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Mechanisms and functions of intestinal vascular
specialization
Jeremiah Bernier-Latmani1, Alejandra González-Loyola2, and Tatiana V. Petrova1,3

The intestinal vasculature has been studied for the last 100 years, and its essential role in absorbing and distributing ingested
nutrients is well known. Recently, fascinating new insights into the organization, molecular mechanisms, and functions of
intestinal vessels have emerged. These include maintenance of intestinal epithelial cell function, coping with microbiota-
induced inflammatory pressure, recruiting gut-specific immune cells, and crosstalk with other organs. Intestinal function is
also regulated at the systemic and cellular levels, such that the postprandial hyperemic response can direct up to 30% of
systemic blood to gut vessels, while micron-sized endothelial cell fenestrations are necessary for nutrient uptake. In this
review, we will highlight past discoveries made about intestinal vasculature in the context of new findings of molecular
mechanisms underpinning gut function. Such comprehensive understanding of the system will pave the way to breakthroughs
in nutrient uptake optimization, drug delivery efficiency, and treatment of human diseases.

Introduction
The gastrointestinal (GI) tract is a portal for the body’s inter-
action with the outside world. It must serve to distribute nu-
trients systemically while simultaneously maintaining a barrier
to prevent infection from gut-borne microorganisms. Given this
crucial role for systemic health, the intestine has been a target
of widespread research that revealed gut specialization in the
epithelial, immune, nervous, muscle, and fibroblast systems
(Allaire et al., 2018; Brügger and Basler, 2023; Gehart and
Clevers, 2019; Mowat and Agace, 2014; Sylvestre et al., 2023;
Yoo and Mazmanian, 2017).

This specialization also extends to the intestinal vascular
system, which displays unique features and crosstalk with other
gut cell types. In addition to systemic nutrient absorption, recent
work shows a role for vessels in promoting gut homeostasis
independent of food uptake through interaction with other
intestine-resident cell types. Therefore, this review will sum-
marize the mechanistic knowledge of intestinal vascular biology
while also positing new directions for the field.

Intestinal organization
Crypt/villus axis
The intestinal tract is a hollow tube lined by epithelial cells from
the trachea to the anus allowing a route to extract nutrients and
water from ingested food (Fig. 1 A). After mechanical and
chemical digestion in the upper GI tract, nutrients are absorbed
by the small intestine, and this review will mostly focus on this

segment. The distinctive small intestinal cellular architecture
consists of finger-like projections, called villi, which protrude
into the intestinal lumen and are separated by troughs in the
tissue called crypts. A single layer of epithelial cells overlays
distinct villus- and crypt-associated (also called submucosal)
stromal cells. The submucosa is sheathed in a muscle cell–rich
layer, which itself is covered in a single layer of mesothelial cells
(Fig. 1 B).

The crypt/villus axis is highly zonated with cellular, cell
signaling, and physicochemical gradients necessary for main-
taining intestinal architecture and function. The essential
function of epithelial maintenance is performed through con-
tinuous regeneration from proliferating Lgr5+ epithelial intesti-
nal stem cells (ISCs) which reside in the bottom of crypts (Gehart
and Clevers, 2019). Wnt signaling is necessary for maintenance
of these cells; therefore, the crypt niche maintains several
overlapping layers of Wnt ligand and Wnt signaling potentiator
sources including crypt resident Paneth cells, pericryptal fi-
broblasts, macrophages, and lymphatic vessels. In addition to
stem and Paneth cells, the crypt contains proliferating transient
amplifying cells that are progenitors for the differentiated cells
lining the villus (Fig. 1 B; Brügger and Basler, 2023; Gehart and
Clevers, 2019; Sylvestre et al., 2023).

While the crypt provides continuous regeneration of the
epithelium, the finger-like villi project into the lumen, increas-
ing surface area to carry out the critical role of nutrient
absorption. Epithelial cells are constantly migrating from the
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Figure 1. Organization of the GI tract and gut vasculature. (A) GI tract organization and contribution to systemic circulation. All intestine-derived blood
flows through the portal vein and into the liver. Intestinal lymph drains to the MLNs before entering systemic blood circulation via the cisterna chyli and
thoracic duct. The gut-to-brain connection through the nervous system is also depicted. (B) Epithelial cells are maintained by constant proliferation of crypt-
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crypts toward villi while differentiating to become absorptive
enterocytes, chemosensitive and signaling enteroendocrine and
tuft cells, and mucus-producing goblet cells (van der Flier and
Clevers, 2009). In contrast to crypt-associated Wnt signaling,
villi display high Bmp signaling (Fig. 1 B). Villus fibroblasts are
the source of Bmp ligands that promote epithelial differentiation
and maturation (Brügger and Basler, 2023; Felsenthal and
Vignjevic, 2022; Sylvestre et al., 2023). Differentiated villus
enterocytes are not homogeneous; instead, they are zonated
along the proximal-to-distal villus axis and exhibit distinct ex-
pression of nutrient transporters and channels (Fig. 1 B; Moor
et al., 2018). Bmp signaling regulates a lipid-handling program of
intestinal villus tip enterocytes and enforces villus epithelial cell
zonation through the transcription factorMAF (Bara et al., 2022;
Beumer et al., 2022; Cosovanu et al., 2022; González-Loyola
et al., 2021). Therefore, villus and crypt epithelial cells and fi-
broblasts are cosegregated in the villus and crypt zones through
multiple levels of signaling.

Villi display inherent structural peculiarities in addition to
being swathed by a pro-inflammatory luminal milieu, giving
them distinct physicochemical attributes. Intestinal villus tips
are the site of constant epithelial cell death (Williams et al., 2015)
and levels of incoming nutrients, osmolarity, hypoxia, and
proinflammatory stimuli (e.g., LPS) are all higher at the distal
villus tip compared with the proximal villus base (Fig. 1 C;
Alpers, 1972; Hallbäck et al., 1978; Hallbäck et al., 1991; Kinter
and Wilson, 1965; Parker et al., 2019; Sjöqvist and Beeuwkes,
1990; Williams et al., 2013). Therefore, villus cellular pattern-
ing and signaling are adapted to this distinct microenvironment.
For example, subepithelial fibroblasts (“telocytes”) enhance bar-
rier function through interaction with both epithelial and stromal
cells, and villus smooth muscle cells (SMCs) contract villi to
promote nutrient uptake (Brügger and Basler, 2023; Felsenthal
and Vignjevic, 2022; Sylvestre et al., 2023). In addition, intestinal-
specific immune cells reside in villi, including IgA-producing
plasma cells, to monitor and restrict intestinal microbiota-
generated inflammation (Fig. 1 C; Mowat and Agace, 2014).

The small intestine is divided into three sub-compartments:
the duodenum, jejunum, and ileum, and villus size and function
are distinct among these regions (Fig. 1 A). The duodenum and
upper jejunum are just downstream of the stomach and are the
primary sites of nutrient extraction from the lumen. In line with
this function, they harbor larger villi than the distal zones
(Bernier-Latmani and Petrova, 2017). Nutrient availability di-
rectly controls villus size, as starvation and refeeding lead to
duodenal villus atrophy or regrowth, respectively (Altmann,
1972). Although the mechanisms are not entirely clear, villus

size is inversely correlated to the amount of microbiota present.
Germ-free or antibiotics-treated mice display larger villi than
normally raised mice, and villi are smaller in the ileum, which
harbors a higher microbial load compared to the upper small
intestine (Smith et al., 2007). Microbiota and intestinal eosino-
phils contribute to villus size maintenance. Eosinophil-
proficient mice, raised in the presence of microbiota, display
larger villi than eosinophil-deficient mice; however, villi are
larger in germ-free mice regardless of eosinophil status (Ignacio
et al., 2022). In addition to the microbiota, other gut lumen
contents also differ among the small intestinal zones. Villi in the
upper small intestine are exposed to higher levels of ingested
food and bile acids, which promote fat metabolism and absorp-
tion, than the lower intestine. In contrast, the mucus layer
covering epithelial cells is thicker in the ileum compared with
upper small intestinal zones (Chikina and Vignjevic, 2021).
However, it remains to be determined if there are shared or
varied molecular identities of vessels of the small intestinal
zones or other GI tract organs including the esophagus, stomach,
cecum, colon, and anus.

In summary, intestinal villi are complex, highly stratified,
organized structures that are crucial for intestinal homeostasis
and function. Intestinal blood and lymphatic vessels are inter-
twined in this complex microenvironment and display both
organ-specific and villus/crypt specialization necessary for gut
nutrient absorption and homeostasis.

Intestinal blood vasculature
Blood vessels are crucial to gut function and pervade all intes-
tinal tissue layers. Intestinal blood flow is supplied through the
superior and inferior mesenteric arteries that split into smaller
mesenteric arteries and branch before perforating the meso-
thelial and muscle layers into the intestine. Larger submucosal
arterioles run perpendicular to the villus/crypt axis and branch
off to smaller arterioles which either feed the crypt or villus
capillary networks. Villus precapillary arterioles are usually
unbranched until reaching the villus tip where they feed into the
cage-like villus capillary network. Although the villus and crypt
capillary beds are distinct, they form a contiguous capillary
network distributed from villus tip to crypt with the villus
capillary bed being denser than the crypt vessels. However,
post-capillary venules collect all capillary output in the villus
and are unbranched until their connection with the submucosal
venules that run parallel with arterioles. These venules follow
the arterial network out of the muscle layer to the mesentery,
where all intestinal-derived blood flows through the portal vein
to the liver (Kvietys, 2013; Fig. 1, A and D).

housed stem cells, which differentiate uponmigration to the villus to give rise to all differentiated cell types. Gradients of Wnt and Bmp ligands along the villus/
crypt axis promote epithelial stemness and differentiation, respectively. BV, blood vessels; LV, lymphatic vessels. Enterocyte zonation is marked along villus
axis. (C) Environmental factors such as nutrients, osmolarity, oxygen pressure, and microbiota-derived inflammatory molecules also form gradients along the
villus/crypt axis. (D) Organization of the blood vasculature along the villus/crypt axis. Villus blood capillaries are VEGFA dependent (due to villus tip hypoxia)
and display signs of angiogenesis (filopodia), while crypt capillaries reside in normoxic conditions and are VEGFA independent (BECs, blood endothelial cells).
(E) Organization of the lymphatic vasculature along the villus/crypt axis. Villus-housed blind-ended lymphatic capillaries (lacteals) display signs of lym-
phangiogenesis such as filopodia and LEC proliferation and are ensheathed by villus SMCs. Crypt lymphatic capillaries do not display filopodia and crypt LECs
rarely proliferate. All intestinal lymphatic capillaries, except for those with filopodia, display permeable button cell–cell junctions distinguishing them from
mesenteric lymphatic collecting vessels, which display zipper cell–cell junctions, valves, and SMC coverage.
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Several features of the intestinal vasculature make it distinct.
One, the intestine actively and drastically manipulates systemic
blood flow. While at rest the intestinal vasculature receives
around 20% of cardiac output, this can increase up to 60%
postprandially (Granger et al., 2015). There is also intraintestinal
control of blood flow; during feeding, up to 75% of blood is di-
rected to the villus capillaries rather than submucosal vessels
(Gore and Bohlen, 1977; Sababi and Holm, 1995). Conversely,
strenuous exercise and other stress-related conditions strongly
reduce intestinal blood flow (Granger et al., 2015), highlighting
the gut’s systemic role in maintenance of vital organ perfusion.
Intestinal blood flow is controlled by modulations in vascular
tone and blood pressure via myogenic, metabolic (oxygen lev-
els), chemical (adenosine and nitric oxide), and neural mecha-
nisms (Granger et al., 2015). Therefore, villus/crypt blood flow
decisions are likely mediated by regulation of distinct precapil-
lary arterial resistance feeding the two capillary beds, posi-
tioning blood flow as a dynamic regulator of intestinal vessel
function. Nevertheless, a comprehensive mechanistic model for
regulating gut blood flow remains elusive at present.

The finger-like villus structure also contributes to another
distinctive feature of these vessels. In most vascular beds, e.g.,
skin, arterioles and venules are physically separated by capil-
laries. However, in small intestinal villi a “counter-current”
blood flow exists, such that the close proximity of arterioles
and venules allows oxygen (O2) to “short-circuit” in the proxi-
mal villus zone (Fig. 1 D; Hallbäck et al., 1978; Jodal and
Lundgren, 1986; Shepherd and Kiel, 1992). The counter-current
blood flow, combined with O2 consumption by villus epithelial
cells, results in a gradient of decreasing pO2 from the proximal to
distal villus tip (Fig. 1, C and D; Granger et al., 2015). Villus
hypoxia promotes high vascular endothelial growth factor A
(VEGFA) expression from both epithelial cells and fibroblasts
(Bernier-Latmani et al., 2022a, 2022b; Korsisaari et al., 2007),
rendering the highly dense villus capillaries VEGFA dependent
while displaying a sprouting and proliferating phenotype similar
to that observed during developmental angiogenesis (Fig. 1 D;
Bernier-Latmani et al., 2015; Bernier-Latmani et al., 2022a,
2022b; Bernier-Latmani and Petrova, 2016; Kamba et al., 2006;
Karaman et al., 2022; Kido et al., 2022; Lee et al., 2007; Yang
et al., 2013). Functionally, high VEGFA signaling induces for-
mation of small pores in endothelial cells called fenestrations
(Esser et al., 1998). VEGFA-induced endothelial cell fenestration
renders these vessels highly permeable and able to rapidly up-
take nutrients from enterocytes (Bernier-Latmani et al., 2022b;
Kamba et al., 2006). Furthermore, the gut microbiota also en-
hances villus blood capillary density (Stappenbeck et al., 2002).
These distinct characteristics show that gut blood vessels are
uniquely adapted to the intestinal niche and specialized
function.

In addition to the vessels of the villus/crypt axis, submucosal,
andmesenteric regions, there is a distinct vasculature embedded
in the gut muscle layer. These vessels are more dilated, sparse,
and less branched than vessels in the villus/crypt zone (un-
published data). Recent single-cell RNA sequencing (RNAseq)
data reveals that these vessels express genes for fat (Cd36, Fabp5)
and water and glycerol (Aqp1, Aqp7) transport similar to those

observed in muscle- and white adipose tissue–specific endo-
thelial cells (Fan et al., 2021; Kalucka et al., 2020; Wiggins et al.,
2023), suggesting they perform nutrient transport to support
intestinal smooth muscle metabolism.

Intestinal lymphatic vasculature
As for the blood vasculature, lymphatics are present throughout
the gut. In general, the lymphatic vasculature can be categorized
into two kinds of vessels: capillaries and collecting vessels. The
former are permeable due to discontinuous “button” cell–cell
junctions allowing the passive uptake of fluid and macro-
molecules and transmigration of immune cells. In contrast, the
lymphatic collecting vessels are relatively impermeable due to
continuous “zipper” cell–cell junctions, and, through alternating
sets of associated SMCs and intraluminal valves, unidirection-
ally pump lymph through lymph nodes to venous circulation
(Petrova and Koh, 2020). In the intestine proper, most lym-
phatic vessels in the villi and crypts are capillaries while
collecting vessels are restricted to the mesentery (Fig. 1 E;
Bernier-Latmani and Petrova, 2017). Intestinal lymph enters
villus and submucosal lymphatic capillaries and flows to larger
collecting vessels in the mesentery to the mesenteric lymph
nodes through the cisterna chyli and thoracic duct and into
blood circulation (Fig. 1, A and E). A recent study identified a
separate lymphatic capillary network within the mesentery,
which surveils the abdominal cavity and drains directly to the
mediastinal lymph nodes (Redder et al., 2023, Preprint).

Lymphatic capillaries are differentially patterned along the
villus/crypt axis. While submucosal crypt-associated lymphatics
resemble their counterparts in other organs, the villus capil-
laries, also called lacteals, display filopodia and are reminiscent
of sprouting lymphatic vessels during development (Fig. 1 E;
Bernier-Latmani et al., 2015; Hong et al., 2020). Lacteal filopodia
formation is in response to VEGFC production from villus fi-
broblasts, and VEGFC/VEGFR3 signaling is necessary to sustain
these vessels (Bernier-Latmani et al., 2015; Hong et al., 2020;
Nurmi et al., 2015; Suh et al., 2019; Zarkada et al., 2023). Fur-
thermore, in contrast to submucosal lymphatic capillaries and
filopodia-negative lacteals that display button junctions,
filopodia-bearing lacteals have zippered junctions (Fig. 1 E;
Bernier-Latmani et al., 2015; Hong et al., 2020; Zhang et al.,
2018). Intestinal lymphatic endothelial cells isolated in recent
single-cell RNAseq studies express common lymphatic markers
such as Prox1, Lyve1, and Pdpn (Kalucka et al., 2020;Wiggins et al.,
2023) and subdivide into four distinct clusters. Their functional
relevance remains to be determined; however, a cluster with
enrichment of interferon signaling (Wiggins et al., 2023) may be
similar to the recently described Ptx3+ skin capillary lymphatic
endothelial subset associated with immune cell recruitment
(Petkova et al., 2023).

Mechanisms of intestinal vessel nutrient uptake
Intestinal blood and lymphatic vessels are acknowledged as the
route for systemic distribution of ingested nutrients, and the
molecular mechanisms promoting these processes are now
emerging. Recent studies have pointed to vascular mechanisms
underlying this critical gut function.
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Blood vasculature
The highly permeable villus blood capillary network ensures
highly efficient transport of carbohydrates, peptides, amino
acids, and short-chain fatty acids from the gut lumen. These
nutrients either diffuse across the epithelium or are actively
transported paracellularly by villus enterocytes (van der Flier
and Clevers, 2009). The dense capillary network is maintained
through continuous VEGFA signaling, which also promotes en-
dothelial cell fenestration (Bernier-Latmani et al., 2022a, 2022b;
Kamba et al., 2006; Karaman et al., 2022; Kido et al., 2022; Lee
et al., 2007; Yang et al., 2013). VEGFA signaling blockade reduces
glucose absorption (Kamba et al., 2006) indicating that endo-
thelial cell fenestration renders the villus capillaries permeable
to ensure efficient nutrient uptake (Fig. 2 A).

As mentioned above, the villus tip is a distinct niche with
many overlapping inputs: it is the most hypoxic zone of the
villus and site of constant nutrient absorption and epithelial cell
apoptosis (Fig. 1 C). Endothelial cells in villus tip capillaries are
also highly organized and polarized as revealed by electron
microscopy studies. Fenestrations are restricted to the epithelial
side of villus tip endothelial cells while nuclei are located op-
posite on the villus core–facing side (Fig. 2 A; Casley-Smith, 1971;
Casley-Smith et al., 1975; Milici and Bankston, 1981; Palay and
Karlin, 1959). Moreover, villus tip endothelial cells are arranged
into so-called “seamless” tubes such that the capillary lumen is
surrounded by a single endothelial cell (Fig. 2 A; Wolff et al.,
1972). This endothelial cell patterning is observed during de-
velopmental vessel anastomosis but is also found in other adult
capillary beds such as the brain (Kotini et al., 2019; Wolff and
Bär, 1972). In a recent work, we confirmed, through high-
resolution confocal and 3D electron microscopy, the earlier
observations of villus tip endothelial cell fenestration/nuclear
polarization and seamless patterning (Bernier-Latmani et al.,
2022b). In agreement with relatively low pO2 at the villus tip,
endothelial VEGFA signaling was also highest in these villus tip
endothelial cells and VEGFA protein deposition is limited to the
epithelial side of vessels (Fig. 2 A). Blocking VEGFA signaling
prevented the endothelial nucleus polarization and seamless
endothelial cell phenotypes, suggesting an active mechanism to
restrict VEGFA localization and promote the polarized nature of
the villus tip niche (Bernier-Latmani et al., 2022b).

The mesenchymal intestinal villus core is separated from the
epithelium by a syncytial layer of subepithelial fibroblasts, also
called telocytes (Kaestner, 2019; McCarthy et al., 2020). These
cells are defined by PDGFRA and Foxl1 expression, but a sub-
population at the villus tip, villus tip telocytes (VTTs), also ex-
press the intestinal epithelial stem cell marker Lgr5 (Bahar
Halpern et al., 2020). VTTs are associated with villus tip po-
larized blood endothelial fenestrations and are necessary to
maintain a spatially restricted VEGFA signaling domain as VTT
depletion perturbed the villus tip endothelial cell arrangement
and expanded VEGFA signaling throughout the villus blood
vessels (Fig. 2 A; Bernier-Latmani et al., 2022b).Mechanistically,
the secreted Zn2+-dependent metalloprotease ADAMTS18 is ex-
pressed uniquely by VTTs and is necessary to limit the spread
of VEGFA and fenestrations to the epithelial side of villus
tip capillaries through degradation of fibronectin, a main

extracellular matrix component sequestering VEGFA. Func-
tionally, Adamts18−/− mice displayed increased circulating levels
of certain amino acids highlighting the role of polarized endo-
thelial villus tip phenotype in nutrient absorption (Fig. 2 A;
Bernier-Latmani et al., 2022b). Therefore, an integrated com-
munication network between VTTs and endothelial cells is
necessary to promote maintenance of the specialized villus tip
blood vessels.

Further molecular mechanisms promoting blood vessel–
mediated nutrient absorption are currently unknown. However,
spatial transcriptomic analysis of enterocytes revealed that the
villus intestinal epithelium is functionally zonated such that
specific nutrient transporters are positioned differentially from
the proximal to distal villus (Moor et al., 2018). Whether nu-
trient specificity extends to the underlying absorptive vascula-
ture or if separate villus zones are enriched in certain kinds of
nutrients, which could directly impact endothelial cell signaling
or phenotype, remains to be determined.

Lymphatic vasculature
Villus-residing lacteals absorb fat packaged by enterocytes in the
form of lipoprotein particles called chylomicrons. These par-
ticles diffuse through the villus core, and electron microscopy
revealed they are taken up into lacteals intercellularly through
open “flap valves” between lacteal lymphatic endothelial cells
(LECs; Casley-Smith, 1962; Palay and Karlin, 1959; Sabesin and
Frase, 1977; Tso and Balint, 1986). Flap valves are identified by
button junctions that stain positive for LYVE1 between discon-
tinuous vascular endothelial (VE)-cadherin junction staining
and are present in lacteals (Fig. 2 B; Baluk et al., 2007; Bernier-
Latmani et al., 2015; Hong et al., 2020; Zhang et al., 2018). VE-
cadherin itself is necessary to maintain junction patterning of
lymphatic vessels, including lacteals (Hägerling et al., 2018), and
maintenance of button junctions is necessary to promote lacteal
chylomicron absorption.

VEGFR signaling is one cue controlling lacteal junction status.
Lymphatic VEGFR3 signaling is necessary for both develop-
mental lacteal growth and maintenance in adults (Mäkinen
et al., 2001; Kim et al., 2007; Tammela et al., 2008; Bernier-
Latmani et al., 2015; Nurmi et al., 2015). The VEGFR3 ligand
VEGFC is expressed by vascular and intestinal SMCs, macro-
phages, and a subset of villus fibroblasts (Hong et al., 2020;
Nurmi et al., 2015; Suh et al., 2019). Microbiota exposure pro-
motes VEGFC production by intestinal macrophages, whereas in
fibroblasts, VEGFC is induced in response to YAP/TAZ signaling
(Hong et al., 2020; Suh et al., 2019). Accordingly, hyper-
activation of YAP/TAZ in PDGFRβ+ intestinal fibroblasts leads to
extreme lacteal overgrowth, junction zippering, and loss of fat
absorption capacity (Fig. 2 B; Hong et al., 2020). Similarly, Notch
signaling downstream of VEGFC/VEGFR3 signaling is also nec-
essary for lacteal length maintenance in adult mice. Lymphatic-
specific ablation of the Notch ligand DLL4 inhibited lacteal LEC
migration and formation of button junctions, leading to im-
paired dietary fat absorption (Fig. 2 B; Bernier-Latmani et al.,
2015). Lymphatic-specific deletion of the adrenomedullin re-
ceptor CALCRL also leads to a loss of Notch signaling and lacteal
defects (Davis et al., 2017; Hoopes et al., 2012).
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Figure 2. Functional roles for intestinal vasculature in promoting nutrient absorption. (A) Villus blood capillary endothelial cells display small pores,
fenestrations, which promote rapid absorption of nutrients transported through the epithelium. High levels of villus VEGFA (from epithelial cells and
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Lacteal button junctions are sensitive to incoming chylomi-
crons and VEGFA, produced at the villus tip to promote blood
vessel fenestrations (Bernier-Latmani et al., 2022a, 2022b;
Korsisaari et al., 2007). Notably, chylomicron-derived lipids
facilitate LEC junction opening via ROCK-dependent contraction
of junction-anchored stress fibers (Zarkada et al., 2023). On the
contrary, excessive levels of VEGFA lead to junction zippering
and loss of fat absorption, as observed upon blood endothelial
cell-specific loss of the VEGFA sinks VEGFR1 and NRP1 (Fig. 2 B;
Zhang et al., 2018). VEGFA may signal through VEGFR2/3 het-
erodimers rather than solely VEGFR2 as independent lymphatic-
specific ablation of the two receptors blocks VEGFA-mediated
lacteal junction zippering (Zarkada et al., 2023), although long-
term lymphatic VEGFR3 deletion leads to lacteal zippering
(Jannaway et al., 2023). Mechanistically, increased signaling of
VEGFR2/3 heterodimers phosphorylates PI3K/Akt leading to
lacteal zippering by inhibiting ROCK, which promotes stabili-
zation of the LEC cytoskeleton to maintain button junctions
(Zarkada et al., 2023; Zhang et al., 2018). Therefore, a combi-
nation of lipid-driven ROCK activation and lacteal VEGFR2/3
signaling is crucial for efficient fat absorption.

Lymphatic interaction with the autonomic nervous system
and villus SMCs also promotes fat absorption. Lacteals are en-
sheathed in villus SMCs (Bernier-Latmani et al., 2015; Bernier-
Latmani and Petrova, 2016; Choe et al., 2015), which pump the
vessels to promote chylomicron absorption. Pumping is medi-
ated at least in part by the autonomic nervous system as lacteals
are in close contact with enteric nerves and autonomic nervous
blockade inhibits both pumping and fat absorption (Bachmann
et al., 2019; Choe et al., 2015).

Lacteal function also requires proper developmental pat-
terning of SMCs. Villus SMCs express the transcription factor
PITX2, which controls left/right gut folding symmetry thus
promoting proper blood vessel patterning and prevention of
intestinal ischemia (Mahadevan et al., 2014). Interestingly, the
Pitx2 ASE promoter, driving asymmetric expression of Pitx2, is
necessary for villus SMC precursor expansion, development into
lacteal-associated SMCs, and lacteal sprouting. Pitx2 ASEmutant
pups display liver steatosis, suggesting that under pathological
conditions normally size-excluded chylomicrons can enter the
villus blood capillaries and reach the liver via the portal vein (Hu
et al., 2021). Vice versa, lacteal-derived DLL4 may contribute to
development of lacteal-associated SMCs by activating NOTCH3
in PDGFRA+ villus fibroblasts (Sanketi et al., 2023, Preprint).

Nutrient absorption–independent roles for gut vasculature
Maintenance of the intestinal stem cell niche
As opposed to the dense VEGFA-dependent villus blood capil-
laries, crypt capillaries are more sparse, less branched, and

VEGFA independent. This property enables them to maintain a
normoxic niche around intestinal stem cells (ISCs) and preserve
ISC function even during VEGFA signaling blockade (Fig. 3 A;
Bernier-Latmani et al., 2022a). Yet, crypt-associated blood
capillaries are highly plastic and rapidly expand when the
number of intestinal stem/progenitor cells is acutely increased
upon epithelial-specific Apc ablation to maintain epithelial nor-
moxia. Mechanistically, such vascular expansion is proliferation-
independent and is driven by increased migration of apelin+

villus endothelial cells to expanding crypt vessels (Fig. 3 A). Loss
of endothelial cell migration and crypt vessel patency in Apln−/−

mice resulted in decreased epithelial cell proliferation, increased
genotoxic stress, and depletion of secretory progenitor cells in
the normal gut and even more pronounced loss of stem cells in
intestinal tumors (Fig. 3 A; Bernier-Latmani et al., 2022a). These
observations in adult mice and tumors agree with models of
developmental endothelial cell movement where constant mi-
gration of venous endothelial cells through the capillary bed
supplies vascular expansion (Lee et al., 2021; Pitulescu et al.,
2017; Xu et al., 2014) and highlight a novel vascular accrual
mechanism for maintenance of the adult ISC niche under normal
and pathological conditions.

Transgenic mice with inducible epithelial overexpression of
VEGFA or VEGFA trap sVEGFR1 displayed larger and smaller
villi, respectively. Furthermore, there were distinct effects on
crypt epithelial cells with increased VEGFA-enhancing upper
crypt proliferation and decreased VEGFA signaling limiting
proliferation to the crypt bottom and augmenting the number of
Paneth cells (Schlieve et al., 2016). Therefore, differential pat-
terning and signaling along the villus/crypt axis blood vas-
culature directly contribute to the homeostasis of intestinal
epithelial cells.

A recent trio of papers showed an important paracrine role
for crypt lymphatics in ISC maintenance, especially during re-
generation after injury (Goto et al., 2022; Niec et al., 2022;
Palikuqi et al., 2022). Wnt signaling in intestinal stem/progen-
itor cells is secured by multiple cellular sources, such as Paneth
cells, pericryptal fibroblasts, and macrophages, which produce
Wnt ligands and potentiators such as R-spondins (RSPOs;
Brügger and Basler, 2023; Gehart and Clevers, 2019; Sylvestre
et al., 2023). Bulk RNAseq revealed that in addition to the above
cell types, intestinal lymphatics also express Wnt2 and Rspo3
(Ogasawara et al., 2018), and this was further confirmed by
single-cell RNAseq (Goto et al., 2022; Niec et al., 2022; Palikuqi
et al., 2022). Lymphatic RSPO3 functionally contributes to crypt
epithelial cell proliferation during pathological regeneration in
response to injury, such as irradiation or inflammation (Goto
et al., 2022; Palikuqi et al., 2022; Tan et al., 2023). However,
overlapping expression of Rspo3 by fibroblasts and lymphatics

fibroblasts) promote endothelial fenestration. VEGFA signaling is highest at the villus tip, and VEGFA protein and fenestrations are polarized to the epithelial
side of endothelial cells (ECs). VEGFA blockade restricts fenestrations and EC nuclear polarization, making vessels less permeable. VTTs also promote polarized
EC fenestration. These fibroblasts uniquely express the metalloprotease ADAMTS18, which degrades fibronectin, thus constraining VEGFA to the epithelial side
of ECs. In the absence of VTTs or ADAMTS18, villus tip fibronectin accumulates and spreads bound VEGFA, thereby promoting widespread vessel fenestration
and leakiness. (B) Lacteal cell–cell junction status controls dietary fat absorption. Enterocytes package dietary fat into lipoprotein particles called chylomicrons,
which are size excluded from blood capillaries. Chylomicrons enter the lymphatic system through open button junctions between lacteal LECs. Increased
VEGFC/VEGFR3 or VEGFA/VEGFR2 signaling or loss of Notch signaling leads to zippering of LEC junctions and decreased chylomicron absorption.
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Figure 3. Role of intestinal vasculatures in maintaining epithelial homeostasis. (A) Intestinal villi are hypoxic, leading to VEGFA expression and the
presence of VEGFA-dependent blood capillaries. In contrast, crypts are normoxic, O2 is necessary for stem cell maintenance, and blood vessels are VEGFA
independent. Rather, crypt vessel expansion depends on apelin (Apln) signaling to promote intravessel endothelial cell (EC) migration from the villus to the
crypt. During pathological crypt expansion, e.g., following epithelial APC loss-of-function (initiating mutation in colon cancer), blood capillaries expand in a
VEGFA-independent manner, allowing stem cell proliferation and migration. In the absence of Apln, crypt vessels lack endothelial cells to maintain vessel
patency resulting in crypt hypoxia and epithelial progenitor cell death. (B) Crypt lymphatics promote emergency stem cell maintenance. The Wnt signaling
potentiator RSPO3 is produced by crypt lymphatics and fibroblasts, where it promotes stem cell maintenance, especially during intestinal injury. The secreted
protein reelin is also expressed by crypt lymphatics and contributes to epithelial regrowth after injury by binding its receptors VLDLR, ITGB1, and LRP8. ISC,
intestinal stem cell.
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likely evolved to ensure crypt Wnt signaling as only simulta-
neous deletion in both cell types caused a significant decrease in
crypt cell proliferation (Fig. 3 B; Goto et al., 2022).

In addition to RSPO3, intestinal lymphatics may contribute
reelin signaling to the intestinal crypt. Reelin is a secreted
protein highly expressed in neurons and lymphatic capillaries
(Herz and Chen, 2006; Lutter et al., 2012), and lymphatic-
derived reelin contributes to heart regeneration after myocar-
dial infarction (Liu et al., 2020). Reln is highly expressed in
intestinal submucosal lymphatics near crypts (Goto et al., 2022;
Niec et al., 2022; Palikuqi et al., 2022). It contributes to crypt
epithelial homeostasis as mice with germline Reln mutations
(Reeler mice; D’Arcangelo et al., 1995) display decreased crypt
epithelial cell proliferation and Paneth cell numbers (Garćıa-
Miranda et al., 2013). In contrast, lymphatic-specific Reln dele-
tion results in increased crypt epithelial cell proliferation, but
maintenance of ISCs (Niec et al., 2022), suggesting that
lymphatic-derived Reelin may act indirectly to promote crypt
epithelial homeostasis (Fig. 3 B). While the Reelin receptor Itgb1
is widely expressed in intestinal epithelial cells, two other Reelin
receptors, Vldlr and Lrp8, are limited to secretory progenitor,
Paneth, goblet, and enteroendocrine cells (Haber et al., 2017;
Niec et al., 2022). Therefore, given the results of decreased
Paneth cell numbers and increased goblet cell numbers in
germline Reeler mice (Garćıa-Miranda et al., 2013), lymphatic-
to-epithelial signaling could be acting on crypt secretory pro-
genitor cells and alter differentiated epithelial cell fate decisions
(Fig. 3 B).

Gut immune cell recruitment
The adult intestine is one of the most immune cell–rich organs.
This high density is maintained through constant gut-tropic
immune cell recruitment (Mowat and Agace, 2014) by high
endothelial venules (HEVs) of Peyer’s patches (PPs) and venules
of intestinal villi. Despite their overall similar structural orga-
nization and function in recruitment of naı̈ve lymphocytes, PP
and non-gut-associated peripheral lymph node (PLN; Habtezion
et al., 2016) high endothelial cells (HECs) also display substantial
differences. For example, adult PLN, but not PP HECs, express a
unique complex of heavily sialyated glycoproteins that consti-
tute the peripheral lymph node addressin (PNAd; Girard et al.,
2012), a ligand for the L-selectin receptor which initiates im-
mune cell rolling and tethering to the endothelium. Accordingly,
PLN HECs also express PNAd-constructing proteins, including
Chst4 and Fut7 (Lee et al., 2014). In contrast, PPHECs produce the
mucosal addressin protein MADCAM1, which acts as a ligand for
integrin α4β7 expressed on gut-tropic immune cells (Berlin
et al., 1993, 1995). Integrin α4β7 expression is “imprinted” on
naı̈ve lymphocytes by dendritic cells possessing intestinal anti-
gen and displaying elevated retinoic acid production (Stagg,
2018). Retinoic acid signaling then induces expression of in-
tegrin α4β7 on lymphocytes, which directs them to the gut. To
reinforce efficient gut extravasation, gut-tropic lymphocytes
express CCR9 and follow gradients of small intestinal epithelial
cell–derived CCL25 (Fig. 4 A; Rivera and Lennon-Duménil, 2023).

In addition to the PPs, immune cells extravasate into small
intestinal villi. Each villus contains anHEV-likeMADCAM1+ICAM1+

venule from where α4β7 and αLβ2 expressing lymphocytes are
recruited. ST6GAL1, a glycan sialylating enzyme expressed highly in
gut-associated lymphoid tissue (GALT) HEVs (Lee et al., 2014) and a
subset of villus vessels (Dinh et al., 2022), promotes formation of the
“B cell–specific mucosal vascular addressin” (BMAd). The BMAd
binds CD22, a surface protein expressed on B cells and intestine-
specific eosinophils (Habtezion et al., 2016; Wen et al., 2012), and
promotes gut-specific extravasation (Fig. 4 A; Lee et al., 2014).
Therefore, intestinal-specific vascular “addresses” combined with
immune cell imprinting are critical for recruitment of enterotropic
lymphocytes and gut immunosurveillance.

Gut-specific expression of MADCAM1 is regulated dynami-
cally during development. In the embryonic and early postnatal
period, MADCAM1 is widely expressed in HEVs of both pe-
ripheral and mesenteric LNs, PPs, and intestinal villus capil-
laries (Iizuka et al., 2000; Mebius et al., 1996; Salmi et al., 2001).
However, its expression is restricted rapidly after birth to a
subset of LN lymphatic vessels, GALT HEVs, and villus/crypt
HEV-like venules (Fig. 4 B; Arroz-Madeira et al., 2023; Salmi
et al., 2001). In early postnatal and adult mice, MADCAM1 ex-
pression is promoted by the transcription factors NKX2-3 and
COUP-TFII (Dinh et al., 2022; Kellermayer et al., 2014; Pabst
et al., 2000; Pabst et al., 1999; Wang et al., 2000). NKX2-3 is
highly expressed in derivatives of visceral mesoderm, such as
gut endothelial and mesenchymal cells (Fig. 4 B; Pabst et al.,
1997; Wang et al., 2000), and is necessary for proper intestine
development. Nkx2-3−/− mice display severely decreased villus
size, a dearth of villus capillaries and, importantly, lack
MADCAM1-expressing vessels (Kellermayer et al., 2014; Pabst
et al., 2000; Pabst et al., 1999; Wang et al., 2000). Mechanisti-
cally, NKX2-3 heterodimerizes with the venous master regulator
COUP-TFII to promote intestinalMadcam1 and St6gal1 expression
via cooperative binding to conserved composite regulatory ele-
ments (Dinh et al., 2022). Accordingly, endothelial COUP-TFII
overexpression or ablation is sufficient to increase or decrease
intestinal MADCAM1 and BMAd (Dinh et al., 2022), highlighting
the importance of NKX2-3 and COUP-TFII cooperation for the
intestinal-specific endothelial identity (Fig. 4 B). What promotes
persistence of gut-specific activity of Nkx2-3 and early postnatal
loss of MADCAM1 expression elsewhere remains unclear.
However, antibiotic treatment reduces MADCAM1 in ileal crypt/
villus and GALT vessels, suggesting a role of the microbiota in
MADCAM1 expression (Fidelle et al., 2023).

Lymphatic vessel immune cell transport
Tolerance to gut-derived antigens is maintained by constant
migration of immune cells from the gut to the mesenteric LN
(MLN), and intestinal lymphatic vessels are critical for this
function. Ablation of gut lymphatics causes rapid death of mice
due to massive intestinal inflammation (Jang et al., 2013), likely
due to loss of tolerance, showing the importance of this function.
A recent review highlighted mechanisms of PP lymphatic func-
tion (Arroz-Madeira et al., 2023); therefore, below we will focus
on lymphatic immune trafficking along the crypt/villus unit.

Dendritic cells (DCs) are the predominant population medi-
ating intestinal immune tolerance to food antigens (Mowat and
Agace, 2014; Pabst and Mowat, 2012). DCs capture antigen
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Figure 4. Roles for the intestinal vasculatures in immune cell trafficking and response to gut microbiota. (A) Immune cell transport by intestinal blood
vessels. Post-capillary HEV-like vessels present in each small intestinal villus. HEVs in PPs, GALT, express addressin proteins that enable gut-specific immune
cell recruitment. HEVs and villus HEV-like vessels express MADCAM1 and ICAM1, which bind α4β7 and αLβ2 on lymphocytes, respectively. ST6GAL1 codes for a
glycan siaylating protein, which produces the BMAd. Additionally, enterocytes express CCL25 chemokine promoting extravasation of CCR9-expressing lym-
phocytes in the gut. (B) Developmental control of mucosal addressins. Embryonic HEVs of PLN and MLN express MADCAM1, which is restricted postnatally to
the GI tract HEVs and HEV-like villus vessels. This is mediated in part by cooperation between the transcription factors NKX2.3 and COUP-TFII, which also
promote expression of the gene encoding the BMAd-generating enzyme ST6GAL1. (C) Immune cell transport by intestinal lymphatics. Lymphatic capillaries
recruit CCR7+ immune cells through secretion of CCL21. A major population that is trafficked from the gut are CD103+ DCs, which carry antigens from a variety
of sources. Most B cells are recirculated via PP lymphatic vessels (Reboldi and Cyster, 2016). While DC-carried food antigens are more prevalent in the
duodenum, microbiota-derived antigens are found in ileum DCs. Treg, regulatory T cell. (D) Intestinal vessels display specialized mechanisms to resist
microbiota-driven inflammation. These include resistance to TNF signaling (TAK1, CASP8), modulation of permeability in response to infection, and main-
tenance of lymph outflow of immune cells and chylomicrons. PAMP, pathogen-associated molecular pattern; DAMP, damage-associated molecular pattern; EC,
endothelial cell.
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directly in the intestinal stroma from resident macrophages or
directly from the gut lumen (Bogunovic et al., 2009; Cerovic
et al., 2014; Chang et al., 2013; Farache et al., 2013; McDole
et al., 2012; Schulz et al., 2009). Migratory DCs mostly express
CD103 as well as the chemokine receptor CCR7, which promotes
migration toward the CCL21+ lymphatic capillaries and to the
MLN (Fig. 4 C; Bogunovic et al., 2009; Cerovic et al., 2013;
Johansson-Lindbom et al., 2005; Schulz et al., 2009;Worbs et al.,
2006). As mentioned above, intestine-derived DCs imprint
lymphocytes with gut tropism through retinoic acid signaling
(Agace and Persson, 2012), and further TGFβ signaling promotes
differentiation of regulatory T cells necessary for immunosup-
pression upon migration back to the intestine through the blood
vasculature (Fig. 4 C; Cassani et al., 2011; Coombes et al., 2007;
Cording et al., 2014; Hadis et al., 2011; Jaensson-Gyllenbäck et al.,
2011; Sun et al., 2007). Food digestion and ingestion take place in
the upper small intestine, therefore DC-carried food antigens are
more prevalent in the duodenum while microbiota-derived an-
tigens are found in the DCs derived from the ileum. This gra-
dient of antigen content along the length of the small intestine
promotes tolerogenic and immune responses in the proximal
and distal small intestine, respectively (Fig. 4 C; Esterházy et al.,
2019; Houston et al., 2016). In addition, duodenal DCs also pro-
mote tolerogenic responses in LNs that share drainage with the
more inflammatory pancreas (Brown et al., 2023). Whether
lymphatic vessel immune cell trafficking is altered among in-
testinal compartments or other organs is yet to be studied.

Intestinal vessel pathology
Defects in both intestinal blood and lymphatic vessels are an
acute cause of several diseases, underlining their importance in
human health. Molecular mechanisms promoting intestinal
vessel dysfunction are still emerging, highlighting the need for
further study to develop novel targeted therapies.

The most common pathology associated with gut blood ves-
sels is intestinal ischemia. Decreased intestinal blood flow
through vessel damage or occlusion can be caused by a plethora
of diseases, including heart disease, atherosclerosis, dehydra-
tion, infection, autoimmune disease, stimulant use, and throm-
bophilia (Clair and Beach, 2016). Intestinal ischemia causes acute
villus tip epithelial cell death, progressively leading to villus
shortening and villus vessel loss (Haglund, 1994). Necrotizing en-
terocolitis (NEC) is a common cause of mortality in premature
babies and its etiology is likely multifactorial, including abnormal
gut microbiota, high levels of inflammation, and intestinal ische-
mia (Neu and Walker, 2011). Inflammation and decreased VEGFA
signaling may drive gut ischemia in NEC patients by limiting de-
velopmental intestinal angiogenesis (Bowker et al., 2018; Yan et al.,
2016, 2019). Regrowth of blood vasculature during post-ischemic
reperfusionmay require VEGFA, but also endothelial expression of
FOXC1 and FOXC2 transcription factors (Tan et al., 2023).

The intestinal vasculature is specialized to traffic specific
immune cells in and out of the intestine for immunosurveillance
of gut lumen contents. In turn, the microbiota and related in-
flammation also can directly impact the intestinal vasculature,
raising the question of molecular mechanisms underlying re-
sistance of gut endothelial cells to inflammation and constant

exposure to pathogen-associated molecular patterns and
damage-associated molecular patterns. The microbiota pro-
motes constant TNF signaling in normal gut villus vessels, which
display specialized resistance to TNF-mediated cell death
(Kalliolias and Ivashkiv, 2016). Ablation of TAK1, a negative
regulator of TNF signaling, in endothelial cells leads to rapid
intestinal vessel loss, hemorrhaging, and animal death (Houston
et al., 2016; Naito et al., 2019). Likewise, loss of endothelial
CASP8, which prevents TNF-driven necroptosis (van Loo and
Bertrand, 2023), leads to hemorrhaging and animal death
(Fig. 4 D; Bader et al., 2023; Tisch et al., 2022). Though pan-
endothelial Casp8 depletion led to blood vessel defects, mice
with blood endothelial cell–specific Casp8 ablation were normal
(Tisch et al., 2022), suggesting that repression of TNF-dependent
necroptosis in lymphatics is especially crucial for gut homeo-
stasis. Therefore, there are TNF protection mechanisms for in-
testinal endothelial cells, and future work will clarify the
contribution of lymphatic and blood vessels.

One effect of intestinal infection or inflammation is increased
epithelial gut permeability causing lumen contents to be in di-
rect contact with the underlying stromal cells (Thoo et al., 2019).
As mentioned above, VEGFA is a potent inducer of endothelial
permeability (Claesson-Welsh, 2015), and its expression is in-
creased following gut infection, leading to increased vessel
permeability. Clostridium difficile infection rapidly promotes
VEGFA and TNF expression, and disease severity was reduced
with VEGFA signaling blockade (Fig. 4 D; Huang et al., 2019). In
addition, in the DSS inflammation model, ablation of endothelial
IFNGR2 and VEGFA signaling blockade ameliorated gut damage
and decreased vessel permeability (Fig. 4 D; Langer et al., 2019).
A subset of small high-density lipoproteins (HDL-C) produced by
the intestine are transported via the portal vein to the liver
rather than being absorbed by lymphatics. This transport is
functionally important as HDL-C binds blood LPS to prevent
inflammatory activation in the liver (Han et al., 2021).

Gut infection also produces other changes in intestinal ves-
sels. Cholera infection causes red blood cell blockage of ileum
capillaries to shunt host nutrients to the bacteria (Rivera-Chávez
andMekalanos, 2019). Furthermore, helminth worms physically
break vessels when they penetrate the gut lining and use the
blood as feed (Fig. 4 D; Gentile and King, 2018).

Inflammatory bowel diseases (IBDs), comprised of ulcerative
colitis and Crohn’s disease, are the result of dysfunctional in-
testinal immune responses causing loss of the epithelial barrier
and gut microbiota dysbiosis (Graham and Xavier, 2020).
Lymphatic vessel dysfunction has long been implicated in
Crohn’s disease (Crohn and Janowitz, 1954) and mice with
lymphatic-specific ablation of Foxc2 lose lymphatic valve func-
tion leading to an inability to transport gut-derived lymph
(González-Loyola et al., 2021; Petrova et al., 2004; Sabine et al.,
2012; Sabine et al., 2015). In turn, stagnation of intestinal lymph
increases gut permeability, leading to gut dysbiosis and perito-
neal inflammation followed by pleural effusion, which are all
rescued with antibiotic treatment (Fig. 4 D; González-Loyola
et al., 2021). In addition, continuous TNF-driven gut inflam-
mation leads to lymphatic dysfunction and formation of mes-
enteric lymphoid structures, which may be a feed-forward
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mechanism in Crohn’s disease pathology (Czepielewski et al.,
2021; Randolph et al., 2016).

The fat transporter/scavenger receptor protein CD36 (Chen
et al., 2022) also promotes intestinal barrier function. Entero-
cytes in Cd36−/− mice absorb fat from the gut lumen normally;
however, display attenuated ability to secrete chylomicrons to
the villus stroma (Drover et al., 2005; Goudriaan et al., 2005;
Nauli et al., 2006). Cd36−/− mice also display increased inflam-
mation and epithelial leakiness; however, a comparison of epi-
thelial and pan-endothelial Cd36 deletion showed endothelial
CD36 is necessary to suppress gut inflammation, while epithelial
CD36 was dispensable (Fig. 4 D; Cifarelli et al., 2017). Lymphatic-
specific deletion of CD36 led to disturbances in lacteal length and
cell–cell junctions as well as leakiness in mesenteric lymphatic
collecting vessels (Cifarelli et al., 2021). Compared with blood
endothelial cells and collecting vessel LECs, lacteal LECs express
relatively low levels of Cd36 (Cifarelli et al., 2021; González-
Loyola et al., 2021; Kalucka et al., 2020), suggesting that the
lacteal phenotype maybe secondary to downstream collecting
vessel defects or loss of lymphatic flow. Furthermore, Kawasaki
disease, a childhood vasculitis leading to aneurysms of the cor-
onary artery, is thought to arise from gut barrier dysfunction.
Indeed, in mouse models of this disease, accumulation of gut-
derived IgA antibodies is detected in coronary arteries of in-
fected mice dependent on IL1β epithelial cell signaling (Noval
Rivas et al., 2019).

Epithelial barrier loss and lymphatic dysfunction also mani-
fest in protein-losing enteropathy, which is uncontrolled loss of
circulating protein into the intestinal lumen, in the absence of
liver or kidney disease, causing systemic hypoproteinemia
(Ozen and Lenardo, 2023). This syndrome is observed in IBD
patients and patients with hereditary intestinal lymphangiecta-
sia such as in Hennekam syndrome (Bernier-Latmani and
Petrova, 2017; Ozen and Lenardo, 2023).

In pathological conditions, villus vessels may serve as entry
points for dissemination of microorganisms or inflammatory
substances (bacteria, fat, LPS) after penetration of the epithelial
and sub-epithelial fibroblast layers (Bertocchi et al., 2021;
Carloni et al., 2021; Mouries et al., 2019; Spadoni et al., 2015). The
proposed mechanism of such gut/vascular barrier (GVB) disrup-
tion involves upregulation of the endothelial-specific protein
PLVAP (PV1), analogous to PLVAP induction upon loss of brain
endothelial β-catenin leading to loss of blood–brain barrier in-
tegrity and brain vascular leakage (Liebner et al., 2008).

Recent single-cell RNAseq data of intestinal endothelial cells
show high homeostatic expression of Plvap, especially in capil-
laries (Kalucka et al., 2020; Tan et al., 2023;Wiggins et al., 2023),
consistent with its induction in response to VEGFA (Strickland
et al., 2005) and its role as a functional component of fenestrae
diaphragms, which are readily observed in gut capillaries
(Bernier-Latmani et al., 2022b; Casley-Smith, 1971; Casley-Smith
et al., 1975; Milici and Bankston, 1981; Palay and Karlin, 1959; Stan
et al., 2012). These diaphragms promote vessel barrier function as
mice with germline and endothelial Plvap ablation and patients
with PLVAP mutations display leaky intestinal vessels and edema
(Elkadri et al., 2015; Stan et al., 2012). Therefore, the mechanistic
role of PLVAP in the GVB remains unclear.

Emerging topics
Sex-specific differences
Mice display sexual dimorphism of dietary fat transport. In
general, male rodents transport ingested fat more efficiently
than females (Yang et al., 2014). However, analysis of sexual
dimorphism in intestinal fat transport ability showed a subset of
female rats was able to transport fat at similar rates tomales (Liu
et al., 2021). Interestingly, ovariectomized female rats displayed
fat transport rates similar to males, but lymphatic fat clearance
could be reduced by treating the rats with either estradiol alone
or an estradiol/progesterone mix, suggesting that ovarian hor-
mones suppress lymphatic fat uptake (Liu et al., 2021). As
mentioned above, lacteal junction zippering was observed fol-
lowing increased VEGFA signaling (Zarkada et al., 2023; Zhang
et al., 2018), and ovariectomized rats under estradiol or an es-
tradiol/progesterone treatment significantly enhanced gut Vegfa
expression, though lacteal junctions were not analyzed (Liu
et al., 2021). These observations suggest an epithelial-to-lym-
phatic communication to prevent chylomicron escape from villi
during estrus. A driving force for this phenomenon could be the
drastic changes in small intestinal morphology during preg-
nancy and lactation. In rodents, villi are significantly longer in
pregnant compared to nulliparous dams, and villus capillary
density increases during gestation (Meyer and Caton, 2016).
Therefore, induction of Vegfa expression and intestinal fat re-
tention could serve to increase vessel density to enhance energy
reserves and oxygen to make a “metabolic nest” for villus ex-
pansion during pregnancy. However, despite this long-known
female-specific intestinal transformation phenomenon, the
mechanistic details of vascular expansion during pregnancy and
molecular gender differences of the gut vasculature are not
currently known.

Circadian rhythms
The 24-h period of clock gene cycling in the hypothalamic su-
prachiasmatic nucleus dictates the activity/rest cycles of
mammals and thereby controls feeding and sleep patterns
(Takahashi, 2017). Circadian rhythms are driven by oscillating
expression of the “core” clock genes controlled by the tran-
scription factor BMAL1 (Koronowski and Sassone-Corsi, 2021).
In the gut, circadian feeding patterns impart rhythmic changes
in lumen contents, intestinal motility, and hormone levels
(Segers and Depoortere, 2021). The gut microbiota is critical not
only for Toll-like receptor signaling-dependent host circadian
gene expression but also for the intestinal microbiota abun-
dance, diversity, and positioning, which is regulated in a circa-
dian manner (Litichevskiy and Thaiss, 2022).

Endothelial cells also display circadian expression of the core
clock genes, and endothelial-specific Bmal1 ablation decreases
endothelial cell proliferation and impedes angiogenesis (Astone
et al., 2023). Germline Bmal1−/− adult mice display no gross in-
testinal vessel phenotype (unpublished data); whether intestinal
vascular function is regulated by circadian rhythms remains to
be determined. However, lacteals and submucosal lymphatic
vessels display circadian expression of LYVE1 and other cell
adhesion molecules, similar to lymphatic capillaries from other
organs. Lymphatic-specific Bmal1 deletion reduces DC migration
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into dermal lymphatic capillaries by reducing CCL21 expression
(Holtkamp et al., 2021). Whether a similar mechanism exists for
lacteals remains to be determined. Additionally, PLN HEV
ICAM1 expression during inflammation is dependent on intact
endothelial BMAL1 (Ince et al., 2023); however, whether gut
tropic immune cell extravasation depends on circadian rhythms
of HEV-like villus venules also remains unexplored.

Gut-to-“X” (G2X) organ signaling
There has been intense study of gut communication with other
organs: gut-to-brain, gut-to-liver, etc. (the G2X axes; Cryan
et al., 2019; Dang and Marsland, 2019; Pabst et al., 2023). Hor-
mones, microbial metabolites and lipids, and small peptide bio-
activemolecules are all distributed from the gut and aremediators
of cross-organ communication (Lavelle and Sokol, 2020). Al-
though much of this G2X communication has been attributed to
the nervous system, vessels, as a conduit for systemic distribution
of nutrients, are also integral to delivery of gut-derived molecules
(Cryan et al., 2019). Therefore, intestinal vessels are a crucial link
in the G2X axes. Distinguishing active and passivemechanisms for
intestinal vessel G2X signaling will be crucial for defining novel
systemic roles of gut vessels that may be exploited therapeutically.

Concluding remarks
Electron microscopy studies from the past decades provided
insights into the distinct patterning and unique properties of
the intestinal vasculature. Advances in genetic mouse models,
imaging, and single-cell genomic technologies have now enabled
understanding of the molecular mechanisms underpinning in-
testinal vessel form and function. In addition, intense research
of other intestinal cell types allows identification of novel in-
testinal vessel functions in the broader context of signaling and
exchange in the functional villus/crypt unit. Therefore, future
work will further unravel how intestinal vessels are a distinct
but integral part of the intestinal cellular ecosystem.
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