
Citation: Deutsch, L.; Debevec, T.;

Millet, G.P.; Osredkar, D.; Opara, S.;

Šket, R.; Murovec, B.; Mramor, M.;

Plavec, J.; Stres, B. Urine and Fecal
1H-NMR Metabolomes Differ

Significantly between Pre-Term and

Full-Term Born Physically Fit Healthy

Adult Males. Metabolites 2022, 12, 536.

https://doi.org/10.3390/

metabo12060536

Academic Editors: Sibylle Kranz and

Nicole Gilbertson

Received: 29 April 2022

Accepted: 2 June 2022

Published: 10 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

Urine and Fecal 1H-NMR Metabolomes Differ Significantly
between Pre-Term and Full-Term Born Physically Fit Healthy
Adult Males
Leon Deutsch 1 , Tadej Debevec 2,3 , Gregoire P. Millet 4 , Damjan Osredkar 5,6 , Simona Opara 1,
Robert Šket 7, Boštjan Murovec 8 , Minca Mramor 9, Janez Plavec 10 and Blaz Stres 1,3,11,*

1 Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
leon.deutsch@bf.uni-lj.si (L.D.); simona.konda@gmail.com (S.O.)

2 Faculty of Sports, University of Ljubljana, SI-1000 Ljubljana, Slovenia; tadej.debevec@fsp.uni-lj.si
3 Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
4 Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; gregoire.millet@unil.ch
5 Department of Pediatric Neurology, University Children’s Hospital, University Medical Centre Ljubljana,

SI-1000 Ljubljana, Slovenia; damjan.osredkar@kclj.si
6 Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
7 Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre

Ljubljana, SI-1000 Ljubljana, Slovenia; robert.sket@kclj.si
8 Faculty of Electrical Engineering, University of Ljubljana, Jamova 2, SI-1000 Ljubljana, Slovenia;

bostjan.murovec@fe.uni-lj.si
9 Department of Infectious Diseases, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;

minca.mramor@kclj.si
10 National Institute of Chemistry, NMR Center, SI-1000 Ljubljana, Slovenia; janez.plavec@ki.si
11 Institute of Sanitary Engineering, Faculty of Civil and Geodetic Engineering, University of Ljubljana,

SI-1000 Ljubljana, Slovenia
* Correspondence: blaz.stres@bf.uni-lj.si; Tel.: +386-4156-7633

Abstract: Preterm birth (before 37 weeks gestation) accounts for ~10% of births worldwide and
remains one of the leading causes of death in children under 5 years of age. Preterm born adults have
been consistently shown to be at an increased risk for chronic disorders including cardiovascular,
endocrine/metabolic, respiratory, renal, neurologic, and psychiatric disorders that result in increased
death risk. Oxidative stress was shown to be an important risk factor for hypertension, metabolic
syndrome and lung disease (reduced pulmonary function, long-term obstructive pulmonary disease,
respiratory infections, and sleep disturbances). The aim of this study was to explore the differences
between preterm and full-term male participants’ levels of urine and fecal proton nuclear magnetic
resonance (1H-NMR) metabolomes, during rest and exercise in normoxia and hypoxia and to assess
general differences in human gut-microbiomes through metagenomics at the level of taxonomy,
diversity, functional genes, enzymatic reactions, metabolic pathways and predicted gut metabolites.
Significant differences existed between the two groups based on the analysis of 1H-NMR urine and
fecal metabolomes and their respective metabolic pathways, enabling the elucidation of a complex
set of microbiome related metabolic biomarkers, supporting the idea of distinct host-microbiome
interactions between the two groups and enabling the efficient classification of samples; however,
this could not be directed to specific taxonomic characteristics.

Keywords: premature birth; 1H-NMR metabolomics; hypoxia; fecal metagenomics; biomarkers;
activity; hypoxia

1. Introduction

Preterm birth, defined as a birth before 37 weeks gestation, accounts for approximately
10% of births worldwide. Four degrees of preterm birth are known: extreme preterm
(before 28 weeks), very preterm (28–31 weeks), mild preterm (32–33 weeks) and moderate

Metabolites 2022, 12, 536. https://doi.org/10.3390/metabo12060536 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo12060536
https://doi.org/10.3390/metabo12060536
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-3739-8142
https://orcid.org/0000-0001-7053-3978
https://orcid.org/0000-0001-8081-4423
https://orcid.org/0000-0002-2188-420X
https://orcid.org/0000-0002-1478-7380
https://orcid.org/0000-0003-1570-8602
https://orcid.org/0000-0003-2972-2907
https://doi.org/10.3390/metabo12060536
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo12060536?type=check_update&version=1


Metabolites 2022, 12, 536 2 of 22

preterm (34–36 weeks) [1]. While the mechanisms underlying preterm birth are complex,
with risk factors comprising infection, cervical disease, uterine over-distention, stress and
placental disorders [2,3] it remains one of the leading causes of death in children under 5
years of age [4,5]. Improved neonatology care has led to significantly increased pre-term
born survival rates over the last 50 years [6]. Importantly, preterm born adults have been
consistently shown to be at an increased risk for chronic disorders involving various organ
systems, including cardiovascular, endocrine/metabolic, respiratory, renal, neurologic,
and psychiatric disorders. These disorders either persist from infancy into adulthood or
sometimes even appear in adulthood and result in a moderately (30% to 50%) increased
risk of death in early to mid-adulthood in preterm compared to full-term, and even higher
risks among those born at the earliest gestational ages [3]. Preterm infants were also shown
to experience an imbalance between oxidants and antioxidant capacity [7]. Oxidative stress
was shown to be an important risk factor for hypertension, metabolic syndrome (diabetes
mellitus, dyslipidemia), lung disease (reduced pulmonary function, long-term obstructive
pulmonary disease, respiratory infections, and sleep disturbances) [3].

In addition to the population level disease metrics, preterm born individuals have
increased body fat mass, arterial blood pressure, and higher fasting glucose, insulin, and
cholesterol levels [3,8,9]. Elevated levels of low-density lipoprotein in preterm individuals
pose a greater risk of developing atherosclerosis or cardiovascular disease [10]. Preterm
born individuals also experience problems with renal function due to altered nephron
development [11]. Imbalance in the ratio between reactive oxygen species (ROS) and
antioxidants was identified as conductive to oxidative stress [12], which was associated
with increased molecular damage [13]. ROS overproduction was reported to be induced in
hypoxia by the xanthine oxidase pathway, catecholamine production and increased rate of
electron leakage within the mitochondria [14–18]. Taken together, past research showed
that significant differences existed between preterm and full-term born adults with respect
to oxidative stress induced by hypoxia, activity, or exercise [7,13,14,19,20].

Preterm birth was also shown to induce life-long pulmonary system effects and
compromise ventilator control resulting in blunted hypoxic ventilatory response (HVR) in
preterm infants. The PreTerm project (Slovenian Research agency (ARRS) project # J3-7536
(D), Figures S1–S3) was devised to explore whether the differences and impairments in
HVR persisted with aging in physically fit young men. The differences in HVR responses
between preterm born adults and their age matched full-term controls were explored
during rest and exercise, in normoxia and hypoxia [21]. Hypoxia was shown to provoke a
similar relative reduction in maximal aerobic power and submaximal ventilatory threshold
in healthy preterm and full-term born matched controls with comparable peak oxygen
consumption levels. These data suggested that exercising in normobaric hypoxia does not
exert a higher ventilator and metabolic load in otherwise healthy physically fit individuals
born prematurely [21]. Only recently was the post-exercise accumulation of interstitial
lung water shown to be higher in adults born prematurely in hypobaric hypoxia, than in
normobaric hypoxia [22].

Given the complexity of the human body and its responses to chronically elevated
oxidative stress levels that may persist into adulthood and consequently contribute to the
development of numerous noncommunicable diseases observed in the preterm popula-
tion (diabetes, hypertension or lung disorders) [7], the systemic bodily matrices, such as
urine and feces remain surprisingly unexplored by powerful high-throughput top-down
analytical approaches [23]. To fill this gap, the aim of this study was to explore differences
between preterm and full-term participants’ urine and fecal 1H-NMR metabolomes and
respective enzymatic reactions, during rest and exercise, in normoxia and hypoxia. In
addition, metagenomic analysis of human gut-microbiomes was conducted to assess the
differences in the human gut microbiome taxonomy, diversity, functional genes, enzymatic
reactions, metabolic pathways and predicted gut metabolites. In this work we hypothesized
that significant differences exist between the preterm and full-term groups at the levels of
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multivariate physiological initial states and their respective responses to the tests conducted
(rest or exercise; normoxia or hypoxia) [24].

The analyses of large metabolomic and metagenomic datasets were hypothesized to
enable the detection of the characteristic differences between the two groups at information
levels not utilized before in preterm research, in addition to the efficient selection of more
complex sets of biomarkers by utilizing machine learning and the exploration of vast
algorithm spaces.

2. Results and Discussion
2.1. Group Characteristics in Relation to Gut Physiological Data

Thirty-seven men volunteered for this study and were divided into two groups based
on the mode of delivery. Fifteen participants were born at term (full-term control) and 22
were born prematurely (preterm). Control participants were 22 ± 2 years old, weighed
76 ± 6 kg, were 180 ± 5 cm tall, had a VO2 max of 52 ± 5 mL kg−1 min−1, and were born
at 39 ± 2 weeks. Preterm participants were 21 ± 2 years old, weighed 69 ± 7 kg, were
175 ± 7 cm tall, had a VO2 max of 48 ± 6 mL kg−1 min−1, and were born at 29 ± 3 weeks.
Table S1 shows their baseline data [24]. Gestational age was statistically different between
the two groups [24]. Twenty-one preterm and 13 full-term participants were included in the
metabolomic and metagenomic part of the PreTerm study. Two full-term and one preterm
participant did not collect urine and fecal samples and were excluded from this part of the
PreTerm study.

Physiological exercise tests from the preterm project were already published before
and showed that incremental cycling in normoxia and hypoxia resulted in increased levels
of advanced oxidation protein levels (AOPP), catalase (CAT), superoxide dismutase (SOD),
and nitrosative stress markers in both groups (preterm and full-term) immediately after
exercise [24]. No differences were observed between normoxic and hypoxic environments.
However, hypoxic exposure itself resulted in a significant increase in AOPP, and CAT and
showed a trend toward an increase in the nitrosative markers control group only, but not in
the preterm group. Further, in line with the above observations, the metabolic response to
hypoxia may be blunted in adult preterm born adults [24]. Periodic breathing (repeated
oscillations of hyperventilation followed by an apneic phase) was also different in the
preterm group than in full-born adults, suggesting a possible physiological mechanism [25].
The hypoxic ventilatory response at rest was lower in preterm, but no differences in exercise
were observed between the two groups [21]. Preterm born adults experienced reduced
physical capacity in normoxia compared to those full-term born and have a lower hypoxic
ventilatory response (HVR, ability to change ventilation in the function of blood oxygen
saturation), while no such difference was observed under hypoxic conditions [21,26–31].
These reports show that preterm individuals nevertheless exhibited increased oxidative
stress, antioxidant activity, and NO metabolism in acute exercise. However, under hypoxic
conditions, the preterm group did not exhibit increased levels of plasma advance oxidation
protein products (AOPP), catalase, and nitrosative stress markers (NOx) levels, indicat-
ing a possibly greater activation of responses resisting oxidative stress under hypoxic
conditions [24,32,33].

Based on the integration of past findings obtained utilizing the same cohorts within
the PreTerm project, we speculated that measurable differences existed also in the makeup
of the intestinal tract characteristics. Various physiological characteristics of the gut en-
vironment were previously associated with numerous non-communicable diseases [34].
To assess these differences in the intestinal environment between preterm and full-term
control, 25 additional variables were measured in human feces (Figure 1). The obtained
results, surprisingly suggest that no significant differences existed in the measured intesti-
nal parameters between the preterm and full-term participants (Permutational analysis
of variance (PERMANOVA); p > 0.05; n permutations = 5000). In addition, no difference
existed between the gut environmental characteristics before and after normoxic and hy-
poxic test periods (PERMANOVA; p < 0.05; n permutations = 5000). The use of a 3-day
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sampling series enabled us to conclude that the set of 25 measured parameters reported
in this study was either insufficient or not measured at an appropriate scale to detect
significant differences between the intestinal tracts of the participants from the two groups.
As many of the measured parameters were previously effective for detection of differences
in the intestinal environment of the participants involved in the three-week bed-rest cam-
paigns of our previous Planetary Habitat Simulation Project (PlanHab) [35–37], the results
suggest a lack of long-term differences between physically fit preterm and full-term young
male participants at the level of the measured intestinal parameters. The role of matching
physical fitness between preterm and full-term groups for health maintenance shows that
the differences in the status of intestinal tract environments were notably smaller between
the active young males irrespective of the preterm birth and oxidative stress markers de-
tected. From this, a different set of additional parameters arise (e.g., zonulin, α1-antitrypsin,
eosinophile-derived neurotoxin, bile acid and derivatives, ionic strength, redox potential,
mucus characteristics) focusing more intensively on the gut-feces interface and its inter-
action with the host. This should be used in future studies focusing on immunological,
ion-selective and electrochemical characteristics next to spectral and excitation-emission
analyses of dissolved organic compounds in the intestinal tract [35–39]. In contrast to our
past work utilizing participants exposed to a tightly controlled environment, diet, water
intake, circadian rhythm and level of exercise (in the PlanHab project [35–38]) the PreTerm
project interpersonal variability in the same types of variables might have obscured differ-
ences in the intestinal parameters associated with individual lifestyle and food preferences
in relation to exercise. The significant differences in physiological parameters measured in
the PreTerm project were not reproduced in the measurements of the intestinal parameters
in the same participants as described above.

Figure 1. A heatmap summarizing the differences in the 25 measured parameters (COD—chemical
oxygen demand, DM—dry matter, m—mass (g), BSS—Bristol stool scale, IMM—molecular mass
index, C—carbon, RS—reduction sugars, Glc—glucose) describing the intestinal environment of the
preterm and full-term groups exposed to distinct training regimes of the PreTerm project (Figures
S1–S3). No significant difference was observed (PERMANOVA; p > 0.05; n permutations = 5000).
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2.2. Multivariate Relationships in Urinary and Fecal 1H-NMR Metabolomes Supported Significant
Differences between Preterm and Full-Term Groups

Urine and fecal samples from the preterm and full-term groups were collected on
three consecutive days before and three consecutive days after the hypoxic and normoxic
tests (Figures S2–S4). In total, each participant was characterized by 12 samples (three
daily consecutive samples before and after normoxic and hypoxic tests). Nonparametric
analyses utilizing one-way and two-way PERMANOVA on either urine or fecal identified
metabolites showed that preterm and full-term groups differed significantly (p < 0.001) at
both metabolomic levels. In two-way PERMANOVA the training condition (hypoxic vs.
normoxic) was marginally significant for urinary metabolomes (p = 0.05), but not for fecal
metabolomes. This shows that rapid changes in human physiology take place upon the
introduction of exercise, while longer bouts of exercise (weeks) would be needed to detect
larger differences between physically fit preterm and full-term participants at both levels,
similar to the PlanHab project [35–38]. Differences in the numbers of detected metabolites
per group, test and time of sample collection, and the sum of their concentrations in
all studied groups were not significantly different (Table S2). In summary, significant
differences were identified in the overall makeup of urinary and fecal metabolomes between
the preterm and full-term groups.

2.3. Urine 1H-NMR Metabolomics

The identified differences between the preterm and full-term groups at the level of
urinary 1H-NMR metabolomes were explored in more detail. When comparing the urine
metabolomes (ESM 2) of preterm and control participants using the PLSDA method in-
tegrated into MetaboAnalyst [40] and based on cross-validation, three components were
recommended to distinguish between the two groups explaining 24% of the variation
(Figure 2a,b). Acetone, tartrate, and trans-aconitate [41] were the first three of the most
differentiating metabolites in urine, and all three were elevated in the control group based
on VIP scores. Acetone metabolism is part of two pathways, the decarboxylation of acetoac-
etate that is generated during dextrose metabolism and lipolysis, or the dehydrogenation
of 2-propanol. Its concentrations in exhaled breath have previously been shown to correlate
strongly with acetone concentrations in the blood, as well as with other ketones and were
affected by fasting, exercise, and/or disease (e.g.,) diabetes mellitus [42]. Tartrate is part
of glyoxylate and dicarboxylate metabolism (Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway: ko00630 (accessed on 20 May 2022) while trans-aconitate (accompanied
by creatinine) as the metabolite related to the tricarboxylic acid cycle was indicative of
differences in exercise capacity [43].

D-arginine and D-ornithine metabolism, synthesis and degradation of ketone bodies
(acetone), and the Warburg effect were the most enriched metabolic pathways (mostly asso-
ciated with the preterm group) in the urine metabolome (Table S3, Figure 2c,d, Figures S5
and S6). Our results from the metabolome analysis were compared with the metabolomes of
specific urinary disease pathways within MetaboAnalyst. Tentatively, the most interesting
enriched pathways identified in the preterm group were described before in relation to
systemic or tissue hypoxia (Table S4) [44,45].

The MetaboAnalyst PLSDA analysis reported decreased levels of acetone, trans-
aconitate and tartrate in the preterm group, irrespective of their matching physical fit-
ness [21,24]. To the best of our knowledge our results could be compared to a single
existing study reporting significantly different sets of markers, such as citrate, hippurate,
creatinine, and fumarate as crucial metabolites responsible for the differentiation of preterm
adults from full-term adults [46]; however, in that study participants of matching fitness
and exercise tests were not included.
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Figure 2. (a) Urine metabolomes comparing preterm and full-term born adults and the most differ-
entiating metabolites based on PLSDA method (b). The most enriched pathways associated with
metabolism (c) and diseases (d) based on urinary metabolomes. Enlarged (c,d) figures were added to
supplementary (Figures S5 and S6).

In the present study, physically fit preterm and full-term participants were enrolled in
physical exercise tests and exhibited physical performance indistinguishable between the
two groups, i.e., preterm born participants’ physical capacity (expressed as peak oxygen
consumption) was not impaired in comparison to normal-born participants [7,21]. In
contrast, other studies reported that the physical performance of preterm individuals
was lower in normoxia and hypoxia [19] referring to a cohort sampled from the general
population. Our study observed a lack of difference in the physical capacity related to the
physical fitness of the participants in both groups, further emphasizing the importance
of exercise for the maintenance of physical health, while at the same time noticing the
differences in metabolic makeup of the two groups at the level of urine. These differences
apparently stem from impaired autonomic function as heart rate recovery seems slower
in preterm adults and could give rise to anoxia and increase their cardiovascular risk as
suggested before [47,48].

2.4. 1H-NMR Metabolomics of Fecal Content

To match urine sample collection, fecal samples were collected in four 3-day series
as described below (Figures S2 and S3, ESM 3). In total, 12 samples were collected per
person for the fecal matrix. In contrast to urine metabolomes, two components were
sufficient to differentiate preterm and full-term groups in fecal metabolomes by the PLSDA
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method using MetaboAnalyst [40] (Figure 3a,b). Fecal biomarkers lactate, tyrosine, and
serotonin were identified as the three most efficient for differentiation between the two
groups. Lactate and serotonin were significantly elevated in the preterm group while
tyrosine was decreased. Metabolite set enrichment analysis (MSEA) coupled with the
PLSDA reported increased lactate concentrations in the preterm group and reported that
pyruvate metabolism and the Warburg effect were enriched in the preterm group. The
Warburg effect was also previously associated with mitochondrial dysfunction, which also
occurs in preterm infants (Table S5) [49,50]. Thyroid hormone synthesis and catecholamine
biosynthesis were the first two most enriched metabolic pathways according to MSEA.
In addition, an extended list of fecal metabolites analyzed with MSEA was previously
correlated with fecal diseases, such as ileal Crohn’s disease, and irritable bowel disease [51]
as the most enriched metabolic pathways (Figure 3c,d, Figures S7 and S8, Table S6).

Figure 3. (a) Fecal metabolomes comparing preterm and full-term born adults and the most differen-
tiating metabolites based on the PLSDA method (b). The most enriched pathways associated with
metabolism (c) and diseases (d) based on fecal metabolomes. Enlarged (c,d) figures were added to
supplementary (Figures S7 and S8).

These results constitute the first report on the significant differences in the metabolomics
makeup of fecal samples between the preterm and full-term control groups, irrespective
of the observed lack of differences in the 25 measured parameters of the intestinal tract
(Figure 1). These results represent possibly the first evidence that systemic differences due
to life-long exposure to oxidative stress actually exist and raise the question of whether
these differences are linked to minute differences produced from the side of the preterm
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host or from the side of the microbiome responding to these environmental signals or their
mutual interaction in the form of a complex biochemical network steady state.

The rather small extent of variation (7% and 25%) between the two groups could be
explained by this approach utilizing feces and urine, respectively, suggesting further and
multiple sources of variation exist beyond those described in this study. We extended
our interrogation of the data to provide an estimate of the cohort size that would need
to be utilized in future experiments. Based on the power analysis module in Metabo-
Analyst [40] at least two orders of magnitude larger cohorts amounting to a couple of
thousand participants would be required in order to better discern differences at the level
of fecal metabolomes. These results point to a conclusion that although fecal metabolomics
makeup in physically fit young male participants was significantly different from their
matched controls, these differences were independent of the normoxic or hypoxic nature
of the tests (PERMANOVA; p > 0.05; n permutations = 5000). Apparently, characteristic
long-term differences exist between the two groups at the level of fecal metabolomes,
most probably linked to the fact that preterm individuals experienced increased oxidative
stress, and responded with elevated antioxidant activity, and NO metabolism in the acute
exercise studies reported before [24], resulting in the characteristic differences in their fecal
metabolomes observed in this study.

2.5. Fecal Metagenomics: From Taxonomy, Functional Genes to Predicted Metabolomes

Significant differences in urine and fecal 1H-NMR metabolomes between the preterm
and full-term groups prompted us to explore whether significant differences exist at the
level of the human gut microbiome. Fecal samples collected during the PreTerm project
were used for shotgun sequencing. The in-house analytical pipeline utilizing bioBakery [52]
was used to preprocess sequence data (Kneaddata (https://huttenhower.sph.harvard.edu/
kneaddata/, accessed on 7 April 2022) and analyze the sequences at the strain level of
taxonomy (MetaPhlAn3 [53]), diversity (mothur [54]), functional genes, enzymatic reactions
and metabolic pathways (HUMAnN3 [53]) next to predicted metabolites (MelonnPan [55]).
In total, 853 taxonomic units (kingdoms, phyla, clades, orders, families, genera, and species),
30 diversity calculators, 198,305 gene families, 183,200 enzymatic reactions, 10,974 metabolic
pathways, and 80 metabolites present in the human gut microbiota were identified and
analyzed. In total, 393,442 variables were considered in this search for differences between
the preterm and full-term groups. Each dataset corresponding to a layer of information
was analyzed separately using JADBio extensive machine learning modeling as described
before [39,56,57].

2.5.1. Taxonomy and Microbial Diversity of Intestinal Tract

In contrast to the observed differences at the urine and fecal metabolomics levels
described above, the taxonomic level of information did not result in significant differences
between groups (PERMANOVA; p > 0.05; n permutations > 5000). In addition, based on
the taxonomic data 181,020 JADBio models were trained using an extensive tuning effort,
but no reliable biomarker or trained model could be obtained. In general, three different
kingdoms were detected in all samples (archaea, bacteria, and DNA viruses). The average
relative abundance of bacteria was lower in the preterm than in the full-term group (92.3%
vs. 77.5%). The abundance of DNA viruses was higher in the preterm group (7.2% vs. 20%)
(Figure S9a). The archaeal kingdom was least prevalent in both groups (0.5% in the control
group vs. 2.5% in the preterm group). This lack of significant differences at taxonomic levels
was previously attributed to large interpersonal differences between participants [58,59];
however, in this study variance within the full-term control group was at least two times
larger than that observed in the preterm group and hence significantly higher (p < 0.05)
based on the analysis of 3D coordinates after nmMDS and PCoA analysis. This points to
the existence of an overarching effect shared by all preterm participants absent from the
matching control full-term group.

https://huttenhower.sph.harvard.edu/kneaddata/
https://huttenhower.sph.harvard.edu/kneaddata/
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We further point out that both groups contained matching groups of young healthy
physically fit participants, in contrast to past studies exploring the differences between the
preterm and general population [60]. Our results point to the fact that some microbiome-
related characteristics within the preterm group were apparently shared to a larger extent
within the preterm group in comparison to the full-term control group, signifying the
existence of differences in the microbial makeup due to differences in the physiology
of the host. The existence of an overarching effect shared by all preterm participants
absent in the control group was evident from the significantly higher Shannon diversity
(p < 0.05) (Figure S9b) in the preterm group including other diversity estimates that differed
significantly between the two groups (Table S7). These two observations suggest the
existence of an interplay between the increased similarity of the major preterm taxonomic
categories and the diversity of a smaller highly variable list of taxa not well shared between
the preterm participants in this study. It is easily envisioned that additional environmental
factors shape the gut microbiome within the preterm group, making the preterm group a
narrower subset of the otherwise healthy human gut.

2.5.2. Functional Genes of Human Gut Microbiome

Based on the 198,306 categories describing gene family data, in the preterm and control
groups, 90,510 models were trained using an extensive tuning effort in search of biologically
meaningful discriminative variables between the preterm and full-term control groups.
The entire list of features was used to build and validate a trained model that achieved
insignificant validation performance with an AUC and other metrics. Consequently, no
significant differences could be identified between the two datasets at the level of functional
gene lists.

2.5.3. Enzymatic Reactions Taking Place in Human Gut

For the aggregation of functional gene information into enzymatic reactions (Figure 4a),
again 90,510 models were explored using an extensive tuning effort. The best model was
ridge logistic regression with the penalty hyperparameter lambda = 1.0, with an area
under the curve (AUC) value of 0.992. In addition to AUC, all other thresholds were
also statistically significantly different from the baseline. Features were selected based on
the Test-Budgeted Statistically Equivalent Signature (SES) algorithm with the following
hyperparameters: maxK = 3, alpha = 0.1, and budget = 3 *nvars. RXN-15378, RXN-14971,
RXN-21393, and RXN-21394 were equally selected as the most important for discriminat-
ing between the preterm and control groups and were increased in the preterm group
(Figure S10) (p < 0.05). All of the above reactions represent the enzymatic reaction succinate
dehydrogenase based on the BioCyc website ([61], accessed on 23 January 2022). We used
RXN-15378 to validate the trained model and obtained a validation performance with an
AUC of 0.931. Succinate is a metabolite produced by both host and microbial cells and
accumulates under conditions of inflammation and microbial imbalances in the intestinal
tract [62]. Succinate was shown to accumulate in areas of inflammation and metabolic
stress [63] and can have tissue specific but also systemic effects as a proinflammatory
signaling molecule [62,64–66]. Although gut microbes represent the predominant source
of succinate, it is typically rapidly consumed in the production of propionate, one of the
major short chain fatty acids, by Bacteroides spp., Prevotella spp. and some members of
Firmicutes [62,67]. Although the mucosal uptake of succinate as a charged molecule over
the mucosal epithelia is significantly higher in the small intestine, it takes place to various
extents throughout the length of the intestinal tract and requires sodium dependent trans-
port proteins [62]. In addition to the internalized succinate provided by the microbiome,
succinate also accumulates within cells under conditions of low oxygen as a metabolic
signature of hypoxia, generating HIF-1α to regulate cellular responses and adapt to a low
oxygen environment. At normoxia, HIF-1α is regulated by posttranslational hydroxylation
and degradation by prolyl-hydroxylase activity that converts alpha-keto-glutarate to CO2
and succinate while inactivating HIF-1α. Excess uptake of microbiome produced succinate
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results in higher levels of intracellular succinate that can slow down prolyl-hydroxylase
activity through product inhibition and result in an additional activation and stabiliza-
tion of HIF-1α beyond its response to hypoxia itself, which can significantly augment the
LPS-induced expression of proinflammatory cytokines [62,68].

Figure 4. ROC curves of obtained models (JADBio [57]) based on the enzymatic reactions (a),
metabolic pathways (b) and relaxation network predicted metabolites (c) produced by our in-house
implementation of bioBakery3.

2.5.4. Metabolic Pathways Observed in Human Gut

Based on the metabolic pathway data (Figure 4b), 60,310 models were trained, with
extensive tuning effort. The best model was ridge logistic regression with a penalty
hyperparameter of 100 and an area under the curve (AUC) of 0.981. In addition to AUC,
all other thresholds were also statistically significantly different from baseline. Features
were selected on the basis of Lasso feature selection with a penalty = 1.5. On the basis of
the MetaCyc website ([69–71]; accessed on 23 January 2022), the most important metabolic
pathways were PWY-7456 (β-(1,4)-mannan degradation), PWY-7323 (superpathway of GDP-
mannose-derived O-antigen building blocks biosynthesis), GLYCOLYSIS-TCA-GLYOX-
BYPASS (a superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate
bypass), P221-PWY (octane oxidation), and PWY-5173 (unclassified). These pathways were
the most important for distinguishing the preterm group from the control group and were
all increased in the preterm group (Figure S11). The entire set of selected features was used
to validate the trained model and achieved a validation performance with an AUC of 1.00.
The relative frequency of this response was significantly increased in the preterm group,
which was also confirmed by the t-statistic (p < 0.05). A set of selected features was used to
validate the trained model and achieved validation performance with an AUC of 1.00.

The β-(1,4)-mannan degradation (PWY-7456) belongs to Bacteroides fragilis in the
human intestinal tract and is essential for mucosal integrity and host nutrition [72,73].
Degradation of mannan by either Bacteroides dorei or Fecalibacterium prausnitzii and Roseburia
intestinalis promotes the growth of Lactobacillus helveticus and Bifidobacterium adolescentis,
which have probiotic properties and promote the synthesis of short chain fatty acids [74] or
promote the growth of commensal microbes [75,76].

The superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis
(PWY-7323) is involved in lipopolysaccharide (LPS) biosynthesis. Only gram-negative
bacteria have LPS, and O-antigen is the part that extends the polysaccharide away from
the cell surface and triggers the host cell immune response [77,78]. Gram-negative bacteria
observed in preterm infants cause serious infections, such as sepsis [79] coupled with the
absence of MD -2 (a protein responsible for the recognition of LPS), which leads to a higher
risk of developing intestinal diseases in adults born preterm due to the impaired recognition
of LPS in the past [78]. Elevated LPS levels may also contribute to inflammaging (chronic,
low-grade inflammation that develops with age) [80]. This also fits our observation that
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microbially produced succinate coupled with hypoxia can significantly augment LPS-
induced expression of the proinflammatory cytokines [68].

GLYCOLYSIS-TCA-GLYOX-BYPASS (a superpathway of glycolysis, pyruvate dehy-
drogenase, TCA, and glyoxylate bypass), is a superpathway that was significantly overrep-
resented in the preterm group. It integrates some of the fundamental components of energy
metabolism, starting with a hexose sugar and ending with CO2 and several forms of highly
reducing metabolites that can be used for adenosine triphosphate (ATP) generation. Even
though acetyl-CoA is shown in this superpathway as a product of the glycolysis pathway,
it is also generated by the degradation of fats and proteins and by the fermentation of many
metabolites. This superpathway includes the glyoxylate cycle, which bypasses those steps
in the TCA cycle that lead to a loss of CO2, and operates in bacteria. The increased energy
production in the preterm microbiome apparently coincided with the general characteristics
of the preterm individuals, such as increased oxidative stress, elevated antioxidant activity,
and NO metabolism in acute exercise as described above [7]. It is possible to suggest that
the intestinal conditions experienced by the gut microbiome exerted additional stress on
the microbial functioning as well. Further research is needed to corroborate this notion.

In line with our observation of differences in microbiome functioning, P221-PWY
(octane oxidation) was shown to increase with the Westernization of the human gut and
lifestyle [81,82] as volatile organic compounds, including octane, were found either in the
exhaled air or feces of human subjects with diverse medical conditions associated with
oxidative stress and chronic inflammation, including lung cancer [82,83] obstructive sleep
apnea [84], gastrointestinal diseases [85] and NAFLD [86]. Previous studies demonstrated
that several alkane-degrading bacteria were capable of using diverse compounds as a
carbon source in addition to alkanes [87], which are further oxidized to fatty acids via the
bacterial β-oxidation pathway (BioCyc ID: P221-PWY). The key process in octane oxidation
is the alkane hydroxylase system that introduces molecular oxygen in the C1 atom of the
hydrocarbons at the expense of NADH to yield primary alcohols [88] that were further
linked to liver associated diseases.

The acetyl-CoA biosynthesis (PWY-5173) pathway involved in carbohydrate metabolism
was also significantly increased in the preterm group. The resulting acetyl-CoA acts as
a precursor in the synthesis of intestinal short chain fatty acids including butyrate and
acetate [89], that are important in maintaining gut health [90]. The increased levels of
acetyl-CoA biosynthesis fit nicely with the other pathways observed in this study that
either contribute or consume mass flow related to this reaction. As both preterm and full-
term groups were composed of healthy young physically fit males differing significantly in
acetyl-CoA biosynthesis, our findings support a recent report on this pathway being one of
the most variable pathways in a survey of subgroups of elite Irish athletes [91].

These overall results of the metabolic pathway analysis point to the fact that (irre-
spective of the heterogeneous makeup of the underlying microbiome taxonomy within
the individual participant) the complex coordinated adjustments to the metabolism of the
microbiome nevertheless take place and can be robustly reproduced from the integration
of the sequencing information as described in this study [91–94] and can be linked to
physiologically meaningful differences between groups reported before [24].

2.5.5. Predicted Water- and Lipid-Soluble Intestinal Metabolites

Our last layer of information dealt with the extended analysis of sequencing data to-
wards water- and lipid- soluble predicted metabolites utilizing relaxation-network analysis,
which has been extensively trained and validated before [52,55]. In summary, 17 metabo-
lites (out of 81) (Table S8) predicted with MelonnPan were detected also by 1H-NMR in
fecal samples, showing possible interaction between two systemic metabolisms (human
and microbial). None of these metabolites were chosen by machine learning. Metabolites
associated with the human gut microbiota (Figure 4c) were explored utilizing JADBio and
181,020 models were trained using extensive tuning efforts. The best model was a Sup-
port Vector Machine type C-SVC with a radial basis function kernel and hyper-parameter
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(cost = 10, gamma = 1.0), with an area under the curve (AUC) value of 0.976. In addi-
tion to AUC, all other thresholds were also statistically significantly different from the
baseline. Feature selection was based on LASSO feature selection with a penalty = 0.25.
Alpha-muricholate, putrescine, dimethyllysine, diacetylspermine, and C16 carnitine were
significantly increased in the preterm group. In contrast, hydrocinnamic acid, fructose, glu-
cose and galactose, chenodeoxycholate and deoxycholate were lower in the preterm group
(Figure S12). When the trained model was applied to the test portion (30% of our total data
set) validation performance with an AUC of 0.957 was obtained. In the following sections
let us first review the predicted metabolites significantly increased in the preterm group.

Carnitine was increased in the preterm group and is associated with trimethylamine
N-oxide (TMAO) production (Figure S12). TMAO is synthesized by the microbiota from
trimethylamine (TMA), which in turn is formed from carnitine or choline. Increased
choline content in the preterm group was also observed in urine metabolomics. These two
molecules together (carnitine and choline), in conjunction with the microbiota, may be the
most important cause of the increased likelihood of cardiovascular disease in the preterm
group [8,95–100].

Putrescine and diacetylspermine are polyamines and important metabolites for the
gut microbiota (Figure S12). Putrescine is synthesized by interspecies cooperation between
Escherichia coli and Enterococcus faeacalis and is formed from arginine [101,102]. Elevated
putrescine levels have been associated with an older gut microbiota [103], increased gut
permeability, and elevated levels of inflammatory cytokines in mouse colon tissue [104].
Elevated putrescine levels led to activation of genes that regulate oxidative stress, which
may lead to a parallel increased risk of developing metabolic syndrome [35–38] and irritable
bowel syndrome [105].

Diacetylspermine as a polyamine metabolite was linked to cancer growth and its
association with microbial biofilm formation. It is synthesized by bacterial acetylation
and has been significantly upregulated in tissues with biofilms in animal models [106].
This suggests that microbial organization and biofilm formation capacity at the interface
between the mucus layer and lumen might differ significantly between the preterm and
full-term participants, an observation worth further exploration.

Dimethyllysine can be the end product of either host or microbial metabolism but
currently little is known about its physiological roles for the host and microbiome in the Hu-
man Metabolome Database [107], ChemSpider (https://www.chemspider.com/ (accessed
on 15 April 2022)) or FooDB (www.foodb.ca (accessed on 15 April 2022)) (Figure S12). A
recent review of macronutrient metabolism by the human gut microbiome focusing on
major fermentation byproducts and their impact on host health [108] reported that the
major products of lysin were acetate, butyrate and cadaverine, hence linking this compound
to the short- and long-chain fatty acid cycles associated with ulcerative colitis [109].

Alpha-muricholic acid was identified by the MelonnPan [55] relaxation network
since its first use in the analyses of human samples analyzed using MelonnPan [110,111],
suggesting a misclassification of rodent muricholic acid for cholic acid in humans in this
approach. Nevertheless, irrespective of its MelonnPan supported assignment, it is evident
that this secondary bile acid was identified at elevated levels in the preterm group, fitting
into the framework of the distinct chemical makeup of the preterm gut in relation to fat
metabolism and the metabolites reported in this study.

In addition to elevated metabolites identified by MelonnPan in the preterm group,
the following metabolites were identified in significantly lower concentrations in the
preterm group.

Deoxycholate (decreased in the preterm group) is another metabolite that interacts
with microbes (Figure S12). Deoxycholate is a secondary bile acid. The human intestinal
microbiota (Bacteroides intestinalis, Bacteroides fragilis, Escherichia coli) are involved in the
production of secondary bile acids from primary bile acids, such as choline. Deoxycholate is
also known to promote colon cancer. Because of the increased cholate levels in the preterm
group, we would expect a greater likelihood of microbial metabolites associated with

https://www.chemspider.com/
www.foodb.ca
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primary bile acids, as well as increased levels of the expected metabolites in the preterm
group. In contrast, deoxycholate levels were decreased in the preterm group. This could
also be due to the greater urinary excretion of cholate (cholate was increased in the urine of
preterm infants). Bile acids also generally induce mitochondria ROS production. Preterm
infants are challenged by ROS in the first few months of life, possibly implying that the
systemic response is to increased urinary excretion of bile acids in preterm infants [112–115].

Hydrocinnamic acids are a major class of phenolic acids from dietary fiber with the
characteristic phenylpropanoid C6-C3 backbone that were significantly decreased in the
preterm group (Figure S12). Although the polyphenol–gut microbiota interactions and
their impact on human health have been known for decades, there is great inter-individual
variation caused by the different individual capabilities of processing, absorbing and using
these compounds effectively [116]. In light of the physiological differences between the
two groups analyzed in this study, it seems plausible that differences exist also in the extent
of the utilization of these polyphenols in the preterm group. In addition, lower levels of
hydrocinnamic acid were observed in patients with Crohn’s disease and ulcerative colitis
compared to the healthy cohort. Lower levels of hydrocinnamic acid in the preterm group
may lead to increased levels of circulating BCAAs, which in turn predisposes preterm born
individuals to metabolic syndrome and cardiovascular disease [117–120].

The lower levels of reducing sugars fructose, glucose and galactose, in the preterm
group corresponded with a greater capacity to produce short chain fatty acids (Figure S12).
The metabolic reactions and predicted metabolites jointly suggest the existence of a larger
metabolic flow-through of the preterm microbiome in comparison to the full-term group,
pointing to significant differences in the environmental setup in the preterm gut.

In conclusion, the results presented here constitute the first report on the differences
in the urine and fecal metabolomes between preterm and full-term groups of physically fit
healthy young males. Clear differences were identified in the urine and fecal metabolomes
next to the metabolic pathways, suggesting that systemic differences between the two
groups affect the metabolism of the host as well as intestinal tract parameters and that
of the underlying microbiome (Figure S13). One has to realize that studies with female
participants are lacking and not many studies with sufficient statistical power were reported
so far to close the gap. With the concomitant methodological developments presented
in this study, the exploration of the more complex female metabolome and responses to
inactivity and hypoxia can be commenced in a comparable way [35].

3. Materials and Methods
3.1. PreTerm Project: Cardio-Respiratory Responses during Hypoxic Exercise in Individuals
Born Prematurely

The PreTerm project aimed to investigate the acute cardio-respiratory responses during
rest and exercise in two groups of prematurely born, but otherwise healthy male adolescents
and adults. In addition, this project aimed to elucidate the underlying mechanisms of
the altered resting and exercise cardio-respiratory responses in prematurely born, but
otherwise healthy individuals. The results from this cohort were compared to the data
from control groups consisting of healthy, age and aerobic capacity-matched individuals
born at full-term resulting in a unique dataset. The obtained results provide extensive
basic physiological data on the development of cardiorespiratory control in individuals
born prematurely, hypoxia exercise capacity and cardiorespiratory demand during hypoxic
exercise in non-acclimatized individuals born prematurely [24].

Thirty-seven healthy men volunteered and gave written informed consent to partici-
pate in this study (Cardio-respiratory responses during hypoxic exercise in individuals born
prematurely—ARRS research project J3-7536). All participants were free of cardiorespira-
tory and hematologic disease and had not been exposed to altitudes above 1500 m during
the one-month period prior to the study. Twenty-two participants were born premature
(gestational age ≤ 32 weeks; gestational weight ≤ 1500 g) and 15 were born full-term. The
experimental protocol was approved by the National Medical Ethics Committee of Slovenia
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(No. 0120-101/2016-2) and conducted in accordance with the principles of the Declaration
of Helsinki. The study was also pre-registered at ClinicalTrials.gov (NCT02780908) [24].

The experimental protocol included two testing sessions in each group. On both
occasions, no more than seven days apart, participants performed a graded exercise test
for voluntary exhaustion. During the exercise tests, participants breathed either normoxic
ambient air (fraction of inspired oxygen (FiO2 = 0.209) or a humidified hypoxic air mixture
(FiO2 = 0.130 corresponding to a terrestrial altitude of approximately 3800 m) in a random-
ized, placebo-controlled manner. Indirect calorimetry, near-infrared spectroscopy and ECG
measurements were performed during all tests. During both tests, participants performed
a hypoxia sensitivity test to assess the hypoxic ventilatory response at rest and during
exercise. In addition, selected hematological and oxidative stress markers were determined
from blood samples collected before and after each hypoxia sensitivity test [24].

The two graded exercise tests were performed on an electromagnetically braked
cycle ergometer (Ergo Bike Premium, Daum electronics, Fürth, Germany) under normoxic
(FiO2 = 0.21; PiO2 = 147 mmHg) and normobaric hypoxic (FiO2 = 0.13; PiO2 = 91 mmHg)
conditions in a randomized manner. They were blinded as to the FiO2 of the gas mixture
they inhaled on both occasions. Both tests were performed at the same time of day for each
participant. The test protocol started at 60 W and was increased by 40 W every 2 min until
exhaustion. The normoxic and hypoxic tests were performed exactly 7 days apart. During
the tests, participants breathed through a face mask (Vmask, 7500 series, Hans Rudolph
Inc., Shawnee, KS, USA) and oxygen uptake (VO2) and ventilation (VE) were measured
using a metabolic cart (Quark CPET, Cosmed, Rome, Italy). Capillary oxygen saturation
(SpO2) was measured using a transcutaneous finger pulse oximetry device (Nellcor, BCI
3301, Boulder, CO, USA). Fecal and urine samples were collected three consecutive days
before and three consecutive days after the test under normoxic and hypoxic conditions
(Figure S1) [24].

3.2. Sample Collection

Fecal and urine samples were collected three consecutive days before and three con-
secutive days after the test under normoxic and hypoxic conditions at the home of the
participants (Figures S2 and S3). Collected samples were frozen at −20 ◦C immediately
after collection. All participants collected 12 urine and 12 fecal samples in total. Three
urine and three fecal samples were collected before and after normoxic tests, giving rise
to six urine and six fecal samples per participant. The same approach was utilized for
hypoxic tests, giving rise to another six urine and six fecal samples per participant. Two
full-term and one preterm participant did not collect fecal and urine samples before and
after the exercise test and were excluded from the metagenomic and metabolomic part of
the PreTerm study.

3.3. 1H-NMR Metabolomics

Samples were thawed at room temperature before preparation for NMR measurements.
All collected samples were centrifuged (1.5 mL) at 10,000× g for 30 min to remove fine
particles. Subsequently, 400 µL of the supernatant was mixed with 200 µL of 1H-NMR
buffer as previously described [121] and stored at −25 ◦C until analysis.

Prior to analysis, samples were thawed at room temperature and transferred to a
5 mm NMR tube. TSP was used as an internal standard for quantification, as described
previously [121].

A 600 MHz Bruker Neo NMR spectrometer equipped with a 5 mm HCN Cold probe
was used to record NMR spectra at 25 ◦C. The 1H NMR spectra of the samples were
recorded with a spectral width of 9.0 kHz, a relaxation delay of 2.0 s, 32 scans and 32 K
data points. A double pulsed field gradient spin echo (DPFGSE) pulse sequence was used
to suppress water. The total correlated spectrum (TOCSY) was measured with 1H spectral
widths of 7.0 kHz, 4096 complex points, a relaxation delay of 1.5 s, 32 transients, and 144
time increments. An exponential function and a cosine squared function were used for
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apodization. Zeros were filled before the Fourier transform. TopSpin (version 4.1) was
used to process the NMR spectra [37–39,56,122].

Spectra Processing

NMR spectra were preprocessed with an internal script and prepared for identi-
fication with the Chenomx Compound Library, extended to the Human Metabolome
Database [41,107], giving access to the chemical shift profiles of 674 compounds used in the
analyses. Chemical shifts of 647 compounds were used for the identification of metabolites
observed in our study. The resulting spectra were then analyzed with targeted quantitative
metabolomics using Chenomx NMR Suite version 8.6 (Chenomx, Inc., Edmonton, AB,
Canada). ChenomX profiler was used for randomized spectral fitting. All spectra were
processed in the same way by spectral deconvolution and once metabolites were identified,
urine and fecal data matrices were established, assigning 0 to a particular metabolite not
detected in all samples.

3.4. Fecal Metagenomics

Fecal samples collected three days before and 1 day after normoxic and hypoxic
testing were used for shotgun sequencing; 200 mg of feces were used for DNA extraction
using the MagicPure Stool and Soil Genomic DNA Kit (Beijing, China) according to the
manufacturer’s protocol. Shotgun sequencing was performed using TruSeq Nano DNA
(350) (Macrogen, Seoul, Korea).

Sequence Processing

Paired reads obtained from Macrogen were analyzed using our in-house pipeline for
metagenomics sequence processing—Metabakery (in preparation). Metabakery is a re-
implementation of the BioBakery [52] workflow using (https://huttenhower.sph.harvard.
edu/kneaddata/, accessed on 7 April 2022) for quality control, MetaPhlAn [53] for tax-
onomy analysis (bacteria, archaea, fungi, protozoa, and viruses), and HUMAn3 [53] for
functional genes, enzymatic reactions, and metabolic pathways determination. Addition-
ally, the MelonnPan was used for the prediction of metabolites. Metabakery is implanted as
a singularity image and prepared on high computing performance clusters. The analyses
running MetaBakery were performed on a dual Xeon system with 32 CPU cores (64 hyper-
threads), 512 GB RAM and 6 TB SATA hard disc at the Faculty of Electrical Engineering,
University of Ljubljana.

3.5. Characterization of Fecal Samples: Bristol Stool Scale, Metabolites, pH, MWI

Fecal samples were analyzed for a number of parameters as previously described and
as follows [35]: Bristol stool scale (BSS) [123], water content, pH [124], total soluble organic
carbon (TSOC), short-chain fatty acids (SCFA) [125], reducing sugars (Carbohydrate deter-
mination with 4-hydroxybenzoic acid hydrazide (PAHBAH)) [126], molecular weight, and
dissolved organic carbon complexity using molecular weight indices [127,128]. In addition,
fecal piercing strengths, as described before, were used as previously described [39].

3.6. Statictics and Machine Learning
3.6.1. Statistics

First, the software PAST [129] was used for PERMANOVA. All obtained data matrices
(NMR metabolomes—identified fecal and urinary metabolites at micromolar concentrations,
microbial taxonomy, gene families, enzymatic reactions, metabolic pathways and predicted
microbial metabolites) were analyzed in the same way. Each determined parameter was
analyzed in three different ways as previously described [35–38,56]: (i) by dividing the
measured concentration by the concentration of all metabolites in that sample; (ii) Box-
Cox; or (iii) log(x + 1) transformed. The significance of the metabolic differences and
microbial entities between the different sample groups were tested using ANOSIM, and
NP-MANOVA, and expressed as the overlap in the non-metric multidimensional scaling

https://huttenhower.sph.harvard.edu/kneaddata/
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(nm-MDS) trait space (using Euclidean distance measures). The stress function was used
to select the dimensionality reduction, while Shepard’s plots were used to describe the
correspondence between the target values and the obtained ranks. In addition, PCoA and
PCA were performed on metagenomic data. Benjamini–Hochberg significance correction
for multiple comparisons was used as previously described [130].

Second, for MetaboAnalyst [40], a log or cube root transformation was used in conjunc-
tion with mean or Pareto scaling as implemented in MetaboAnalyst, followed by supervised
classification using the partial least squares discriminant analysis (PLSDA) method, random
forest (RF), and pathway enrichment analysis. The PLSDA results were cross-validated
with a caret package implemented in MeatboAnalyst. The major metabolites identified
by PLSDA were determined according to the variable importance in projection (VIP). The
randomForest package implemented in MetaboAnalyst was used for supervised classifica-
tion between different groups of interest. The main features defined by RF were ordered
according to the mean decrease in classification accuracy. Hierarchical clustering was
performed according to the VIP scores to obtain a heat map representing the differences in
metabolic profiles between samples and groups. Euclidean distance, Pearson’s correlation
and Spearman’s correlation were used as similarity measures and Ward’s linkage was used
as a clustering algorithm. MetaboAnalyst and gplot were used to generate graphs.

KEGG libraries for human metabolic pathways were used for metabolic pathway and
enrichment analysis. For topological analysis, the globaltest analysis method and relative
Betweenness centrality were used. Significant pathways were determined using the raw
p-value, Holm–Bonferroni p-adjusted value, and adjusted p-value using the false discovery
rate. The effect of pathways was calculated using the pathway topology analysis.

Metabolite Set Enrichment (MSEA) was used to identify biologically significant pat-
terns between quantitative metabolome data from different groups. The names of com-
pounds in Human Metabolome Database (HMDB) were used for linkage to the KEGG
database. Enrichment analysis was performed using the globaltest package implemented
in MetaboAnalyst. The enrichment ratio was calculated by dividing observed hits and
expected hits.

3.6.2. JADBIO Auto Machine Learning

Just Add Data Bio (JADBIO), a web-based machine learning platform for analyzing
potential biomarkers [57], was used to search for biomarkers. The JADBIO platform
was developed for predictive modeling and providing high-quality predictive models
for diagnostics using state-of-the-art statistical and machine learning methods. Personal
analytic biases and methodological statistical errors were eliminated from the analysis
by autonomously exploring different settings in the modeling steps, resulting in more
convincing discovered features to distinguish between different groups. JADBIO with
extensive tuning effort and six CPUs was used to model different dataset choices in addition
to the features observed in samples of all groups from different projects by splitting the
total data into a training set and a test set in a 70:30 ratio. The training set was used to train
the model and the test set was used to evaluate the model [39,56].

To assess the classification of the model, a receiver-operating characteristic curve (ROC
curve) was constructed for all studied groups, plotting the true-positive rate (sensitivity)
against the false-positive rate (1-specificity). Individual conditional expectation plots (ICE)
showed the nature of the contribution of each feature characteristic to the model. All
obtained models can be run locally using a Java executor.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12060536/s1, ESM1: ESM 1; ESM 2: Metabolites identified
in urinary samples; ESM 3: Metabolites identified in fecal samples; ESM 4: Models with instructions
for local running.
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