods outperform the Monte Carlo schemes, with the recursive algorithm giving better
results than the simulation. This is in particular relevant for practical purposes, since
the generation of these QMC-sequences can be done faster than the generation of pseudo-
random numbers based on ranl or ran2.

For the dividend payments in Model B the superiority of the Quasi-Monte Carlo approach
is even more pronounced (see Figures 8,9 and Table 8).

Since for a fixed N the recursive numerical techniques need more calculation time than the
simulation approach, it is instructive to investigate the accuracy of the numerical results
with respect to calculation time. Figure 10 gives a log-log-plot of the mean-square error
S as a function of calculation time ¢ for the dividend payments in Model B. It turns out
that the Quasi-Monte Carlo techniques clearly outperform the corresponding Monte Carlo
techniques. For smaller values of ¢ the Sobol sequence is particularly well-suited for our
integrands, whereas for large ¢ the use of the Halton sequence seems preferable.
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FIGURE 4: MSE of ¢(u, b) estimates as a function of N in Model B
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FI1GURE 5: Efficiency gain of the solution methods of Figure 4
b\z | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 | 23.28
0.1 23.31 24.32
0.2 23.40 24.44 25.34
0.3 | 23.58 24.62 25.56 26.33
0.4 | 23.80 24.87 25.87 26.64 27.27
0.5 24.09 25.21 26.20 27.07 27.75 28.20
0.6 | 2442 2556 26.64 27.54 28.29 28.86 29.22
0.7 | 24.80 26.02 27.10 28.05 28.90 29.54 30.01 30.28
0.8 | 25.22 26.50 27.64 28.65 29.50 30.26 30.84 31.27 3145
0.9 | 25.68 27.00 28.17 29.24 30.20 31.00 31.69 32.20 32.56 32.71
1.0 | 26.17 27.50 28.75 29.90 30.88 31.76 32.52 33.14 33.61 33.93 34.07

TABLE 4: Exact values of the survival probability in % in Model B
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FIGURE 6: MSE of W (u,b) estimates as a function of N in Model A
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FiGuRre 7: Efficiency gain of the solution methods of Figure 6
b\z | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 1.482
0.1 1.482 1.592
0.2 1481 1.591 1.701
0.3 | 1.480 1.590 1.699 1.808
04 | 1478 1.588 1.700 1.806 1.913
0.5 1476 1.586 1.696 1.805 1.912 2.014
0.6 1474 1.583 1.694 1.802 1.908 2.014 2.117
0.7 1.469 1.582 1.690 1.797 1904 2.008 2.114 2.215
0.8 1.466 1.578 1.685 1.793 1900 2.006 2.110 2.214 2.315
0.9 1462 1.572 1.680 1.788 1.894 2.001 2.104 2.208 2.311 2412
1.0 1.456 1.565 1.675 1.782 1.886 1.994 2.098 2.201 2.304 2.407 2.506
TABLE 5: Exact values of the expected dividend payments in Model A
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FIGURE 8: MSE of W (u,b) estimates as a function of N in Model B
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Fi1GURE 9: Efficiency gain of the solution methods of Figure 8

b\z | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 | 1.045

0.1 | 1.045 1.136

0.2 | 1.041 1.132 1.225

03 | 1.036 1.126 1.218 1.312

0.4 | 1.028 1.118 1.211 1.302 1.397

0.5 | 1.019 1.108 1.198 1.291 1.384 1.479

0.6 | 1.007 1.095 1.185 1.276 1368 1.463 1.559

0.7 | 0993 1.081 1.169 1.2568 1.350 1.442 1.536 1.634

0.8 | 0977 1.064 1.151 1.239 1328 1.420 1.513 1.608 1.706

0.9 | 0960 1.045 1.130 1.217 1306 1.395 1486 1.579 1.674 1.773
1.0 | 0.940 1.023 1.108 1.193 1.278 1367 1.457 1.548 1.641 1.737 1.836

TABLE 6: Exact values of the expected dividend payments in Model B
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Monte Carlo Halton Niederr. (t,s) Sobol
Simulation S 0.007141 0.005095 0.006126 0.004136
Al | 0.018727 0.010935  0.009418 0.006817
(163.16 s)  (149.58s)  (281.61s)  (150.09 s)
Recursive S 0.004046 0.000755 0.001083 0.000755
Al | 0.012431 0.001758  0.002598 0.001786
(507.3 s) (494.72 s)  (494.62 s) (495.04 s)
Double recursive S 0.004309 0.00078 0.000871 0.001054
|All,, | 0-008598 0.001811 0.002389 0.002432
(3914.71s)  (1761.22s) (1761.44s)  (3910.15 s)

TABLE 7: MSE and maximum error for W (u, b) estimates in Model A

Monte Carlo Halton Niederr. (t,s) Sobol
Simulation S 0.004778 0.000855  0.001262 0.000958
1A, | 0.010684 0.002495  0.002914 0.002464
(99.71 s) (86.92s)  (87.21s) (86.91 s)
Recursive S 0.002134 0.000607  0.000479 0.000497
|All | 0.005386 0.001762  0.001526 0.00161
(149.74s)  (136.98s) (1368 5) (136.7 s)
Double recursive S 0.002207 0.000709  0.000636 0.000721
|All | 0.005466 0.001953  0.001843 0.002008
(331.1 s) (325.63 s) (325.32 ) (324.69 s)

TABLE 8: MSE and maximum error for W (u,b) estimates in Model B
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F1GURE 10: MSE of W (u, b) estimates in Model B as a function of calculation time in seconds
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