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Neuronal inhibition, primarily mediated by GABAergic neurotransmission, is crucial for brain development and healthy cognition.
Gamma-aminobutyric acid concentration levels in sensory areas have been shown to correlate with hemodynamic and oscillatory
neuronal responses. How these measures relate to one another during working memory, a higher-order cognitive process, is still poorly
understood. We address this gap by collecting magnetoencephalography, functional magnetic resonance imaging, and Flumazenil
positron emission tomography data within the same subject cohort using an n-back working-memory paradigm. By probing the
relationship between GABAA receptor distribution, neural oscillations, and Blood Oxygen Level Dependent (BOLD) modulations, we
found that GABAA receptor density in higher-order cortical areas predicted the reaction times on the working-memory task and
correlated positively with the peak frequency of gamma power modulations and negatively with BOLD amplitude. These findings
support and extend theories linking gamma oscillations and hemodynamic responses to gamma-aminobutyric acid neurotransmission
and to the excitation-inhibition balance and cognitive performance in humans. Considering the small sample size of the study, future
studies should test whether these findings also hold for other, larger cohorts as well as to examine in detail how the GABAergic system
and neural fluctuations jointly support working-memory task performance.

Key words: functional magnetic resonance imaging; magnetoencephalography; n-back; neurotransmission; positron emission
tomography.

Introduction
A finely orchestrated balance between excitation and inhibition
is central to healthy brain function. Distinct brain imaging
techniques provide complementary insights into brain function
by tapping into distinct physiological signatures of brain activity
at multiple spatial and temporal scales. Despite important
advances, our grasp on the neural bases of cognition remains
arguably fragmented because the relationship between the
findings obtained across different imaging modalities is not fully
elucidated. In particular, how synaptic neurotransmission relates
to electrophysiological and to hemodynamic responses is still
largely unsettled. A handful of studies have sought to overcome
this limitation by combining insights from multiple modalities,
including methods that probe hemodynamic and electrophys-
iological (e.g. oscillatory) brain responses as well as gamma-
aminobutyric acid (GABA) concentration (Muthukumaraswamy
et al. 2009). However, previous work that has jointly probed
these measures has focused essentially on primary sensory or
motor areas (Muthukumaraswamy et al. 2009; Boy et al. 2010;

Kujala et al. 2015) and it is unclear how these features relate to
one another in the case of higher-order cognitive systems, such as
working memory (WM). Harnessing such an understanding would
be crucial to bridge findings and combine insights from various
studies of the neural underpinnings of human cognition. The
construction and neural underpinnings of WM have been studied
extensively via, e.g. behavioral models (Baddeley 2003; Myers et al.
2017), hemodynamic (Owen et al. 2005) and electrophysiological
neuroimaging (Palva et al. 2010; Roux and Uhlhaas 2014; Eriksson
et al. 2015), stimulation based approaches (van de Ven et al.
2012) as well as neurotransmitter investigations (Michels et al.
2012; Yoon et al. 2016), also by combining two or more of these
alternatives (Khursheed et al. 2011; Takei et al. 2016; Mederos et al.
2021). These studies have revealed distinct executive and storage
components within WM as well as highlighted the role of a range
of neural processes and cortical structures involved in efficient
WM performance. However, because previous work on WM did
not simultaneously examine hemodynamics, electrophysiology,
and synaptic neurotransmission, the links between the insights
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afforded by these different signatures of WM have yet to be
established.

The last 15 years have witnessed a rising interest in determin-
ing the links between GABAergic inhibition and both electrophys-
iological and hemodynamic signaling (Edden and Barker 2007;
Northoff et al. 2007; Muthukumaraswamy et al. 2009; Cousijn
et al. 2014; Kujala et al. 2015; Balz et al. 2016). However, only
a few studies have sought to evaluate the relationship between
GABAergic inhibition and other neural signals in higher order
cortical regions (Takei et al. 2016). Despite the consensus that such
multimodal studies are necessary, they are complex, costly and
can be methodologically challenging given the diversity of exper-
tise required. Incidentally, the wealth of research conducted on
WM would particularly benefit from such systems-level insights
in order to bridge observations from different imaging modalities
(Schmidt-Wilcke et al. 2018).

Investigations applying electrophysiological approaches to WM
have revealed that it builds on a wide range of oscillatory mecha-
nisms (Palva et al. 2010, 2011; Roux et al. 2012; Roux and Uhlhaas
2014; Honkanen et al. 2015; Daume et al. 2017; Johnson et al. 2017;
Popov et al. 2018; Carver et al. 2019) associated with different roles
ranging from maintenance to inhibition and to the organization
of items (Roux and Uhlhaas 2014), with the interactions between
oscillations facilitating the functioning of the WM system as a
whole (Alekseichuk et al. 2016; Johnson et al. 2017). In particular,
electrophysiological studies have shown that oscillatory activity
and bursting in the gamma band play a vital role in WM (Roux
et al. 2012; Lundqvist et al. 2016) and that this activity is linked
both to the subjects’ memory capacity and to task accuracy (Palva
et al. 2011; Honkanen et al. 2015). Functional magnetic resonance
imaging (fMRI) studies, in turn, have revealed intricate patterns
of brain areas in these regions supporting encoding, maintenance
and retrieval of distinct features, object manipulation and inhibi-
tion of distracting stimuli (D’Esposito et al. 1999, 2000; Rahm et al.
2013; Cohen et al. 2014; Ester et al. 2015; Lara and Wallis 2015).
Akin to electrophysiological investigations, fMRI-based studies
have demonstrated that interactions between various neurocog-
nitive components are central in WM performance, especially in
demanding tasks (Diwadkar et al. 2000; Soreq et al. 2019). In recent
years, magnetic resonance spectroscopy (MRS) studies have also
shown that increased GABA levels and GABA-to-glutamate ratios
are beneficial to WM capacity and accuracy (Yoon et al. 2016;
Marsman et al. 2017; Ragland et al. 2020). These results along
with evidence from receptor antagonist studies underline the
importance of both glutamate and GABA in neuronal firing during
WM tasks (Wang et al. 2013; Rodermund et al. 2020). Pharmacolog-
ical manipulations have also been used to show that GABAergic
interneurons play a key role in the generation of both alpha- and
gamma-band oscillations which, in turn, link to WM performance
(Lozano-Soldevilla et al. 2014). Moreover, MRS-based studies have
demonstrated that both the frequency and amplitude of neural
oscillations correlate with GABA concentration as well as WM
performance (Takei et al. 2016).

However, because previous studies on WM have not simultane-
ously probed electrophysiological, hemodynamic, GABAergic and
behavioral measures, bridging findings from the different streams
of research on WM has remained a challenge, limiting progress
toward a holistic understanding of the neural basis of WM. It is
possible that the relationships between GABAergic, electrophys-
iological and hemodynamic signals that have been observed in
sensory and motor areas comprise a general principle that holds
also in higher-order cortical networks. However, there has been no
evidence to date to support this.

Here, we address this gap by combining, for the first time, mag-
netoencephalography (MEG), fMRI, Flumazenil positron emission
tomography (FMZ-PET) data and behavioral measures, recorded
in the same subject cohort during a classical WM task. These
rare, yet small-scale data with thirteen subjects, allow initial
exploration of the joint role of the GABAergic system and neural
and hemodynamic fluctuations in WM. More specifically, through
this unique combination of modalities, and inspired by previous
reports on the roles of gamma activity in both WM and neuronal
inhibition, we probe the link between gamma oscillations, Blood
Oxygen Level Dependent (BOLD) and GABAA receptor distribution
in WM networks and we examine how these features relate to
behavior. We expect that the GABAA receptor density in higher
order cortical regions involved in WM would show positive corre-
lations with gamma-band oscillatory frequency and negative cor-
relations with BOLD amplitude. Moreover, we expect that across
the neural measures particularly the GABAA receptor density is
linked with WM task performance.

Materials and methods
Subjects and experimental design
Thirteen healthy, native French-speaking subjects participated in
the study. fMRI data were collected successfully from all 13 sub-
jects. For one subject, the MEG recording failed due to technical
reasons and one subject did not participate in the PET recording.
Moreover, the MEG data of one subject had to be discarded due
to excessive blinking. Data of sufficient quality were recorded
with all three modalities (PET, MEG, fMRI) from 10 subjects (1
female, 9 males; age 19–29 years, mean 24 years). All research
was performed in accordance with the Declaration of Helsinki.
Informed consent was obtained from all subjects, in agreement
with the prior approval of the Institutional Review Board and by
the National French Science Ethical Committee (CPPRB). All meth-
ods were conducted in accordance with the CPPRB guidelines. The
fMRI and MEG experiments consisted of a classical WM task of
visually presented letters, with 3 s intervals between consecutive
letters. Each letter was shown for 300 ms. The paradigm com-
prised three different memory load conditions (1-back, 2-back,
and 3-back tasks), and the subjects indicated with a button press,
after each letter, whether the letter matched or did not match
the appropriate preceding letter. In the fMRI experiment, we also
collected resting-state data.

Behavioral data analysis
The performance of the subjects in the WM tasks was estimated
based on the MEG data that also contained the type (match/non-
match) and timing of the subjects’ responses. Here, we computed
the number of correct and incorrect responses as well as separate
reaction times for them within each individual and WM task. Tri-
als for which the reaction times fell outside 2 standard deviations
of the average within the task were excluded from the analyses.
Based on the number of true/false positive/negative responses,
we also derived the accuracy, specificity, and sensitivity measures
for each subject and task. The behavioral data collected during
the MEG recordings were used as the fMRI data were collected
immediately after the MEG recordings, leading to potential learn-
ing effects influencing the task performance during fMRI data
collection.

MEG, fMRI, and PET data collection
All data (MEG, PET, and MRI) were collected from the same
participants at the CERMEP imaging center (Lyon, France). The
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MEG data were recorded in a magnetically shielded room using a
275-channel CTF whole-head system. The signals were band-
pass filtered at 0.016–150 Hz and sampled at 600 Hz. The
anatomical and functional magnetic resonance images were
collected with a 1.5 Tesla scanner (Siemens Sonata Maestro
Class). The T1-weighted anatomical MRIs were obtained with
1.0 × 1.0 × 1.0 mm3 resolution. The functional MRIs were acquired
in three runs using a pulse sequence with repetition time/echo
time (TR/TE) 2500/60 msec, flip angle = 90◦, field of view (FOV;
in-plane) = 220 mm, in-plane resolution 3.4 mm × 3.4 and slice
thickness 4 mm, spacing between slices 4.4 mm. The PET data
were recorded with a Siemens HR+ camera, and [11C]flumazenil
(FMZ), an agent that binds to benzodiazepine (BZD) receptor,
was used. FMZ (RO15-1788) was labeled with 11C, using the
methylation process (Maziere et al. 1984). A dynamic 3D
acquisition was applied providing 12 consecutive frames of
63 contiguous 2.42 mm thick slices, with an isotropic spatial
resolution near 5 mm3 FWHM (full width at half-maximum).
A 68Ge transmission scan was used to measure the attenuation
correction. A partial saturation protocol consisting of a single
intravenous injection of a mixture of 5 mCi of [11C]FMZ and
0.01 mg/kg of unlabeled FMZ was used, followed by acquisition
of the emission data for 55 min. This single injection allowed the
calculation of B’max parametric images, i.e. estimates of receptor
density, without arterial blood sampling (Delforge et al. 1995).

MEG data analysis
Neural activity estimates were obtained from the MEG signals
with event-related Dynamic Imaging of Coherent Sources
(erDICS), a beamforming technique in the time-frequency domain
(Gross et al. 2001; Laaksonen et al. 2008). In erDICS, the cortical-
level beamforming estimates are based on the sensor-level time-
dependent cross-spectral density matrix (CSD), computed using
Morlet wavelets. Here, wavelets with the width 7 cycles for every
frequency were used to calculate the CSDs between 36 and 104
at 2 Hz resolution in the range from 500 ms before stimulus
onset to 1500 ms post stimulus at 17 ms intervals. The width
parameter defines both the spectral bandwidth and duration
of the wavelets, with lower frequencies analyzed with longer
wavelets that lead to lower temporal resolution, but higher
frequency resolution compared with higher frequencies when
a constant number of cycles is used across all frequencies (Cohen
2019). Trials in which the amplitude of either the vertical or the
horizontal electro-oculogram exceeded 150 μV were rejected. In
addition, the MEG data were examined visually and data segments
that contained artifacts were excluded from the analysis. The
beamforming estimates of cortical oscillatory power levels at
different frequencies were computed, using a spherical head
model, in a spatially equivalent grid across subjects. The grid,
consisting of 3922 points, was constructed by creating a regular
grid at 6-mm intervals in an atlas brain and by transforming this
grid to the individual brains using Fieldtrip and SPM8 (Oostenveld
et al. 2011). For the visualization of the data, the volumetric
beamforming maps were project to the surface of the brain with
Freesurfer (Fischl 2012).

fMRI data analysis
The fMRIs data analysis was conducted with SPM8 (Wellcome
Department of Imaging Neuroscience, London, United Kingdom).
The first four volumes were discarded to allow for magnetic sat-
uration effect. The functional images were slice-time corrected,
realigned to the first image of the first run and then co-registered
with the anatomical MRI. The realigned and co-registered images

were then normalized to the standard SPM8 echo-planar image
template and smoothed with an 8-mm FWHM isotropic Gaussian
kernel. The data were high-pass filtered with a cut-off frequency
of 1/510 Hz and serial correlations were compensated for by using
a first order autoregressive model. The preprocessed data were
included in a general linear model (GLM) that included the three
WM condition (1-, 2-, and 3-back) and rest as well as movement
parameters as nuisance regressors. The individual-level fMRI data
were spatially normalized to the MNI template in SPM8 for group-
level estimation of the WM-load dependent modulations.

PET data analysis
Static PET images were obtained by summing frames 8–12 from
the dynamic imaging (corresponding to the acquisition period
from 20 to 55 min post-injection). These static images of the PET
volumes were realigned to the anatomical MRIs. Ten-millimeter
circular ROIs were placed over the midportion of the pons, a suit-
able reference region for the calculation of the nonspecific FMZ
binding60; the reference encompassed 7–9 consecutive MRI slices
displaying that structure. These ROIs were then transferred onto
the corresponding FMZ-PET slices. An additional circular ROI with
15 mm diameter was placed over the occipital cortex which com-
monly displays a high concentration of BZD receptors (Innis et al.
1991). A partial-saturation model, based on a Scatchard plot, was
then used to obtain the B’max parametric images (Delforge et al.
1997). In this model, the free ligand concentration is estimated in
the pons, whereas the range of the bound ligand concentration is
evaluated in the occipital cortex. Using this approach we obtained,
for each subject, a set of 63 contiguous 2.42 mm thick parametric
images of BZD receptor B’max. Each individual’s PET data were
smoothed using a 15 × 15 × 21 mm FWHM Gaussian kernel; the
level of smoothing was chosen to achieve similar resolution to the
MEG estimates of neural activity (Gross et al. 2003). The PET-data
were co-registered with each individual’s anatomical MRI in SPM8.

ROI identification
ROIs were identified separately based on the MEG and fMRI data.
For MEG, estimates of oscillatory power were computed in three
distinct time windows (0–500, 500–1000, and 1000–1500 ms post
stimulus) in each of the three WM tasks. These individual-level
power maps were normalized by dividing them by the standard
deviation of mean baseline activity (−500 to 0 ms) across the three
WM tasks across all grid points. The ROIs within each time win-
dow were obtained by contrasting the average oscillatory activity
of the 3- and 2-back tasks with the activity of the 1-back task
and by identifying clusters that showed significant activity at the
group level (Wilcoxon signed rank test, P < 0.05, cluster-size > 50,
n = 10). Here, it would have also been possible to use ROIs known to
be involved in WM or to use repeated measures tests to evaluate
systematic magnitudes/rankings across the three WM-conditions.
However, as we wanted to identify regions showing WM-related
modulations specifically for the present cohort as well as to utilize
the same data for the ROI identification and correlations analyses
(see section “Correlation analyses in the ROIs” below), the present
bi-variate approach was used. The fMRI ROIs were identified in a
similar manner. First the beta-parameters for all WM tasks in each
individual were normalized by dividing them with the standard
deviation of the beta-parameters during rest in the whole brain.
The average of the beta-parameters of 3- and 2-back tasks were
then contrasted to the beta-values during the 1-back task and
clusters that showed significant activity at the group level were
identified (Wilcoxon signed rank test, P < 0.05, cluster-size > 300,
n = 10).
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Correlation analyses in the ROIs
Within the identified ROIs, we estimated correlations between
both the neural (MEG, fMRI, PET) and behavioral measures. For the
MEG data, we determined in each ROI the individual-level peak
amplitude and frequency within the range between 40 and 100 Hz.
Here, the data were averaged across all grid points within the ROI.
In this analysis, we averaged the data across an 8 Hz window at
each bin to reduce the effects of noise (e.g. estimate of activity
of 40 Hz was calculated based on the average CSD at the interval
of 36–44 Hz). The peak frequencies were computed by identifying
the frequency for which the ratio of activity between the average
of 3- and 2-back tasks and the 1-back task was maximal. The
amplitude modulation for each subject was obtained by subtract-
ing the activity during the 1-back task from the average activity
during the 3- and 2-back tasks at this frequency. In this analysis,
each subject’s data were normalized by the standard deviation
in all grid points across all frequency bins in the baseline time-
window (−500–0 ms with respect to stimulus presentation across
the three n-back tasks). The standard deviation-based normal-
ization was chosen as in n-back tasks the baseline time-window
comprises also WM-specific neural activity and by subtracting
this activity from the post-stimulus data does not necessarily
lead to the accurate quantification of amplitude modulations.
The chosen approach, computed across all source locations and
frequencies only some of which represent tasks-relevant signals
should, in turn, yields a good estimate of random fluctuations
within the data whose magnitude depends on the subject-specific
overall strength of the MEG recordings. Accordingly, the approach
yields normalized estimates that allow comparing the values
across subjects (Dale et al. 2000). Parametric modeling of the
spectra within individual conditions with FOOOF (Donoghue et al.
2020) did not systematically detect gamma-band oscillatory peaks
in all subjects in every identified cluster. In the fMRI data, we
first averaged the beta-values across the voxels within the ROI.
These beta-parameters were normalized by dividing them with
the standard deviation of the beta-parameters during rest in the
whole brain. The individual-level modulation of BOLD activity
within each ROI was then determined by subtracting the activ-
ity during the 1-back task from the average activity during the
3- and 2-back tasks. For the PET data, we determined for each MR-
voxel within the MEG and fMRI ROIs the closest corresponding
PET voxel and defined the unique set of these PET voxels for
each ROI. As the measure of GABAA receptor density in each
ROI, we used the average of GABAA receptor density in these PET
voxels. The correlations between the different neural measures
and between neural and behavioral measures were computed
using Spearman’s rho (n = 10). As with low number of subjects
the correlation estimates may be influenced by outliers in the
data, we computed the 95% confidence limits for the correlation
estimates using bootstrapping for both the correlations across the
neural data as well as between neural and MEG-based behavioral
data (n = 10 in all bootstrapping analyses). In the approach we left
out data pairs for 2 random subjects 200 times and computed
the correlation values for the re-sampled data. From the obtained
distribution of 200 correlation values, we calculated the 95%
upper and lower confidence limits. This procedure was applied
to all correlation analyses showing significant findings with the
full sample of subjects. To evaluate the predictive value of the
observed correlation patterns, we also used a leave-two-out-based
classification analysis to test whether the linear relationship
between data types (e.g. GABAA receptor density and gamma peak
frequency) observed within a sub-sample of eight subjects would
correctly predict the relationship for the left-out subjects. Here, a

polynomial of degree one was used as the linear model. The eight
subjects for the training data were randomly drawn 500 times and
for each round we labeled for the predicted data type (e.g. pre-
dicted gamma frequency based on the subject’s GABAA receptor
density) the subject whose true value was closer to the predicted
one. This procedure yielded 1000 incorrect/correct classifications,
allowing to determine the overall classification accuracy. The 99%
confidence limit for the classification was obtained by randomly
conducting the same procedure 200 times with random pairings
of the two data types for the eight subjects whose data were used
in the training. We also examined using multiple linear stepwise
backward regression in SPSS 28.0 (IBM) the possible joint effect of
the imaging measures on the behavioral data. The analyses were
conducted separately for MEG- and fMRI-specific ROIs, i.e. MEG-
measures were examined jointly with GABAA receptor density
only in the ROIs identified based on MEG modulations. In the
analysis, we applied the default parameters (e.g. P ≥ 0.1 removal
criterion) within the stepwise backward regression. Unless men-
tioned otherwise, for all correlations and regression analyses
reported here we used uncorrected P-values.

Results
To investigate the interplay between high-frequency neural oscil-
lations, hemodynamics and GABAergic inhibition, we measured
gamma-band oscillations with MEG, BOLD activity with fMRI, and
GABAA receptor density using FMZ-PET all in the same population
of healthy individuals. The characteristics of oscillatory neuro-
magnetic signals and BOLD dynamics in each individual were
assessed during the performance of a standard n-back visual WM
task. The FMZ-PET data used to determine the GABAA receptor
density were collected while the subjects were resting in the
scanner. Individual subject WM performance was probed using
multiple behavioral metrics (reaction times, accuracy, sensitivity,
and specificity) based on the subjects’ responses during the MEG
experiment. We leveraged this combination of data to probe the
relations between behavior and the different neural measures
specifically in brain regions showing load-dependent modulation
of activity during WM (see Fig. 1).

ROI identification based on the modulation of
gamma-band and BOLD activity
For both the MEG and fMRI data, the average activity during the
high memory-load conditions (3- and 2-back) was contrasted to
the activity during the 1-back task (P < 0.05, see Fig. 2), where
the MEG investigation was done in three distinct time windows
following each stimulus (0–500, 500–1000, and 1000–1500 ms).
ROIs (2 in MEG, 5 in fMRI; see Table 1, Figs 4 and 5) were iden-
tified from these voxel-level maps by determining contiguous
clusters per modality and time window. The ROI labels in Table 1
do not represent any specific parcellation schemes but, instead,
give approximate information on the main cortical regions the
observed effects extend to. Note also that the extents of the
ROIs do not necessarily accurately represent the true extents
of the relevant modulations as the observed effects depend on
the selected source-modeling approach and the chosen statistical
threshold.

The relationship between GABAA receptor
density, gamma-band power, and BOLD activity
In the clusters identified based on gamma-band power modula-
tions, peak modulation frequency was identified by comparing
the average activity between the 3- and 2-back conditions to



Kujala et al. | 5

Fig. 1. The study consisted of the collection of multimodal neuroimaging data during an n-back task and the determination of the relationship between
the neuroimaging signals and their link to WM task performance. (A) MEG and fMRI data were collected during the experimental task which consisted
of 1-, 2-, and 3-back tasks of visually presented letters, while FMZ-PET data were collected during rest. (B) From the experimental data, we determined
(C) the WM task performance measures (reaction times, accuracy, sensitivity, and specificity) as well as measures of oscillatory (peak frequency and
amplitude) and hemodynamic (BOLD signal amplitude) activity, whereas the FMZ-PET data collected during rest were used to determine GABAA-receptor
densities across the brain.

Fig. 2. Brain areas showing significant modulation of activity as a function of memory load for MEG and fMRI (P < 0.05). Areas showing more
neural/hemodynamic activity during conditions with a higher memory load are shown in red/yellow and areas showing less activity in blue. For
visualization purposes, the volumetric data are projected to the surface of the brain.
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Table 1. ROIs identified based on MEG and fMRI data (MEG1: 500–1000 ms; MEG2: 1000–1500 ms).

ROI ROI size Brain region Brodmann L/R x y z

MEG1 248 Cuneus 18 L/R −1 −70 21
MEG2 737 Medial Frontal Gyrus 6 L/R −1 15 44

Middle Frontal Gyrus 9 R 40 27 30
fMRI1 1567 Precentral Gyrus 6 L −50 −3 46

Middle Frontal Gyrus 46 L −41 18 22
fMRI2 1157 Precuneus 7 L/R −10 −65 46
fMRI3 407 Inferior Parietal Lobule 40 R 43 −38 41
fMRI4 998 Superior Frontal Gyrus 6 R 21 12 59
fMRI5 404 Temporo-Parietal Junction 13 R 40 −25 11

Fig. 3. Group- (first three panels) and individual-level (last two panels) gamma-band spectra in the two MEG clusters of interest for the different WM
comparisons. In the group-level spectra, confidence intervals represent the grand average ± SEM values. The vertical dashed line in the individual-level
spectra represents the identified peak modulation frequencies, shown next to the peaks. GABAA-receptor densities in the graphs represent the average
values within the MEG clusters for each of the example subjects.

the 1-back condition (see Fig. 3 and Supplementary Fig. 8). This
approach to identifying peak gamma frequency (and gamma
amplitude at this frequency) was used to examine the relationship
between individual gamma-band profiles and GABAergic inhibi-
tion across participants. This approach is fine-tuned to detecting
peaks in gamma oscillations that are specific to WM as they
are derived from identifying load-related increases in broad-band
high-frequency activity (Carver et al. 2019).

In both MEG ROIs (Cuneus and Medial/Middle Frontal Gyrus),
we found a significant positive correlation (Spearman’s rho,
P < 0.05) between the GABAA receptor density and the peak
frequency of the gamma-band activity. The 95% confidence
intervals of the rho values were between 0.43 and 0.88 for
the two ROIs (Cuneus, CI95%, 0.46–0.88; Medial/Middle Frontal
Gyrus, CI95%, 0.43–0.83). In both, ROIs, the classification analysis
suggested that the relationship determined based on a sub-
sample of the subjects was predictive of the relationship in
the other subjects (Cuneus: accuracy = 66.4%, CL99% = 56.95%;
Medial/Middle Frontal Gyrus: accuracy = 58%, CL99% = 49.95%). In
contrast, the correlation between receptor density and gamma
amplitude did not reach significance (Fig. 4). As far as the fMRI

ROIs are concerned, we found a significant negative correlation
between BOLD amplitude and GABAA receptor density in the
Precuneus (CI95%, −0.38 to 0.95). The classification analysis
showed a significant predictive value for this relationship
(accuracy = 63.5%, CL99% = 55.6%). The correlations in the other
four ROIs were not significant (Fig. 5). No significant correlations
were detected between BOLD amplitude and gamma peak-
frequency or amplitude (see Supplementary Fig. 1).

Behavioral performance during the WM task
The performance of the subjects during the WM task was deter-
mined by quantifying the reaction times for each of the tasks
(1-, 2-, and 3-back) and the number of incorrect and correct
responses, and by deriving the accuracy, sensitivity, and specificity
scores based on the number of responses. These measures (see
Table 2) show the expected decrease in performance as a function
of memory load and a marked increase in reaction times in the
2- and 3-back conditions compared with the 1-back task (reaction
times for correct responses in 3- and 2-back vs. 1-back condition,
Wilcoxon signed rank test, P < 0.01). The other behavioral mea-
sures showed similar effects, with significant differences between

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
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Fig. 4. Correlation (Spearman’s rho) between GABAA-receptor density and gamma-band peak amplitude and frequency in brain areas showing significant
modulation of activity as a function of memory load. The x-axis portrays the mean receptor density (A.U.). The correlations were examined in two ROIs
(MEG1: Cuneus; MEG2: Medial/Middle Frontal Gyrus). See Table 1 for the sizes, Brodmann areas, and Talairach coordinates of the ROIs.

Fig. 5. Correlation (Spearman’s rho) between GABAA-receptor density and BOLD amplitude in brain areas showing significant modulation of activity as
a function of memory load. The x-axis portrays the mean receptor density (A.U.). The correlations were examined in five ROIs (fMRI1: precentral/middle
frontal gyrus; fMRI2: precuneus; fMRI3: inferior parieral lobule; fMRI4: superior frontal gyrus; fMRI5: temporo-parietal junction). See Table 1 for the
sizes, Brodmann areas, and Talairach coordinates of the ROIs.

3- and 1-back conditions for accuracy, sensitivity, and specificity
(P < 0.01) and between 2- and 1-back conditions for sensitivity and
accuracy (P < 0.05; specificity, P = 0.31).

The relationship between GABAA receptor
density and WM reaction times
When we computed correlations between the neural measures
(gamma-band and BOLD activity, GABAA receptor density) and the
different behavioral measures (reaction times, accuracy, sensitiv-
ity, specificity), we found significant correlations (Spearman’s
rho) only between the GABAA receptor density and reaction
times measures (see Supplementary Table 1). In the 2 MEG and
5 fMRI ROIs, the GABAA receptor density showed significant
negative correlation with reaction times in the 3-back task in
the Inferior Parietal Lobule (CI95%, −0.60 to −0.88) and Temporo-
Parietal Junction (CI95%, −0.62 to −0.93; see Fig. 6). In both
regions, the classification analysis suggested that the relationship

determined in a set of subjects would correctly predict the
relationship between GABAA receptor density and reaction times
in other subjects (Inferior Parietal Lobule: accuracy = 65.7%,
CL99% = 50.45%; Temporo-Parietal Junction: accuracy = 65.5%,
CL99% = 51.7%). Across the ROIs, the GABAA receptor density
showed significant negative correlation with the reaction times
difference between the 3- and 1-back tasks in the Medial/Middle
Frontal Gyrus (CI95%, −0.50 to −0.79), Inferior Parietal Lobule
(CI95%, −0.60 to −0.79) and Temporo-Parietal Junction (CI95%, −0.50
to −0.81). In all these regions, the classification analysis yielded
significant results in predicting the reaction times difference
from the GABAA receptor density (Medial/Middle Frontal Gyrus:
accuracy = 67.6%, CL99% = 53.8%; Inferior Parietal Lobule: accu-
racy = 69.8%, CL99% = 54.55%; Temporo-Parietal Junction = 68.3%,
CL99% = 54.05%). We also tested whether the reaction times were
associated with the GABAA receptor density in cortical motor
regions. The correlation between the reaction times measures and

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
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Table 2. Behavioral performance in the WM tasks.

Behavioral measure 1-back 2-back 3-back

Correct responses 113.8 114.5 92.3
Incorrect responses 1.6 3.6 16.5
Accuracy 0.986 0.969 0.847
Sensitivity 0.964 0.926 0.717
Specificity 0.998 0.990 0.899
Reaction times (ms) (correct responses) 356.4 445.6 486.7
Reaction times (ms) (incorrect responses) 388.7 527.5 599.2

Fig. 6. Correlation (Spearman’s rho) between GABAA-receptor density and reaction times during the WM tasks in the ROIs identified based modulation
of activity as a function of memory load. The tested reaction-time measures represent the correct responses in the 3-back task (RT) and the difference
between the correct responses in 3- and 1-back tasks (RT difference). See Table 1 for the anatomical descriptions, sizes, Brodmann areas, and Talairach
coordinates of the ROIs. For visualization purposes, the volumetric data are projected to the surface of the brain.

GABAA receptor density in the anatomically defined Precentral
Gyrus (Desikan et al. 2006) were not significant neither in the left
(GABAA vs. reaction times in the 3-back task: rho = −0.41, P = 0.25;
GABAA vs. reaction times difference between the 3- and 1-back
tasks: rho = −0.44, P = 0.20) nor the right hemisphere (GABAA vs.
reaction times in the 3-back task: rho = −0.58, P = 0.088; GABAA

vs. reaction times difference between the 3- and 1-back tasks:
rho = −0.55, P = 0.10). The whole brain analysis of the relationship
between reaction times and GABAA-receptor density did reveal
smaller significant clusters within the precentral gyrus, but
these did not survive correction for multiple comparisons (see
Supplementary Fig. 7).

Results in other frequency bands
We also tested whether the amplitude or frequency properties
of oscillations in other bands (theta, alpha, beta) would show
any correlations with the receptor density in regions that exhibit
memory load-dependent activity within these frequency bands
(see Supplementary Fig. 2 and Supplementary Table 2). Across the
ROIs identified in the theta, alpha, and beta bands, no significant
correlations were detected between neural activity and GABAA

receptor density (see Supplementary Fig. 3).

Extension to more general task-based
modulations (WM TASK vs. REST)
The primary focus in this study has been on brain regions that
exhibit memory load-dependent brain activity modulations,
i.e. areas identified by comparing the activity between the

3- and 2-back conditions to the 1-back condition. However, for
completeness, we also contrasted the WM task condition to rest-
ing data in order to identify regions more generally involved in the
WM task (see Supplementary Fig. 4 and Supplementary Table 3).
These TASK vs. REST analyses revealed that in the Middle
Occipital Gyrus, GABAA-receptor density correlated positively
with the gamma-band peak frequency and negatively with the
BOLD amplitude (see Supplementary Fig. 5), which is in line
with and confirms observations reported in previous studies
(Muthukumaraswamy et al. 2009; Kujala et al. 2015). This analysis
also revealed a positive correlation between the BOLD amplitude
and GABAA-receptor density in the left Inferior Parietal Lobule.
In several of the ROIs identified based on the modulation of
gamma-band or BOLD activity (Postcentral Gyrus, Inferior Parietal
Lobule, Middle Occipital Gyrus), significant correlations (see
Supplementary Table 4 and Supplementary Fig. 6) were detected
between the GABAA-receptor density and reaction times as well
as between the BOLD amplitude and reaction times in one ROI
(Middle Occipital Gyrus).

Joint influence of imaging measures on behavior
We also examined using multiple linear stepwise backward
regression whether the different imaging measures would jointly
explain the variability in the behavioral measures across the ROIs
identified based on the WM-load dependent as well as TASK vs.
REST modulations. The analysis revealed that for isolated ROI
and behavioral measure combinations the behavioral variability
could be better explained by two vs. one imaging measure
(see Supplementary Data for full list of significant/marginally

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
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significant findings). Such findings were made for the combi-
nation of GABAA receptor density estimates with both MEG and
fMRI amplitude, and for several behavioral measures (reaction
times difference, accuracy, sensitivity). This was particularly the
case for cluster in the Postcentral gyrus (identified in MEG TASK
vs. REST contrast), in which the best linear model for explaining
both accuracy and sensitivity consisted of the GABAA receptor
density and MEG amplitude modulation.

Discussion
We combined fMRI, MEG, and FMZ-PET-based estimates of
GABAA receptor density within the same subject cohort to probe
the relationships between GABAergic inhibition, hemodynamic
modulations and oscillatory activity, in an attempt to achieve a
more holistic view of the neural mechanisms underlying WM.
Our primary goal was to elucidate the relationship between the
neural activity, hemodynamics and neurotransmitter measures
in higher-order regions, a question that has previously been
addressed in humans primarily only in sensory and motor
regions. In contrast to previous work, we focused specifically
on regions showing modulation of activity as a function of
WM load and found that GABAA-receptor density correlated
positively with the peak frequency of gamma-band power
modulations and negatively with BOLD amplitude in such areas.
Interestingly, when we compared the different neural measures
to behavioral parameters, we found significant correlations
exclusively between the GABAA receptor density and WM reaction
times in the Inferior Parietal Lobule, Temporo-Parietal Junction
and Medial/Middle Frontal Gyrus. These observations align well
with our hypotheses building on previous studies examining
the relationship between gamma-band activity and GABA in
primary sensory cortices (Muthukumaraswamy et al. 2009; Kujala
et al. 2015), GABA and BOLD dynamics (Northoff et al. 2007),
and the importance of the GABAergic system of explaining the
individual task-performance (Edden et al. 2009). Our findings
demonstrate that GABAergic inhibition is central in shaping
gamma oscillations and hemodynamic activity in higher-order
regions and in explaining the between-subject performance
variability on the WM task.

Contrasting high vs. low memory load conditions revealed
modulation of gamma-band activity in the bilateral Cuneus and
Medial/Middle Frontal Gyrus. In both regions, the gamma peak
modulation frequency (but not amplitude) correlated with the
GABAA receptor density measured in the same areas at rest.
Significant correlation between the GABAA receptor density and
gamma peak frequency was detected also in the Poscentral Gyrus,
which showed modulation of activity in TASK vs. REST. These
findings extend previous neuroimaging results in the primary
visual cortex (Muthukumaraswamy et al. 2009; Kujala et al. 2015)
as well as from animal and modeling studies supporting the role
GABAergic inhibitory interneurons in the generation and shaping
of gamma-band oscillations (Brunel and Wang 2003; Whittington
and Traub 2003; Bartos et al. 2007). Importantly, our findings indi-
cate that the mechanisms of gamma-band oscillations follow the
same principles in higher-order human cortical regions as seen
in the primary sensory regions as well in animal models. Notably,
for the present data, the gamma-band peak frequency was best
identified via the ratio of neural activity between high and low
WM load conditions (see Fig. 3 and Supplementary Fig. 8). These
spectra revealed also potentially interesting differences across
subjects, with single and multiple peaks within the gamma bands
as well as differences in the presence of sustained high-frequency

(>100 Hz) activity. Accordingly, the gamma-band modulation
spectra show effects other than the main peak frequency whose
relationship with the GABAergic system was not explored within
the present study. Interestingly, the original findings demonstrat-
ing link between the GABAergic system and gamma oscillations
in humans using MRS-based estimates of GABA concentration
(Muthukumaraswamy et al. 2009) were not replicated when the
same phenomena were studied in a larger cohort (Cousijn et al.
2014). Here, as in our previous study (Kujala et al. 2015), we
used PET-FMZ based estimates of GABAA receptor density and
detected correlations between the gamma-band peak modulation
frequency and receptor density in both higher- and lower-order
brain regions. This suggests that the PET-FMZ based estimation of
GABAergic system may provide a better proxy than the MRS based
estimates which do not dissociate the contributions of the neu-
rotransmitter metabolic pool from the synaptic pool (Stokes et al.
2014). This notion aligns with the high test–retest reliability of PET-
FMZ based measurements (Salmi et al. 2008). The present finding
should, however, be replicated in a larger cohort to corroborate the
value of PET-FMZ based quantification of the GABAergic system
for evaluating the generation of gamma-band oscillations. It
should also be noted that the synaptic specificity of FMZ is limited
as it binds also to extrasynaptic subunits of GABA-BZD receptors.
Specific synaptic properties could potentially be better captured
by using the inverse agonist GABA-BZD receptor PET tracer
[11C]Ro15-4513 (Myers et al. 2012). Here, we interpreted according
to the common view that the PET-based estimates that depend on
the binding of FMZ to the α-subtype of GABAA receptors to repre-
sent GABAA receptor density. While these estimates can be influ-
enced by, e.g. extrasynaptic binding, animal studies suggest that
the FMZ-based estimates measure accurately the occupancy of
the α-subtype of GABAA receptors (Müller Herde et al. 2017). More-
over, within the present cohort of healthy subjects there should
not be subject-specific losses of pyramidal neurons that may also
underlie differences in GABAA receptor density estimates across
subject populations (Lloyd et al. 2000). Thus, while the receptor
density estimates could be improved by using, e.g. [11C]Ro15-4513,
the PET-FMZ based measure used in the present study should
represent specifically GABAA receptor density as opposed to other
neuronal properties. However, the present data do not allow us
to identify possible reasons for the observed variability in the
receptor density across subjects. It should also be noted that in
the present study the focus was on examining the relationships
between different neural measures in ROIs that average the
GABAA receptor density estimates across extended sets of voxels.
Accordingly, the analyses are insensitive to local variations in
different neural properties such as synaptic and extrasynaptic
binding. For spatially more detailed examinations the specificity
of the PET binding agent might play a larger role. Moreover, in such
investigations, it could be beneficial to maximize the resolutions
of the MEG and fMRI estimates by, e.g. using realistic conductor
models in MEG and higher field strengths in fMRI.

Previous studies have shown that BOLD amplitude correlates
negatively with GABA concentration in several cortical regions
(Northoff et al. 2007; Muthukumaraswamy et al. 2009; Jung et al.
2017). Here, we detected the same phenomenon in the higher-
order regions showing modulation of BOLD activity as a function
of memory load (left Parietal Cortex and bilateral Precuneus) as
well in the Middle Occipital Gyrus that showed modulation of
activity in TASK vs. REST. This demonstrates that the PET-FMZ-
based measure of GABAA receptor density facilitates the study of
the relationship between the GABAergic system and hemodynam-
ics, allowing such investigations to be conducted with improved

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad522#supplementary-data
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spatial resolution compared with MRS-based studies. However,
the observed relationship between BOLD and GABAA receptor
density was not as robust as for the MEG ROIs, as significant
correlations were detected in three of the four MEG ROIs but only
in three of the eleven fMRI ROIs. This suggests either that PET-
FMZ-based estimates do not sufficiently capture the GABAergic
underpinnings of BOLD dynamics, or that due to the specific
properties and complexity of the BOLD response (Logothetis 2008;
Bandettini 2012), the relationship between GABAA receptor den-
sity and BOLD response is not as straightforward as between
gamma-band oscillations and receptor density. Furthermore, it
is possible that the use of 1.5 T scanner compared with scan-
ners with higher field strengths may have reduced the sensitiv-
ity of the fMRI analyses, leading to underrepresentation of the
link between BOLD dynamics and the GABAergic system in the
present study.

In neuroimaging studies, the GABAergic system has been linked
previously to various behavioral measures such as orientation
discrimination, perceptual acuity and dynamics, time perception
and subconscious motor processing (Edden et al. 2009; Boy et al.
2010; Yoon et al. 2010; van Loon et al. 2013; Terhune et al. 2014;
Kolasinski et al. 2017). Notably, it has been shown that in visual
competition, the concentration of GABA in the frontal eye field
correlated negatively with the subject’s motor decision speed
(Sumner et al. 2010). This observation aligns with our findings
that GABAA receptor density in several higher-order regions (Infe-
rior Parietal Lobule, Temporo-Parietal Junction and Medial/Middle
Frontal Gyrus) correlated negatively with reaction times in the
WM task. However, in contrast to the study by Sumner et al.
(Sumner et al. 2010), the speed of WM task performance in our
study correlated with properties of the GABAergic system in
higher-order regions that do not directly control muscle move-
ments. This finding suggests that GABAergic properties of regions
responsible for the storage and manipulation of items in WM
also affects the speed of processing in n-back tasks, likely via
facilitation of the related decision making. This notion is further
supported by our observation of a negative correlation between
GABAA receptor density and reaction times in regions showing
modulation of activity for TASK vs. REST. Here, significant corre-
lations were detected in the Postcentral Gyrus, Middle Occipital
Gyrus and Inferior Parietal Lobule—regions that do not directly
control the motor output either. In our study, we did not observe
significant correlation between GABAA receptor density in the
precentral gyrus and reaction-time measures, indicating that per-
formance in the WM task (as measured by the reaction times) is
more driven by properties of higher-order brain areas supporting
WM than by regions directly controlling the motor output. Nor did
we detect any significant correlations between GABAA receptor
density and other behavioral measures (accuracy, specificity, sen-
sitivity). One possible explanation for this is that the other behav-
ioral scores show markedly less variability across subjects than
reaction time measures, and that to capture these effects, a larger
cohort of subjects would have been required. Along the same
lines, no significant correlations were detected between the other
behavioral measures and modulations of gamma-band and BOLD
activity in higher-order cortical regions. However, while we did not
detect significant correlations between MEG and behavioral mea-
sures, in two of the four MEG ROIs (Cuneus, Postcentral Gyrus), the
correlations between gamma-band amplitude and accuracy, sen-
sitivity and specificity scores were predominantly negative, align-
ing with previous findings (Honkanen et al. 2015). We also applied
multiple stepwise backward linear regression to test whether the
imaging measures would jointly explain the behavioral variability

in task performance. Such effects were detected particularly for
the MEG ROIs identified via the TASK vs. REST contrast, for which
the reaction times difference was best explained by the joint
information in gamma-amplitude and GABAA receptor density
in both the Middle Occipital Gyrus and right Parietal lobule and
where the task accuracy was best explained by the joint infor-
mation in gamma-amplitude and GABAA receptor density in the
right Parietal Lobule. These finding pose the interesting notion
that the static properties of the GABAergic system (here GABAA

receptor density) and task-specific neural modulations would
jointly predict how well an individual performs in WM tasks.
However, considering the small number of these findings across
the conducted tests, their moderate statistical significance and
the small sample size of the study, this interpretation should be
taken with caution.

The different neural signaling measures (oscillations, hemody-
namics, GABA) we examined have all been studied extensively
within the field of WM and memory function. For these
measures, we detected significant correlations with behavior
almost exclusively for GABAA receptor density, demonstrating
the importance of the GABAergic system in WM and memory
function. Work on freely moving and behaving mice and rats
has demonstrated that cholecystokinin-expressing GABAergic
neurons and GABAB signaling in astrocytes influence memory
behaviors including WM (Whissell et al. 2019; Mederos et al.
2021). In human studies, GABA concentration in the occipital
cortex, perigenual anterior cingulate and dorsolateral prefrontal
cortex has been shown to correlate with changes in WM task
accuracy between low and high memory load conditions (Takei
et al. 2016; Yoon et al. 2016). In the present study, we found
that GABAA receptor density correlated both with reactions
times in the highest load condition as well as with reaction-
time differences between high and low load conditions (3- vs.
1-back). These effects were detected in the parietal and prefrontal
cortices as well as in the temporo-parietal junction, highlighting
that the effect of the GABAergic system on WM performance
spans wide cortical networks. Moreover, they demonstrate
that properties of the GABAergic system influence multiple
aspects of WM task performance. Notably, previous studies
have shown that in addition to GABA signaling, the amplitude
of oscillatory activity—especially in the beta- and gamma-
band—correlates with WM task accuracy (Honkanen et al. 2015;
Takei et al. 2016). While we did not replicate these findings, we
saw tendencies of this phenomenon in the gamma band for
the accuracy, sensitivity, and specificity measures. This suggests
the possibility that high-frequency oscillations critically support
WM task performance beyond direct inhibitory mechanisms but
that the detection of these effects requires a larger cohort of
subjects than for the link between WM performance and PET-
FMZ-based estimates of GABAA receptor density. It should also
be noted that studies in schizophrenia patients have shown
that WM can be influenced in more elaborate manners than
just via GABA concentration (Ragland et al. 2020) and that the
neuronal architecture of GABAergic inhibitory regulation can
vary across cortical regions (Tsubomoto et al. 2019). Thus, to
capture the intricacies of the role of GABAergic signaling in WM,
GABAA receptor density measurements should be complemented
by other measures that highlight more specific aspects of the
GABAergic system.

Although the sample size in this study is an obvious limitation,
the data provide a very rare opportunity to examine within the
same individuals, data collected using MEG, fMRI, and Flu-PET.
Because these unique data sets were collected from healthy
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controls as part of a restricted clinical study on schizophrenia, we
were not able to get data from more individuals. We acknowledge
that our observations will benefit from replication in the future.
Nevertheless, we believe that the statistically significant results
reported here provide novel findings that can be useful for
current discussions within the cognitive and systems neuro-
science communities.

Conclusions
We simultaneously explored GABAA receptor distributions, elec-
trophysiological and hemodynamic modulations, and task perfor-
mance in order to advance our understanding of the links between
GABAergic inhibition, hemodynamics and oscillatory modula-
tions in higher-order cortical regions, in an attempt to achieve a
more holistic view of the neural basis of WM. Our results show
that GABAA receptor density correlated both with high-frequency
neural oscillations as well as with modulation of hemodynamic
activity in several higher-order regions—demonstrating that the
generation and shaping of gamma-band oscillations in higher-
order brain regions supporting WM follow inhibitory interneuron-
dependent principles similar to those that have been observed in
primary sensory regions. We also observed that among the differ-
ent neural signals, estimates of GABAergic neurotransmission—
as proxied by GABAA receptor density—were the most predictive
measure of behavioral variability in WM across subjects. Taken
together, our findings provide key systems neuroscience insights
into the role of GABAergic inhibition in shaping neural dynamics
in higher-order cortical regions and WM performance. This work
paves the way for future studies with larger cohorts that could
further delineate on a larger scale the links between synap-
tic neurotransmission, neuronal oscillations, and hemodynamic
brain activity in healthy cognition as well as in neurological and
psychiatric conditions.
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