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1 Introduction

Avalanche forecasting is a crucial task in many winter skiing and mountaineering venues. Snow

avalanches are linked to meteorological factors, snowpack conditions and terrain features with a rather

complex non-linear relationship [6]. Experts are in the field on a daily basis to collect data, understand

the processes leading to the release of avalanches and provide reports assessing the danger under the

current conditions. In their activity they can be assisted by numerical methods, based either on

physical principles or on statistical approaches. The latter set of techniques aims at predicting a

target output related to the avalanche activity, generally a binary indicator of the occurrence of the

events, based on several explanatory input variables.

The supervised classification technique of Nearest Neighbours (NN) is widely used in the field,

mainly due to its ease of interpretation [1, 10]. The method produces forecasts by comparing the

current situation with past recordings of the conditions measured on the slopes and the associated

avalanche activity. However, such an approach usually only considers the temporal component: the

spatialization of the forecasted danger is carried out by the specialists with the identification of critical

regions according to particular elevations and aspects highlighted by the model.

Spatial approaches to the analysis of snow avalanches have seldom been taken within the research

community. For instance, using a hierarchical Bayesian methodology, the study of the occurrence of

the events at the level of the municipality has been tackled in [3].

On the other hand, the constant refinement of the data collection process with more efficient

monitoring networks and the availability of high-resolution models of the topography opens promising

opportunities for studies integrating the spatial component of the phenomenon.

In this context, this research aims at developing a spatio-temporal model able to efficiently

discriminate safe from the active avalanche paths under a given set of conditions summarized by several

meteorological and snowpack factors. The spatially varying component of the avalanche activity has

been introduced by computing a set of localised features related to the likelihood of avalanches at the

level of the single paths.

We applied Support Vector Machines (SVM) [11], a powerful machine learning tool designed for

classification, which adheres to the guidelines provided by the Statistical Learning Theory [12]. The

algorithm builds a robust and non-parametric classifier able to efficiently cope with highly non-linear



problems involving datasets of large dimensions such as those encountered in the field of statistical

avalanche forecasting.

Promising results have been obtained in terms of predictions of path activity for 2 test winter

seasons and mapping of the indicator of the forecast avalanche danger over the whole extent of a moun-

tain range [8]. Additionally, we present here a feature selection approach to identify in a completely

automated fashion the features contributing the most to the correct assessment of the likelihood of

hazardous events. The routine we tested, named Recursive Feature Elimination (RFE) [5], has proved

a promising ability in suggesting a ranking of the key factors influencing the avalanche releases.

Data used in the present case study concern 18 years of observations in the region of Lochaber,

Scotland, UK.

2 Support Vector Machines

2.1 Linear SVM

Given a training dataset of n points {(xi, yi)}
n
i=1, where xi ∈ ℜd are the d-dimensional input vectors

and y ∈ {+1,−1} are the binary labels, SVM seeks to find a hyperplane separating the 2 classes with

a maximal margin (distance between the two closest training samples of the opposite classes). The

equation of this hyperplane, defined by vector w and bias constant b, becomes the decision function

used to classify a new test data point x (class membership assigned according to the sign of f(x)):

(1) f(x) = wx+ b .

In order to maximize the margin ρ = 2
‖w‖ , parameters {w, b} are optimized by solving a quadratic

programming problem. The solution of the optimization problem allows the final linear SVM decision

function to be formulated as

(2) f(x) =

n
∑

i=1

yiαixxi + b ,

where the αi’s are the Lagrange multipliers associated with each training sample. Only a subset of

them receives a non-zero αi weight. The latter are called Support Vectors and are the only data points

contributing to the SVM solution. These examples define the margins of the hyperplane (regions

where f(x) = {+1,−1}) and are the closest samples to the decision boundary.

2.2 Non-linear soft margin SVM

In order to deal with overlapping classes and noisy data, a “soft” margin adaptation has been intro-

duced. The misclassification of the training samples is allowed and a hyper-parameter C (to be tuned

by the user) is added in the optimization as a trade-off between margin maximization and magnitude

of the training errors.

Since the decision function (2) is uniquely based on dot products between samples, the intro-

duction of the so-called “kernel trick” can be used to yield non-linear classification models. The dot

product x ·xi is substituted by a kernel function K(x,xi), which is a symmetric semi-positive definite

similarity measure between two vectors. Valid kernels correspond to a dot product in a Reproducing

Kernel Hilbert Space. The final SVM decision function is therefore provided by

(3) f(x) =

n
∑

i=1

yiαiK(x,xi) + b .



In the present work we made use of Gaussian RBFs kernel functions, K(x,xi) = e−
‖x−xi‖

2

2σ2 , which

lead to a simple interpretation of Eq. (3): it is a weighted sum (by coefficients αi and similarities with

the test sample x) of the labels yi associated with the training samples xi. In fact, kernel values

K decrease as the squared Euclidean distance between the examples ‖x− xi‖
2 increases. The σ

parameter of the kernel, the bandwidth of the Gaussian function, has to be tuned by the user.

2.3 SVM output interpretation

Since the range of values taken by the SVM decision function f(x) is not fixed, it is useful to compute

a sigmoid transformation to obtain class-conditional posterior probabilities p (y = 1 |x) ∈ [0, 1] as

follows [7]:

(4) p (y = 1 |x) =
1

(1 + exp (a · f(x) + b))
,

where a and b are constants tuned by maximum likelihood on the validation set. These indicative

values, however, in the present case are to be used for exploratory data analysis and regarded as a

general likelihood of an avalanche release and not as event probabilities.

Once the SVM decision function is rescaled in such an interval, it is possible to tune a SVM

threshold t ∈ [0, 1]. This threshold allows us to let predictions be either more liberal (t < 0.5) or more

conservative (t > 0.5) with respect to the standard threshold on the raw decision function f(x) = 0.

Both in the validation (parameters selection) and in the testing (generalization ability assess-

ment) phases, the performance of the model can be evaluated by computing a series of skill scores

starting from the binary confusion matrix associated with the considered forecasting task [2]. Table 1

summarizes the statistics frequently used in the field of avalanche forecasting.

Table 1: Main forecast verification measures and skill scores [2].

Measure Formula Range and description

Overall accuracy (OA)
Hits + Corr.Negatives

Total
[0, 1], the proportion of correct forecasts

Hanssen and Kuipers
Hit rate – FalseAlarm rate

[−1, 1], the capacity to discriminate
discriminant (HK) between events and non-events

Heidke skill score (HSS) Hits + Corr.Negatives− Chance

Total −Chance

]−∞,1], the fraction of correct predictions accounting
for correct outcomes due to random guess (Chance)

3 Statistical spatio-temporal avalanche forecasting

3.1 Avalanche data from the Lochaber region

The case study that will be illustrated in the next sections deals with the combination of spatial and

temporal information into an avalanche forecasting model based on SVM for the Lochaber region,

Scotland [9, 8]. The goal is to produce spatially varying avalanche forecasts at the level of single

avalanche paths existing in this mountaineering area. The region includes Ben Nevis (the highest

mountain in the UK) and is one of the 5 ski venues in Scotland for which forecasting is carried

out on a daily basis during the winter season (see www.sais.gov.uk). In the considered area, a

nearest neighbor model called Cornice is operationally used to assist in forecasting the avalanche days

(temporal forecasts only) [10].
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Figure 1: An illustration of spatio-

temporal avalanche forecasting considered

as a supervised classification problem. The

European Danger Scale (“1” - low (green)

to “5” - very high (red and black)) is

shown to align the distribution of avalanch-

ing events in a space of conditioning fac-

tors and the regional avalanche danger lev-

els.

Current weather and snowpack conditions are de-

scribed by a set of 9 variables that are measured or es-

timated by local forecasters on the slopes or that are regis-

tered by an automatic weather station: “snow index” (or-

dinal index of the precipitation as fresh snow on a day),

“rain at 900 m” (binary variable indicating rain at 900 m),

“snow drift” (binary variable indicating when experts re-

mark snow drifting), “air temperature” (measured in ◦C),

“wind speed” (24 hours vector mean speed in m/s), “wind

direction” (24 hours vector mean wind direction in ◦),

“cloud cover” (as percentage of the sky), “foot penetra-

tion” (in the snow, measured in cm at a pit site) and “snow

temperature” (measured in ◦C at a depth of 10 cm at a pit

site).

The 9 variables are recorded every day of the win-

ter season (roughly 4 months per year), along with the

avalanche events observed in the region. Each release point

is described by elevation, slope and aspect. Data from 1991

to 2008 were available for this study: information about 712

avalanche events occurred in 49 different avalanche paths

(gullies) was used.

3.2 Input features

In order to get the desired spatio-temporal forecast at the level of the avalanche path, the series of

daily measurements of meteorological conditions related to snowpack stability described in Sect. 3.1

have to be smartly combined with the spatial description of the terrain morphology available via the

DEM. The latter, with its relatively high resolution of 10 meters, provides detailed information about

“elevation”, “slope” and “aspect” of the paths where the avalanche events could happen (3 initial

variables included in the set). A group of spatialized local features with changing values according

to the location of the avalanche release point was computed. Examples of these spatially varying

features are, for instance, “air temperature”, “wind direction”, “wind speed”, “snow accumulation”,

etc. The conditioning factors have been interpolated over the whole domain using very simple heuristics

(temperature/elevation gradients, basic physical models, etc.). Additionally, global factors describing

the general avalanching likelihood over the Lochaber region as a whole were also added to the set.

Variables as “snow index”, “foot penetration” in the snow cover, etc. were appended. For many of

these variables (both local and global), information about conditions recorded in the previous days

were also included (2 pre-days at most because of the rapidly changing weather conditions).

The final input vector counted 39 features: 22 spatio-temporal features (describing local condi-

tions at a given gully) and 17 temporal features with global validity (constant values). The complete

list, with a brief description of the meaning of each variable is available in [8].

3.3 Set up of the classification problem

From a statistical avalanche forecasting perspective, one can now tackle the prediction of the events

as a binary supervised classification problem. In the case of spatio-temporal forecasts, our goal is

to discriminate between safe avalanche paths and avalanche paths giving rise to releases under given

conditions (Fig. 1). This is an effective exploratory approach to reveal patterns in historical data

available for avalanche forecasting.



Initially, we assign to the positive class (+1 label) the vectors characterizing (spatial location,

weather and snowpack conditions) the observed avalanche events. To complete the binary classification

problem, a negative class (−1 label) is needed as well. The chosen intuitive approach is to let this

class be composed by all the 49 gullies (actually the 40 covered by DEM information) susceptible to

give rise to an avalanche release on a safe day. Therefore, for every day of the winter season when all

the variables listed in Sect. 3.1 could be measured and the visibility allowed avalanche observations

but no event was actually documented in the region, we computed all the features describing the

conditions at each avalanche path. The purpose was to let the classifier train on a set of critical

situations which were close to the “safe/event” decision boundary and likely to cross it under slightly

different weather conditions. Additionally, in order to avoid the resulting unbalanced classification task

(negative samples outnumbering the positive ones by a factor of ≈ 134 to 1), we decided to include

virtual positive examples in the dataset. These virtual positive class data points were generated

by drawing 25 additional samples from normal distributions centred on the actual feature values of

each real avalanche case. Standard deviations were set to account for instrumental error or observation

uncertainties. Moreover, such a procedure is justified by the fact that many more avalanches than those

observed and reported actually occur in the considered domain. In fact, avalanches are either randomly

spotted by the forecasters on their daily patrolling activity or reported by skiers/mountaineers.

The final dataset consisted of 18’512 positive samples and of 95’115 negative samples spanning

the winter seasons from 1991 to 2008. In order to evaluate the generalization ability of the SVM

model on an independent subset, the mentioned dataset was split in a training set covering the years

from 1991 to 2005 (15’756 samples with label +1 and 89’335 samples with label −1) and in a test set

related to seasons from 2006 to 2008 (2’756 samples with label +1 and 5’780 samples with label −1).

Note that among the test set positive examples we find 106 real avalanche cases.

4 Avalanche forecasts assessment in space and time

4.1 Release predictions at single avalanche paths

Once the datasets have been built, the SVM needs to be optimized to provide an efficient predictive

model able to generalize properly on new unseen data while avoiding the overfitting of the training

set. The parameters of the classifier were tuned on a randomly chosen validation subset consisting

of 20% of the original training set. For this task we made use of the HK discriminant, HSS and OA

measures (see Tab. 1). The SVM hyper-parameters space (C and σ) has been thoroughly searched

and the following optimal values were found: C = 0.5 and σ = 10. After having applied the sigmoid

transform of Eq. (4), performed with tuned parameters a = −1.2 and b = −0.23, the SVM threshold

t was set to a level of 0.37.

The SVM model was then asked to predict the binary labels for the test dataset, as though

we were simulating the forecasts for 2 coming winter seasons (years from 2006 to 2008). The results,

as shown by Tab. 2(a), are encouraging. The SVM model correctly predicted 97 of the 106 events

observed during these test seasons. The number of false alarms (1150) was quite large but was deemed

unavoidable in order to ensure a reasonable number of detections. Forecasting skills are summarized

by the following scores: OA = 0.84, HK = 0.72 and HSS = 0.66.

As a matter of comparison, the performance of the proposed model has been related to that

of the benchmark method widely used in (temporal) avalanche forecasting: a Nearest Neighbours

model. After optimization, such a model was applied by forecasting an avalanche release if 2 or more

neighbours out of 20 were avalanche events. The detection rate, as illustrated by Tab. 2(b), is lower

than the SVM model, with only 55 correctly predicted observed events. The performance measures

are less noteworthy: OA = 0.75, HK = 0.37 and HSS = 0.39.



Table 2: Performance of the SVM model compared to a Nearest Neighbours model. Confusion matrices

refer to the test set (in brackets: real events).

(a) SVM model.

predicted

Class +1 Class −1

observed
Class +1 2541 (97) 215 (9)
Class −1 1150 4630

(b) Nearest Neighbours model.

predicted

Class +1 Class −1

observed
Class +1 1415 (55) 1341 (51)
Class −1 827 4953
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Figure 2: Map (left) and corresponding aspect/elevation diagram (right) of the avalanche danger for 15

February 2007.

4.2 Avalanche danger mapping

Danger maps represent a valuable tool when assessing the threat of natural hazards such as avalanches

over a mountain range. In order to compute an “avalanche danger” map over the Lochaber region

under a given set of conditions, a prediction grid for the days of interest has to be built. Hence, we

extrapolated the avalanching conditions summarized by the 39 input features mentioned in Sect. 3.2

over the whole extent covered by the DEM, obtaining a prediction grid with 10 m × 10 m pixels. Using

the retained SVM model, it is possible to compute a decision function value, rescaled by means of the

optimal sigmoid, for every point of the map. This can be intended as an indicator of the likelihood

of an avalanche release. Its range being always comprised between 0 and 1, such a measure allows a

comparison of different maps produced under various conditions.

Another method of displaying the spatial variability of the avalanche danger is by plotting aspec-

t/elevation diagrams. This is a common graphical representation of the hazard in operational avalanche

forecasting. For every combination of aspect/elevation values, we plotted the largest avalanche danger

found among the cells of the map having these characteristics.

We chose to produce maps and diagrams for some interesting days in the winter of 2007 (inde-

pendent test set). Figure 2 provides a visualization of the predicted avalanche danger for 15 February

2007, a day where 3 avalanche events have actually been observed on the Ben Nevis sector. The

map over the 5 km × 5 km region of Lochaber shows the critical regions where avalanches are likely

to be released. As in the previous days quite important snowfalls have occurred and south-westerly

winds were blowing, the east-facing aspects are correctly highlighted as the most dangerous (good

correspondence with the events reported that day).

The aspect/elevation diagram draws the attention of the user on the same critical regions,

confirming thus the main trend noticed on the map. Indeed, the “danger rose” as well suggests that

the east aspects above 1000 m present a large risk of avalanching (danger indicator above 0.5).



5 Feature selection via Recursive Feature Elimination

5.1 Method and experimental setup

Feature selection methods provide a classifier with a small subset of variables selected from the initial

set so that it can work in a lower dimensional input space with the relevant features only. The

application of this kind of algorithm provides the analyst with meaningful information about the real

influence and utility of each input feature used in the classification problem.

In the case of avalanche forecasting, it is worth looking for the most useful variables contributing

to the prediction at the avalanche paths of our study region. Such a task is usually carried out manually

by an avalanche expert. Nevertheless, an objective way to assess variables influences in a forecasting

model is advisable since, as pointed out by Purves et al. in [10], when dealing with high-dimensional

datasets and with long periods of recordings, expert suggestions tend to be too reliant on the recent

winters behaviors (special conditions, particular recorded events, etc.). To overcome this drawback

the authors use genetic algorithms to find the best set of weights for their NN model. Working with

SVM allowed us, on the contrary, to make use of a technique that is well suited for the choice of the

relevant features: Recursive Feature Elimination [5]. Many methods have been proposed to select the

best features or to reduce the input space dimensionality [4]. Hereafter we will briefly present the

RFE procedure for a SVM classifier using a kernel expansion.

The intuition behind this procedure consists in identifying, at every step of the algorithm after

having trained the SVM, the least influential feature and removing it from the initial set of d features.

The process is iterated until the set of features is empty, providing thus a variables ranking accounting

for their usefulness.

The importance of every feature in the SVM model, in the linear case, is given by the weighting

vector w =
∑

i αiyixi. When dealing with a non-linear SVM it is impossible to directly compute the

components of w because the sample xi, included in a simple dot product in Eq. (2), turns into the

input of the kernel function in Eq. (3). Therefore, the method consists of looking for the smallest

change in the square of the length of vector w when removing feature k. This value, identified with

W (α)2, is not computed directly as the norm of w, but as

(5) W (α)2 = ‖w‖2 =
∑

i,j

αiαjyiyjK(xi,xj) = α
THα ,

where the α’s (forming column vector α) are the weights for each training point found after the

optimization task, K(xi,xj) is the kernel output reporting the similarity between the training samples

xi and xj and H is a matrix consisting of elements yiyjK(xi,xj).

As proposed by Guyon et al., at each iteration, the feature g to withdraw according to the final

ranking criterion is selected as

(6) g = argmin
k

∣

∣W (α)2 −W(−k)(α)2
∣

∣ ,

where the notation (−k) denotes that the candidate feature k has not been included in the computation

of (5). Since the norm of the weighing vector w defines the SVM margin ρ, we select the variable

whose removal least changes the distance between the strict class boundaries f(x) = {−1,+1}.

The main steps of the non-linear RFE procedure are summarized by Algorithm 1.

We run a series of 10 experiments initialized with a different subset of 8000 training samples

randomly chosen from the complete set of available training points (see Sect. 3.3). This strategy has

been adopted for computational issues (RFE is very demanding if run with a large training set) and in

order to account for the effect of the choice of the samples when building the datasets. We adopted a



Algorithm 1 Non-linear RFE

1: Inputs: Training samples with known class labels {(xi, yi)}
n

i=1, xi ∈ ℜd.
2: repeat

3: train the SVM and compute W (α)2 according to Eq. (5)
4: assess the performance of the SVM on the test set and store the result
5: for k = 1, d do

6: temporarily remove variable k from the set of features
7: compute W(−k)(α)2

8: obtain and store the ranking criterion for feature k as
∣

∣W (α)2 −W(−k)(α)2
∣

∣

9: end for

10: find the feature g to remove according to Eq. (6)
11: remove the values of this feature from the initial training data
12: update the ranking list
13: until every feature has been removed from the initial set
14: Output: ranked features list (first removed → less relevant), SVM performance in test at each iteration.

SVM with Gaussian kernel whose parameters (C and σ and threshold t) were tuned at the beginning

of each experiment, in this case, by 5-fold cross-validation using HK as performance score.

5.2 Results and discussion

Figure 3: Hanssen and Kuipers discriminant along

the RFE iterations for the 10 experiments. Mean val-

ues are shown with a solid blue line while the shaded

surface displays the standard deviation.

The application of the RFE procedure yields two

main types of results. The first one is a classi-

fication accuracy curve created by plotting the

selected model success statistic (HK) in test as

a function of the iterations (features removal)

(Fig. 3). Such a plot informs the user about the

actual performance of the model when dealing

with the decreasing number of variables to rely

on. The second graphical element is a boxplot

of the rank (importance) obtained by the 39 fea-

tures in the 10 experiments (Fig. 4). The expert

is provided here with an objective ranking of the

features translating the influence of each one of

these in the SVM model.

Looking at the average curve of the HK

measure one notices that the magnitude of the

measure decreases as the features removal pro-

cedure progresses. This confirms the intuitive

thought that there is a loss of information if we provide the model with only a few features de-

scribing the avalanche paths. However, one also notices that this decrease is not at all smooth. By

removing up to 7 well chosen features, we are able to keep an average classification of good quality.

In fact, HK starts a significant decrease only when the kept subset counts less than 32 variables. The

removal of noisy features bringing into play corrupted information about avalanche activity is there-

fore completely justified. We then have a gradual decrease (HK from 0.54 to 0.32) in the classification

quality from iteration 7 to iteration 34, associated with the withdrawal of more important factors

affecting the release of avalanches. Finally, when removing the last 5 key features (from iteration 35

onwards) the discrimination between events and non-events suddenly becomes harder (HK < 0.29),

revealing the extreme usefulness of the variables ranked as most relevant by RFE.

It is now insightful to have look at the ranking of the features and check if it is in agreement
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Figure 4: Boxplots of feature rankings over the 10 experiments, sorted by decreasing median rank values.

The rank (ordinate) corresponds to the iteration at which the feature is eliminated in the RFE procedure,

i.e. the larger the rank, the more relevant the feature (variable kept until the end of the process).

with the interpretation of the influences that the involved variables have on the process affecting an

avalanche release.

We remark as the global binary indicator “snow-drift” is detected as the most useful variable

(last removed variable on average), mainly because of its benefit in discriminating the critical days

from the safe days in terms of avalanche activity. Among the 5 key variables we then find the cosine

(2nd rank) and sine (5th rank) transforms of the “wind direction”. These projections of the wind

direction on the north-south and west-east axes are of decisive importance for correctly predicting

the slope aspects where critical snow deposits are likely to take place. In 3rd and 4th position we

respectively have the “rain” and “avalanches -2” indicators. Both are global variables. The former

reports whether rain is falling, resulting in an additional snowpack load. The latter accounts for a sort

of temporal memory of the model by recording the avalanche activity that has been observed over the

2 previous days (possible values ∈ {0, 1, 2}).

Among the less important features ranked by the algorithm we find many variables whose

information is made available to the system through the features created by combining the pre-days

scores or several initial variables. The least relevant variable, “elab. air T” (removed in 5 experiments

out of 10 as 2nd feature, i.e median rank of 2.5), for instance, contains the information about the

current temperature of the air. Such values have already been integrated in the “elab. air T grad.”

and “elab. air T grad. 2” variables encoding the changes in temperature between current and previous

days. The RFE algorithm rejects this variable since it brings in redundant information.

6 Conclusions

The present work illustrated how Support Vector Machines have been applied for the spatio-temporal

prediction of avalanches based on historical data. The task has been considered as a binary supervised

classification problem where the goal was to discriminate the avalanche paths subject to a snow release



from the safe paths. Meteorological as well as snowpack information was combined with the DEM to

build a meaningful set of features describing the local avalanching conditions.

SVM proved potential in terms of predictions of avalanche activity at the level of the paths for

2 test winter seasons at the avalanche-prone site of Lochaber. The benchmark technique of NN was

outperformed in this study involving both spatial and temporal components of the avalanche danger.

Moreover, we proposed an approach aimed at the extrapolation of the predictions over the entire

considered region, leading to maps of the avalanche danger. Such plots, along with the associated

aspect/elevation diagrams, can be considered as powerful decision support tools for the avalanche

forecasters dealing with the assessment of this natural hazard.

Finally, the selection of relevant features via the Recursive Feature Elimination technique pro-

vided us with a fully automatic method able to identify the most influencing factors in the considered

prediction task. Helpful insights about which phenomena affect the most the avalanche activity in

space and time are thus available for the experts of the field as a complement to their knowledge.
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