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Abstract 
 
A crucial ability of any cellular life is sensing its environment and integrating its changes into 

intracellular information. Faithful reading and response to environmental inputs is thus 

essential for cell survival. In all eukaryotic cells, multiple environmental stimuli are sensed via 

the highly conserved MAPK signaling pathways. Each MAPK pathway has the ability to detect 

specific extracellular signal and encodes the dedicated response both through post-

translational modifications and at the gene expression level, to ensure long-term adaptation 

and cell fate decision. In the budding yeast S. cerevisiae, an increase in the environment 

osmolarity is sensed by the High Osmolarity Glycerol (HOG) pathway, which is responsible for 

the accumulation of glycerol and restoration of turgor pressure. The direct output from the 

response is thus glycerol uptake and synthesis, but also the gene expression of glycogenesis 

and osmostress enzymes and proteins. Upon osmotic shock, the MAPK of the pathway, Hog1, 

relocates into the nucleus to trigger gene expression, which are otherwise repressed under 

non-stressful conditions. Indeed, under basal conditions, osmostress genes are repressed 

through closed chromatin conformation. Thanks to a multitasking MAPK and to recruiter 

transcription factors, Hog1 targets chromatin remodeling and modifying complexes to 

osmostress loci. Hog1 activity thus promotes nucleosomes eviction and RNA polymerase 

recruitment at stress genes. Induction of growth-repressed genes by HOG MAPK activity is a 

model for chromatin-based regulation of gene expression. However, quantitative 

measurements of osmostress gene promoters’ gene transcription dynamics, revealing the 

dynamic regulation occurring at each locus, are still missing.  

 

Gene expression has been shown to occurs in bursts of mRNA production and the bursting 

kinetics, like bursting time, amplitude, duration or number of bursts, is known to reflect the 

regulation occurring at the DNA locus. Thanks to live RNA imaging methods based on phage 

coat proteins and their high affinity RNA binding sequences (like the PP7 and MS2 systems), 

gene bursting can be visualized and quantified in live single-cells. In this study, we construct 

PP7 reporter strains for models of osmostress genes and acquired live single cell dynamic data 

on mRNA production by osmo-stress induced promoters. We demonstrate that transcription 

initiation happens preferentially during ascending or stable Hog1 activity, highlighting a 

balance between activating and inhibitory pathways directly acting on each locus. We show 
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that the transcription initiation time of HOG-induced genes depends on the chromatin 

environment of the locus, with a positive correlation between the basal expression level and 

the fraction of transcribing cells upon osmotic shock. We demonstrate that transcription 

factor dependency is dictated by the requirement for chromatin remodeling, which is 

translated into a delay transcription initiation, a lower RNA pol II recruitment and a shorter 

transcriptional window. Finally, we show that transcription termination is dictated by a 

combination of Hog1 activity and the regulation from the locus.  

 

In this study, we also report on the development of novel tools; for a highly robust genetic 

manipulation of the budding yeast and for the live single-cell monitoring of transcription and 

translation from a single allele, that enables to study post transcriptional regulation and local 

translation of mRNA.  
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Résumé 
 
Une capacité cruciale de toute vie cellulaire est de percevoir son environnement et d’intégrer 

ses changements sous forme d’informations intracellulaires. Une lecture fidèle et une réponse 

appropriée aux stimuli environnementaux sont donc essentielles à la survie de toutes cellules. 

Dans toutes les cellules eucaryotes, des levures aux cellules végétales, les stimuli 

environnementaux sont détectés via des voies de signalisation MAPK hautement conservées. 

Chaque voie de signalisation est dédiée à la détection d’un signal extracellulaire précis et à sa 

correcte intégration à la fois au niveau de modification post-translationelles de protéines et 

de l’expression des gènes, afin de garantir une adaptation à long terme. Dans la levure à 

bourgeonnements S. cerevisiae, une augmentation de l’osmolarité de l’environnement est 

détectée par la voie de signalisation High Osmolarity Glycerol (HOG), qui est responsable de 

l’accumulation de glycérol et de la restauration de la turgescence. Le résultat de la réponse 

est donc l’absorption et la synthèse de glycérol, mais également l’expression génique des 

enzymes et protéines de la glycogénèse. Lors d’un choc osmotique, la MAP kinase de la voie 

HOG, Hog1, relocalise dans le noyau pour déclencher l’expression des gènes, qui sont 

normalement réprimés dans des conditions non-stressantes. En effet, en conditions basales, 

les gènes de réponse au stress osmotique sont réprimés par une conformation fermée de la 

chromatine. Grâce à une MAPK multitâche et à des facteurs de transcription recruteurs, Hog1 

cible les complexes de remodelage et de modification de la chromatine au gènes osmotiques. 

L’activité de Hog1 favorise donc l’éviction des nucléosomes et le recrutement de l’ARN 

polymérase au niveau des gènes de réponse au stress osmotique. L’induction des gènes 

réprimés par la croissance cellulaire par l’activité MAPK est un modèle de régulation génique 

par la chromatine. Cependant, des données quantitatives sur la dynamique de transcription 

des gènes de réponse au stress osmotique, révélant la régulation dynamique de chaque locus, 

manquent toujours.  

 

Il a été démontré que l’expression des gènes se produisait sous forme d’impulsion de 

production d’ARNm et que la cinétique d’impulsion, comme le temps d’activation, 

l’amplitude, la durée ou le nombre d’impulsions, est connue pour refléter la régulation se 

produisant au locus d’ADN. Grâce aux méthodes d’imagerie basées sur les protéines de 

capsides virales et leurs séquences de liaison de hautes affinités (comme les systèmes PP7 et 
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le MS2), l’impulsion des gènes peut être visualisée et quantifiées dans des cellules vivantes 

uniques. Dans cette étude, nous avons construit des souches rapporteuses PP7 pour des gènes 

modèles de la réponse au stress osmotique et avons acquis des données dynamiques sur la 

production d’ARNm par des promoteurs induits lors d’un choc osmotique. Nous démontrons 

que l’initiation de la transcription se produit préférentiellement pendant une activité 

ascendante ou stable de Hog1, mettant en évidence un équilibre entre les voies d’activation 

et d’inhibition agissant directement sur chaque locus. Nous montrons que le temps d’initiation 

de la transcription du gène induit par HOG dépend de l’environnement de la chromatine du 

locus, avec une corrélation positive entre le niveau basal d’expression et la fraction de cellules 

transcrivant après un choc osmotique. Nous démontrons que la dépendance au facteur de 

transcription est dictée par la nécessité d’un remodelage de la chromatine, qui se traduit par 

une initiation de la transcription retardée, un recrutement plus faible de l’ARN PolII et une 

fenêtre de transcription plus courte. Enfin, nous montrons que la terminaison de la 

transcription est dictée pas une combinaison de l’activité de Hog1 et de la régulation par le 

locus.  

Dans cette étude, nous rapportons également le développement de nouveaux outils ; pour 

une manipulation génétique robustes des levures à bourgeonnement et pour l’imagerie 

simultanée de la transcription et traduction au niveau d’un allèle unique, qui permet d’étudier 

la régulation post-transcriptionelle et la traduction locale d’ARNm.  
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Résumé pour le grand public 
 
Toute cellule vivante, qu’elle fasse partie d’un organisme multicellulaire ou non, doit être 

capable de percevoir son environnement et ses changements de façon à s’assurer de sa survie 

ou de celle de l’organisme dont elle fait partie. Pour ce faire, les cellules ont à leur surface des 

récepteurs pour différentes molécules de l’environnement, que cela soit des signaux positifs, 

tels que des nutriments ou des phéromones, ou des signaux négatifs, tels qu’une limitation 

en nutriments ou des facteurs de stress. Dans toutes les cellules avec noyaux, appelées 

cellules eucaryotes, qui constituent les animaux, les plantes ou les champignons, les signaux 

permettant de décoder l’environnement sont intégrés sous forme d’information cellulaire par 

des voies de signalisation très conservées. Celles-ci sont responsables de la réponse cellulaire 

à ces signaux, qui doit être spécifique au stimulus détecté et hautement régulée en temps et 

intensité. La plupart du temps, ces cascades finissent dans le noyau des cellules où elles vont 

moduler l’expression des gènes. Il est donc important que l’information soit transportée 

correctement du début à la fin, afin d’initier la bonne réponse sur le court terme et 

l’adaptation sur le long terme.  

 

Pendant ma thèse, je me suis particulièrement intéressée à la cascade de signalisation 

responsable de la détection de l’augmentation de l’osmolarité de l’environnement dans les 

levures dites à bourgeon ou levures du boulanger. Ce champignon unicellulaire est un modèle 

pour l’étude des voies de signalisation et nombre des trouvailles faites dans cet organisme ont 

pu être démontrées plus tard dans des cellules humaines, grâce notamment à une forte 

conservation des séquences d’ADN et des mécanismes d’action. Le but de ma thèse était de 

décrire comment les gènes de réponse au stress osmotique sont exprimé et quelles sont les 

composantes qui déterminent leur profil d’expression. Pour ceci, j’ai fabriqué des souches 

produisant un signal fluorescent en réponse au stress osmotique afin de pouvoir mesurer en 

temps réel leur réponse et au niveau de chaque cellule unique, grâce à un microscope à 

fluorescence. Grâce à mes données, j’ai pu démontrer que la réponse au niveau des gènes 

n’est pas bien corrélée avec la signalisation de la cellule et que la façon dont l’ADN est 

compacté dans le noyau et spécifique à chaque gène va grandement influencer sa dynamique 

d’expression.  
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Chapter 1: General introduction 

 

1.1 Environment sensing systems 

A crucial ability of any cellular life is sensing its environment and integrating its changes into 

intracellular information. Whether one is a unicellular or multicellular organism, misreading 

of extracellular environment can be deleterious to the cell or to the whole organism. 

Extracellular signals can be growth-promoting, such as nutrients, growth factors and 

pheromones, or growth-inhibitory, such as oxidative stress, low nutrients or high confluence. 

Combining the extracellular information with intracellular state, such as the cell-cycle stage, 

will determine each cell fate decision; from cell death to cell proliferation, cell-cell fusion or 

differentiation, and cell quiescence to migration. An additional complexity of signal 

integration, is the necessity for the appropriate response to be initiated at the right time. As 

an example, two cells expressing pheromones will undergo cell-cell fusion. Although sensing 

might have occurred for a certain amount of time, cell fusion can only occur at a specific 

timepoint to avoid cell bursting and signaling should be block to avoid multiple events of cell-

cell fusion and aberrant genetic content [1]. Similarly, activation of a response is as important 

as its deactivation. Taking the stress response as an example, triggering the response is 

necessary for immediate cell survival. However, stress signaling often leads to cell-cycle arrest 

[2]. Thus, in order to proliferate, the response has to be downregulated in order to allow cell-

cycle progression to resume.  
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1.1.1 Sensing in prokaryotic and archaeal cells 

In prokaryotic cells, environment sensing is performed through a two-component or 

phosphorelay system. The two components generally consist in a membrane bound sensor 

histidine kinase that autophosphorylates itself in presence of a stimulus, which then activates 

a cytosolic transcription factor, that regulates gene expression accordingly [3]. The 

phosphorelay system thus resembles the eukaryotic MAPK signaling system and consists in a 

sensor that gets phosphorylated in response to a stimulus and relays its phosphoryl group to 

a second protein, which in turn activates a Transcription Factor (TF) [3]. Archeal cells have 

supposedly acquired a two-component-like system from bacteria through horizontal gene 

transfer [4]. However, unlike bacterial cells, they would only possess a sensor protein on which 

the input is computed, but lack the TF counterpart, which is responsible for gene expression 

[5]. Therefore, regulation seem to happen only at the level of post-translational modifications 

through phosphorylation, rather than by regulating gene transcription [5]. Unfortunately, 

crucial data are still missing on archeal sensing systems.  

 

1.1.2 Sensing in eukaryotic cells 

In all eukaryotic cells (from fungi to animals and plants), Mitogen-Activated Protein Kinases 

(MAPK) are implicated in environment sensing. They consist in a three-core module of kinase 

nodes often activated by sensor at the Plasma Membrane (PM) and leading to the activation 

of the main effector of the pathway and last node of the cascade, the MAP kinase. Upon 

activation, the latter will phosphorylate other substrates in the cytoplasm but will also 

eventually transiently relocate into the host cell nucleus to modulate gene expression.  
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Figure 1: Extracellular sensing systems.  
Bacteria sense their environment through a two-component system composed of a plasma membrane sensor kinase and a 

response regulator, acting as a transcription factor, that will modulate gene expression according to the signal sensed. 

Communication between this bipartite system is performed through protein-protein interactions and phosphorylation 

events. Archeal sensing systems are less known but seem to have inherited a prokaryotic-like system. In eukaryotic cells, 

extracellular signals are sensed at the plasma membrane by dedicated sensors, which will transmit the signal internally to a 

protein or protein complex, which will activate the MAPK cascade. Eukaryotic signaling pathways are thus composed of a 

core three-component system, with a MAP kinase kinase kinase (MAP3K), a MAP kinase kinase (MAP2K) and a MAP kinase 

(MAPK). This latter undergoes cytoplasmic protein-protein interactions and in some cases, relocalizes into the host cell nuclei 

to trigger signal specific gene expression to modulate cell fate. 

 
  



Chapter 1: General introduction 

24 
 

  



Chapter 1: General introduction 

25 
 

1.2 MAPK signaling cascades 

In the early 1980, a highly abundant 42 kilodalton (kDa) tyrosine-phosphorylated protein was 

isolated from insulin-treated mammalian cells [6]. A variety of extracellular signals were 

shown to lead to its phosphorylation and thus activation. It was the first identified Mitogen-

Activated Protein Kinase (MAPK), the Extracelullar signal Regulated Kinase 1 (ERK1) [7]. Since 

then, many more MAPK pathways proteins were identified. Interestingly, the organism 

complexity seems to be reflected in the number of MAPK with a higher number in higher 

eukaryotes, like in humans, where 13 MAPK proteins are 

found and 20 in an Arabidopsis thaliana plants [8, 9]. The 

unicellular fungus Saccharomyces cerevisiae has five MAPKs, 

four MAP2Ks and five MAP3Ks [10]. 

 

1.2.1 MAPK conservation 

Alignment of mammalian ERK sequences led to the discovery 

of Saccharomyces cerevisiae Fus3, Kss1 and Mpk1 MAPKs, 

highlighting a high degree of sequence conservation from 

budding yeasts to human MAPK proteins [11]. This high 

sequence conservation was additionally tested for function 

conservation by expressing mammalian MAPK into budding 

yeast cells. The results showed a functional activity of the 

exogenous proteins, that could even complement yeast 

MAPK mutant sensitivity [12-14]. Thanks to this high degree 

of conservation, MAPK studies have gain large insight into 

their functions and regulatory mechanisms by studying the 

Figure 2: MAPK modules are three-
components signaling cascades. 
 Eukaryotic MAPK pathways have a 

conserved structure based on a three-

component module, composed of a MAP 

Kinase Kinase Kinase (MAP3K), a MAP 

Kinase Kinase (MAP2K) and a MAP Kinase. 

Each MAPK signaling cascade will be 

activated by a specific input, a 

phosphorelay between the module nodes 

and trigger the according output, defining 

the pathway specificity. 
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MAPK of low complexity organisms, especially yeasts. In particular, Saccharomyces cerevisiae 

has been extensively used as a model to study the structure, function and regulation of MAPK 

signaling cascades [15]. Indeed, thanks to being the first fully sequenced eukaryotic genome 

[16] and with the development of genetic manipulation tools [17], studies using S. cerevisiae 

as a model have thrived since the early nineties. 

 

1.2.2 MAPK signaling cascades 

A key finding that has emerged from the study of MAPK in budding yeasts is the three-

component modules architecture of MAPK cascades, composed of a MAP3K, a MAP2K and a 

MAPK (Figure 2). The first component of the cascade is the MAP3K, a serine/threonine kinase 

activated either by the phosphorylation from a MAP4K or by the interaction with a GTP-

binding protein from the Ras or Rho family (yeasts), responsible for the coupling of the 

external environment to the intracellular signaling pathway [18]. Once activated, the MAP3K 

phosphorylates the next node of the phosphorelay, the MAP2K. This dual specificity kinase, 

acting both as a tyrosine and serine/threonine kinase [19], is responsible for the dual 

phosphorylation of the Thr-X-Thyr motif in the activation loop of the key component of the 

pathway, the MAP kinase. MAPK are proline directed serine/threonine kinases that have as 

substrates transcription factors, which they will phosphorylate at S/T-P motifs. Since this motif 

is quite common among proteins, increased selectivity is performed through a specific “lock-

and-key” based three-dimensional interaction domain upstream of the MAPK 

phosphorylation site and termed “docking groove/D-motif”, with a short linear sequence on 

the substrate called “docking site/sequence” [20, 21].  
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1.3 Budding yeast MAPK pathways 

Saccharomyces cerevisiae possesses five MAPK pathways: the pheromone response, the 

filamentous growth, the high osmolarity glycerol, the cell wall integrity and the spore wall 

assembly pathways [10, 22]. Only the first four are active in haploid yeast cells and are 

therefore the most studied (Figure 3). Specific activation of each pathway relies on sensors at 

the plasma membrane [22]. These sensors, which mainly consist in transmembrane receptors, 

are essential to detect the input signal and transmit it to the intracellular signaling cascade, in 

order to trigger the appropriate output. All MAPK pathways activation lead to changes in the 

gene expression program, by the induction of input-specific genes.  

 

In addition to a similar core module architecture, three of the four MAPK pathways have Ste11 

as MAP3K (Figure 3). This shared component is itself phosphorylated by the PAK kinase Ste20, 

therefore the MAP4K of these pathways. In addition to Ste11, the MAPKs Ste7 and Kss1 are 

shared between the mating and filamentous growth pathways. This raises the question on 

how signal fidelity is achieved among these pathways? The main hypothesis relies on pathway 

insulation via subcellular localization, whereby the components of a pathway are brought 

together by the means of plasma membrane anchored scaffold proteins, thereby preventing 

their interaction with components from other pathways [23-25]. As an example, upon 

pheromone treatment, the mating pathway scaffold protein Ste5 relocates to the plasma 

membrane and its activation of the pathway can be mimicked by adding a PM targeting 

domain to the protein [23].  
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1.3.1 Mating pathway 

Haploid yeasts exist in two different mating types: the MATa and MATα. Communication 

between these two cell types is performed by the means of secreted pheromones that will be 

sensed by the cells through the pheromone receptors Ste2 (α-factor receptor) and Ste3 (a-

factor receptor) present on the cells’ surfaces [26, 27]. The intracellular domain of the 

receptor is bound to a G protein and binding of pheromone leads to its dissociation [28, 29], 

which in turn activates the downstream MAPK cascade. The mating pathway [15] is composed 

of Ste20 (MAP4K), Ste11 (MAP3K), Ste7 (MAP2K) and finally the MAPKs Fus3 and Kss1 (Figure 

3), the yeast orthologs of the mammalian ERK1 and ERK2 [30]. Fus3 is responsible for the 

majority of the outputs from the cascade, which are cell-cycle arrest [31], polarized growth 

(shmoo formation) [32] and the fusion to an opposite mating type partner cell [33]. 

Downregulation of the pathway is performed through the internalization and degradation of 

the receptors, the degradation of pheromones and the resuming of cell-cycle.  

 

1.3.2 Invasive growth pathway 

When haploid cells encounter glucose-limiting conditions, they change their budding pattern 

from axial to a unipolar one, leading to a chain of cells and altered colony shape [34]. Aside 

from this morphological change, the cell-cell and cell-substrate adhesion is increased, which 

can cause the cell to penetrate surfaces [34]. This mode of proliferation, called “pseudohyphal 

growth”, is triggered by the filamentous growth pathway, composed of Ste11, Ste7 and Kss1 

(Figure 3) [22, 35, 36]. Although being shared between the mating and filamentous growth 

pathways, Kss1 is dispensable for mating but decisive to filamentous growth. In addition to 

the MAPK pathway, two other inputs from two different glucose-sensing pathways are 

triggered by low glucose levels, the cyclic adenosine monophosphate (cAMP)-dependent 
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protein kinase (PKA) pathway, that will be activated by the Ras2 protein [36, 37] and the Snf1 

protein kinase pathway, regulating repressor proteins at filamentous genomic loci [36, 38]. In 

addition to glucose-limiting conditions, diploid cells will undergo filamentation under nitrogen 

starvation [34, 36] through the activation of the filamentous pathway but with inputs from 

the Target of Rapamycin (TOR) pathway, acting on a transcription factor of filamentous genes 

[36, 39].  

 

1.3.3 Cell Wall Integrity (CWI) pathway 

When cells encounter a cell wall stress, like hypotonic conditions, cell-wall drugs, bud growth 

or pheromone-induced morphogenesis (shmoo formation), they activate the Cell Wall 

Integrity (CWI) pathway composed of Bck1, Mkk1/Mkk2 and Mpk1 (Figure 3). Indeed, since 

cell-cell fusion requires shmoo formation, mutant in the CWI can therefore also be defective 

in the mating pathway [40]. Activation of the CWI occurs through the sensing of the cell’s actin 

cytoskeleton depolymerization, perceived as a cell wall stress. Since actin-based processes are 

regulated by TORC2 [41], the CWI receives inputs from the TOR pathway as well [22]. The 

output from the cascade is the homeostasis of the cell wall, through the synthesis or 

modifications of the cell wall components, like glucan, mannan and chitin [22].  
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Figure 3: Saccharomyces cerevisiae MAPK pathways. 
Haploid yeast cells have four MAPK signaling cascades activated in response to environmental stimuli and leading to pathway-

specific cellular responses. Pheromone sensing leads to the activation of the mating pathway, which will trigger a cell-cycle 

arrest, promote the formation of a mating projection called “Shmoo” and mediate cell-cell fusion to produce a zygote with 

the opposite mating type cell. Starved cells will activate the filamentous growth pathway, which will cause a change in the 

polarity and growing phenotype called “pseudohyphal growth”. This is in order for the cells to escape the harsh 

environmental conditions and find another carbon source. Cell wall stress, causes by bud growth or hypo-osmotic stress for 

instance, activates the Cell Wall Integrity (CWI) pathway, which will remodel the cell wall to restore its integrity and tension. 

A sudden increase in the environment osmolarity leads to the activation of the High Osmolarity Glycerol (HOG) pathway, 

which will restore cell turgor by producing and accumulating intracellular glycerol. 
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1.4 High Osmolarity Glycerol (HOG) pathway 

 

Budding yeast cells maintain higher internal osmolyte concentrations than their environment, 

enabling them to absorb water and create turgor pressure. A sudden increase in the 

extracellular osmolarity, for example through a drying grape, which is their natural habitat, 

causes a cell shrinkage due to water loss and a drop in the cell turgor pressure. This threatens 

essential cellular processes and thus the cell’s integrity. To restore osmolyte homeostasis, cells 

trigger the HOG pathway [42], which will lead to the accumulation and synthesis of osmolytes, 

mainly glycerol (Figure 3) [43]. Osmotic shock also triggers a cell-cycle arrest, due to the 

depolymerization of the actin cables necessary for bud formation [44], which recovery 

depends on HOG activity [45]. 

 

1.4.1 Signaling in the HOG pathway 

When the HOG pathway was discovered in 1993, it was first described as a prokaryote-like 

two-component system, due to the characterization of only one of the two sensing branches 

of the pathway, the Sln1 branch [42, 46], with the second branch originating from Sho1 being 

discovered only few months later (Figure 4)  [47]. The two branches have been shown to be 

redundant to high stress exposure, however, low stress has been shown to be primarily 

signaled through the Sln1 branch, highlighting a broader sensitivity range [47].  

 

Sln1 is a two-transmembrane segments protein similar to bacterial two-component systems, 

with a histidine kinase domain on its intracellular part [42]. Upon osmotic shock, Sln1 

autophosphorylates itself and passes on the phosphoryl group to the Ypd1 protein, which in 

turn transfers it to Ssk1. This prevents its interaction with two of the MAP3K from the pathway 
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Ssk2 and Ssk22, which are redundant and thus often termed as “Ssk2/22” [22]. The Sho1 

branch, through which the filamentous growth pathway is also signaling, leads to the 

activation of their other shared component Ste11, the third MAP3K of the HOG pathway [22]. 

Ste11 is bound by the plasma membrane-anchored Pbs2, the MAP2K of the pathway and 

intersection node of the two branches, preventing its association to Ste7 and ensuring faithful 

pathway signaling [22, 48]. Pbs2 acts as a crucial scaffold protein because of its binding to the 

osmosensor Sho1, the MAP3K Ssk2/22, Ste11 and the MAPK Hog1 [48], homologs of the 

mammalian p38 and JNK [14]. Because of its central role in the HOG pathway, catalytically 

dead Pbs2 leads to osmosensitivity from the cells [48]. Recruitment of Ste11 to the plasma 

membrane and to the HOG pathway components is further achieved through the Ste50 

protein, which both binds Ste11 and the plasma membrane-anchored Cdc42-Ste20 complex 

and Opy2 protein [22, 49].  

 

The HOG pathway is thus composed of the MAP3K Ste11 and Ssk2/22, the MAP2K Pbs2 and 

the MAPK Hog1 (Figure 2 and 3). Phosphorylation of Hog1 by Pbs2 leads to its rapid relocation 

into the cell nucleus [50], where it induces osmostress genes expression [51]. Indeed, to 

increase intracellular glycerol concentration, cells diminish their permeability by closing the 

glycerol export channel Fps1 [52] and trigger the gene expression of glycerol synthesis 

enzymes [53, 54]. Similarly to HOG1 deletion, deletion of the GPD1 gene, encoding a crucial 

enzyme of the glycerol synthesis, leads to sensitivity to hyperosmotic stress [53]. Interestingly, 

nuclear relocation of Hog1 is not essential to cell adaptation to mild osmotic pressure, 

highlighting a higher dependency on its cytoplasmic function than its nuclear one for short-

term adaptation [55].  
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HOG activation is transient and its activity window correspond to the time necessary for the 

cell to adapt [56]. Downregulation of the HOG pathway occurs through Hog1 phosphatases 

Ptp2 [42, 57], Ptp3 [58] and Ptc1 [57], which bind the MAPK and dephosphorylate it [58]. This 

is crucial to limit Hog1 activity both under high osmolarity and basal conditions [42, 46]. Both 

Ptp2 and Ptp3 genes expression are induced upon osmotic stress, ensuring efficient 

deactivation of the cascade [58]. Ptp2 appears to play a more important role in the 

deactivation of the HOG pathway, since its deletion leads to high basal Hog1 activity, which is 

not the case for Ptp3 deletion [58]. This greater effect of Ptp2 can be explained by the fact 

that it is enriched in the nucleus, where the main pool of active Hog1 is, while Ptp3 is mainly 

distributed into the cytoplasm [59]. It was shown that Ptc1 regulates Hog1 basal level, 

whereas Ptp2 and Ptp3 regulate Hog1 maximal activity [60]. Thus, the double mutants for Ptp2 

and Ptp3 shows a hyperactivation of the HOG pathway [58], whereas Ptc1 single mutant 

displays a higher Hog1 basal level [61]. Interestingly, deletion of the Sln1 osmosensor leads to 

a constitutively active HOG pathway and is lethal to the cells due to cell-cycle arrest [46]. 
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Figure 4: The High Osmolarity Glycerol (HOG) pathway. 
A sudden increase in the extracellular osmolarity is sensed by the HOG pathway through two separated branches routing 

from two different sensors at the plasma membrane, Sln1 and Sho1. The Sln1 branch is a two-component-like system, which 

autophosphorylates itself in present of osmotic shock and activate the Ypd1 protein, in turn activating the Ssk1 protein, 

therefore inhibiting its interaction with the Ssk2/22 MAP3K. The later will bind Pbs2, which serves both as a scaffold and as 

MAP2K and will thus activate the MAPK Hog1 by phosphorylation. The Sho1 branch activates the third MAP3K of the pathway, 

Ste11, which in turn activates Pbs2 and lead to more Hog1 activation. Inactivation of the pathway is performed by the MAPK 

phosphatases Ptp2/3 and Ptc1, both in the cytoplasm and in the nucleus of the cell.  
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1.4.2 HOG TFs regulation of gene expression 

A hyperosmotic shock leads to the induction of about five hundred genes, causing a global 

reallocation of the cellular transcription machinery from housekeeping to osmostress genes 

[62]. Hog1 is implicated in osmostress genes’ expression at all stages of the process, from 

transcription initiation, elongation, mRNA export and translation [63]. However, because the 

MAPK lacks DNA binding capacity, modulation of transcription at gene regulatory elements is 

mediated through the interaction with Transcription Factors (TFs) bound to HOG regulated 

genes. Artificial tethering of Hog1 to DNA has been shown to be sufficient to induced 

transcription in an osmostress-dependent manner, highlighting a crucial requirement of TFs 

for recruiting Hog1 to genomic locus and transcriptional activation [64]. There are six TFs 

regulating osmostress genes: Hot1 [65, 66], Msn1 [65], Msn2 [66], Msn4 [66], Smp1 [67] and 

Sko1 [68], which operate through two distinct regulatory mechanisms (Figure 5).  

 

Smp1 is a transcriptional activator that required Hog1 phosphorylation to fulfill its gene 

activator function [67]. On the contrary, Hot1 TF was shown to be phosphorylated by Hog1, 

however, this is not required to serve its activator function [65]. Msn2 and Msn4 are 

redundant TFs regulated by the general stress response pathway [66], which are activated 

upon any type of stress, including osmotic stress, and bind specific DNA sequences called 

STress Response Elements (STRE) [69]. Interestingly, these two TFs show a decrease in their 

activation of gene expression in cells lacking Hog1, highlighting a regulation from the HOG 

pathway on another signaling cascade [66]. Msn1 is also controlled by the general stress 

response pathway and is structurally similar to Hot1 [65]. The last TF Sko1 is a particular case 

since it is a native repressor of transcription bound to DNA and to the general Ssn6-Tup1 

repressor complex under basal conditions [70]. Phosphorylation by Hog1 converts it into an 
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activator, although it remains bound to the Tup1 repressor [71]. Because Sko1 down-regulates 

a large subset of osmostress genes, SSN6 deleted cells show an increased tolerance toward 

salt stress [72]. Since osmostress genes differ in their binding sites’ presences and numbers 

for each of the TFs, a great variability is observed in their gene expression patterns [73]. 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 5: Osmostress genes activation by HOG transcription factors. 
Osmostress genes transcription is triggered by specific Transcription Factors (TFs) with two different general modes of action: 

the repressor to activator conversion or transcriptional activator. Sko1 transcription factor is a native repressor of gene 

expression bound to the Cyc8-Tup1 repressor complex. Phosphorylation by Hog1 converts it into an activator, which will 

recruit more Hog1 and the chromatin remodeling and modifying complexes, although its interaction with the repressor 

complex is not abolished and is even necessary for its full gene activation. Hot1 is a transcriptional activator, that is supposedly 

constitutively bound to osmostress genes’ regulatory sequences (dashed protein). It gets phosphorylated by Hog1, however, 

this is not essential to fulfill its activator function (dashed phosphoryl group) and can thus trigger gene expression in both 

methylation states. 
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1.4.3 Chromatin regulation of HOG genes 

Under non-stressful conditions, osmoresponsive genes’ regulatory sequences are masked 

from the transcriptional machinery through a compact chromatin environment [74]. Hog1 

activity at osmostress-induced genes is required for the recruitment of chromatin remodeling 

and modifying complexes to enable access from the transcriptional machinery and 

subsequent transcription [63]. Because of this requirement for chromatin remodeling to 

express osmotic genes, chromatin remodeling mutants display sensitivity towards osmotic 

stress [74, 75]. Higher salt stress leads to higher and longer periods of Hog1 activity, enabling 

longer nucleosomes evictions from osmostress genes, which is not occurring at non-targeted 

genomic locations [76]. On the contrary, low salt stress only induces partial chromatin 

remodeling when measured by population average measurements [63]. This is translated into 

a bimodality at the single-cell level, with transcribing cells that overcome the Hog1 activity 

threshold necessary to remodel chromatin and non-transcribing cells that didn’t [77, 78].  

 
To remodel chromatin, Hog1 recruits several chromatin remodeling and modifying complexes 

to osmotic stress loci [74], including Remodel the Structure of Chromatin (RSC), the Swr1 

complex, the Spt-Ada-Gcn5-acetyl transferase (SAGA) and the Rpd3 histone deacetylase. 

Surprisingly, histone deacetylation has been attributed to gene silencing. However, cells 

lacking the Rpd3 histone deacetylase presence and activity are osmosensitive and show an 

impaired induction of stress genes, highlighting a positive regulation from the enzyme [79]. In 

presence of another chromatin mark, H3K4 methylation, RSC remodels the chromatin to form 

a Nucleosome Depleted Region (NDR) at the promoter region, enabling transcriptional 

activators binding [74, 80]. On the contrary, unmethylated chromatin will be modified by the 

Swr1 complex, which catalyzes the exchange of Histone 2A (H2A) against the H2AZ variant, 
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encoded by the HTZ1 gene, which has a decreased affinity for DNA [81]. Once chromatin is 

more permissive, SAGA recruit its co-factor RNA polymerase II and assembles the Pre-

Initiation Complex (PIC) [75], which precedes osmostress gene transcription activation.  

 

RSC and Swr1 thus act in parallel and will remodel chromatin depending on its methylation 

state. Indeed, the COMPASS subunit Set1 histone methyltransferase is recruited to 

osmostress loci by actively transcribing RNA pol II to methylate Histone 3 Lysine 4 on histones’ 

tails, not only on promoters but on the gene bodies and the 3’UTRs of osmostress genes [81]. 

H3K4 methylation has been previously defined as an activating mark or to transcriptional 

memory [82], however, deletion of Set1 rescues partially RSC loss of function in HOG gene 

transcription. Thus, HOG-induced genes are repressed both by chromatin compaction and 

methylation states [81].  

 

Like the negative regulator Set1, the INO80 and Asf1/Rtt109 complexes are recruited by the 

RNA pol II and act in parallel to re-establish chromatin during osmostress adaption and after 

acute transcription of other genes as well [83]. Deletion of the Arp8 subunit of INO80 or Asf1 

leads to a delayed chromatin closure after osmotic shock, causing an extended transcriptional 

activity [84], and deletion of both leads to an additive phenotype [83].  
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1.4.4 Osmostress genes as gene expression models 

Osmostress genes are well-suited to gene expression studies. Indeed, since they are repressed 

under basal conditions and highly induced, their signal-to-noise ratio is nicely quantifiable. 

Second, since they are only transiently induced, one can monitor the entire process from 

transcriptional activation to termination. Third, since they were a model for MAPK signaling 

cascade regulation and because HOG genes were a model from chromatin remodeling 

regulated genes, their regulatory network is well established and candidates for 

biological/genetic studies are easily identifiable. Finally, since they are in the budding yeast, a 

fully sequenced, easily handled and genetically modifiable organism, one is not limited on the 

technical handling side. 
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1.5 Modes of gene expression 

 

Gene expression is the process of transforming the information encoded in DNA into a final 

product, generally proteins. Since DNA is at the source of gene expression, it is a target of 

choice to regulate the genes’ products.  Promoters are thus major regulatory platforms, where 

inputs are computed into transcriptional programs. Although gene expression had been 

studied for a long time, the discovery of alternatives modes of transcription, thanks to the 

arise of single-cell reporter assays and fluorescent proteins, has opened new fields of study 

and challenged established gene expression models [85, 86].  

 

1.5.1 One-state model 

Since proteins are cellular effectors affecting cellular fate, their presence and abundance must 

be tightly regulated and should show only little variation from cell-to-cell in a clonal cell 

population. Therefore, the model to describe gene expression that was first described 

depicted an active ground state of gene promoters, going through stochastic events of 

transcription (Figure 6). This “one-state” or “constitutive” model implies constitutive 

expression from gene promoters, leading to a distribution of the number of messenger RNA 

(mRNA) in the cells among a cell population that can be fitted by a Poison distribution (Figure 

6). Although constitutive gene expression has been observed for some housekeeping genes in 

the budding yeast [85], it does not seem to be the predominant mode of expression. 
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1.5.2 Two-state model 

With the advent of single-cell reporter assays and even more with single-molecule 

visualization assays (detailed in the next chapter), a never before seen variability was 

observed for numerous genes. The number of mRNA molecules per cell within a clonal cell 

population could no longer be explained by a Poisson distribution but by an inverted 

exponential, with cells displaying a high number of mRNA and cells were none were detected 

(Figure 6). This “two-state” or “bursty” model implied that promoters were switching from an 

ON state, characterized by a high production of mRNA within a short time window, to an OFF 

state, where no transcript was transcribed (Figure 6).  

 

Bursty mRNA production has been consistently observed from bacteria [87], to yeasts [88] 

and drosophila embryos [89]. Since this mode of expression would in theory favor a high cell-

to-cell variability, it was first proposed to have as purpose to create high phenotypic 

variability, to increase cell fitness or ensure survival [90, 91]. However, this mode of expression 

was repeatedly observed from housekeeping [88], to stress response [92] and developmental 

genes [89], highlighting a conserved mode of mRNA production. In addition, bursting 

parameters (like burst size and frequency) have been monitored for environmental responsive 

genes and shown to be actively regulated depending on the stimuli [93], highlighting a both 

conserved and controlled mechanism. Interestingly, bursting kinetics have been presented to 

be gene-specific rather than following a general pattern [85, 88, 94]. Note that high-mRNA 

heterogeneity may not be conserved at the protein level, due to buffering mechanisms [95]. 
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1.5.3 Three-state model 

The two-state model implies that promoter activity is not affected by previous transcriptional 

events, with all transcriptional activations being independent. However, it has been observed 

for certain genes, that a memory of previous transcriptional activity was encoded at the locus 

and that a period following transcriptional termination was refractory to any new initiation 

event. This additional promoter state thus defined the three-state model, with an ON, an OFF 

and a refractory state, with gene-specific transition rates between these states [94].  

 
 
Figure 6: Modes of gene expression. 
The ground state of promoter was originally thought to be active and always transcriptionally potent, thus undergoing 

stochastic events of transcription with a constant probability over time (“a”). This mode of expression leads to a low number 

of mRNA molecules per cell and thus low cell-to-cell variability in the molecule number, which can then be explained by a 

Poisson distribution. However, although some promoters were clearly shown to be following this one-state model, single-cell 

and single-molecule analyses have revealed a greater variability among a cell population, which could no longer be explained 

by a Poisson distribution, but rather by an inverted exponential. This revealed a new mode of transcription, whereby 

promoters display distinct periods of activity, where numerous mRNA produced, followed by clear periods of inactivity. These 

uncoordinated periods (“a”, “b” and “c”) of transcriptional activity defined the bursty nature of promoters. 
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1.6 Mechanisms of genes bursting 

 

Although gene bursting has been observed in numerous studies, the mechanisms behind 

transcriptional bursting remain unclear. Gene bursting can be differentiated as “extrinsic” and 

“intrinsic” bursting; “extrinsic or transmitted bursting” being the induction of bursts through 

changes in upstream signaling and “intrinsic or spontaneous bursting”, being the results of 

promoter activity changes [96]. However, the distinction between these two categories may 

not be as straightforward, since promoter ground state in eukaryotic cells is to be inactive, 

activation requires transcriptional activator binding. Therefore, uncoupling of promoter 

innate bursting activity versus TF binding dynamics can be challenging. 

 

1.6.1 Sources of extrinsic/transmitted bursting 

Pulse of signaling 

Transcriptional bursting is defined by cycles of transcription interspaced by period of 

promoter inactivity. If the transcription factor responsible for the transcription undergoes 

itself cycles of activity, it can lead to transcriptional bursting. The period between bursts of 

transcription will then depend on the TF ON/OFF switching rates. That is the case for the Crz1 

budding yeast transcription factor, which upon calcium stress will relocate into the cell nucleus 

with a calcium stress level-dependent periodicity, but constant burst duration, to trigger 

waves of gene expression [97]. Similarly, budding yeast growth-repressed osmostress genes 

are transiently induced upon Hog1 MAPK activity, which follows a pulse-like dynamic [51]. 

Further examples may be found in cell-cycle or circadian regulated genes. 
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1.6.2 Intrinsic bursting hypotheses  

Supercoiling 

Studies in bacterial cells suggest that the topology of the DNA at a genomic location would be 

involved in transcriptional bursting [98]. This hypothesis relies on the fact that when RNA is 

transcribed from a template DNA, this causes a discrepancy in the torsion level of the DNA 

helix between the DNA upstream and downstream the transcribing polymerase. DNA torsion-

specialized enzymes, namely topoisomerases and gyrases, act then together to release the 

constraint on the helix as the RNA polymerase transcribes [99]. In the case where this activity 

would not affect all the genes similarly, for instance due to differential expression level, and 

of gyrase limiting conditions, this could potentially lead to bursting [100]. Although DNA 

supercoiling has been shown to be involved in gene regulation in higher eukaryotic cells [101], 

the timescale of eukaryotic transcriptional bursts together with the evidences from other 

components being implicated in bursting, make this hypothesis a supposedly less prominent 

mechanism of eukaryotic transcriptional regulation [102].  

 

Chromatin loops 

In higher eukaryotes, this is well established that cis-acting regulatory elements, like 

enhancers, can influence a distant promoter element through intergenic loops [103, 104]. As 

an example, it was shown that the transcriptional output of the sna promoter in the drosophila 

embryo is regulated by the sna enhancer in a burst frequency-dependent manner, where the 

stronger enhancer induces a higher bursting frequency from the targeted promoter [105]. In 

simpler eukaryotic systems, it’s mainly intragenic loops that have been observed. These loops 

are dependent on the transcription machinery and formed by the interaction between the 

promoter and the terminator of a DNA locus and are called “DNA looping” [106, 107]. This 
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conformation of the locus would lead to the recycling of transcribing RNA polymerase II from 

the terminator back to the promoter, improving RNA pol II recruitment rate and accordingly 

the transcription rate, leading to transcriptional bursts. This has been observed for two very 

long genes in yeasts [109], but is proposed to be a general phenomenon because of the 

compact genome of S. cerevisiae and the general dependency on the RNA polymerase II and 

cofactors of gene looping.  

 

Chromatin state 

Since eukaryotic genome is well packed into nucleosomes, which require complex activity to 

be removed, chromatin remodeling has been suggested by numerous studies as a prominent 

source of gene bursting [110, 111]. In addition to nucleosome position, chromatin marks like 

acetylation have been shown to modulate specific bursting parameters [112]. Since chromatin 

remodeling requires the recruitment of chromatin remodeling complexes via transcription 

factors or activators, uncoupling of both to determine the origin of bursting might be 

challenging, especially if the transcription factor activity cannot be assessed from its cellular 

localization, like the Crz1 transcription factor [97]. Although the advent of single-molecule 

tracking might provide a good opportunity to distinguish between these two contributions 

[113].  

 

Pol II pause and release 

Transcriptional bursting corresponds to actively transcribing RNA polymerases. Upstream of 

active transcription lies transcription initiation, which encompasses several distinct steps. 

Indeed, right after having transcribed a few base pairs, Pol II pauses and requires signals to 

undergo elongation causing stalling [114]. This maturation time of the transcriptional 
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machinery and subsequent release of polymerases is called “promoter proximal pause-release 

of Pol II” [115, 116]. Stalled RNA pol II has not yet been observed in yeasts but it has been in 

metazoans [114], highlighting a postrecruitement regulation of gene expression in higher 

eukaryotic systems. Through this mechanism, promoters should be able to initiate faster and 

more efficient transcription by bypassing a number of steps implicated in PIC reassembly [115, 

117].  

 

Phase separation 

Assemblies of regulatory sequences like enhancers and promoters, or just paired alleles, have 

been proposed to lead to the local accumulation and retention of transcriptional activators 

and effectors like transcription factors and RNA polymerases. This local accumulation of 

transcriptional effectors would cause a liquid-liquid phase separation from the cytosol and 

lead to a higher probability to initiate transcription from promoters within this 

macromolecular assembly [118, 119]. This “transcriptional hub” or “phase-separation of the 

transcriptional machinery” would thus be comparable to a local accumulation of TF bindings 

sites on a promoter or to gene looping on macromolecular scale; it increases the chance of 

recruiting recycled RNA pol II and increase transcription rate, but in a trans-acting manner 

[119]. Indeed, it has been shown that several parts of the transcriptional machinery could lead 

to phase separation, like the human and yeast RNA polymerase II CTD domain [120]. This 

model supports a pre-existing one on “transcriptional hot spots” or “transcriptional factories” 

[121], where it was observed in several cells and organisms that, rather than being 

homogenously distributed into a cell nuclei, RNA pol II or TF molecules were clustering into 

distinct nuclear puncta [122-124]. Discrete temporal association of these macromolecular 

complexes would then lead to gene bursting. 
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1.7 Monitoring gene expression 

 

Since gene bursting reflects the underlying regulatory mechanisms occurring at the 

transcriptional level, the ability to measure bursting parameters allows to unveil dynamic 

information on subsequent transcriptional regulation, which could otherwise not be extracted 

from population-averaged or static single-cell measurements. Thanks to the development of 

fluorescent proteins, the field of gene expression and single-cell studies has thrived. However, 

all methods do not measure the same biological phenomenon and each method has its 

advantages and drawbacks. In addition, apart from active post-transcriptional regulation, it is 

still debated whether mRNA and proteins levels correlate, therefore the use of protein-based 

expression reporter assays may not reflect the true dynamics of mRNA production at the 

single-allele level. Below we describe the relevant gene expression systems that were 

developed over the years, described in order of increasing dynamicity in their transcriptional 

readouts. 

 

1.7.1 Static measurements 

Population-averaged measurement of transcription enable to retrieve both qualitative and 

quantitative measurement of mRNA production. 

 

Northern blot 

The oldest gene expression assay is the Norther blot [125]. With a gel-separated bulk RNA 

extraction and transcript-specific probes, as well as an internal control transcript, this method 

gives snapshot quantitative relative measurement of population transcriptional profile.  
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Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) 

RT-qPCR is a method more sensitive than Northern blot to low abundance transcripts and 

requires less amount of RNA extract [126]. This technique measures the amount of DNA 

reverse amplified from extracted RNA templates. Thanks to the use of fluorescent dyes, it can 

inform on the quantity of initial template, based on standard references.  

Both of these techniques rely on population-averaged measurements and discrete timepoints, 

which does not allow single-cell analysis, nor time-course experiments. In addition, they both 

depend on the quality of the RNA extraction, the target transcript abundance and on the 

specificity of a probe from its target transcript, which requires some steps of optimization for 

every new transcript to be quantified. 

 

Single-cell RNA sequencing 

Based on the isolation of single cells from a population or a tissue, RNA extraction followed by 

sequencing enables to capture the instantaneous transcriptome of a single cell. This 

technique, called single-cell RNA sequencing, bypasses population averaging and enables to 

gain insight into transcript variability at the single-cell level [127]. The major advantage of this 

assay is the amount of information that can be extracted in a single experiment. Indeed, since 

it relies on sequencing and transcript non-specific probes for the amplification, one can 

capture the entire single-cell transcriptional profile at a glimpse. However, because it starts 

from a small amount of material that is massively amplified, internal controls are crucial to 

rely on the output information gathered, especially with transcript of low relative abundance. 

In addition, although this technique enables to reach single-cell level, these are still snapshots 

measurement, that do not enable dynamic data acquisition. Finally, due to cell lysis, any 

information on the spatial localization of the sequenced RNA is lost. 
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single-molecule Fluorescence In Situ Hybridization (smFISH) 

Base on sequence complementarity, Fluorescent In Situ Hybridization (FISH) can be used to 

labelled DNA and RNA, thanks to small DNA probes labelled with fluorescent dyes [128, 129]. 

This technique requires cell fixation, permeabilization, labelling, imaging and image 

quantification. To improve the signal-to-noise ratio, an improved version of FISH, single-

molecule FISH (smFISH), has been developed [130]. Thanks to probes multiplication on the 

targeted transcript, the signal-to-noise ratio is greatly improved and enables low abundance 

or single cytoplasmic transcript to be visualized. Although it enables single-cell and single-

transcript measurement, this method relies on fixed cells and thus does not enable real-time 

imaging and thus dynamic measurement of gene expression. However, unlike the previously 

presented assays, this technique enables to retrieve both temporal and spatial information on 

the transcript simultaneously, which makes it nowadays still a widely used method. This 

method was further improve ten years ago, by multiplying shorter single-labelled probes, 

going from five 50-nucleotides-long probes labelled with five fluorophores to forty-eight 20-

nucleotides-long probes labelled with a single fluorophore [131].  

 

1.7.2 Dynamic measurements 

Fluorescent reporter assays 

The Green Fluorescent Protein (GFP), isolated from the jellyfish Aequorea victoria [132], was 

the first fluorescent protein cloned and expressed in different cell types. It has been 

extensively used then as a gene expression reporter since [133]. Indeed, because it only 

requires oxygen to be fully functional, it makes it a low-constraint reporter assay to use [134]. 

From this initial GFP, the family tree has largely expended and gave rise not only to GFP 

variants, but Yellow (YFP), Red (RFP) and Cyan (CFP) Fluorescent Proteins (FPs). The major 
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disadvantage of FPs are their maturation times; indeed, the fastest maturating FP are the 

Venus (40min) [135] and the recently developed superfolder GFP (sfGFP) (6min) [136]. This 

drawback is also a caveat for split-FP, which were engineered to measure dynamic molecular 

interactions or to improve the signal-to-noise ratio. The major advantage of FP, but which can 

also be a drawback, is their stability. Indeed, the half-life of FP is typically in the order of hours, 

which permits long periods of acquisition. However, they are not suited for genes of short cell-

cycle organism or transiently expressed genes, which typically have a smaller half-life than the 

FP, therefore masking part of the dynamics. To overcome the maturation time issue, studies 

started to block translation with Cycloheximide and analyze gene expression typically by flow 

cytometry after few hours, to let the pool of synthetized fluorescent proteins maturate [77]. 

Unfortunately, although it bypasses the maturation time of FP and still gives single-cell 

measurement, it removes the ability to track single cells over time.  

 

E- Galactosidase  

This bacterial enzyme has been long used as a colorimetric reporter method [137]. The lacZ 

gene used in the reporter assay, encodes for an hydrolase that converts lactose to glucose and 

galactose [138]. Because this enzyme can also hydrolyze X-gal into a blue-colored product, it 

provides a visual readout to promoter activity in a broad specimen range [139]. However, It 

suffers however from a poor sensitivity, small narrow dynamic range and may show some 

endogenous activity in mammalian cells, it was therefore quickly replaced by more sensitive 

assays for the quantification of gene expression. It is nowadays mainly used as a qualitative 

control, for instance during mammalian cell transfection.  
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Luciferases 

A special class of reporter fusion assays relies on bioluminescence instead of fluorescence. 

These reporter proteins typically encode a luciferase gene, which catalyzes light-emitting 

reactions [140, 141]. The photon emitted is then used as a readout for gene expression. 

Luciferase genes have been isolated from different organisms, the most familiar being the 

firefly Photinus pyralis (Fluc) or the sea pansy Renilla (Rluc) [142]. In practice, the enzyme is 

encoded downstream the promoter of interest and luciferin is added to the medium. When 

the promoter is activated, the luciferase is synthetized and oxidizes luciferin in oxyluciferin, 

emitting a detectable photon [142]. This enables to bypass the maturation time of fluorescent 

proteins, and like any other protein, requires only the translation and folding times [143]. 

Because of the high sensitivity of the system, absolute absence of any light has to be ensured, 

which make the experimental handling challenging. In addition, since luciferin is used as 

substrate, it needs to be in excess in the cell environment or freshly perfused during 

acquisition, which also complicates the use of other inducer or chemicals. 

 

dynamic Protein Synthesis Translocation Reporter (dPSTR) 

Since the major drawback of the use of Fluorescent Proteins (FPs) is their maturation time, we 

developed a maturation-free fluorescent protein-based assay called “dynamic Protein 

Synthesis Translocation Reporter”  or dPSTR [144]. This bipartite system consists in a 

constitutively-expressed fluorescent protein fused to a synthetic peptide (SynZip, [145]), 

which has a high affinity for its partner peptide fused to a double Nuclear Localization 

Sequence (NLS) and a degradation tag (UbiY,  [146]) placed under the control of a promoter 

to be monitored. The constitutively expressed FP is distributed in the whole cell in absence of 

transcription from the targeted promoter. Upon activation, the monitored promoter will 
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induce a proportional nuclear accumulation of the fluorescent signal thanks to the strong 

affinity of the SynZips associating the FP and the NLS [144]. Because it relies on the relocation 

of an already matured fluorescent protein and since it is reversible thanks to the degradation 

tag, this system enables to follow gene expression dynamics from induction to deactivation 

and repression [144]. It is thus a powerful tool to measure single-cell single-promoter 

expression. However, since it is based on signal relocation, this assay cannot infer on the 

transcript discrete spatial localization.  

 

All the previously described systems are based on protein expression, which involves 

translation and folding, and thus may mask, slow down or not reflect the true dynamics of 

transcription. To get closer to promoter dynamics, mRNA-based reporters have been 

developed. 

 

RNA aptamers: Spinach 

Based on an 80-nucleotides long RNA aptamer called “Spinach”, that becomes green 

fluorescent upon 3,5-difluoro- 4-hydroxybenzylidene imidazolinone (DFHBI) binding, modified 

mRNA can be labelled and monitored after an initial pulse of DFHBI [147]. The advantages of 

this method over the later described phage coat proteins are the low photobleaching, low 

background fluorescence and smaller DNA sequence integration compared to phage coat 

proteins’ binding sites [148]. However, in addition to a low brightness and thus low signal-to-

noise ratio, the question on the stability of the chemical, its absorption from the cells and the 

quantities to use to label all mRNA makes this system challenging to standardize and rely on. 
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1.8 Phage coat proteins 

 

RNA aptamer-protein based systems are used for RNA imaging since 1998, with the 

development of the MS2 system [149]. These natural RNA-protein interaction systems are 

found in RNA phages, which form their viral particles inside a host cell by assembling their viral 

capsid proteins and genomic RNA. Indeed, the coat protein can oligomerize but can also bind 

the phage RNA genome through specific RNA encoded sequences forming secondary hairpin-

like structures. The first-described so-called “MS2 system” derived from this natural 

interaction consists in a constitutively expressed MS2 protein, isolated from an MS2 

bacteriophage and fused to a Fluorescent Protein (FP), and a DNA-encoded array of typically 

twenty-four MS2 binding sites or MS2 Stem-Loops (MSL), placed under the control of a 

promoter of interest [149]. Thanks to the multiplicity of MS2 binding sites and to the dual 

binding of each stem-loop, a labelled transcript will produce a fluorescent signal above the 

background of free floating MS2-FP upon promoter transcription.  

 

There are four variants of these phage isolated RNA-protein interaction assays: the MS2 just 

described [149], the PP7 [88], the ON22 [150] and the QE [151] systems [152, 153]. They all 

rely on naturally-occurring RNA-protein interactions, composed of DNA-encoded hairpins and 

fluorescent proteins. They differ from each other in the sequence of their binding sites, the 

number of nucleotides per hairpin/stem loop and the number of loops that composed the 

array [152, 153]. As an example, the two very similar MS2 and PP7 systems only share 15% of 

sequence identity of their coat proteins [154]. 
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1.8.1 Principle 

In absence of transcription from the targeted 

promoter, the cell only displays the background 

fluorescence from the constitutively-expressed 

Phage Coat Protein (PCP) (Figure 7A). However, 

upon monitored promoter transcriptional 

activation and PCP binding sites transcription, 

PCP-FP proteins will bind strongly to these 

secondary structures and lead to the local 

accumulation of the PCP-FP protein, forming a 

bright focus at the Transcription Site (TS) (Figure 

7B). The background-corrected intensity at the TS 

is then proportional to the number of PCP-tagged 

transcripts and thus to the number of actively 

transcribing polymerases at the DNA locus. 

Therefore, this system both gives qualitative, 

promoter ON or OFF states, and quantitative outputs. 

Note that this system enables to follow the nascent 

mRNA production but can also be used to visualize cytoplasm-exported mRNA, especially with 

the sequestering of the majority of the PCP pool inside the host cell nucleus with the addition 

of NLS sequences to the PCP-FP fusion protein.  

  

Figure 7: Phage coat proteins- based reporter 
assays. 
(A) A Phage Coat Protein (PCP) fused to a 
Fluorescent Protein (FP) is constitutively expressed 
and diffuses freely into the whole cell. An array of 
24 Phage coat protein Binding Sites (PBS) are 
encoded downstream the promoter of a gene of 
interest (pINT). (B) Upon transcription of the PBS by 
the promoter of the targeted ORF, these sequences 
form stem-loops that are recognized by the PCP, 
leading to a local enrichment of the PCP-FP at the 
site of transcription, which is proportional to the 
amount of mRNA transcribed at that time and to 
the number of actively transcribing RNA 
polymerases II (Pol II). 
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1.8.2 Advantages 

These powerful assays hold a handful of advantages. The most important impact of the phage 

coat protein reporter assays is the ability to monitor transcription dynamics in live single cells. 

Indeed, these assays are the closest measurements to promoter mRNA production since they 

are at the RNA level and thus don’t suffer from translational or maturation lag time, and the 

dynamics observed are not buffered through translational kinetics discrepancies. Second, 

thanks to the exogeneous origin of both parts of the system, these assays can be used in a 

wide range of specimen, from bacterial cells [87] to drosophila embryos [119]. Third, since all 

of the variants of PCP-based assays are orthogonal, they can be used simultaneously to probe 

more than one promoter transcription dynamic at a time in a single cell, like previous FP-based 

reporter assays [155], but in real-time. They can thus be used to measure intrinsic and extrinsic 

noises in gene expression [156] or to access quantitative kinetic data on fundamental 

processes like transcription elongation or splicing kinetics [88, 157]. Finally, since the readout 

of the system does not involve an artificial change of localization from the reporter system, 

this assay enables RNA localizations studies [149]. 

 

1.8.3 Drawbacks 

A major drawback from this technique is the requirement for a constitutive expression of the 

coat protein, which causes a high background fluorescence lowering the signal-to-noise ratio. 

In an attempt to optimize this, split Fluorescent Proteins (sFP) were used [158]. Indeed, thanks 

to a high affinity of the coat protein for the stem loops and to the orthogonality of the existing 

systems, the two halves of the sFP can be fused to two different phage coat proteins, like MS2 

and PP7. A mixed array of alternated MS2sl and PP7sl will lead to the reunion the two sFP 

moieties that will form a complete fluorescent protein [159]. However, this system requires 
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the use of two phage coat systems for the labeling of only one transcript, which limits the 

experimental design. In addition, the assembled FP requires some maturation time to become 

fluorescent [159]. A split-FP assay is thus no longer suitable for dynamics measurements.  

 

1.8.4 Limitations 

Use of the phage coat proteins-based reporter assay requires to acknowledge the possible 

limitations from the system, like any other method. Here are presented the reported possible 

sources of loss-of-function or artefacts from the system.  

 

Imaging conditions 

When using phage coat protein-based reporter assays, we monitor actively transcribing RNA 

polymerases. Therefore, the time window to image a polymerase will be dictated by the 

transcription rate of the polymerase and the targeted promoter’s transcript length. There is 

thus a close link between the integration site (namely the downstream transcript size) and the 

imaging conditions. As illustrated in Figure 8, the 5’UTR integration in long Open Reading 

Frames (ORFs) gives a larger window of imaging time than shorter ORFs, thanks to the 

transcription time required by RNA polymerases to complete elongation. A longer imaging 

time enables longer time-course measurements thanks to a decrease time resolution 

requirement. This 5’UTR integration strategy also increases the probability of having multiple 

transcribing polymerases on the locus and thus a higher signal-to-noise ratio. Thus, integration 

into the 5’UTR will increase the imaging window compared to 3’UTR integration and give 

brighter transcription sites [160]. Since the integration site impacts both the imaging 

conditions and the outputs, analysis of multiple transcript at their endogenous location will 
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thus require different imaging settings, which increases the complexity of data comparison. 

An alternative integration mean for these examples is discussed in the following section. 

 

 
 
Figure 8: Effect of phage coat protein binding site integration on imaging conditions. 
The readout of phage coat protein-based assays, like the PP7 system depicted here, relies on the accumulation of phage coat 

protein on an ORF, for the signal to be higher than the background expression signal. Therefore, the stem-loops are typically 

integrated into the 5’UTR of the targeted gene, or with a second copy of the gene promoter of interest into a non-related 

gene due to gene essentiality, like in the GLT1 gene in Larson et al. 2011. Indeed, since a longer ORF will require a longer time 

to be fully transcribed by the RNA polymerase, it will have a higher probability of accumulating more RNA polymerases than 

a shorter ORF. This long ORF will therefore give a brighter signal and bigger half-life signal at the transcription site, which will 

enable longer time-interval for imaging than a shorter ORF. On the other hand, a short ORF will require a time-resolution 

during imaging, to capture all transcriptional events and thus will limit the imaging time due to bleaching of the phage coat 

protein and/or phototoxicity from the cells.  

  



Chapter 1: General introduction 

68 
 

Integration site 

In addition to dictating the imaging conditions, integration site selection has a major impact 

on the biology of the system. Indeed, because the stem-loops’ sequence contains multiple 

translational STOP codons, nothing downstream the binding sites’ cassette is translated. 

Therefore, they cannot be integrated in the 5’UTR of a single copy essential gene. It is thus 

generally put in the 3’UTR of endogenously tagged ORF. An alternative strategy coming from 

the mammalian cells studies, is to insert the binding sites into an intron, which does not alter 

the protein function, nor leads to cytoplasmic dots thanks to splicing of the reporter part co-

transcriptionally. Although this alternative does not enable localization studies, it  enables the 

quantification of splicing kinetic [161]. Since budding yeast rarely have introns, Larson and 

colleagues developed a targeting plasmid that integrates a second copy of the promoter of 

interest and the PP7sl in the 5’UTR of the non-essential 7kb-long GLT1 gene [88]. This enables 

to standardize the measurements between different imaged promoters by exchanging only 

the cloned promoter sequence and keeping the downstream ORF and thus imaging conditions 

identical between promoters to be compared.  

 

Phage coat proteins titration 

The labelling of newly synthetized transcripts relies on the existing cellular pool of free Phage 

Coat Proteins (PCPs). The level of PCP expression should thus be high enough not to be 

depleted or cause partial or no labelling of transcripts, and lower than the signal to have a 

quantifiable signal-to-noise ratio [162]. As a mean to monitor depletion and ensure labelling 

of all transcripts, NLS sequences were fused to the fluorescently-tagged coat proteins to 

restrict them to the cell nucleus and ensure better labelling through local confinement of both 

interacting partners [162]. Depletion is then arbitrarily assessed based on the disappearance 
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of the nuclear enrichment. However, this may not be sufficient to ensure the absence of 

depletion and proper controls have to be made for all promoters tested. With this possible 

downside, the use of smFISH as a general method to control for labelling and to translate 

Relative Fluorescence Units (RFU) into numbers of mRNA molecules became quite prominent. 

 

Localization artefacts 

Recently, it was shown that the high affinity between the coat proteins and the stem-loops 

may alter the degradation of the protein-RNA multiplex and lead to localization artefacts, 

notably under glucose-starved conditions [163, 164]. However, this does not seem to be an 

ubiquitous observation and to depend greatly both on the experimental conditions, the 

expression level of the labelled transcript and the stem-loops insertion site. Therefore this 

should be analyzed on case-by-case, generally by means of smFISH controls [165]. 

 

1.8.5 PP7 system 

First described by Larson and colleagues in 2009 [88], the PP7 system was purified from 

Pseudomonas aeruginosa bacteriophage PP7. This phage coat protein-based assay has the 

highest affinity between the coat proteins and its binding sites, with a Kd of 1nM [166] and 

thus offers the most efficient labelling of transcripts [167]. The binding occurs between one 

PP7 stem-loop and two PP7 coat proteins, leading to 48 bound PP7 proteins per tagged 

transcript [167]. The PP7 protein consists in a 128 amino acids polypeptide, forming an N-

terminal β-hairpin, a five-stranded antiparallel β-sheet and two α-helices in C-terminus [154]. 

Recognition of the loop is performed by the beta-sheet [154]. The binding sites of PP7 are 

hairpins containing a 6 nucleotides (nt) loop and a 8 nt stem, with a purine bulge on its 5’ side 

[166]. Interestingly, removal of the bulge leads to a perfect hairpin but complete loss of 
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binding activity in vitro [166]. Any change in the loop and stem size or sequence leads to higher 

Kd, depicting the best existing PP7-PP7sl combination possible [166].  

 

PP7'FG variant 

Since the native function of the PP7 affinity for the PP7sl is to form viral capsids containing 

the genomic RNA of the bacteriophage, the PP7 protein has the intrinsic property to 

oligomerize and form particles inside its host cell. To avoid particles formation and imaging 

artifacts, the residues 67 to 75 (CSTSVCGE) responsible for the capsid assembly were 

truncated from the original PP7 sequence, leading to a truncated monomeric phage coat 

protein called “PP7'FG”, with an intact RNA binding property [154]. A similar approach has 

been used for the MS2 protein and dedicated system.  
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1.9 Aim of the study 

The general aim of this study was to gain insight on promoter transcription dynamics 

regulation, from signaling, to chromatin, transcription factors and promoter DNA sequence. 

 

Since osmostress gene transcription is repressed in normal growth-conditions and transiently 

induced upon a pulse of MAPK activity, this system is ideal to answer these questions. Previous 

population-averaged biochemical analyses on osmostress gene transcription seemed to 

highlight a similar gene expression pattern.  Although some dynamic single-cell studies were 

performed, they were mostly realized at the protein level, with the use of long-maturing 

fluorescent proteins, which causes a delay and a buffering to the true promoter transcription 

dynamics. Building PP7 reporter strains thus enabled us to assess the diversity of 

transcriptional profiles and acquire single-cell single-allele data that were not provided before 

for osmostress-induced genes of the budding yeast.  

 

The highly dynamic data gathered would thus give a partial response on how promoter 

sequences dictate transcription dynamics, using native and not synthetic sequences, by 

comparing the different osmostress promoters’ transcription dynamics in similar conditions.  

In addition, combining the PP7 reporter to other available assays enabled us to assess the 

correlation between signaling, mRNA and proteins, at the single-cell level.  

 

To fulfill our study’s aim, we have (1) developed new vectors for the genetic manipulation of 

budding yeasts, that enabled us to have robust and reliable single-integration of our reporter 

constructs, (2) studied the biology of the PP7 system to highlight its limitations and (3) 

optimized the PP7 system to apply it to osmostress genes and (4) improved an in silico 
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quantitative approach to extract bursting kinetics parameters from imaging data. All of these 

enabled us to reach high confidence single-promoter transcription dynamics data acquired in 

a semi-automated manner. During these process, new gene expression reporters have been 

developed and are described in this thesis. 
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1.10 Thesis chapters presentation 

This study is divided into six chapters, comprising the general introduction, three results 

chapters, the discussion and the conclusion.  

 

The first chapter is on the development of a novel type of yeast shuttling vectors, which 

enabled us to faithfully and efficiently modify genetically S. cerevisiae. The story has been 

published as a method article in a peer review journal in 2016 [168]. In the second chapter, 

we coupled the dPSTR and the PP7 system into a unique assay, that enabled us to monitor 

transcription and translation from a single allele in live single cells. The results presented are 

currently in a manuscript preparation.  

 

In the third chapter, we used the PP7 system to monitored osmostress genes in a semi-

automated manner to decipher the regulatory mechanisms dictating the HOG induced gene 

promoter transcription dynamics. The results are currently presented in a PDF version of a 

preprint under review in a peer-review journal as “Single-particle view of stress-promoters 

induction dynamics: an interplay between MAPK signaling, chromatin and transcription 

factors”, Wosika V and Pelet S, bioRxiv 2020. A previous version of the preprint can be found 

as “Single-cell analysis of osmostress promoters reveals the dynamics of transcription initiation 

and shutoff”, Wosika V and Pelet S, bioRxiv 2019. 
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Chapter 2: Single-Integration Vector and Gene Tagging plasmids 

development 

 

2.1 Background 

In the field of gene expression, reporter assays are highly used and often require the 

expression of exogenous proteins. To have a homogenous expression of the reporter protein 

among the single cells, genomic integrations are preferred to extra-genomic plasmids, which 

copy number and stability are not certain. In the budding yeasts, integration plasmids have 

been used for decades [169]. The most used vectors, the pRS, take advantages of the high 

recombination power of yeast, to integrate a plasmid at a genomic location by homology with 

a non-functional endogenous auxotrophy marker gene [17]. This integration leads to a 

duplication of the marker cassette leading to a non-functional and a functional allele. 

Unfortunately, this genome-integrated plasmidic copy of the marker gene can also serve as 

an integration site, along with the endogenous one, for more integrations of the transformed 

plasmids, therefore leading to multiple integrations of the construct and possible artifact 

observations. In addition, since the vectors for gene deletion and gene tagging are often 

derived from the same building blocks, each transformation can lead to a plethora of 

undesired results, with the combinations number depending on the number of already 

integrated cassette in the transformed strain. Although reporter assays often rely on 

fluorescent proteins that can be used to screen for the integration number or genotyping, the 

process is time-consuming and the result not certain. 
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2.2 Results 

The content of this chapter has been published as a Methods Paper in Molecular Genetics and 

Genomic on the 16th of September 2016.  

Wosika, V., Durandau, E., Varidel, C., Aymoz D., Schmitt M. & Pelet S., “New families of single 

integration vectors and gene tagging plasmids for genetic manipulations in budding yeast”, 

Molecular Genetics and Genomics 2016 Dec;291(6):2231-2240.  

Author contributions: 

Victoria Wosika, Eric Durandau, Delphine Aymoz and Serge Pelet designed the tools. Victoria 

Wosika, Clémence Varidel and Marta Schmitt constructed the vectors. Victoria Wosika 

constructed the strains and performed the experiments. Victoria Wosika and Serge Pelet 

wrote the manuscript.  
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2.3 Summary 

In this paper, we report on the construction of a set of Single Integration Vectors (pSIV) and 

Gene Tagging plasmids (pGT) for the genetic manipulation of budding yeasts. Thanks to the 

use of completely exogenous marker cassettes (promoters, marker genes and terminators) 

and promoter/terminator recombination sites instead of selection marker open reading frame 

to integrate, these plasmids show a robust unique integration and no off-target effect. Finally, 

the pGT presented were built with the current best FP, thus updating available tags. 
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2.4 Conclusion 

We developed highly robust and efficient tools for the genetic manipulation of Saccharomyces 

cerevisiae, which are user-friendly and can be of use to the entire budding yeast community.  
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Supplementary Figure 2: Genotyping pSIV transformants for single integration

W303T1 T11T10T9T8T7T6T5T4T3T2Marker

TX: transformant number

2kb

gDNA pSIVu URA3*

1500 bp2200 bp

pURA3/tURA3 colony PCR product

Supplementary Figure 2:  Colony PCR to confirm the single integration of the pSIVu 
plasmid. Scheme showing the location of the pr imers (sequence found in Table S3) on the 
genomic DNA used for genotyping the presence and number of integrated plasmids (grey 
box) versus the endogenous locus (white box), and the expected PCR product size. Com -
pared to the mother strain, all eleven transformants returned a band of 2.2 kb corresponding 
to the single integration of the empty plasmid, as shown in the agarose gel.

1kb

3kb
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Supplementary Table S1: Strains used in this study 
 
Yeasts Genotype Resistance 
ySP2 MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15} - 
yVW81 w303 pRPS2 mCherry tSIF2 U 
yVW82 w303 pRPS2 mCherry tSIF2 pTEF PP7 2xGFP tCYC1 U 
yVW140 w303 hta2-iRFP:HIS dcp2-mCitrine:LEU hog1-RFP:TRP 

pma1-yemCFP:URA 
UHTL 

ySP2: W303 naked background. U: URA3 resistance. UHLT: URA3, TRP1, LEU2 and HIS3 resistance  
 
 
Supplementary Table S2: Plasmids used in this study 
 
Plasmids Insert Selection 
pVW110 pRS306 pRPS2 mCherry tSIF2 URA 
pVW169 pSIVu pRPS2 mCherry tSIF2 pTEF PP7 2xGFP tCYC1 URA 
 
 
Supplementary Table S3: Primer sequences 
 
Primer name 5’-3’ Sequence 
pURA3 agaaaaggattaaagatgctaagagatag 
tURA3 actcttgttgttctttggagttca 
T3 AATTAACCCTCACTAAAGGG 
T7 TAATACGACTCACTATAGGG 
M13fw TGTAAAACGACGGCCAGT 
M13rev CAGGAAACAGCTATGACCATG 
pGT fw GCGGCCGCTCTAGAACTA 
pGT rev ATGGAAAAACGCCAGCAACG 
Dcp2 fw cgaatggaacttcagggtctaatgaattattaagcattttgcataggaagGCGGCCGCTCTAGAACTA 
Dcp2 rev tcaaattgtgttatggttgtttaatcttattgaataccagtatcaaggatATGGAAAAACGCCAGCAACG 
Hog1 fw cggtaaccaggccatacagtacgctaatgagttccaacagGCGGCCGCTCTAGAACTA 
Hog1 rev gctgataaacaaacaatacgccataagtgacggttcttggATGGAAAAACGCCAGCAACG 
Pma1 fw acttcatggctgctatgcaaagagtctctactcaacacgaaaaggaaaccGCGGCCGCTCTAGAACTA 
Pma1 rev agttgattaaaatgtgacaaaaattatgattaaatgctacttcaacaggaATGGAAAAACGCCAGCAACG 
Hta2 fw acttgttgccaaagaagtctgccaagactgccaaagcttctcaagaactgGCGGCCGCTCTAGAACTA 
Hta2 rev cgtaacaaaagaaagagagcctagctgtaatatatctttataacatgtatATGGAAAAACGCCAGCAACG 
Capital letter: plasmid-annealing sequence. Lower case: sequence annealing to genomic DNA. 
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Chapter 3: Simultaneous monitoring of transcription and translation 

 

3.1 Background 

 

3.1.1 mRNA and protein correlation 

The central dogma in the field of gene expression is that DNA is transcribed into mRNA, which 

in turn is translated into proteins (James Watson, Molecular Biology of the Gene 1965). Since 

mRNAs and proteins require complex and abundant cellular machines to be synthetized, 

transcription and translation represent a cellular cost and should therefore be strictly 

controlled to maximize cell fitness [170]. Therefore, the central thought is that the mRNA and 

protein levels of a gene are correlated at the population level. Nonetheless, most studies have 

reported a poor correlation between these two entities, with a gene-specific correlation 

rather than a general trend [171]. However, studies often contradict themselves due to 

differential methodological approaches [172]. 

 
In the field of gene expression, live-cell reporter assays only measure mRNA or proteins and 

use it as a proxy for promoter output. In the past years, Tanenbaum and colleagues have 

developed a combined reporter enabling the visualization of mRNA transcription and 

polypeptide synthesis from a transcript in live single cells [173]. This assay relies on the 

coupling of the PP7 and the SunTag systems [174]. The later functions like a PP7 system but 

at the protein level, with a DNA-encoded array of peptide epitopes downstream the promoter 

of interest, recognized by a constitutively expressed single-chain antibody fused to a 

Fluorescent Protein (FP). Upon transcription, the PP7 signal will appear in the host nuclei and 
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later on in the cytoplasm, where a second signal will appear as a PP7-colocalizing dot upon 

translation of the SunTag binding sites [174]. Since translation occurs in the entire cytoplasm, 

following a single transcript requires its plasma membrane targeting to restrict the diffusion 

to two dimensions and enable time-lapse recording [174]. Thus, although this coupled 

reporter enables to measure crucial data on translational kinetics and posttranscriptional 

regulation, it does not allow to measure the total translational output and thus cannot be used 

as an accurate gene expression reporter. In addition, single-chain antibodies were to date not 

functionally expressed in a budding yeast cells and are thus restricted to their use in 

mammalian systems. 

 

3.1.3 Aim of the project 

In this project, we aimed at the simultaneous monitoring of transcription and translation 

arising from a single promoter in live single cells. This aim thus required dynamic 

measurements for both entities. At the transcriptional level, the best-established assays to 

monitor real-time mRNA production are the phage coat protein-based reporters, like the PP7 

system. At the translational level, dynamic quantification of protein synthesis can be achieved 

with a fast-maturing fluorescent protein like the superfolder GFP (sfGFP) or a dPSTR reporter 

[144]. Because the relocation of the dPSTR is faster than the sfGFP maturation time and 

because its stability is decreased thanks to its degradation tag, the dPSTR assay appeared as 

the most dynamic readout. We thus aimed at developing a coupled PP7-dPSTR gene 

expression reporter assay. All intermediate systems and strains not described in this study are 

listed in Annex 1, at the very end of the manuscript.  
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3.2 Results: assay development 

 

3.2.1 Stem loops and coat protein binding effects on transcript translation 

To first assess the effect of the twenty-four repeated PP7 stem-loops on downstream gene 

product synthesis, we designed a simplified version of the desired coupled mRNA-protein 

reporter by replacing the dPSTR with a Venus translational reporter [135]. We then increased 

in complexity and moved from a Venus reporter to a stable dPSTR, to finally an unstable or 

dynamics dPSTR assay [144]. 

 

Stem loops and translation 

Translation of mRNA into proteins is influenced by the mRNA structure. Indeed, it was shown 

that the presence of a hairpin in the 5’UTR of a yeast transcript was decreasing its translation 

[175]. This extent of the negative effect was shown to be dependent on the sequence from 

the loop and its distance from the ribosomal START codon [175, 176]. Secondary structures in 

the mRNA were then used to tune the translational level of transcripts [176].  

 

The PP7 system, like the other aptamer-based RNA imaging reporter assays, is based on an 

array of stem-loops [88]. The higher the loops’ number, the better the signal-to-noise ratio 

from the PP7-tagged transcripts, the better the detection [162]. In addition to the number of 

loops, the signal can be increased thanks to a better labelling of the mRNAs with a higher 

affinity of the phage coat protein for its binding sites, by changing the loop sequence [177] or 

by choosing the strongest coat protein-stem-loop affinity couple (PP7 over the MS2).  
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Results 

Since the array of PP7 binding sites is composed of ATG and STOP codons, nothing 

downstream can be translated. Therefore, we placed the Venus protein upstream of the PP7sl 

cassette in our constructs (Figure 9A). To assess the effect of the stem-loops’ presence on a 

transcript, we built two variants of the initial Venus-PP7sl construct: a loop-free version with 

only the Venus reporter protein, and a construct with a fifty base pair spacer between the 

Venus STOP codon and the first PP7 stem-loop, as distance between these two entities has 

been shown to influence the translational output (Figure 9A) [175, 176]. All the constructions 

were placed under the control of a salt inducible STL1 promoter and integrated into the 5’UTR 

of the GLT1 Open Reading Frame (ORF), as previously published [88, 144], to standardize the 

biological and experimental systems between the different constructions (Figure 9A). A wild 

type S. cerevisiae strain bearing a histone-tagged with cyan FP (CFP) was used as carrier for all 

the constructions, to allow for an automated segmentation and tracking of the cells and their 

nuclei through YeastQuant [178] Strains and plasmids are listed at the end of the chapter 

(Table 1 and Table 2). To test the effect of the PP7-bound and unbound PP7 stem-loops on 

the tagged transcript, strains were further transformed with a Single Integration Vector 

plasmid (pSIV) [168] expressing a PP7-mCherry allele (Figure 9, B to D). 

 

As shown in Figure 9B, although the twenty-four PP7 stems-loops were placed downstream 

the Venus ORF, their presence led to a dramatic reduction in the Venus translation, with a 

two-third decrease in the final outputs. The addition of a fifty base pair spacer did not 

moderate this negative effect (Figure 9B). Interestingly, expression of the coat proteins 

restored the translation of the PP7sl labelled transcripts to even better outputs than the stem-

loops-free variants strains, highlighting a stabilization of the mRNA through the binding of the 
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loops by the coat protein (Figure 9, B and C). Surprisingly, expression of PP7p in the stem-loop-

free construct strain also led to a mild but significant increase in the Venus production (Figure 

9, B and C). This could highlight a partial digestion of the loops during the cloning of the 

construct or to an increased stress sensitivity from the cells expressing the phage coat protein. 

Note that the PP7-RFP allele used in this chapter still has the ability to form viral particles 

inside the yeast cells, since it was not yet truncated for the coat protein oligomerization 

domain [154], unlike the PP7'FG-GFP variant used in the final PP7-dPSTR construct and in 

chapter four. 

 
Figure 9: Tagging a transcript with PP7sl in 3’UTR decreases its translation but is rescued by the expression of the coat CP. 
(A) Schematics representing the three different constructions tested: a Venus (pSTL1yfp), a Venus and twenty-four PP7 stem-

loops (pSTL1yfp-PP7), or a Venus separated by a fifty-base pair (50bp) spacer from the twenty-four PP7 stem-loops (pSTL1yfp-50-

PP7). All the constructions are expressed under the control of an osmostress inducible STL1 promoter and integrated in the 
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5’UTR of the GLT1 gene. (B) The Venus production was monitored over time after addition of 0.2M NaCl at time zero. Strains 

harboring a histone tagged CFP (“empty”) and expressing the different constructions were imaged for 100 min after a 0.2M 

NaCl induction at tp3, corresponding to time zero (full lines). Each single-cell trace was corrected for its background 

fluorescence and cell shrinkage-induced fluorescence increase by subtracting the first value after the timepoint of inducer 

addition (tp4), defined as time zero. Strains were imaged similarly after transformation and expression of the PP7-mCherry 

allele to test the effect of the PP7 bound and unbound stem-loops on Venus production (dashed lines). N>140 cells (C) 

Distribution of the maxima of the smoothed single-cell traces extracted from B. Statistically different Venus outputs were 

determined with a two-samples t-test with a 95% confidence interval. (D) Percent of Venus positive cells from the experiment 

in B, with the expression threshold allowing 5% of Venus positive cells in the empty strain with the coat protein. 

 

3.2.2 Coupled PP7-Venus reporter 

A long-standing question in the field of gene expression is the correlation between a gene’s 

transcripts and proteins levels, which are supposed to be correlated in accordance with the 

central dogma of DNA>mRNA>proteins. To this hypothesis, we used a strain expressing the 

pSTL1-Venus-PP7sl construct and a PP7-mCherry to record both the mRNA and proteins 

production arising from a single promoter, the osmoresponsive pSTL1 (yVW447, Figure 10). 

Because the STL1 promoter has no basal expression level and is highly and rapidly induced 

upon NaCl treatment, it is an ideal candidate for quantitative gene expression studies [77, 

144]. 

 

Results 

As shown in the Figure 10, induction of cells expressing the pSTL1 PP7 Venus reporter with 

0.2M NaCl gave rise to a peak of mRNA production in the fifteen minutes following the stress 

at the population level (Figure 10, A and B). Venus fluorescence was detected from the same 

population from 30 minutes after stress, due to its maturation time, and quantified as final 

level after 120 minutes (Figure 10, A and B). For the PP7 signal, the Transcription Site (TS) 

fluorescence was plotted as the 10 brightest RFP pixels in each cell’s expended nucleus, which 
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corresponds to a five pixels augmented nucleus, that were divided for their whole cell median 

RFP expression and subtracted for their post-shrink level, to correct for bleaching and basal 

levels (Figure 10B). For the Venus, the whole cell median yellow fluorescence subtracted for 

each cell’s basal level is plotted. As shown in Figure 10B, we observed an increased in both 

reporters’ readouts during the time course of the experiments that were induced with salt, 

which are absent from the unstimulated control. 

 

To compare the reporters’outputs in a quantitative manner for all the single cells, we defined 

the “pSTL1 PP7 output“ and “pSTL1 Venus output” parameters. To do so, we smoothed with 

a moving average the Venus single-cell traces that were corrected for the background and 

shrink, and extracted each cell’s maximum Venus fluorescence (Figure 10, B to D). The 

transcriptional output on the other hand was defined as each cell’s sum of segmented PP7 

foci (ConnectedHiPix) fluorescences (see Material and Methods at the end of the chapter). As 

expected for the STL1 promoter, no Venus signal was detected under basal conditions and 

increasing salt concentrations led to a gradual increase in Venus production from pSTL1 

(Figure 10C) [77].  

 

To assess the correlation between the mRNA and protein outputs from the pSTL1 reporter 

assay, pSTL1 Venus and PP7 outputs were compared at the single-cell level (Figure 10D). To 

calculate a correlation coefficient, only the cell with both signals were considered. We 

therefore identified expressing versus non-expressing cells for each assay. For the PP7 system, 

expressing cells were identified by the segmentation of a PP7 focus. For the Venus reporter, 

positive cells were defined with an arbitrary threshold of 3.15 RFU, which allowed for 5% of 

Venus positive cells in the non-induced control (Figure 10E, SDfull). An R of 0.39 was calculated 



Chapter 3: Coupled reporter assays 
 

118 
 

for the 0.1M NaCl data, which decreased to 0.06 at 0.2M NaCl, suggesting a poor correlation 

between pSTL1 mRNA and protein outputs. Since this low correlation could arise from a poor 

detection of one or both signals, we analyzed the data further and split each experiment’s 

entire cell population into four sub-populations, corresponding to all the possible 

combinations of PP7 and Venus signals’ occurrences (Figure 10E).  

 

As shown in Figure 10E, the biggest sub-population consisted in cells positive for both signals, 

which suggest a good detection and appropriate imaging conditions in general. As expected, 

only few cells showed a PP7 signal without a Venus signal (Figure 10E, PP7+Venus-). Indeed, 

since the Venus signal is in the whole cell, its measurement only requires a single plane 

imaging and is quite accurate due to the size of the object quantified. Unfortunately, we 

detected 20% of the population of cells with a Venus fluorescence but no corresponding PP7 

signal at 0.1M NaCl (Figure 10E, PP7-Venus+). This population then decreased to 8% at 0.2M, 

which strongly suggests that the lack of detection came from lower transcriptional output and 

thus PP7 fluorescence (Figure 10E). Indeed, when differentiating the Venus signal from the 

PP7 positive and negative cells for both induced experiments, we observed a strong bias for 

low Venus fluorescence for the PP7 signal-less cells, which is more likely to be represented by 

low intensity PP7 readout cells, despite the poor general correlation between the two metrics 

(Figure 10F).  

 

A possible explanation for this lack of correspondence could thus be the imaging conditions, 

either with a too low illumination power or z-distance coverage. Since RFP are in general less 

bright than GFP, fluorophore switch may improve the detection. Indeed, budding yeast cells 

have a higher RFP background than GFP, which renders the signal-to-noise ratio lower for this 
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RFP version of the system. Therefore, in the following coupled reporter assays, we switched 

to a GFP variant of the PP7. 

 
 
 
 



Chapter 3: Coupled reporter assays 
 

120 
 

Figure 10: Single-promoter measurement of mRNA and protein outputs.  
(A) Microscopy images from a strain with a histone-tagged CFP expressing a pSTL1-Venus-50bp-24xPP7sl construction 

schematized above and integrated at the GLT1 locus. Cells were stressed with 0.2M NaCl at time zero and imaged for 120 

minutes. (B) Experiment from A was performed along with a 0.1M NaCl and a non-induced experiment. The PP7 signal is 

plotted as the ratio between the 10 brightest pixels over the RFP background to correct for bleaching and subtracted for the 

post inducer timepoint level, to correct for shrinking artifacts (full lines). The Venus signal corresponds to the cell median YFP 

level subtracted for each cell’s signal at first timepoint after salt addition as well (dashed lines). The Venus LED was turned 

off after the first timepoint post-induction for 40 minutes to minimize bleaching (see Methods at the end of chapter) (C) 

Boxplots of the maxima Venus signal for each single-cell smoothed trace. Statistically different means were tested with a two-

samples t-test with a 95% confidence interval. P-values for *= 6x10-31, **= 2x10-46 and ***= 1x10-71. (D) Scatter plot of the 

maxima Venus signal plotted in C against the sum of segmented PP7 signal for all the single cells. (E) Bar plot of each 

experiment’s cell population composition for the PP7 and Venus signal occurrences. (F) Histograms of the Venus production 

for the induced experiments, differentiated between cells with (dashed line) and without (dotted line) a corresponding PP7 

signal, and the whole Venus positive population as reference (full line).  

 
3.2.3 Coupled PP7-dPSTR reporter  

The coupled PP7-Venus reporter enabled us to get the mRNA and protein outputs from a 

single promoter in single cells. However, only the PP7 moiety displays a live readout, the Venus 

protein requiring a maturation time to become fluorescent [135]. To improve this coupled 

reporter, we swapped the Venus FP for an almost live gene expression reporter assay, the 

dPSTR [144]. Indeed, because it relies on the relocation of an already matured fluorescent 

protein, this reporter enables to bypass this downside of FPs. This assay was originally 

published in two different versions: with and without a degradation tag [144, 146]. In absence 

of this tag, the dPSTR accumulates in the nucleus in a protein expression-dependent manner 

and remains stable, enabling precise measurement of translational output [144]. With the 

degradation tag, the system is in a constant equilibrium between synthesis and degradation, 

therefore as soon as transcriptional activity ceases, the NLS-SZ1/mCherry-SZ2 heterodimers 

are quickly degraded, enabling dynamic measurements of promoter activation and 

deactivation [144].  
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In addition to the translational reporter improvement, we shifted from a PP7-RFP to a PP7-

GFP allele to increase the transcription site brightness and to decrease the probability of 

having a protein output without a PP7 signal like in the previous PP7-RFP/Venus reporter 

(Figure 10E). In accordance, we used an RFP variant of the dPSTR to combined with the PP7-

GFP allele and a histone-tagged with a tandem-dimer infrared RFP for spectral compatibility 

[179].  

 

Development challenge 

The challenge of this project was to couple both reporters’ inducible parts: the PP7 stem-loops 

and the dPSTR peptide responsible for the promoter specific relocation of the fluorescent 

protein (Figure 11). The first concern was the impact of the PP7 stem-loops on the dPSTR 

translation, which we have addressed in our previous PP7-Venus reporter settings. The second 

concern was the impact of the total length from each transcriptional units’ addition on the 

dPSTR readouts (Figure 11). Indeed, upstream PP7 stem-loops sequences supposedly do not 

affect the system’s labelling. 

 

 
 
Figure 11: Merging the PP7 and dPSTR transcriptional units. 
Both the PP7 and the dPSTR reporter are bipartite assays, composed of a constitutively expressed (pCONST) transcriptional 

unit and an inducible promoter-specific transcriptional unit, here under the control of an STL1 promoter (pSTL1). The PP7 

system consists in a constitutively expressed PP7'FG protein fused to a fluorescent protein (PP7-FP) and the dPSTR in a 

fluorescent protein fused to a SynZip 2 (FP-SZ2). The PP7 promoter-specific transcriptional unit is composed of an array of 
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24xPP7sl and a downstream transcribed but not translated ORF, here the 6kb represent the length of the GLT1 gene, 

integration site of our original PP7 construct. The dPSTR promoter-specific transcriptional unit is composed of a degradation 

tag (UbiY), two Nuclear Localization Sequences (2xNLS) and a SynZip 1 (SZ1) and a weak CYC1 terminator. Creation of a 

coupled pSTL1-PP7-dPSTR requires the merging of the two inducible transcriptional units of the two systems (arrows). 

 
Reporter development 

Exchange of the Venus protein for the stable dPSTR promoter-specific moiety and integration 

at the GLT1 ORF as performed for the PP7-Venus coupled reporter, did not lead to any nuclear 

accumulation of the mCherry-SZ2 part upon salt addition (data not shown). Two hypotheses 

were drawn from this preliminary result: first, the stabilization of the transcript by the binding 

of the PP7 stem-loops by the coat proteins was not sufficient to increase the signal-to-noise 

ratio and second, the length of the transcript is affecting the dPSTR relocation ability. Since 

these two hypotheses could potentially be linked, we designed different synthetic coupled 

reporter constructs and scored their abilities to relocate the fluorescent moiety during a salt 

challenge time-lapse experiment to assess the source of the dPSTR loss-of-function (Figure 

12). Strains and plasmids described here are listed at the end of the chapter. Additional strains 

resulting from the developmental phase of the coupled reporters can be found in Annex 1. 

 

Figure 12 summarizes the results from all the variants designed and tested. As expected, the 

constructs with the best and worst relocation abilities were the original dPSTR and the Venus 

swapped constructs respectively (Figure 12, n°1 and n°8). The addition of a spacer in between 

the dPSTR STOP codon and the first PP7 hairpin had a small beneficial effect, highlighting a 

putative sterical hindrance from the loops on the translational machinery (Figure 12, n°2 and 

n°3, n°5 and n°6). However, this was not sufficient to recover a relocation from the reporter.  

Decreasing the downstream DNA tail of the PP7sl, on the other hand, led to a greater nuclear 

accumulation of the dPSTR. These results either suggested a transcript length effect on the 
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dPSTR transcriptional or translational rate, or a sequence dictated increased stability of the 

transcript (Figure 12, n°6 to n°8). These two hypotheses could also explain the constructions 

lacking the PP7 stem-loops or the one where they are replaced by a 3kb long downstream 

transcribed tail, both of which were in the top scores (Figure 12, n°1 and n°4). Indeed, a lower 

dPSTR production rate might not lead to a detectable nuclear signal accumulation, due to the 

imaging conditions or to bleaching.  

 

The hypothesis of the decreased stability seemed, however, to account for much of the defect 

since the exchange of the CYC1 for the SIF2 terminator led to a better nuclear signal (Figure 

12, n°3 and n°6) [180]. By combining all the positive effect changes, we designed the best 

score construction, which bears a 50bp-spacer, a 1kb downstream transcribed DNA and a 

strong SIF2 terminator (Figure 12, n°2). 

 
 

Figure 12: Summary of the coupled pSTL1-PP7-dPSTR reporter constructs. 
Different variants of the combination of the two systems were designed and assessed for their relocation scores during an 

0.4M NaCl time-lapse experiment. The constructs are here ranked depending on their relocation abilities relative to the dPSTR 

construct alone (n°1). As shown here, the best synthetic system was the dPSTR alone (1) and the worst was the coupling of 

dPSTR and PP7 at the PP7 usual integration site, the 7kb long GLT1 gene (8). Variants were originally tested in a strain 
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expressing a dPSTR CFP, before the PP7-GFP allele shift, but for clarity with the rest of the chapter, mCherry is indicated here. 

Strains and plasmids are listed at the end of the chapter.  

 
Coupled PP7-dPSTR reporter with stable dPSTR 

In a final effort to further improve the dPSTR signal from the coupled reporter and in the optic 

of upgrading to an unstable allele, the ratio between the interacting partners SynZip 1 and 

SynZip 2 was biased toward SynZip 2, to increase the dPSTR signal-to-noise ratio (Figure 13A). 

For each synthetized NLS-NLS-SZ1 peptide, four mCherry-SZ2 peptides could potentially bind, 

instead of one in the original construct [144]. In addition, the Nuclear Localization Signals (NLS) 

and their linkers were mutated to alanine for all negatively charged residues and possible 

phosphorylation sites that might decrease the nuclear enrichment and which may be 

influenced by cellular state, like the cell-cycle or glucose levels (Figure 13A, npNLS: non-

phosphorylatable NLS) [181].  

dPSTR 2xNLS-linker: MRSEPKKKRKVGAGAEPKKKRKVGGSSVDGGSNQTSLYKKAGSAAAPFTMEFK 

npNLS and linker: MRAAPKKKRKVGAGAAPKKKRKVGGAAVAGGANQAALYKKAGAAAAPFAMAFK 

 

As shown in Figure 13, we observed nicely quantifiable signals from both moieties of the 

coupled reporter in response to various salt concentrations and flat signals from both in 

absence of induction (Figure 13, B and C). The pSTL1 transcription site fluorescence showed a 

transient increase in fluorescence, proportional to the stress level, as quantified by the 

intensity of the 10 brightest pixels subtracted for their median cell GFP and post-induction 

levels (Figure 13B). The pSTL1-dPSTR, here in its stable version, led to a signal increase and 

then a plateau, proportional to the stress as well (Figure 13C) [144]. A small decrease in the 

final dPSTR readout was actually observed, which was attributed to the 40% of bleaching 

observed. Thanks to the tuning of the expression levels of both fluorescent proteins, we 



Chapter 3: Coupled reporter assays 
 

125 
 

reached a sensitivity range that enabled us to measure responses from 0.1M to 0.3M salt 

stress, which correspond to our usual working concentrations. 

We next defined the cells with positive signals from both, either or none of the reporters. For 

the PP7 system, expressing cells were defined by the segmentation of a PP7 focus, as done 

previously. The time at which the first dot was segmented was further defined as the “PP7 

response time” of that particular cell (Figure 13D). This enabled us to bypass the need for 

arbitrary threshold definition. For the dPSTR assay, on the contrary, we defined an arbitrary 

threshold at 0.45 of nuclear over cytoplasmic fluorescences ratio, subtracted for their value 

at the first time-point after induction for each single-cell trace, to remove artifacts from cell 

shrinkage (Figure 13C, dashed line). This threshold was set to have 5% of dPSTR positive cells 

under non-stressful conditions, as done for the PP7-Venus reporter. The first timepoint at 

which a single-cell overcame that threshold was defined as its response time (Figure 13E).  

 

As expected from our previous data on the STL1 promoter, we observed different response 

times for the different salt concentrations (Figure 13, D and E) [144]. Indeed, with increasing 

stress level, the cell shrinkage decreases molecule diffusion through molecular crowding, 

which causes a delay in transcription activation [182]. When quantifying the time difference 

between both signals’ appearances at the single-cell level, we observed some differences 

between the different salt concentrations experiments (Figure 13F). Indeed, we observed a 

mean of 8’30’’, 9’35’’ and 11’15’’ time difference between both readouts at 0.1M, 0.2M and 

0.3M respectively. This could either highlight a differential effect of cell shrinkage or 

bleaching, which would impact later response times or in this case, higher salt concentrations 

experiments. However, more replicate experiments should be performed in order to confirm 

the significance of these discrepancies. On average, we estimated a ten minutes delay 
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between transcription initiation (appearance of PP7 focus) and properly folded proteins 

(accumulation of nuclear dPSTR over expression threshold), which includes transcription 

elongation, mRNA export and translation, and protein folding.  

 

Using these same activation thresholds, we defined the PP7 and/or dPSTR positive and 

negative cells. As shown in Figure 13G, we confirmed the bimodal behavior of pSTL1, with 55% 

of responding cells (PP7+ dPSTR+) at 0.1M NaCl, which was further increased to at least 85% 

at higher concentrations [77]. To test our ability to detect both signals simultaneously, we 

extracted the sub-population of cells which displayed only one of the two signals. Similarly to 

our previous PP7-Venus coupled reporter, we observed a small population of cells positive for 

the translational reporter and lacking a transcriptional readout (Figure 13G, PP7- dPSTR+). This 

cluster represented 8% of the total cell population at 0.1M NaCl. Interestingly, this sub-

population almost disappeared at higher salt stresses, which suggested an intensity-driven 

lack of segmentation, as previously. This hypothesis was indeed confirmed when comparing 

the dPSTR signal of these PP7 negative cells, for which the average maximum intensity was 

lower than the whole dPSTR positive cell population average (Figure 14A).  

 

Finally, a third population suggested a too stringent gene expression threshold on the dPSTR 

signal (Figure 13G, PP7+ dPSTR-), which could explain the large time-difference calculated 

between both signal (Figure 13F). Indeed, segregation of the PP7 signal of this sub-population 

versus the entire PP7 positive one depicted a tendency for lower intensity foci (Figure 14B). 

However, unlike the previous populations, the proportion was lower at low salt stress, or even 

inexistent in absence of stress, and a mild decrease was observed with increasing 
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concentration of salt (Figure 13G). This is contradictory to a loose threshold and may suggest 

the presence of some post-transcriptional regulation of the pSTL1-PP7-dPSTR transcript.  
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Figure 13: Coupled PP7-dPSTR stable. 
(A) Schematic representation of the pSTL1-dPSTR-PP7 coupled assay. The dPSTR part consists in two non-phosphorylatable 

Nuclear Localization Signals (npNLS) and four SynZip 1 (4xSZ1). The PP7 part consists in 24xPP7sl, 1kb of downstream DNA 

and a strong SIF2 terminator. (B) pSTL1 transcription site fluorescence over time after osmotic stress (0.1M, 0.2M or 0.3M) 

or non-inducing conditions (SDfull) applied at time zero. Mean and SEM of the PP7 signal is plotted as the 10 brightest pixels 

in the expended nucleus, to which the average cell GFP background fluorescence and the first value after induction were 

subtracted, to normalize for background and cell shrinkage. Single-cell traces were smoothed with a moving average. (C) 

pSTL1 dPSTR nuclear over cytoplasmic fluorescence ratio corresponding to the cells in the experiments in B. Data were 

subtracted for the first value after induction to correct for cell shrinkage. Single-cell traces were smoothed with a moving 

average. Dashed line represents the expression threshold set to 0.45 to discriminate the responding cells and their response 

time, which is set to 5% of dPSTR positive cells in SD-full conditions. (D) Histograms of pSTL1 PP7sl response times calculated 

as the first timepoint were a PP7 dot was segmented for each single-cell (see Methods). Only the cells where a dot was 

segmented were considered (PP7+ cells). (E) Histograms of pSTL1 dPSTR response times corresponding to the overcome of 

the expression threshold set to 0.45 (dashed line in C). Only the dPSTR positive cells were plotted. (F) Histograms of the time 

difference between the PP7 and dPSTR signals at the single-cell level, for the PP7+ dPSTR+ cells. (G) Percent of cells considered 

as PP7 positives or negative, and dPSTR positive or negatives.  

 
To test this hypothesis, we analyzed further the individual responses and assessed the 

correlation between the PP7 and dPSTR outputs at the single-cell level (Figure 14E). Like for 

the previous PP7-Venus coupled reporter assay (Figure 10D), we did not observe a correlation 

between pSTL1 transcriptional and translational outputs (Figure 14C).  

 

Because transcription and translation outputs may not be correlated but both timings should, 

we assessed the correlation between pSTL1 PP7 and dPSTR response times (Figure 14D). 

Indeed, we observed a positive correlation between the timing of transcription and translation 

of the reporter assay, even with the previously calculated ten minutes delay between both 

readouts. These results suggested that, first, transcriptional level does not correlate with 

translational level, and second, that transcription initiation time does not dictate translational 

output. Extracted examples single-cell traces indeed illustrate the correlative trend in both 

systems’ response times, but the poor of correlation from a quantitative point of view (Figure 

14, E and F).  
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Figure 14: Single-cell analysis of the coupled pSTL1 PP7 dPSTR reporter. 
(A) Histograms of the maximum signal of the dPSTR positive cells from the 0.2M NaCl experiment in Figure 13. From the total 

population (full line), two sub-populations are further defined as PP7 positive or negative based the segmentation of a PP7 

focus. (B) Same analysis as done in A but for the PP7+ cell population and their dPSTR signal, with the 0.45 threshold for the 

dPSTR cells identification. (C) Scatter plot of the maximum intensity of ConnectedHiPix versus the maximum dPSTR 

accumulation for the experiments in Figure 13. Dashed line represents the 0.45 threshold set to define the dPSTR positive 

cells. (D) Scatter of the Responses Times (RT) of both readouts for the PP7+ dPSTR+ cells at 0.1M. (E) Five single-cell traces 

from the 0.2M NaCl experiment from Figure 13 were plotted as a function of time. The 10 brightest pixels minus the basal 

and post-induction levels are plotted here. (F) Corresponding dPSTR signal from the single-cells in C. Data represent the 

nucleus over cytoplasmic signal subtracted for the post-induction level.  
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3.3 Results: evaluation of the established coupled reporter 

 

Coupled PP7-dPSTR reporter: unstable dPSTR 

Because the final aim of the project was to develop an assay that enables to monitor promoter 

activity, including activation and deactivation, both at the transcriptional and translational 

levels, we added the degradation tag of the original dPSTR assay (Figure 15A and Figure 16) 

[144]. This tag consists in a leading Ubiquitin, which upon translation of the peptide is cleaved 

off and exposes the next amino acid, Tyrosine (Y). Based on the identity of this leading amino 

acid, different half-lives can be obtained, following the “N-end rule” [146]. In our case, the 

UbiY tag decreases the half-life to few minutes [144, 146]. Because both of our reporter strains 

were imaged identically, side-by-side comparison are feasible (Figure 15, dashed lines). 

 

As shown in Figure 15 and 16, addition of the degradation tag did not affect the coupled 

reporter sensitivity; we detected signals for both systems from 0.1M to 0.3M NaCl salt stresses 

(Figure 15, B and C). As expected, addition of the degradation tag led to a transient dPSTR 

nuclear accumulation, now reflecting pSTL1 transient transcriptional activity (Figure 15C and 

Figure 16). We extracted the response times as done previously for the stable coupled 

reporter using the segmented PP7 foci and the 0.45 threshold on the dPSTR nuclear over 

cytoplasmic ratio corrected for the basal level (Figure 15C, dashed line). As shown in Figure 

15D, the response time of the pSTL1-PP7 was not affected by the dPSTR peptide modification; 

we found comparable response times for all concentrations (Figure 13D and Figure 15D). For 

the dPSTR part on the contrary, we found noticeable differences between the two strains. As 

expected from an unstable construct, we did not reach the same maxima and drop to 

approximately two-third of the stable allele’s plateau (Figure 15C). However, although the 
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expression thresholds were kept identical between both analyses, we extracted significantly 

different response times, with about four minutes faster responses from the unstable 

construct for all concentrations tested (Figure 15E). These results suggested that the sequence 

modification caused a differential translational rate from the construct, either through a 

stabilization of the mRNA half-life, which would not affect the PP7 signal at the transcription 

site, or through ribosome elongation velocity directly. However, more replicate experiments 

should be performed in order to confirm these discrepancies.  

 

Faster dPSTR signal accumulation led to a decrease time difference between the pSTL1 PP7 

and dPSTR response times (Figure 15F). Interestingly, unlike the stable allele, the unstable 

reporter showed a constant stress level-independent time difference between both signals’ 

appearances, as expected at these salt concentrations (Figure 15F). On average, we estimated 

a five minutes time requirement between transcription and protein maturation (Figure 15F).  

 

As done previously, we divided the whole cell population of each experiment into positive and 

negative cells for both readouts (Figure 15G). As shown in Figure 15G, addition of the 

degradation tag increased the proportion of PP7+ dPSTR- cells. Indeed, since we lowered the 

maximum nuclear relocation of the dPSTR, low expressing cells were less likely to overcome 

the threshold set from the stable allele outputs. This was then rescue partially with increasing 

salt stress, which in turn increases the cells’ response (Figure 15G), confirming that lower 

threshold would potentially detect more dPSTR positive cells. Together these data suggested 

a trade-off between the system dynamicity and the imaging conditions, whereby lower 

dynamics would require less heavy light illuminations and lower time resolution. This actually 

holds true for any type of reporters, whether it is a Venus, a dPSTR or a PP7 assay.  
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Figure 15: pSTL1 coupled PP7-dPSTR unstable.  
(A) Schematic representation of the coupled pSTL1-PP7-dPSTR. (B and C) Dose response population mean traces and SEM for 

the PP7 (B) and the corresponding dPSTR (C). Dashed colored lines represent the data from the stable construct on Figure 13. 

Single-cell traces were smoothed with a moving average. The horizontal grey dashed line corresponds to the 0.45 expression 

threshold used to determine the dPSTR positive cells and their response time. (D and E) Histograms of response times for the 

pSTL1 PP7 (D) and dPSTR (E) positive cells. Dashed lines represent the data from the stable allele on Figure 13. (F) Histograms 

of the time difference between the PP7 and dPSTR readouts at the single-cell levels, only the PP7+ dPSTR + cells were plotted. 



Chapter 3: Coupled reporter assays 
 

134 
 

Dashed lines represent the data from the stable construct on Figure 13. (G) Percentage of cells categorized as PP7 and/or 

dPSTR positive and negative based on the segmentation of a focus and overcome of 0.45 expression threshold respectively. 

 
As shown in Figure 16, addition of the degradation tag did not lead to a better correlation 

between the pSTL1 PP7 and dPSTR outputs, compared to the stable coupled reporter allele 

(Figure 16). This was expected due to the decreased detection of dPSTR positive cells in this 

reporter settings.  
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Figure 16: Single-cell traces of unstable coupled reporter.  
(A) Representative images of the 0.2M NaCl experiment from Figure 15A. The yVW447 strain bears a histone tagged with CFP 

for nucleus segmentation and cell tracking and expresses a PP7'FG-GFP allele and an dPSTR-RFP reporting on pSTL1. Cells 

were stressed with 0.2M NaCl at time zero and imaged every 15 seconds for the PP7 and every minute for the dPSTR, nucleus 

and brightfield images to 30 minutes. Scale bar represents five microns. (B and C) Five representatives single-cell traces from 

the same 0.2M NaCl experiment in Figure 15. Traces were smoothed with a moving average. (D) Scatter plot of the maximum 

intensity and maximum nuclear over cytoplasmic fluorescences ratio corrected for basal level from the experiment in Figure 

15B and C. Dashed line represents the 0.45 expression threshold set for the pSTL1-dPSTR. 

 

Comparison between coupled and single dPSTR assay: unstable version 

We have shown that our coupled reporter stable and unstable alleles behave differently 

(Figure 15). Next, we wanted to compare our coupled reporter dynamics to the original 

published dPSTR assay, therefore we compared the data from the published paper to our 

coupled reporter assay (Figure 17) [144]. Because both strains were imaged differently, we 

made general comparisons. As shown in Figure 17 panels A and B, both dPSTR-based assays 

produced transient responses to salt concentrations from 0.1 to 0.2M. Note that the coupled 

reporter is plotted as the ratio of the nuclear and cytoplasmic fluorescences (Figure 17A), 

whereas the single dPSTR is displayed as the difference. From the single-cell traces, we defined 

thresholds for both systems and extracted the response time and number of expressing cells. 

Both assays showed similar responses times for all the salt concentrations tested (Figure 17, 

C and D). These results suggested a similar dPSTR relocation ability in both reporter settings 

and putative similar sensitivity ranges. These will however have to be confirmed under 

identical experimental and imaging conditions. In addition, these results indicated that the 

levels of expression of the PP7 and dPSTR were suited to the detection of expression from the 

STL1 promoter at 0.1M to 0.3M NaCl salt stresses. More generally, these results proposed that 

we built a functional variant of the original dPSTR assay, which can provide a transcriptional 

readout in addition to the translational, thanks to the coupling to a PP7 system. 
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Figure 17: comparing single and PP7-coupled unstable dPSTR alleles. 
(A) Schematic representation and dose response of cells expressing the coupled pSTL1-PP7-dPSTR unstable allele in response 

to 0.1M, 0.2M and 0.3M NaCl induction. Dashed line represents the expression threshold at 0.45, set to identify the dPSTR 

positive cells and their response time. Single-cell traces were smoothed with a moving average. (B) Schematic representation 

and dose response of cells expressing the original pSTL1-dPSTR unstable construct in response to 0.1M, 0.2M and 0.4M NaCl 

induction. Dashed line represents the expression threshold at 100 RFU set to identify the responding cells and their response 

time. Single-cell traces were smoothed with a moving average. Data originated from the dPSTR paper published in Aymoz et 

al. 2016. (C and D) Histograms of the response time of the dPSTR positive cells, defined as the first timepoint of the overcome 
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threshold. (E and F) Percentages of responding cells as defined with the expression threshold for the different reporter 

constructs, as marked with dashed lines in A and B.  

 

Chemical uncoupling of PP7 and dPSTR 

Although being coupled in a single reporter assay, the PP7 and dPSTR systems report on 

different biological processes [88, 144]. As part of the assay validation process, we tested 

whether we could affect translation without affecting transcription. To do so, we performed 

an experiment with a translational inhibitor, cycloheximide (CHX). This compound is naturally 

secreted by Streptomyces griseus bacteria and inhibits translation elongation through 

ribosomes binding and prevention of their elongation factor mediated-translocation [183]. In 

the following experiment, cells were treated for three minutes prior time-lapse imaging with 

100x water-diluted cycloheximide at a final well concentration of 0.1mg/ml or just with SDfull 

medium, and then induced with a 0.2M NaCl step (Figure 18).  

 

As shown in Figure 18, CHX treatment abolished pSTL1 dPSTR nuclear relocation to the 

untreated cells’ levels, whereas maintaining a PP7 output (Figure 18, A and B). We confirmed 

the correct induction of the cells by plotting the mean cell area of the cells subtracted for their 

basal cell size, prior salt addition (Figure 18C). Similar shrinkages and adaptation times were 

observed for both the CHX- and SDfull-incubated cells, depicting a similar induction medium 

osmolarity and thus induction of the cells (Figure 18C). Using the previous 0.45 expressing 

threshold, we extracted the number of pSTL1-dPSTR expressing cells. As shown in Figure 18D, 

the percentage of PP7+dPSTR+ cells dropped from 80% to 5% and was replaced by a dominant 

PP7+ dPSTR- sub-population (Figure 18D). These results indicated an uncoupling of the PP7 

and dPSTR outputs. Indeed, when correlating the maxima of both readouts, data majoritarily 
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spread into a single dimension and depicted a complete lack of correlation (Figure 18E). Unlike 

previous analyzes on our coupled reporter assay, this population was constituted of equal PP7 

intensity cells, to the level of the control experiment (Figure 18F). Therefore, there was no 

correlation between the PP7 intensity and the lack of dPSTR detection, unlike in our previous 

reporter assay. 

 

Surprisingly, the pSTL1-PP7 population response differed from the control experiment both in 

amplitude and duration, but not in response time (Figure 18A). These differences were 

observed in replicate experiments and could not be attributed to a different salt induction 

(Figure 18C). The small decrease in the population response’s amplitude could be attributed 

to the small decrease in the number of PP7 expressing cells, since the maximum intensity did 

not vary (Figure 18F). The increase in population duration on the other hand, could partially 

be attributed to the lack Gpd1p synthesis upon normal salt stress, which contributes to the 

cell adaptation [53].  

 

Known CHX side effects on cell fitness, like DNA damage, were ruled out due to the short 

incubation time and cell-cycle arrest generated by the following osmotic stress. Thus, two 

hypotheses were drawn: first, cycloheximide treatment is an additional stress, which thus 

causes a higher or longer response from stress-induced genes; second, CHX impacts the 

reporter in a stress-unspecific manner. Since we did not observe a change in the basal GFP 

level from the cells, we concluded that cycloheximide does not affect the properties of the 

fluorescent protein itself, unlike previously observed during ethanol treatment (data not 

shown). To confirm the first hypothesis on CHX induction of stress response, or draw an 
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alternative one, Hog1 and Msn2/4 relocation should be tested under these conditions, which 

was not assess at that time.  

 

 
 
Figure 18: Uncoupling the coupled PP7-dPSTR reporter. 
(A and B) Population traces for the coupled pSTL1 PP7-dPSTR reporter. Cells were induced with SDfull or CHX for three 

minutes before a 0.2M NaCl induction. Single-cell traces were smoothed with a moving average. (A) The 10 brightest pixels 

of the expended nucleus subtracted for their mean cell fluorescence and post-induction levels. Inset are the histograms of 

the pSTL1-PP7 response times, only PP7+ cells were considered. (B) Corresponding pSTL1-dPSTR response. Plotted is the 
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nuclear over cytoplasmic fluorescences ratio subtracted for the post-induction level. Dashed line represents the expression 

threshold at 0.45 defined to discriminate dPSTR positive cells. (C) Mean Cell area and SEM over time. Single-cell area traces 

were subtracted for their basal values. (D) Percentage of cells positive or negative for PP7 and/or dPSTR signals. (E) Scatter 

plot of the maximum pSTL1 PP7 fluorescence and dPSTR nuclear over cytoplasmic fluorescence ratio from A and B. (F) 

Histograms of the maximum PP7 signal for all the PP7 positive cells (full line) and the PP7+ dPSTR- cells (dashed line). The 

values of the PP7+ cells of the control experiment are plotted as reference.  

 

Recapitulation of mRNA localization 

As a second validation step of the coupled reporter assay, we testes whether our coupled 

reporter could reproduce previously published mRNA localization data. Therefore, we applied 

it to the well-described ASH1 transcript asymmetrical localization to the bud tip of anaphase 

cells [149]. Indeed, it was shown that cloning of the first 250 bp after ASH1 STOP codon on a 

transcript is sufficient to recapitulate the endogenous transcript active transport into the 

mother bud tip [149]. Following the original publication strategy, we cloned a middle strength 

promoter, here a Ribosomal Protein Gene promoter (pRPG, pRPL15A) [184], in front of the 

coupled reporter, and the exact same ASH1 3’UTR minimal sequence as Bertrand et al. in the 

50bp spacer between the coupled reporter peptide and the PP7 stem-loops (Figure 19A). 

 

As shown in Figure 19B, pRPL15A constitutive expression led to a strong nuclear enrichment 

of the dPSTR part [184]. However, upon bud growth, a PP7-labelled nuclear transcription site 

can be observed, quickly followed by the accumulation of the signal at the bud tip (Figure 19B, 

arrows). Therefore, these results suggest that our coupled reporter assay can reproduce 

faithfully previously published mRNA transport and localization data acquired with single 

phage coat protein reporter assay and can thus be applied to a broad range of studies. 
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Figure 19: Application of the coupled reporter to ASH1 mRNA bud tip localization. 
(A) Schematic representation of the cloning of the 250bp after ASH1 STOP codon into the coupled reporter assay 50bp spacer, 

where the STL1 promoter was replaced by the constitutively expressed middle strength RPL15A promoter. (B) Representative 

microscopy images of the ASH1 coupled reporter strain. The strain bears a histone tagged with tdiRFP, a PP7-GFP and the 

pRPL15A coupled dPSTR in RFP, here false colored in magenta. Scale bar represents five microns. Arrows point at PP7 signal 

accumulation, first at the transcription site during active transcription and then at the bud tip, due to ASH1 3’UTR sequence 

addition and recognition by the endogenous transcript transport machinery. 
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3.3 Discussion 

 

Sensitivity versus dynamicity trade-off 

In this chapter, we have developed a live-cell imaging assay for the simultaneous recording of 

transcription and translation dynamics from a single promoter at the single-cell level. Starting 

with a slow readout translational Venus reporter, we have upgraded to a stable relocation-

based dPSTR assay, to finally reach the most dynamic readout with a degradable dPSTR 

reporter. Although we reached higher dynamicity with the latest version of the system, we 

lost some sensitivity during the process. Indeed, the proportion of cells with both readouts 

increased to the expense of the one displaying only the PP7. Although more dPSTR positive 

cells could be detected with a higher light illumination, this would lead to a higher bleaching 

of the system, which is already quite prominent. There thus seems to be a trade-off between 

readout accuracy and dynamicity that has to be taken under consideration for the choice of 

the reporter assay, depending on the specific question to be answer. 

 

Improvement on dPSTR bleaching 

In all our coupled reporters with the dPSTR system, we observed a noticeable amount of 

bleaching. Although we have tried different settings acquisition, the signal loss was 

consistently higher than 40%, unlike the PP7 part, which in its GFP version did not exceed 37%. 

Therefore, a good improvement of the system would be to exchange the mCherry fluorescent 

protein for a more photostable one and/or brighter FP, like the mScarlet RFP [185]. This would 

enable us to use to diminish the excitation light intensity and increase our signal-to-noise 

ratio, and thus improve further the coupled reporter assay. 
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Application to other promoters 

In this study, we have developed a coupled pSTL1-PP7-dPSTR assay. This assay gave us 

detectable readouts for the STL1 promoter under non-stressful conditions and exposed to 

stress levels ranging from 0.1M to 0.3M NaCl (Figure 15). Detection of a signal, either for the 

PP7 or dPSTR reporter, depends on the availability of already synthetized fluorescent proteins 

to be relocated either on a transcript or into the nucleus. Thus, the level expression of the 

constitutively expressed parts of the coupled pSTL1-PP7-dPSTR will have to be adapted for 

both reporter systems for each promoter, and possibility for each experimental condition, to 

be tested to ensure proper signal detection and the absence of titration. An easy way to 

control for this is to increase the levels of the fluorescent protein expression and compare it 

to the previous strain to assess the discrepancies in the results, like we did in chapter 4 for the 

PP7 reporter strains reporting on the two strongest promoters monitored, pHSP12 and pGPD1 

(Supplementary Figure 5). Similarly, application of the PP7 reporter system to constitutively 

expressed promoters instead of inducible ones may be more challenging and require more 

precise controls like smFISH. The same actually holds true for the dPSTR assay, which 

quantification of a nuclear signal increase instead of its apparition, in the case of promoters 

with basal level, may be more challenging, especially if the basal level promoter induction is 

relatively low, unlike for the GPD1 promoter (Chapter 4, figure 2) [144]. 

 

Another consideration to the application of the reporter system would be the reporter 

construct itself. Thanks to the exogenous proteins parts constituting the PP7 and dPSTR 

assays, namely the phage coat protein and its binding sites, and the synthetic SynZip and its 

viral Nuclear Localization Sequences (NLS), application to other organisms should be feasible 

and was already performed for the PP7 system [87, 186-190]. Indeed, budding yeast 
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promoters are typically 1kb long, therefore, amplification and cloning of the promoter region 

and integration into an exogenous location is generally sufficient to recapitulate the 

chromatin environment (nucleosomes position and histone marks) and thus the endogenous 

promoter expression profile [77, 191]. However, in higher eukaryotes, like mammalian cells, 

regulatory elements generally not only consist in promoter regions but may be temporally and 

spatially regulated by distant cis-regulatory elements, like enhancers and transposable 

elements [192, 193]. Thus, amplification and sub-cloning of the promoter region would likely 

not recapitulate the full regulatory network and not reflect the endogenous promoter gene 

expression profile. For this reason, in the mammalian gene expression field, reporter assays 

are generally integrated at the endogenous location, either in the Open Reading Frame, or in 

untranslated regions like introns or 3’UTRs, depending on the reporter system used [157, 160]. 

Therefore, direct comparison of different promoters’ expression data with the coupled 

reporter may be more challenging than in yeast, as presented in Figure 8. This is not specific 

to our assay but to any gene expression reporter assay used in mammalian systems. 

 

Absence of correlation between mRNA and protein readouts 

In all of our reporter settings, we found only poor correlation between the pSTL1 mRNA and 

protein measurements. This absence of correlation might either reflect a true mRNA dosage-

independent protein output, or a limited detection from both readouts, or additional cellular 

variables to take into consideration. To date, data on gene transcript and protein correlation 

is still debated and seems to depend on every aspect of the gene tested; from its identity to 

the measurement method [172]. It would thus be interesting to test if our coupled reporter 

can report on different promoters’ transcripts-proteins correlations by testing other 

promoters and compare the results side-by-side to data acquired with different assays.  
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In addition, all PP7-labelled transcript may not be translated or fully transcribed. Indeed, it 

was shown in vitro, but remains to be presented in vivo, that RNA pol II could produce abortive 

transcripts due to a break in its interaction with the targeted promoter [194]. However, it was 

also shown in vitro, that abortive transcripts’ sizes were not exceeding eight to fifteen base 

pair, which would not be sufficient to be detected with the loops. Indeed, each loop is about 

15bp and more than ten stem-loops have to be transcribed to have a detectable signal, in 

general [162]. Therefore, mRNA buffering mechanisms are more likely to occur and could 

explain part of the lack of correlation. Buffering corresponds to a modulation of the 

differential rate between synthesis and degradation of a transcript [95]. In particular, studies 

on the export of the mRNA from the nucleus to the cytoplasm have highlighted a buffering of 

transcript by the nuclear envelop [95]. This hypothesis is further explored in the general 

discussion.   
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3.4 Conclusion 

 

In this chapter, we report on the development of three reporter assays for the quantification 

of mRNA and protein expressed from a single STL1 promoter at the single-cell level: a pSTL1 

PP7-Venus, a pSTL1 PP7-dPSTR stable and a pSTL1 PP7-dPSTR unstable. We have estimated 

the dynamic ranges of each of these assays to provide a readout with salt concentrations 

ranging from 0M to 0.3M NaCl experiments. We have compared our final and most dynamics 

coupled reporter to the published dPSTR system and to previous stable construct, and 

assessed the effects of reporter design on the reporter readout. Together, our data 

demonstrated that our system in its final version (pSTL1 PP7-dPSTR unstable) can reproduce 

the dPSTR data, by giving simultaneously a dynamic readout of transcription thanks to the 

coupling of a PP7 system. This reporter can now be applied to other gene expression studies. 
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3.5 Material and methods 

 

3.5.1 Strain handling 

All strains were constructed in W303 background and are listed in Supplementary Table 1.  

Yeast cells were grown in YPD medium (YEP Broth: CCM0405, ForMedium, Norfolk, UK) for 

transformation or in Synthetic Defined (SD) medium for imaging 

(YNB:CYN3801/CSM:DCS0521, ForMedium, Norfolk, UK).  Transformants were selected with 

auxotrophy markers (Uracil, Histidine, Leucine and Tryptophan) and gene deletions were 

performed with antibiotic resistance to Nourseothricin (NAT), to a concentration of 100µg/ml.  

For microscopy experiments, cells were grown to log phase, starting with an overnight in SD 

medium diluted into fresh SDfull medium (YNB:CYN3801/CSM:DCS0521, ForMedium, Norfolk, 

UK) to OD600 0.025 in the first morning and grown for 8 hours to OD600 0.3-0.5 in the evening, 

followed by a last dilution of 0.5/OD600 before overnight growth, to reach an OD600 of 0.1-0.3 

in the second morning, before imaging. For time-lapse experiment, a culture of yeast cells 

grown to OD600 0.1-0.4 was diluted to OD600 0.05 and sonicated twice 45 seconds before 

welling 200µL into a 96-wells glass bottom plate (MGB096-1-2LG, Matrical Bioscience) coated 

with a filtered solution of Concanavallin A diluted to 0.5mg ml-1 in water (C2010-250MG, 

Sigma-Aldrich). Cells were let to settle for 35-45 minutes before imaging. Osmotic shock was 

performed under the microscope into the 96 wells plate, by adding three times concentrated 

SDfull+NaCl stock solutions to 200µL of cells, to reach the desired final desired salt 

concentration.  
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3.5.2 Strains construction 

PP7 Venus reporter strains construction 

The pSTL1 Venus-24PP7sl (pVW11) was constructed by cloning a Venus BamH1/BamH1 from 

pSP7 plasmid. The pSTL1 Venus-linker-24PP7sl (pVW97) was built by cloning oVW512 

GenBlock fragment BamH1/BamH1 into pSP264 plasmid. The pSTL1 Venus construction was 

obtained by overnight digestion of the pVW11 plasmid with KpnI and self-ligation back.  

 

pSTL1-PP7-dPSTR stable coupled reporter strains construction 

From the empty pMS9 (pMCV, Chapter 2), oVW1069 genblock was inserted by BamHI/SpeI 

digestion, giving pVW203 plasmid. pVW204 was obtained by the cloning of oVW1070 

genblock into pVW203 with BamHI/MfeI. Digestion of pVW183 with SpeI/NheI and cloning of 

pVW204 transcriptional unit, gave pVW207. The entire MSC of pVW207 was cloned AatII/SphI 

into pDA133, giving pVW208 plasmid. yED212 strain was transformed with pVW208, giving 

yVW210 strain, which was further transformed with the PP7-GFP from pVW297, resulting in 

the final strain yVW447.  

 

pSTL1-PP7-dPSTR unstable coupled reporter strains construction 

From pVW204 plasmid in the previous section, were extracted the UbiY npNLS 4xSZ1 spacer 

by SpeI/NheI digestion and inserted into pVW125, giving pVW206. MluI digestion and self-

ligation of pVW206 gave pVW209. Cloning of pVW209 into pVW183 by SpeI/NheI digestion, 

gave pVW218. pVW219 was cloned from pDA133 AatII/SphI digestion and insertion from 

pVW218. yED212 strain was transformed with pVW219 plasmid, which resulted in yVW232, 

which was further transformed with the PP7 from pVW297 plasmid, giving the final yVW489 

strain. 
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PP7 dPSTR ASH1 3’UTR reporter strains construction 

From the coupled reporter plasmid pVW207, which was digested SacI/SpeI to insert pRPL15A 

from pNM19, giving pVW303 plasmid. This resulting plasmid was further digested NheI/BamHI 

to insert the 250bp of ASH1 3’UTR amplified from gDNA with oligos 1608/1609. The resulting 

plasmid pVW306 was transformed into yED212, giving yVW479. The PP7-GFP where finally 

transformed into yVW479 with pVW297 plasmid, giving the final yVW480 strain. 

 

3.5.3 Time-lapse imaging 

PP7 Venus strains (loop effects, Figure 9) 

Strains were imaged with a 40x objective every min for three minutes, stimulated with 0.6M 

NaCl (0.2M final concentration in well) after timepoint 3 and imaged every five minutes for 

1h40, with RFP 100ms and YFP 300ms illuminations for all the strains, even the “empty” 

control without RFP expression (ySP269).  

 

Coupled PP7-Venus reporter strain (Figure 10) 

Strains were imaged with a 60x objective every 30s for 20min and then every 5min to 1h40, 

with the following illumination settings: CFP 20ms, RFP 50ms 15%LED z-stacks [-1.2; 0.4; +1.2], 

YFP 400ms. Cells were stressed at timepoint 3, with SDfull, 0.3M or 0.6M NaCl (final 

concentration in well 0M, 0.1M and 0.2M). The YFP LED was turned OFF after timepoint 6 and 

turned back on at timepoint 54 to avoid Venus bleaching. Two wells were acquired in parallel, 

with four positions per well. An average of 45% of bleaching was measured for the RFP channel 

and 32% for the CFP channel. The ConnectedHiPix of each time-lapse were filtered for single 

timepoint dot segmentation and the filtered matrix was used to define PP7 positive cells as 

cells with a non-null ConnectedHiPix sum over the time-lapse.  
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pSTL1-PP7-dPSTR strains (Figure 13 to 18) 

Strains were imaged with a 60x objective every 15s for 25min with the following illumination 

settings: Cy5p5 300ms, RFP 100ms and GFP 60ms with 6 z-stacks [-1.2; 0.4; +1.2]. A frame skip 

of three was applied on all channels, except the GFP, to limit bleaching and increase 

acquisition speed. Cells were stressed at timepoint 3 with different inducer solutions. One well 

was acquired at a time, with three positions. An average of 45% of bleaching was measured 

for the GFP channel and 48% for the RFP channel. The ConnectedHiPix of each time-lapse were 

filtered for single timepoint dot segmentation and the filtered matrix was used to define PP7 

positive cells as cells with a non-null ConnectedHiPix sum over the time-lapse. The reference 

strain for the comparison between the coupled and the dPSTR-Venus strain was imaged as 

described in Aymoz et al. 2016 (yDA119).  

 

ASH1 3’UTR coupled reporter strain (Figure 19) 

The yVW480 strain was imaged every 3 minutes for 1h30 with the following illumination 

settings: Cy5p5 300ms, RFP 100ms and GFP 40ms with 6 z-stacks [-1.2; 0.4; +1.2]. A frame skip 

of three was applied on brightfield channels. 

 

3.5.4 Statistical analysis 

Significant differences between means of replicates were tested by two-samples t-tests with 

95% confidence intervals.  
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3.5.5 Supplementary tables 
 
Supplementary Table 1: strains of chapter 3 

Strain 
name 

Ancesto
r strain 

Plasmid Genotype Reference 

ySP2 - - MATa/MATα leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-
11,15 [phi+] 

Ralser et al 2012 

ySP269 ySP2 - Hta2-mCherry (URA3) This study 

yVW112 ySP269 pVW11 Hta2-mCherry (URA3) pSTL1 Venus 24xPP7sl::GLT1 (HIS) This study 

yVW113 ySP269 pVW97 Hta2-mCherry (URA3) pSTL1 50bp Venus 24xPP7sl::GLT1 (HIS) This study 

yVW114 ySP269 pVW163 Hta2-mCherry (URA3) pSTL1 Venus::GLT1 (HIS) This study 

yVW119 ySP269 pVW171 Hta2-mCherry (URA3) pCYC1 PP7-dCherry tCYC1::TRP This study 

yVW120 yVW112 pVW171 Hta2-mCherry (URA3) pSTL1 Venus 24xPP7sl (His) pCYC1 PP7-
dCherry tCYC1::TRP 

This study 

yVW121 yVW113 pVW171 Hta2-mCherry (URA3) pSTL1 Venus 50bp 24xPP7sl (His) pCYC1 
PP7-dCherry tCYC1::TRP 

This study 

yVW122 yVW114 pVW171 Hta2-mCherry (URA3) pSTL1 Venus::GLT1 (HIS) pCYC1 PP7-
dCherry tCYC1::TRP 

This study 

ySP261 ySP2 - Hta2-mCherry (HIS) This study 

yVW63 ySP261 pVW71 Hta2-mCherry (HIS) pSIVu pRPS20 CFP SZ2 tCYC1 pSTL1 2xNLS 
SZ1 tCYC1::URA 

This study 

yVW65 ySP261 pVW83 Hta2-mCherry (HIS) pSIVu pRPS20 CFP SZ2 tCYC1 pSTL1 2xNLS 
SZ1 24xPP7sl 1kb tSIF2::URA 

This study 

yVW68 ySP261 pVW85 Hta2-mCherry (HIS) pSIVu pRPS20 CFP SZ2 tCYC1 pSTL1 2xNLS 
SZ1 3kb tSIF2::URA 

This study 

yVW67 ySP261 pVW95 Hta2-mCherry (HIS) pSIVu pRPS20 CFP SZ2 tCYC1 pSTL1 2xNLS 
SZ1 50bp 24xPP7sl 400bp tSIF2::URA 

This study 

yVW58 ySP261 pVW74 Hta2-mCherry (HIS) pSIVu pRPS20 CFP SZ2 tCYC1 pSTL1 2xNLS 
SZ1 24xPP7sl 400bp tCYC1::URA 

This study 

yVW59 ySP261 pVW76 Hta2-mCherry (HIS) pSIVu pRPS20 CFP SZ2 tCYC1 pSTL1 2xNLS 
SZ1 24xPP7sl 3kb tCYC1::URA 

This study 

yVW75 ySP261 pVW103 Hta2-mCherry (HIS) pSIVu pRPS20 CFP SZ2 tCYC1 pSTL1 2xNLS 
SZ1 50bp 24xPP7sl 1kb tSIF2::URA 

This study 

yED216 ySP2 - Hta2-CFP (LEU) Wosika et al. 2016 

yED212 ySP2 - Hta2-tdiRFP (TRP) Wosika et al. 2016 

yED159 ySP2 - Hta2-tdiRFP (HIS) Wosika et al. 2016 

yED212 ySP2 - Hta2-tdiRFP (TRP) Wosika et al. 2016 

yVW94 yED159 pVW125 Hta2-tdiRFP (TRP) pSIVu pRPL24 mCherry SZ2 tCYC1 pSTL1 
2xNLS SZ1 50bp 24xPP7sl 1kb tSIF2::URA 

This study 

yVW210 yED212 pVW208 Hta2-tdiRFP (TRP) pSIVu pRPL24 mCherry SZ2 tCYC1 pSTL1 
UbiY 2xNP-NLS 4xSZ1 50bp 24xPP7sl 1kb tSIF2::URA 

This study 

yVW426 yED216 pVW296 Hta2-CFP (LEU) pSIVu pADH1 PP7 mCherry tCYC1::URA3 This study 

yVW427 yVW426 pVW97 Hta2-CFP (LEU) pSIVu pADH1 PP7 mCherry tCYC1::URA3 pSTL1 
Venus 50bp 24xPP7sl::GLT1 

This study 

yVW232 yED212 pVW219 Hta2-tdiRFP (TRP) pSIVu pRPL24 mCherry SZ2 tCYC1 pSTL1 
2xNP-NLS 4xSZ1 50bp 24xPP7sl 1kb tSIF2::URA 

This study 

yVW447 yVW210 pVW297 Hta2-tdiRFP (TRP) pSIVu pRPL24 mCherry SZ2 tCYC1 pSTL1 
UbiY 2xNP-NLS 4xSZ1 50bp 24xPP7sl 1kb tSIF2::URA pSIVh 
pADH1 PP7'FG-GFPenvy tCYC1 

This study 

yVW489 yVW232 pVW297 Hta2-tdiRFP (TRP) pSIVu pRPL24 mCherry SZ2 tCYC1 pSTL1 
2xNP-NLS 4xSZ1 50bp 24xPP7sl 1kb tSIF2::URA3 pSIVh pADH1 
PP7'FG-GFPenvy tCYC1::HIS 

This study 

yVW479 yED212 pVW306 Hta2-tdiRFP (TRP) pSIVu pRPL24A mCherry SZ2 pRPL15A UbiY 
2xnpNLS 4xSZ1 ASH1 250bp 24xPP7sl 1kb tSIF2::URA3  

This study 
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yVW480 yVW479 pVW297 Hta2-tdiRFP (TRP) pSIVu pRPL24A mCherry SZ2 pRPL15A UbiY 
2xnpNLS 4xSZ1 ASH1 250bp 24xPP7sl 1kb tSIF2::URA3 pSIVh 
pADH1 PP7'FG-GFPenvy tCYC1::HIS 

This study 

ySP37   Hta2-CFP (marker looped out) Aymoz et al. 2016 

yDA123 ySP37 pDA183 Hta2-CFP pRPL24A mCherry SZ2  pSTL1 UbiY NLS SZ1 
tCYC1::URA3 

Aymoz et al. 2016 

yDA134 yDA123  Hta2-CFP pRPL24A mCherry SZ2  pSTL1 NLS Venus SZ1 
tCYC1::URA3 Hog1-mCitrine (HIS) 

Aymoz et al. 2016 
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Supplementary Table 2: plasmids of chapter 3 
Plasmid 
name 

Backbone Insert Construction Reference 

pSP7 - - pBS Venus pRF70 
Fabian Rudolf 

pSP219 - - pRS416 This study 

pSP223 - - pRS305 pCYC1 mCherry This study 

pSP226 - - pCEN pMET25 PP7-2xGFP pDZ276 
Addgene 35194 

pSP227 - - pRS303 pPOL1 24xPP7sl pDZ306 
Addgene 35196 

pSP264 pSP227 - pRS303 pSTL1 24xPP7sl Aymoz et al. 2016 

pSP268 pSP226 - pRS304 pMET25 PP7-2xGFP Aymoz et al. 2016 

pDA13 pSP219 pSP223 pRS416 pCYC1 mCherry This study 

pVW1 pSP125 pSP268 pMET25 PP7 This study 

pVW3 pVW1 pSP97 pMET25 PP7-dCherry This study 

pVW9 pVW3 pDA13 pCYC1 PP7-dCherry This study 

pVW11 pSP264 pSP7 pRS303 pSTL1 Venus 24xPP7sl This study 

pVW71 pVW67 pVW70 pSIVu pRS20 CFP SZ2 tCYC1 pSTL1 2xNLS SZ1 tCYC1 This study 

pVW74 pVW67 pVW61 pSIVu pRS20 CFP SZ2 tCYC1 pSTL1 2xNLS SZ1 24xPP7sl 400bp 
tCYC1 

This study 

pVW76 pVW67 pVW63 pSIVu pRS20 CFP SZ2 tCYC1 pSTL1 2xNLS SZ1 24xPP7sl 3kb 
tCYC1 

This study 

pVW81 pVW78 pDA13 pRS304 pCYC1 PP7-2xGFP tCYC1 This study 

pVW83 pVW67 pVW82 pSIVu pRS20 CFP SZ2 tCYC1 pSTL1 2xNLS SZ1 24xPP7sl 1kb 
tSIF2 

This study 

pVW85 pVW67 pVW84 pSIVu pRS20 CFP SZ2 tCYC1 pSTL1 2xNLS SZ1  3kb tSIF2 This study 

pVW95 pVW67 pVW87 pSIVu pRS20 CFP SZ2 tCYC1 pSTL1 2xNLS SZ1 24xPP7sl 400bp 
tSIF2 

This study 

pVW97 pSP264 - pRS303 pSTL1 Venus 50bp 24xPP7sl This study 

pVW163 pVW11 - pRS303 pSTL1 Venus This study 

pVW171 pVW81 pVW9 pRS304 pCYC1 PP7-dCherry tCYC1 This study 

pMS9 - - pMCV Wosika et al. 
2016 

pVW203 pMS9 - pMCV UbiY 2xnpNLS SZ1 This study 

pVW204 pVW203 - pMCV UbiY 2xnpNLS 4xSZ1 50bp This tudy 

pDA125 pDA99 - pRS305 pSTL1 UbiY 2xNLS SZ1 Delphine thesis 

pVW206 pDA125 pVW204 pRS305 pSTL1 UbiY 2xnpNLS 4xSZ1 50bp This study 

pVW207 pVW183 pVW204 pRS305 pSTL1 UbiY 2xnpNLS 4xSZ1 50bp 24xPP7sl 1kb tSIF2 This study 

pVW183 pVW100 pVW49 pRS305 pSTL1 2xNLS 4xSZ3 50bp 24xPP7sl 1kb tSIF2 This study 

pDA133 pSIVu pSP329 pSIVu pRPL24A mCherry SZ2 Aymoz et al. 2016 

pVW208 pDA133 pVW207 pSIVu pRPL24A mCherry SZ2 pSTL1 UbiY 2xnpNLS 4xSZ1 50bp 
24xPP7sl 1kb tSIF2 

This study 

pVW209 pVW206 - pRS305 pSTL1 2xnpNLS 4xSZ1 50bp This study 

pVW219 pDA133 pVW218 pSIVu pRPL24A mCherry SZ2 pSTL1 2xnpNLS 4xSZ1 50bp 
24xPP7sl 1kb tSIF2 

This study 

pVW296 pVW284 pVW212 pSIVu pADH1 PP7 mCherry tCYC1 This study 

pVW297 pVW101 pVW284 pSIVu pADH1 PP7 mCherry tCYC1 This study 

pNM19 pSP68 - pBS pRPL15A This study 

pVW303 pVW207 pNM19 pRS305 PRPL15A UbiY 2xnpNLS 4xSZ1 50bp 24xPP7sl 1kb tSIF2 Aymoz et al 2016 

pVW306 pDA133 pVW303 pSIVu pRPL24A mCherry SZ2 pRS305 PRPL15A UbiY 2xnpNLS 
4xSZ1 50bp 24xPP7sl 1kb tSIF2 

This study 
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Chapter 4: HOG genes transcription 
 
 
4.1 Background 
 
 
In response to a sudden increase in extracellular osmolarity, budding yeast cells trigger the 

High Osmolarity Glycerol (HOG) pathway (Figure 4), which cumulates in the activation of the 

main effector of the pathway, the MAPK Hog1. The immediate response of the cell aims at 

increasing the intracellular glycerol concentration by closing glycerol channels and increasing 

the synthesis of this internal osmolyte.  However, a transient change in the transcriptional 

profile is also initiated to ensure long term adaptation. This transient gene activation is 

mediated by the transient activation and nuclear accumulation of the MAPK. Indeed, 

osmostress genes are repressed under basal conditions through closed chromatin 

conformation and histone modifications. To initiate transcription, Hog1 is targeted to 

osmostress genes via DNA-bound transcription factors and in turn recruits chromatin 

remodeling and modifying complexes, as well as the transcription machinery. Although more 

than 250 genes are governed by the same transient MAPK activity, initial single-cell 

experiment have shown significant differences in transcription dynamics. However, these data 

were generated with protein-based reporter assay and thus do not reflect precisely promoter 

activity. Thus, dynamic data on osmostress gene transcription dynamics and the crucial 

determinant of inter-promoter variability in transcriptional profile is still lacking. 
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4.2 Results 
 

The results of this chapter are presented as a second version of a preprint deposited on bioRxiv 

(Wosika et al 2019, Wosika et al 2020) under revision at Nature Communications. 

 

Author contributions: 

Victoria Wosika and Serge Pelet designed the experiments, analyzed the data and wrote the 

manuscript. Victoria wrote the established the conditions for PP7 imaging. Victoria and Serge 

performed the experiments.  
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4.3 Conclusion 
 
 
In this study, we have characterized the six most studied promoters reporting on the HOG 

pathway transcriptional activity at an unprecedent resolution by engineering PP7 reporter 

strains. Using gene deletions and differential experimental conditions, we have dissected the 

regulation of chromatin, promoter sequence and transcription factor on osmostress genes 

transcription dynamics.  
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4.4 Supplementary controls 
 
 
All the strains in chapter 4 were genotyped for their proper integration at the GLT1 locus and 

for the integrity of their PP7 stem-loops array. Most of the PCR results are displayed in Annex 

2. The summary Table of the strains built and their controls are found in Annex 3 and all their 

microscopy replicate experiments in Annex 4.   
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26 

considering only the cells that induce transcription after time zero. e. 10th, 50th and 90th 794 

percentiles of the Start Times shown for the two to three replicates measured for each 795 

promoter. The number of stars next to each measurement corresponds to the number 796 

of promoters without basal level that are significantly different from the promoter with 797 

basal level (two-sample t-test, p<0.05). f. Cumulative distribution functions of Start 798 

Times for the pSTL1-PP7sl strain in wild type, htz1∆ or gcn5∆ backgrounds. The inset 799 

shows the percentage of PP7 positive cells in each background. g. Cumulative 800 

distribution functions of Start Times for the pSTL1-PP7sl strain grown in glucose or 801 

raffinose. The inset shows the percentage of PP7 positive cells, the light blue bar the 802 

basal positive PP7 cells. Source data are provided for a, f, g. 803 

 804 

Fig. 3. Early Hog1 activity dictates promoter activation and output 805 

a. In Hog1 nuclear relocation traces obtained from single cells, the timing of Hog1 806 

nuclear entry (▪ ), maximum enrichment ($), start of the decay in nuclear enrichment 807 

(◆) and Hog1 adaptation (▲) can be identified (upper panel). The median (marker) 808 

and 25th to 75th percentiles (lines) for these measurements are plotted for three 809 

different osmotic stresses (central panel). The cumulative distribution functions of Start 810 

Times for the pSTL1-PP7sl reporter for these same three concentrations are plotted 811 

(lower panel). b. Histograms of Start Times following a 0.2M stress for the five other 812 

promoters tested. The vertical dashed line represents the median decay time of Hog1 813 

measured at 0.2M. The number in the legend indicates the percentage of cells which 814 

have initiated transcription before the median Hog1 decay time. c. The population of 815 

pSTL1-PP7sl positive cells is split in four quartiles based on their Start Time. The 816 

median ($) and 25th to 75th percentiles (line) of the integral of the PP7 trace is plotted 817 

for each quartile. Source data are provided for a. 818 

 819 

Fig. 4. Transcription factors control the dynamics and level of mRNA production 820 

a. Violin plots of the trace intensity (maximum of the TS during the transcription period) 821 

for the six promoters after stimulation by 0.2M NaCl. Each dot represents the value 822 

calculated from a single cell. The solid line is the median and the dashed line the mean 823 
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Supplementary Figure 6. Monitoring pSTL1-induced transcription from two identical 
loci in diploids.
a. Thumbnails of diploid cells bearing the MS2-GFP and PP7-mCherry reporter systems 
monitoring the induction of two pSTL1 in the same cell following 0.2M NaCl stress. Open 
arrowheads (MS2sl) and closed arrowheads (PP7sl) highlight the stochastic activation of 
the transcription within a cell. Scale bar 5µm. b. Transcription site intensity from the pSTL1 
promoter monitored with the MS2 (green) or the PP7 (red) systems. The low signal 
provided by the PP7-mCherry assay and bleaching of this FP can explain the discrepancy 
between the two reporter systems. c. Examples of single cell traces where the activation of 

a

Supplementary Figure 6

0 10 20
Time [min]

18

20

22

24

26

28

30

TS
 In

t. 
PP

7-
R

FP
 [-

]

40

60

80

100

TS
 In

t. 
M

S2
-G

FP
 [-

]

0 5 10
Start Time PP7-RFP [min]

0

2

4

6

8

10

12

St
ar

t T
im

e 
M

S2
-G

FP
 [m

in
]

0 50 100
Max Int. PP7-RFP [-]

0

100

200

300

400

500

M
ax

 In
t. 

M
S2

-G
FP

 [-
]

0

20

40

60

80

100

Pe
rc

en
t o

f c
el

ls

32%

29%

20%

19%

20

40

20

40

100

200

100

200

0 10 20 0 10 20
Time [min]

TS
 In

t. 
PP

7-
R

FP
 [-

]

TS
 In

t. 
M

S2
-G

FP
 [-

]

c

d e f

b

BF
H

ta
2-

td
iR

FP
PP

7-
R

FP
M

S2
-G

FP
M

er
ge

d

0.2M NaCl: -1 min +4 min +7 min +11 min +15 min



Chapter 4: HOG genes transcription 
 

220 
 

 
 

 
 



Chapter 4: HOG genes transcription 
 

221 
 

 
 
 
 

 
 
 
 



Chapter 4: HOG genes transcription 
 

222 
 

 
 
 
 
 

 
 
 
 
 



Chapter 4: HOG genes transcription 
 

223 
 

 
 

 
 



Chapter 4: HOG genes transcription 
 

224 
 

 
 
 
 

 
 
 
 



Chapter 4: HOG genes transcription 
 

225 
 

 
 
 
 
 

 
 
 
 
 



Chapter 4: HOG genes transcription 
 

226 
 
 



Chapter 4: HOG genes transcription 
 

227 
 

 
 
 



Chapter 4: HOG genes transcription 
 

228 
 

 
 

 
 



Chapter 5 : Main results summary 
 

229 
 

  



Chapter 5 : Main results summary 
 

230 
 

  



Chapter 5 : Main results summary 
 

231 
 

Chapter 5: Main results summary 

 

In this thesis, we report on the development and optimization of fluorescent single-cell 

reporter strains for the monitoring of osmostress gene expression. Acquisition of dynamic 

data on osmostress gene expression dynamics through an automated cell segmentation and 

quantification platform (YeastQuant, [178]) enabled us to gathered large datasets, which 

could be used for further studies.  
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5.1 Construction of a live mRNA and protein synthesis reporter 

In this study, we have developed novel reporter assays, based on the coupling and adaptation 

of existing ones, for the simultaneous quantification of transcription and translation from a 

single-promoter in live single-cells. Our initial construct, coupled the PP7 system with the 

Venus reporter assay, which enables us to have a dynamic readout of transcriptional activity 

and an accurate but delayed translational readout. Using this initial assay, we could assess the 

correlation between the mRNA and proteins productions from a single STL1 promoter and 

observed a poor correlation between these two readouts. With this allele, we could 

demonstrate that the presence of the PP7 stem-loops on a transcript diminishes its stability, 

but can be rescue by the binding from the corresponding coat protein. We then designed our 

second assay, based on the PP7 and the stable dPSTR assay, enabled us to bypass the 

maturation time of the Venus and have stable readout for an easy quantification. With this 

second assay, we still did not observe any correlation between transcripts and proteins from 

the pSTL1 promoter. Our third and final assay, coupled the PP7 to the unstable dPSTR 

reporter. With this allele, we obtained dynamics readout that enables us to monitor pSTL1 

activation and deactivation in both readouts.  
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5.2 Single-molecule analysis of osmostress genes transcription 

In this study, we have optimized the PP7 system to the monitoring of osmostress gene 

transcription dynamics, which had not been done before. We have fine-tuned the phage coat 

protein expression level to enable transcript labelling and quantification of a set of osmostress 

promoters induced with working salt concentrations ranging from 0 to 0.2M NaCl. We have 

demonstrated that these strains indeed had no titration effect, by constructing alternative 

reporter strains expressing three times more coat proteins. Thanks to this optimization, we 

acquired trustful data on their dynamic of mRNA production. We could uncover the diversity 

of transcriptional profile upon an identical salt challenge at the single-allele level. We have 

demonstrated that transcription initiation is not permitted throughout MAPK activity, but only 

during increasing or stable Hog1 activity. Similarly, we have highlighted a positive correlation 

between transcription initiation time and the transcriptional output of a cell, illustrating the 

heterogeneity in MAPK activity through the full activity window. In addition to signaling, we 

have shown that chromatin compaction at the locus negatively correlates with the 

transcriptional response time and the number of expressing cells. We have demonstrated that 

this requirement for chromatin remodeling will dictate the dependency toward transcription 

factor, with low compaction promoter exhibiting only small loss-of-function. Finally, we have 

illustrated the promoter-specific component dictating the transcriptional termination, which 

cannot solely be explained by HOG deactivation.  
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Chapter 6: General discussion and perspectives 

 

6.1 Discussion 

 

6.1.1 On the use of the PP7 system for mRNA labelling 

 

Start and end times 

Detection of a PP7 focus occurs as soon as a certain fluorescence above background is reached 

at the transcription site, when enough PP7 stem-loops are transcribed and thus bound by 

fluorescently labelled PP7 proteins. Similarly, signal disappearance occurs supposedly when 

polymerases detach from the DNA locus and/or the transcript is exported from the nucleus to 

the cytoplasm. Thus, transcriptional activation is not detected immediately and transcription 

stopped before signal disappearance. One could thus argue that the PP7 system does not 

enable to truly measure promoter activity. However, unlike most of the available reporter 

assay which are protein-based, the PP7 system is RNA-based and thus is not delayed, nor 

buffered by export or translation.  

 

Transcription site fluorescence 

We discussed previously the importance of the level of synthetized pool of phage coat 

proteins to ensure labelling of all transcript and avoid titration of the system. Fine tuning of 

the coat protein levels is necessary for the detection of lowly expressed promoters and to 

avoid depletion from highly expressed ones. In addition, this protein pool is composed of fully 

mature and thus fluorescent PCP-FP fusion proteins and some that are folded but not yet 
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fluorescent. Yet these latter ones are capable of binding transcripts and could thus potentially 

lower the transcript fluorescent due to a mixed of fluorescent and non-fluorescent bound PP7-

FP. Highly induced promoters should be the more sensitive to this effect than less induced or 

less expressed transcripts.  

 

mRNA localization 

Because they give both spatial and temporal readouts, phage coat protein-based reporter 

assay have been used for mRNA localization and nuclear export studies. Although the 

presence of forty-eight bound PP7 protein and their fluorescent protein on a transcript may 

impact the quality and kinetic of nuclear export or cytoplasmic transport, comparison 

between strains identically tagged is feasible. Thus, the PP7 system can be used to study 

mRNA export but could also lead to transcription site residence time artifact in studies of 

transcription dynamics in mutant backgrounds. As an example, the nuclear envelop protein 

Nup60p, has been shown to be implicated in HOG gene regulation [195]. Gene deletion of 

NUP60 leads to an ever-lasting PP7 nuclear signal, which does not represent continuous active 

transcription but nuclear envelop staling of mRNA export (data not shown).  

 

Finally, because the presence of the stem-loops on a transcript were shown to alter its 

degradation and lead to its accumulation into Processing bodies (P-bodies) upon glucose 

starvation, utilization of phage coat proteins during harsh cellular conditions may not reflect 

the true transcript localization [163], although some improved reporter system were 

developed to remove this artifacts [177].  
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6.1.2 On the use of gene deletions to study regulation 

In chapter 4, we report on transcription factor and chromatin implication on osmostress genes 

transcription. To do so, we performed total gene deletions, as traditionally performed in 

yeasts. However, proteins of chromatin complexes are often part of other complexes, like the 

Gcn5 protein, which is a catalytic subunit of both the ADA and SAGA histone acetyltransferase 

complexes and a subunit of RSC chromatin-remodeling complex [196, 197]. Additionally, 

chromatin remodeling complexes are not only regulating osmostress genes, thus the deletion 

can have multiple side effects that may contribute to the mutant phenotype. This is already 

visible by the morphological differences of the cells, on their shapes (arp8', asf1') or size 

(set1', gcn5'), on their growth rates (decreased in all mutants) and on their Hog1 MAPK 

signaling activity (data not shown). Similarly, deleting a transcription factor will affect all its 

regulon and possibly affect the signaling and/or adaptation itself, through the transcription of 

signaling proteins or glycogenic enzymes [73]. However, at low salt stress, we did not observe 

an effect on the adaptation time from Hot1 or Sko1 deletion, which suggest that it may not 

play a role for short adaptation times. 

 

Instead of complete knock out of protein from chromatin remodeling and modifying 

complexes, conditional mutants could be used. In addition to temperature sensitive alleles, a 

fast loss-of-function can be achieved either by targeting the protein to another sub-cellular 

location or by inducing its specific degradation [198, 199]. Either of these two following 

methods would enable us to limit the prominent side effects of chromatin complexes proteins 

deletion and should be integrated in futures studies, especially when using single-cell level 

assay, on the contrary to population-averaged measurements where differences may be less 

detectable. 
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Anchor-away of nuclear proteins 

Ten years ago was developed the Anchor-Away (AA) technique, which enables to deplete 

quite rapidly a targeted protein from a yeast nucleus [198]. Thanks to the addition of a tag to 

the protein of interest and to the cytoplasmic protein chosen as anchor, rapid 

heterodimerization is achieved by addition of Rapamycin, which regulates the interaction, 

leading to nuclear depletion of the target. AA strains have been recently designed for Gcn5 

and INO80, which show a complete depletion from the nucleus within an hour of rapamycin 

treatment [200, 201]. The clear advantage of this method is that it enables to growth yeast 

cells with a functional protein before its depletion. However, this assay suffers from three 

major drawbacks: first, since Rapamycin is used as inducer for the system, strains have to be 

made Rapamycin insensitive through the point mutation of TOR1 into tor1-1 and deletion of 

Fpr1p [198], which does not allow to work in wild type background. Second, the interaction 

between the target and anchor is not reversible, which does not enable transient inactivation 

and thus limits experimental conditions. Third, the depletion is still relatively long compared 

to the budding yeast cell-cycle.  

 

Inducible degradation of nuclear proteins 

A faster method derived from plant cells for the conditional loss-of-function of specific protein 

is the Auxin Inducible Degron (AID) [199]. Tagging of the targeted protein with IAA and 

constitutive expression of the Tir1p, leads to the polyubiquitination and proteasomal 

degradation of the protein upon auxin mediated IAA-Tir1p interaction. The advantage of AID 

over the AA is the faster depletion, with a thirty minutes requirement, and fewer genetic 

modifications of the carrier strain. However, recent studies suggest an auxin-independent 
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depletion of endogenously tagged proteins, which then has to be tested and can be rescue by 

decreasing the IAA tag size [202].  

 

d-Cas9 mediated sterical hindrance of TF binding sites 

Similarly to chromatin remodeling complexes proteins, Transcription Factors (TFs) regulate a 

set of genes, which can even vary depending on the experimental conditions. In the HOG 

pathway, five TFs activate more than three hundred genes upon osmotic shock. Deletion of 

one of them will affects more than the gene of interest and possibly the cell responses. To 

avoid TFs depletion, regulatory sequence mutations have been extensively used. However, 

this could affect neighboring binding sites and/or chromatin conformation. Thanks to the 

recent development of the CRISPR/Cas9 technology, many novel applications have been 

developed. The Skotheim lab developed an assay for the reversible disruption of specific 

transcription factor-DNA interactions using the dead Cas9 (dCas9) to hinder TF binding [203]. 
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6.2 Perspectives 
 

6.2.1 Reveal the mechanism behind osmostress gene bursting 

In this study, we have constructed PP7 strains reporting on six different osmostress induced 

promoters. Because all the promoters we tested show a bursty phenotype, independently of 

their basal level and thus chromatin compaction level, we can question the source of 

transcriptional bursts. Indeed, from this we would exclude the implication of chromatin 

remodeling, since the pGPD1 promoter, which displays the larger number of bursts, also 

displays the higher basal level (Chapter 4, Figure 2). In addition, promotor proximal pausing 

has still not been shown in yeasts and seems to appear only in higher eukaryotic cells [114]. 

Therefore, the two most probable explanations, which may not exclude each other, are the 

signaling activity and gene looping. Note that, this also questions whether there is a unique 

mechanism of transcriptional bursting for all osmostress genes? An attempt to dissect the 

source of pSTL1 bursting through promoter sequence truncation is shown in Annex 2. 

 

Transcription factor activation 

Because most osmostress genes are repressed under basal conditions and induced upon 

osmotic shock, the source of HOG gene transcription dynamics should be “transmitted” or 

“extrinsic” bursting, as described in the introduction section. Indeed, we observed a tight 

correlation between Hog1 dynamics and transcription initiation in Chapter 2, whereby the 

onset of the MAPK activity is dictating the promoter’s transcriptional profile. Since osmostress 

transcription factors Hot1 and Sko1 are constitutively bound to the chromatin, it is not their 

DNA binding dynamics per se dictating the transcriptional bursts. However, their activation 

through Hog1 recruitment may responsible for the transmitted transcriptional bursts. A 
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possible way to test this hypothesis would be to simultaneously follow single Hog1 molecule 

attachment to an osmostress promoter and the PP7 signal apparition from this promoter 

transcription activity in live-single cells. This imaging feat was recently achieved by Donovan 

and colleagues’ study, in which they monitor transcription factor binding dynamics influence 

on downstream transcriptional activity [113]. A similar experiment could thus be performed 

with a Hog1-Halo tag [204], however, due to the high number of Hog1 molecules, only partial 

labelling of the pool should be realized to enable detection. 

 

However, since osmostress genes receive both inputs from the HOG and from the general 

stress response pathway, it is then likely that Msn1, Msn2 and Msn4 activation also transmits 

downstream gene transcriptional activation. Therefore, choice of the reporter gene promoter 

to be monitored should be based on its dependency toward both pathways or in TF deletion 

background, to simplify the inputs acting on the system. For instance, HSP12 and STL1 could 

be good candidates for Msn2 and Hog1 single-molecule imaging experiment respectively, 

since they majoritarily depend on one of the two pathways and do not display basal 

expression, which would otherwise increase the data analysis complexity.  

 

Gene looping maintains a locus transcriptionally potent 

Although transmitted activity to transcription factor may explain the initiation of bursting, the 

question on how are multiple bursts generated remains. It was shown in yeast that some 

genes were associated with the nuclear enveloped upon transcription to couple mRNA 

production and export, phenomenon named “gene gating” [205]. This interaction at the 

periphery would be mediated by protein from the Nuclear Pore Complex (NPC) and from the 

transcriptional machinery in the format of NPC-mediated gene looping, as observed for the 
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galactose inducible gene GAL1 [108]. Indeed, it was previously shown that osmostress 

genomic loci were targeted to the nuclear periphery in a Hog1-dependent manner and that 

gene expression was affected by nuclear envelop protein deletions [148, 195]. Because NPC 

deletion induces a defect in the mRNA export, the best way to test for this hypothesis would 

be to perform a Hi-C chromosome interaction assay [206], to capture all physical 3D 

conformational changes happening upon osmostress with a one kilobase resolution [207]. 

 

Cell state influences bursting 
 
A third explanation which may account for either the entire or partial mechanism of gene 

bursting was recently reported from mammalian cells studies, in which the high 

transcriptional single-cell variation attributed to gene bursting was abolished by taking into 

consideration the cellular parameters like cell-cycle stage or cell size. The remaining variability 

could be explained by a Poisson distribution, therefore suggesting that bursting arises from 

cellular condition (Forman and Wollman, bioRxiv 2019) [208]. A similar analysis could be 

performed by addition a cell-cycle reporter or chemically synchronizing the cells prior salt 

stress or in silico clustering based on cell-size, to assess whether osmostress gene transcription 

dynamics are partially (or totally but less likely) explained by cellular state. However, HOG 

signaling is independent of cell-cycle, thus this variable does likely not come into play [209]. 

 

6.2.2 d-Cas9 alteration of nucleosomes positioning in vivo 

We have shown in Chapter 4 that promoters with basal activity had a faster transcriptional 

response than promoters without basal level. These results highlighted a stronger 

requirement for chromatin remodeling activity at the later one. Thus, we have tried to modify 

the chromatin compaction by performing chromatin remodeling complexes mutants or 



Chapter 6: General discussion and perspectives 
 

246 
 

growing cells in a different carbon sources to reduce the locus repression. Alternatively, one 

could have a more specific effect by targeting chromatin remodeling complexes to osmostress 

genomic loci in an osmotic stress-independent manner. Indeed, it was shown that dCas9 

targeting of a catalytic domain of a chromatin remodeling complex either through TF-fusion, 

tag and epitope or gRNA induced a selective repositioning of target site neighboring 

nucleosomes in vivo (Donovan et al. bioRxiv 2018). Thanks to a GAL inducible promoter 

expressing the catalytic subunit, nucleosomes sliding can be induced at will with carbon source 

shift. With this assay, we could envision to slide nucleosomes around TSS from non-basal 

expressing promoter to induce a faster transcriptional activation. An alternative idea could be 

to recruit INO80 or Set1 catalytic domain to osmostress prior stress instead of post-stress to 

see how competing forces, like nucleosomes repositioning and epigenetic marks would 

balance between activation and repression of the targeted locus. 

 

6.2.3 Identifying rate-limiting factors for transcriptional activation 

In this study, we use the STL1 promoter to developed our coupled reporter assay and in the 

study of HOG gene transcription dynamics. However, we did not investigate further the 

previously demonstrated high extrinsic noise of this promoter [77, 144]. The activation 

threshold set by chromatin compaction in a locus-specific fashion has been proposed as the 

main source of gene expression noise in HOG gene expression [77, 78]. Indeed, we and others 

have shown that osmostress genes are only poorly correlated to single-cell MAPK activity at 

the single-cell level. In addition, we have shown that two copies of an STL1 promoter are 

poorly correlated within a cell population (extrinsic noise) and within a single-cell (intrinsic 

noise) [77, 144].  
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In this study, we have performed some initial experiments in diploids PP7 reporter strains to 

assess the effect of signaling protein numbers on pSTL1 transcriptional activity. To test this 

hypothesis, we generated diploid budding yeast strains of our pSTL1-PP7 reporter at the 

identical genomic location in both parental strains and remove one allele of HOT1, SKO1 or 

HOG1 and compared them to the homozygote wild type in an osmotic stress challenge 

experiment (Figure 20 and 21). As a measure of transcriptional activity, we counted the 

maximum number of transcription sites per cell and defined sub-population based on these 

numbers (Figure 20A). Indeed, our current analysis platform does not yet allow us to monitor 

more than one transcription site at a time. To ensure labelling of all transcripts, both parental 

strains were expressing a PP7-GFP allele, thus maintaining the ratio between pSTL1-

PP7sl/PP7-GFP equal to one (Figure 20A). In addition, strains were subjected to a 0.1M NaCl 

stress, to make differences between the strains more visible than at 0.2M NaCl where almost 

all the cells are expressing in haploid background.  

 

As shown in Figure 20B, almost all the diploid homozygotes cell population transcribed after 

a 0.1M NaCl induction, with only 11% of non-responding cells. In addition, we observed equal 

probabilities of having one or two transcription sites and very few cells with three dots or 

more, which corresponds to actively dividing cells. Interestingly, cells with half less Hog1 

molecules lost a high transcriptional power, with the loss of 30% of responding cells, to the 

expense of the two-dot cell population (Figure 20B). We observed an even more severe 

phenotype in Hot1 heterozygotes, with a 40% loss of responding cells. This demonstrated the 

epistatic effect of Hot1 on Hog1 for the STL1 promoter, whereby HOT1 deletion haploid strain 

is transcriptionally dead. Interestingly, Sko1 heterozygotes showed the weaker loss-of-

function, which goes in line with the repressor innate function of the transcription factor. 
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Figure 20: Diploids pSTL1-PP7 reporter strains and their dose-dependency toward transcriptional effectors. 

 (A) Representative microscopy images of homozygote diploids reporter strains carrying two pSTL1-PP7 alleles integrated into 

both GLT1 loci, two allele expressing the phage coat proteins and the two HTA2 allele tagged with tandem dimer infrared RFP 

(tdiRFP) fluorophores, here false colored in magenta. (B) Bar plot of the percentages of cells in each sub-population defined 

based on the maximum number of actively transcribing transcription site per cell. Since the cells carry two copies, there can 

be up to four simultaneous transcription foci per nuclei of dividing cell.  

 
Hog1 sub-cellular localization is tightly regulated. To assess whether deletion of half of the 

pool of protein affected the dynamics of the remaining ones, we tagged one Hog1 allele with 

an mCherry to monitor the dynamics of MAPK activity in the heterozygote and compare it to 

the homozygote. We subjected the strains to various salt concentrations and tested their 

ability to relocate the MAPK and trigger pSTL1-PP7 response, independently of the 

transcription site number (Figure 21). As shown in Figure 21A, Hog1 nuclear relocation 

dynamics upon osmotic shock, and thus cells’ adaptation, is not affected by the MAPK’s 

protein level, since we observed comparable dynamics. The only noticeable difference being 

a slight increase at 0.1M NaCl (Figure 21A). However, we indeed observed a loss of 

transcriptional readout from the heterozygotes at all salt concentrations (Figure 21B). These 
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results are in line with our previous quantification of the number of alleles being 

transcriptionally activated (Figure 20B). Note that here we did not make z-stacks in this 

acquisition, nor used the same imaging conditions, therefore the absolute percentages of 

responding cells cannot be directly compared to the previous figure.  

 

Interestingly, the number of responding cells was more affected at low salt stress with a more 

than 50% and 70% loss at 0.1M and 0.2M respectively, than at higher salt stress, where the 

decrease if of 15% (Figure 21C). We confirmed that these results were not due to Hog1 nuclear 

relocation at the single-cell level, since more than 95% of the cells overcome the Hog1 nuclear 

relocation threshold set at 20 RFU of nuclear minus cytoplasmic fluorescences (Figure 21, A 

and D).  
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Figure 21: pSTL1 expression is limited by Hog1 molecules number. 
 (A) Hog1-mCherry nuclear minus cytoplasmic fluorescence subtracted for the basal level in diploids heterozygotes (dashed 

lines) and homozygotes (full lines) in response to increasing salt concentrations from 0.1M to 0.4M NaCl. (B) Corresponding 

pSTL1-PP7 population traces, where the intensity of the transcription site minus the background fluorescence and the basal 

level are subtracted. No distinction between the transcription site number, only the higher intensity one is quantified at each 

time point. (C) Bar plot of the percentage of PP7 positive and negative cells for each strain and experiment. Expressing cells 

were defined thanks to the segmentation of at least one transcription focus. (D) Bar plot of the percentage of each sub-

population corresponding positive and negatives for both PP7 and Hog1 nuclear accumulation, as defined by the arbitrary 

threshold of 20 RFU on the nuclear minus cytoplasmic fluorescence subtracted for the basal level, as plotted in A.  

 
These initial data strongly suggest a system in which the number of TF molecules would be 

limiting for the recruitment of chromatin remodeling enzymes. Thus, noise from different 

osmostress genes would be the side effect of low protein number and affect predominantly 

the locus which are highly Hog1-dependent, like STL1, on the contrary to less dependent ones, 

like pGPD1, which interestingly displays a lower intrinsic noise [144]. Indeed, according to the 

Yeast GFP Fusion Localization Database [210], there is only be 149 and 504 molecules per cell 

of Hot1p and Sko1p respectively, compared to the 6780 Hog1p/cell and more than 300 genes 

induced upon osmotic shock [210]. Since we would not be able to resolve the presence of a 

single or double allele within a single PP7 focus, these data should be repeated in a dual color 

diploid strain or a strain with a single-labelled allele for more accurate measurement of each 

phenotype.  

 

Increase PP7 assay throughput 

The current biggest drawback of phage coat protein assay is their low throughput. Indeed, due 

to the dynamic nature of the readout, precision is lost with smaller time-resolution and thus 

limits the simultaneously monitoring of multiple reporter strains. A possible improvement to 

the method could make use of a microfluidic system. The first possibility would be to use the 

device published by Dénervaud and colleagues [211]. This parallel microchemostat array 
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enables to grow more than a thousand of yeast strains independently directly into the 

microfluidic device and image them either simultaneously or consecutively [211]. However, 

cells are neither trapped nor attached to the chamber’s surface, it would thus require a highly 

performant tracking and segmentation software to follow single-cell over time. In addition, 

since cells will fill the entire chamber before being waste into the outlet, the confluence of the 

cells might not allow to make a homogenous induction with exogenous medium like osmotic 

solution. This system may thus more suitable to housekeeping genes monitoring.  

 

The second possibility, would be to use a multiplied Alcatraz system [212], which enables to 

trap single yeast cells for long term imaging. Unlike the previous system, this device does not 

lead to cellular crowding and traps the cells at a defined position, it would thus simplify the 

segmentation and tracking parts, together with increasing the accuracy of medium perception 

by all the single cells. However, since this assay was initially designed to study aging, the same 

original single-cell is image throughout the generation, generating a bias in the single-cell 

population age over time. A possible was to circumvent this would be to flow cells one 

chamber after the other through an additional inlet.  
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6.3 General conclusion 

 

In this study, we illustrate the versatile application of mRNA-based reporter assays, which are 

up to now the closest assays to report on promoter activity in living cells and that can be 

applied to a broad range of specimen, from single-cell to whole animal. Therefore, the use of 

phage coat proteins in the field of mRNA studies will continue to thrive. Together with the 

advent of single-cell sequencing, targets of interest will be identified and dynamics temporal 

and localization studies could be performed with the phage coat protein-based reporter 

assays. 
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Annex 1: additional reporter strains 
 
Supplementary Table 3: coupled PP7-dPSTR reporter strains 

Strain 
name 

Ancestor 
strain 

Plasmid dPSTR part Coupled system Integrati
on site 

PP7 expression YQ + 
0.4M 
0.2M 

yVW61 yVW58 pVW81 pSIVu pRPS20 
CFP SZ2 tCYC1 

pSTL1 2xNLS SZ1 PP7sl 400bp tCYC1 URA3 pCYC1 PP7 2xGFP tCYC1 1745 
1618 

yVW62 yVW59 pVW81 pSIVu pRPS20 
CFP SZ2 tCYC1 

pSTL1 2xNLS SZ1 PP7sl 3kb tCYC1 URA3 pCYC1 PP7 2xGFP tCYC1 1746 

yVW63 ySP261 pVW71 pSIVu pRPS20 
CFP SZ2 tCYC1 

pSTL1 2xNLS SZ1 tCYC1 URA3 None 1767 
1788 
1822 

yVW65  ySP261 pVW83 pSIVu pRPS20 
CFP SZ2 tCYC1 

pSTL1 2xNLS SZ1 PP7sl 1kb tSIF2 URA3 None 1748 
1789 

yVW72 yVW65 pVW81 pSIVu pRPS20 
CFP SZ2 tCYC1 

pSTL1 2xNLS SZ1 PP7sl 1kb tSIF2 URA3 pCYC1 PP7 2xGFP tCYC1 - 

yVW67 ySP261 pVW95 pSIVu pRPS20 
CFP SZ2 tCYC1 

pSTL1 2xNLS SZ1 50bp PP7sl 400bp 
tCYC1 

URA3 None 1747 
1794 

yVW73 yVW67 pVW81 pSIVu pRPS20 
CFP SZ2 tCYC1 

pSTL1 2xNLS SZ1 50bp PP7sl 400bp 
tCYC1 

URA3 pCYC1 PP7 2xGFP tCYC1 - 

yVW68 ySP261 pVW85 pSIVu pRPS20 
CFP SZ2 tCYC1 

pSTL1 2xNLS SZ1 3kb tSIF2 URA3 None 1749 

yVW74 yVW68 pVW81 pSIVu pRPS20 
CFP SZ2 tCYC1 

pSTL1 2xNLS SZ1 PP7sl 3kb tSIF2 URA3 pCYC1 PP7 2xGFP tCYC1 1804 

yVW75 
(=yVW76) 

ySP261 pVW103 pSIVu pRPS20 
CFP SZ2 tCYC1 

pSTL1 2xNLS SZ1 50bp PP7sl 1kb 
tSIF2 

URA3 None 1819 
1820 

yVW78 
(=yVW79) 

yVW75 pVW81 pSIVu pRPS20 
CFP SZ2 tCYC1 

pSTL1 2xNLS SZ1 50bp PP7sl 1kb 
tSIF2 

URA3 pCYC1 PP7 2xGFP tCYC1 1826 
1881 
1827 
1882 

yVW95 
(=wt mid 

thesis) 

yVW94 pVW81 pSIVu pRPL24A 
mCherry SZ2 

pSTL1 2xNLS SZ1 50bp PP7sl 1kb 
tSIF2 

URA3 pCYC1 PP7 2xGFP tCYC1 2029 
2150 
2179 
2498 

yVW110 yED159 pVW162 pSIVu pRPS6B 
mCherry SZ2 

pSTL1 2xNLS SZ1 50bp PP7sl 1kb 
tSIF2 

URA3 None 2387 
 

yVW111 yVW110 pVW81 pSIVu pRPS6B 
mCherry SZ2 

pSTL1 2xNLS SZ1 50bp PP7sl 1kb 
tSIF2 

URA3 pCYC1 PP7 2xGFP tCYC1 - 

yVW191 yED212 pVW199 pSIVu pRPL24A 
mCherry SZ4 

pSTL1 4xSZ3 PP7sl 1kb tSIF2 URA3 None 2824 

yVW193 yVW191 pVW201 pSIVu pRPL24A 
mCherry SZ4 

pSTL1 4xSZ3 PP7sl 1kb tSIF2 URA3 pCYC1mut PP7 sfGFP 
tCYC1 

2848 
2849 

yVW205 yED212 pVW211 pSIVu pRPL24A 
mCherry SZ4 

pSTL1 2xNLS 4xSZ3 PP7sl 50bp 1kb 
tSIF2 

URA3 None 2955 
2955 
2962 
2963 
 

yVW210 yED212 pVW208 pSIVu pRPL24A 
mCherry SZ2 

pSTL1 UbiY 2xnpNLS 4xSZ1 50bp 
PP7sl 1kb tSIF2 

URA3 None 2982 
3059 

yVW211 yVW205 pVW212 pSIVu pRPL24A 
mCitrine SZ4 

pSTL1 2xNLS 4xSZ3 PP7sl 50bp 1kb 
tSIF2 

URA3 pSIVh pCYC1 PP7 
mCherry tCYC1 

- 

yVW213 yVW210 pVW201 pSIVu pRPL24A 
mCherry SZ2 

pSTL1 UbiY 2xnpNLS 4xSZ1 50bp 
PP7sl 1kb tSIF2 

URA3 pSIVh pCYC1mut PP7 
sfGFP 

2981 
2980 

yVW220 yVW210 pVW220 pSIVu pRPL24A 
mCherry SZ2 

pSTL1 UbiY 2xnpNLS 4xSZ1 50bp 
PP7sl 1kb tSIF2 

URA3 pSIVh pCYC1mut PP7 
GFPenvy tCYC1 

3007 
3008 
3037 

yVW223 yVW210 pVW221 pSIVu pRPL24A 
mCherry SZ2 

pSTL1 UbiY 2xnpNLS 4xSZ1 50bp 
PP7sl 1kb tSIF2 

URA3 pSIVh pCYC1mut PP7 
GFPivy tCYC1 

3028 
3028 

yVW232 
(=210 

stable) 

yED212 pVW219 pSIVu pRPL24A 
mCherry SZ2 

pSTL1 2xnpNLS 4xSZ1 50bp PP7sl 
1kb tSIF2 

URA3 None  

yVW278 yVW210 pVW127 pSIVu pRPL24A 
mCherry SZ2 

pSTL1 UbiY 2xnpNLS 4xSZ1 50bp 
PP7sl 1kb tSIF2 

URA3 pSIVh pCYC1 PP7-2xGFP 
tCYC1 

 

yVW447 yVW210 pVW297 pSIVu pRPL24A 
mCherry SZ2 

pSTL1 UbiY 2xnpNLS 4xSZ1 50bp 
PP7sl 1kb tSIF2 

URA3 pSIVh pADH1 PP7dFG-
GFPenvy tCYC1 

3803 
4011 
4017 
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4018 
4019 
4020 
4021 
4022 
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Supplementary Table 4: coupled PP7-Venus reporter strains 

Strain 
name 

Ancestor 
strain 

Plasmid Venus 
part 

Coupled system Integration 
site 

PP7 expression YQ + 0.4M 
0.2M 

yVW24 yVW5 pVW11 Venus pSTL1 Venus PP7sl GLT1 pRS pCYC1 PP7 mCherry 1279 
1344 
1345 
1346 
1498 
1535 
1769 
1775 
1883 
3518 
3519 

yVW51 yVW49 pVW11 Venus pSTL1 Venus PP7sl GLT1 pRS pCYC1 PP7 qCherry tCYC1 1518 
yVW376 yVW190 pVW97 Venus pSTL1 Venus 50bp PP7sl GLT1 pSIVu pCYC1mut PP7-dCherry tCYC1 3559 

 
yVW427 yVW446 pVW97 Venus pSTL1 Venus 50bp PP7sl GLT1 pSIVu pADH1 PP7 mCherry tCYC1 3874 

3884 
3956 
3957 
3973 
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Supplementary Table 5: pSTL1 Venus strains for PP7 stem-loops effects 

Strain name Ancestor 
strain 

Plasmid Coupled part PP7 part Integration 
site 

YQ + 0.2M NaCl 

ySP269 ySP2 - - - - 2297 
2336 
2337 
3137 

yVW119 ySP269 pVW171 - pCYC1 PP7-dCherry tCYC1 - 2389 
2425 
2427 

yVW112 
 

ySP269 pVW11 pSTL1 Venus PP7sl  GLT1 2297 
2336 
2337 

yVW120 yVW112 pVW171 pSTL1 Venus PP7sl pCYC1 PP7-dCherry tCYC1 GLT1 2389 
2425 
2427 

yVW113 ySP269 pVW97 pSTL1 Venus 50bp PP7  GLT1 2297 
2336 
2337 

yVW121 yVW113 pVW171 pSTL1 Venus 50bp PP7 pCYC1 PP7-dCherry tCYC1 GLT1 2389 
2425 
2427 

yVW114 ySP269 pVW97 pSTL1 Venus  GLT1 2336 
2337 
3137 
3149 

 
yVW122 yVW114 pVW171 pSTL1 Venus pCYC1 PP7-dCherry tCYC1 GLT1 2389 

2425 
2427 
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Supplementary Table 6: pSTL1 (1-800) truncations 

Strain name Ancestor 
strain 

Plasmid pSTL1 variant Venus Integration 
site 

Nickname YQ + 0.4M 
0.2M 

ySP269 ySP2     « background » 3137 
yVW114 ySP269 pVW97    « wt » 3137 

3149 
yVW259 ySP269 pVW238 164-800 Venus GLT1 « 1xSTRE » 3137 
yVW260 ySP269 pVW239 1-771 Venus GLT1 « gaaaa less » 3137 

3162 
yVW261 ySP269 pVW240 1-689/701-800 Venus GLT1 « TATA less » 3149 
yVW262 ySP269 pVW241 1-174/690-800 Venus GLT1 « minimal » 3149 
yVW263 ySP269 pVW243 1-174 Venus GLT1  3162 
yVW264 yVW262 Hog1d     3205 
yVW265 yVW262 Hot1d     3189 
yVW271 ySP269 pVW249 1-174/mCherry/690-800 Venus GLT1 « sandwich »  

3234 
3261 

 yVW271 Hot1d     3261 
 yVW271 Hog1d     3261 
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Annex 2: Chapter 4’s strains genotyping 
 

 
Figure 22: Colony PCR on strains from chapter 4. 
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Annex 3: chapter 4 strains construction and controls 
 

pSTL1 PP7 strains- yVW403 background - Hta2-RFP+ PP7dFG-GFPenvy + STL1 PP7::GLT1 
 

deletion strain 
name 

colony PCR date PCR 62 or 
390? 

clones 
isolated 

screening TL date screening TL results 

hot1 yVW405 180717 both 2, 3 180723 clones identical 

hog1 yVW406 180627 both 1, 2 180711 clones identical 

sko1 yVW407 180627 both 1, 2 180711 clones identical 

spt3 yVW408 180627 390 1, 2 180711 clones identical 

gcn5 yVW409 180627 both 2, 3 180710 clones identical 

arp8 yVW410 180627 both 1, 2 180710 clones identical 

asf1 yVW411 180627 + 
181121 

both 1A, 2A + 
1,2,3 

180711 + 181206 c1A and 2A different,  
1 and 2 similar, 3 slightly different 

set1 yVW412 180627 390 1, 2 180710 clones very similar 

sus1 yVW413 180627 both 1, 2, 3 180723 + 180727 clone 2 sick, 1 and 3 similar 

mlp1 yVW414 180627 both 1, 2 180710 clones identical 

ada2 yVW415           

htz1 yVW416 181010 fw 2,3,4 181121 clones similar 
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Annex 4: chapter 4 strains microscopy experiments 
 
Replicate experiments were the cells were further diluted are shown in yellow, but are not 
exhaustive. Replicate selected as representative of the strain and condition are indicated in 
green. Time-lapse experiments that were discarded due to cell physiology and/or imaging 
acquisition errors are indicated in red. 
 
Supplementary Table 7: pSTL1 PP7 mutant strains 

Strain [NaCl] Replicate n° TL date YQ n° OD600 
Cell 

number Comments 

yVW403 SD 1 181120 3739 0.18 313 identical, take higher cell number 

pSTL1   2 181127 3765 0.31 307 identical, take higher cell number 

wt 0.1M 1 181120 3745 0.19 404 much more PP7 positive cells and higher amplitude 

    2 181127 3763 0.20 196 delayed compared to three others 

    3 181129 3776 0.08 258 same hight as 2 

    4 190118 3834 0.30 190 similar to rep 1 

  0.15M 1 181127 3756 0.13 259 clearly higher than others,  

    2 181129 3774 0.32 177 same as rep4 but more cells 

    3 181204 3781 0.12 210 delayed compared to two others 

    4 190118 3833 0.30 74 similar to rep 2 

  0.2M 1 181120 3737 0.12 392 higher/wrong NaCl, highly delayed 

    2 181127 3762 0.16 229 same dynamics as other concentrations, similar height to other replicate 

    3 181129 3775 0.38 224 slightly faster than other rep and concentrations 

    4 190118 3832 0.25   slightly delayed but similar to rep2 and rep3 

  0.3M 1 190118 3831 0.20 153 delayed and lower compared to rep3 and to 0.2M 

    2 190122 3839 0.09 176 shrinks more than two others, LED weird 

    3 190124 3849 0.21 201 faster and higher than rep1 

yVW405 0.1M 1 190222 3872 0.26 230 slightly slower 

    2 190312 3898 0.31 276 dynamics like rep3 

    3 190326 3936 0.11 334 dynamics like rep2, peaks and respcells number like rep1 

hot1 0.2M 1 181120 3738 0.21 221 identical, take higher cell number 

    2 181127 3757 0.21 63 shrink a bit less and adapt faster, much less cells 

    3 181129 3772 0.32 349 identical, take higher cell number 

  0.3M 1 190222 3871 0.21 316 all quite similar 

    2 190312 3897 0.22 242 all quite similar 

    3 190503 4004 0.17 240 all quite similar 

yVW406 0.2M 1 181120 3740 0.20 297 shrink much more than others, only that does not adapt 

hog1   2 181127 3761 0.24 307 adapts? Smaller cells than two others 

    3 190122 3840 0.06 143 adapts? 

yVW407 0.1M 1 190312 3896 0.15 416 identical, has more cells 

sko1   2 190314 3914 0.15 384 identical 

  0.2M 1 181120 3742 0.36 529 identical, sligthly slower than two others 

    2 181127 3764 0.26 222 identical 
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    3 181129 3773 0.35 246 slightls different PP7 kinetics, led issue? 

  0.3M 1 190312 3895 0.15 261 similar to rep2 

    2 190314 3914 0.15 215 similar except end of response andstartime, shrinks more 

    3 190503 4005 0.17   lot of dead cells + weird led + less respcells 

yVW408 0.2M 1 181204 3788 0.14 94 identical kinetics, take highest cell number 

spt3   2 181207 3795 0.14 187 identical kinetics, adapts faster because smaller cells 

yVW409 0.2M 1 181120 3746 0.06 197 response different 

gcn5   2 181204 3789 0.04 88 shrinks a lot more, delayed, response lower 

    3 190124 3852 0.06 148 looks like rep1 

yVW410 0.2M 1 181120 3747 0.03 124 slightly lower than two others, cells bigger 

arp8   2 181127 3766 0.05 82 similar to rep3 

    3 190124 3853 0.03 95 similar to rep2, bact contaminated so take rep2 

yVW411 0.2M 1 181213 3821 0.04 70 very similar, more cells 

asf1   2 190122 3846 0.03 38 very similar, not enough cells, cells a bit bigger 

yVW412 SD 1 181127 3760 0.38   identical 

set1   2 181129 3777 0.08 166 identical 

  0.1M 1 181120 3744 0.40 196 slightly faster but lower than rep2 and rep3, OD very high 

    2 181129 3779 0.12 188 slightly bigger cells that shrink more, same height as rep3 and rep1 

    3 181207 3792 0.05 149 slightly delayed, similar to rep2 

    4 190122 3845 0.21 121 lower than three others 

  0.15M 1 181129 3778 0.09 218 identical, weird GFP bleaching curve 

    2 181204 3785 0.12 94 identical 

    3 181207 3793 0.05 202 overlaps with 0.2M data 

  0.2M 1 181120 3741 0.14 253 identical 

    2 181129 3780 0.14 224 identical 

    3 181204 3784 0.11 149 identical 

yVW413 0.2M 1 181204 3787 0.13 259 identical 

sus1   2 181207 3800 0.20 129 identical 

yVW414 0.2M 1 181204 3786 0.12 489 identical 

mlp1   2 181207 3794 0.05 207 identical 

yVW416 SD 1 181207 3799 0.27 133 slightly different than two others 

htz1   2 190118 3838 0.16 141 similar, more cells 

    3 190122 3841 0.05 110 similar 

  0.1M 1 181207 3798 0.27 133 quite variable population trace at 0.1M, but similar PP7 peaks/respcells 

    2 190118 3836 0.12 171 shrinks more than two others 

    3 190122 3845 0.08 108 much lower response, less respcells 

  0.15M 1 181207 3797 0.16 197 very similar 

    2 190118 3837 0.16 201 very similar 
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    3 190122 3844 0.05 188 shrinks more than two others 

  0.2M 1 181207 3796 0.16 175 similar, more cells 

    2 190118 3835 0.10 81 not enough cells 

    3 190122 3842 0.08 112 slightly delayed compare to two others 
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Supplementary Table 8: pHOG PP7 strains 

Strain [NaCl] 
Replicate 

n° TL date YQ n° OD600 Cell number  

yVW428 SD 1 181211 3814 0.08 89 identical 

pCTT1   2 181213 3820 0.18 120 identical 

wt 0.1M 1 190118 3830 0.17 127 cells bigger and faster response 

    2 190124 3851 0.22 428 similar to rep3 but higher 

   3 190222 3870 0.11 327 similar to rep2 but lower 

   4 190314 3917 0.20 324 cell bigger, responds more than all the others 

  0.2M 1 181211 3813 0.08 85 shrinks much more, cells much bigger 

    2 181213 3819 0.18 206 faster than two others but similar to rep3 

    3 190118 3827 0.07 140 similar to rep2 

yVW429 SD 1 190222 3873 0.23 291  

pHSP12   2 190312 3903 0.17 193 has less basal level than others TL 

wt 0.1M 1 190314 3913 0.21 306 faster and shorter, more respcells 

    2 190326 3933 0.09 215 delayed and longer, called yVW426 in export by mistake, bigger cells 

   3 190405 3967 0.11 217 faster to two others but similar to rep1, way more basal level 

  4 190412 3977 0.13 320 similar to rep2 

  0.2M 1 190222 3868 0.16 186 has less basal level than others TL, led oscillating 

    2 190226 3875 0.09 96 similar to rep3, but not so many cells, rep4? 

    3 190312     192 responds less than two others 

   4 190329  0.12 283 similar to rep2 but way more cells 

   5 190402 3962 0.23 311 slightly delayed 

yVW430 SD 1 181127 3755 0.15 248 identical, more cells 

pGRE2   2 181129 3767 0.09 178 identical 

wt 0.1M 1 190118 3826 0.08 201 identical 

    2 190222 3867 0.10 309 identical 

  0.2M 1 181127 3754 0.10 289 identical 

    2 181129 3768 0.09 197 cells bigger, shrinks more, response different 

    3 181204 3783 0.12 233 identical 

yVW431 SD 1 181127 3753 0.16 114 identical 

pALD3   2 181129 3769 0.13 183 identical, highest cell number 

wt 0.1 1 190118 3829 0.13 218 lower than two others 

    2 190124 3850 0.18 334 similar to rep3 

   3 190222 3869 0.10 258 similar to rep2 

  0.2M 1 181127 3752 0.13 171 identical 

    2 181129 3770 0.16 158 slightly faster and shorter 

    3 181204 3782 0.09 51 identical, not enough cells 

yVW432 SD 1 181120 3743 0.13 214 identical 

pGPD1   2 181127 3759 0.31 196 identical 

wt 0.1M 1 190118 3828 0.11 229 identical to rep3 
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    2 190222 3866 0.11 269 30% higher and bit delayed 

    3 190314 3916 0.34 402 identical to rep1, a bit faster 

  0.2M 1 181120 3736 0.13 259 delayed 

    2 181127 3758 0.24 335 identical 

    3 181129 3771 0.20 281 identical 
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Supplementary Table 9: pHOG PP7 mutant strains 

yVW458 0.2M 1 190226 3882 0.22 326  

y432 set1d   2 190322 3924 0.08 353 higher and longer response than rep1 

    3 190329 3955 0.09 137 similar to rep1 

yVW456 0.2M 1 190226 3883 0.22 132 identical, cells a bit bigger 

y428 set1d   2 190314 3918 0.20 162 identical, more cells 

    3 190503 4008 0.32 198 identical, the most cells 

yVW457 0.2M 1 190503 4007 0.37 366 led oscillating, results like wt 
yVW430 
set1d   2          

yVW459 0.2M 1          
yVW431 
set1   2          

yVW460 0.2M 1 190405 3974 0.11 376 similar 
yVW429 
set1d   2 190503 4006 0.27 362 similar, less basal, shrink less nice 

yVW471 0.2M 1 190322 3920 0.06 334 similar 

yVW432 
hot1d   2 190326 3935 0.12 247 similar slightly faster and bigger cells 

    3 190503 4003 0.13   delayed and lower, more basal pos cells 

yVW472 0.2M 1 190322 3925 0.06   led power 100% need to image again 
yVW432 
sko1d   2 190326 3934 0.16 235 30% higer and longer response, cells bigger 

    3 190405 3968 0.10 360 30% lower and shorter response 

    4 190412 3981 0.13 310 identical to rep 3, except way more basal cells 

yVW486              
yVW430 
sko1d 0.2M 1 190620 4058 0.18 383 identical 

    2 190627 4078 0.07 292 identical 

  Sdfull 1 190627 4077 0.07    
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Supplementary Table 10: pHOG PP7 depletion control strains 

yVW476 0.2M 1 190405 3975 0.41 505 identical, more cells 

y432 pTEF PP7 clone 1 2 190412 3983 0.19 288 identical 

    3 190503 4001 0.06 198 higher than two others, less basal 

yVW477 0.2M 1 190405 3976 0.38 440  

y429 pTEF PP7 clone 1 2 190412 3979 0.14 378 bleaches more than others and more basal 

    3 190503 4002 0.06 280 similar to rep2 
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Annex 5: pSTL1 truncations 
 

 
 
Figure 23: Dissecting pSTL1 bursty behavior through sequence truncations. (A) From the original -800 bp to TSS cloned in all 
pSTL1 reporters, we generated truncation variants based on documented Hot1 binding sites (Bai et al 2015). Constructs are 
listed in Annex 3. 
 

 
Figure 24: Gene deletions time-lapse experiment of the pSTL1 minimal truncation variant with constitutive expression. 
Deletion of Hot1p and Hog1p were performed in the constitutive pSTL1 promoter variant to understand the source of 
endogenous expression.  
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