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ABSTRACT 23 

In the last decade, the use of high-density electrode arrays for EEG recordings combined with the 24 

improvements of source reconstruction algorithms has allowed the investigation of brain networks dynamics at 25 

a sub-second scale. One powerful tool for investigating large-scale functional brain networks with EEG is time-26 

varying effective connectivity applied to source signals obtained from electric source imaging. Due to 27 

computational and interpretation limitations, the brain is usually parcelled into a limited number of regions of 28 

interests (ROIs) before computing EEG connectivity. One specific need and still open problem is how to represent 29 

the time- and frequency-content carried by hundreds of dipoles with diverging orientation in each ROI with one 30 

unique representative time-series. The main aim of this paper is to provide a method to compute a signal that 31 
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explains most of the variability of the data contained in each ROI before computing, for instance, time-varying 32 

connectivity. As the representative time-series for a ROI, we propose to use the first singular vector computed by 33 

a singular-value decomposition of all dipoles belonging to the same ROI. We applied this method to two real 34 

datasets (visual evoked potentials and epileptic spikes) and evaluated the time-course and the frequency content 35 

of the obtained signals. For each ROI, both the time-course and the frequency content of the proposed method 36 

reflected the expected time-course and the scalp-EEG frequency content, representing most of the variability of 37 

the sources (~80%) and improving connectivity results in comparison to other procedures used so far. We also 38 

confirm these results in a simulated dataset with a known ground truth. 39 

Keywords. EEG, source space activity, dipole orientation, visual evoked potentials, epilepsy 40 

 41 

INTRODUCTION 42 

Electroencephalography (EEG) records the dynamic of brain networks on a sub-second time scale. The high 43 

temporal resolution of EEG allows to study how brain activity propagates and interacts in large-scale networks by 44 

applying connectivity measures to the recorded signals. However, connectivity measures based on scalp electrode 45 

measurements (sensors space) are not revealing the true interactions among brain sources. Neighbouring 46 

electrodes measure signals that are highly correlated, leading connectivity algorithms to estimate sham links. 47 

Indeed, the measurements of the voltage potential at various locations on the scalp are the result of the 48 

simultaneous activity of many different configurations of distributed current generators in the brain [1] [2] [3] [4]. 49 

To obtain physiologically plausible results, the reconstruction of brain source activity before computing 50 

connectivity is strictly required. Indeed, the distribution of the simultaneously active sources at each moment in 51 

time can be localized from the high-density EEG scalp potentials by state-of-the-art distributed source localization 52 

algorithms informed by the individual anatomy derived from magnetic resonance imaging (MRI) and realistic 53 

volume conduction physics [5] [6] [7] [8]  [9] . The estimated activity at each solution point in the brain is described 54 

by a three dimensional dipole (x,y,z). The ill-posed inverse problem can be solved merely by introducing a priori 55 

assumptions about the sources and the volume conductor [6]. For instance, LAURA (Local AUtoRegressive 56 

Average), one of the distributed linear inverse solutions, imposes additional biophysical and physiological 57 

constraints in the minimum norm algorithm [10]. After the estimation of the dipole activity at each solution point, 58 

the brain is usually parceled into regions before connectivity estimation, because the full spatial size of the data 59 

(more than 5000 solution points) is unreasonable in terms of computations and statistical power. The choice of 60 

the parcellation scheme and resolution is crucial as it has effects on network topological characteristics and can 61 

be based either on anatomical or functional assumptions [11]. In any case, the optimal choice depends on the 62 

type, quality and resolution of data and on the study purpose. The most commonly used anatomical-based 63 

parcellation atlases are, among others, the Automated Anatomical Labeling (AAL) atlas [12]  [13] and FreeSurfer's 64 

Desikan Killiany atlas [14] [15]. After parcellation, it is possible to build a graph representation of the brain [16] 65 

where nodes are associated to the brain regions of interest (ROIs), and edge weights are given by functional [17]  66 

[18]  [19] or effective [20]  [21] connectivity measures that are robust to volume conduction effects. To estimate 67 
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either directed or undirected connectivity, all the solution points estimated in each ROI should be summed up in 68 

a unique time-series. The approaches proposed in the literature usually consist of two steps. In the first step, for 69 

each dipole, either the norm is computed or the direction of the dipoles is fixed using different techniques.  One 70 

approach is the computation of the norm (i.e. computing absolute dipole amplitude while discarding the 71 

orientation of the dipoles) or the power modulation using the Hilbert transform [22] [23]. This, however, may be 72 

problematic for connectivity estimation because the phase information contained in the original signal is  lost  [24]. 73 

Other current  methods to fix the dipole orientation within a ROI are either the projection to the refined average 74 

direction across time and epochs [25]; the selection of the dipole orientation orthogonal to the segmented grey 75 

matter based on the assumption that the orientation of the dipoles should resemble the orientation of the apical 76 

dendrites of the pyramidal neurons  [26] or the selection of the orientation maximizing the projected power [27]. 77 

The second step consists in either averaging all dipole time-series within the ROI once the dipole orientation is 78 

fixed [28] or applying principal component analysis (PCA) to obtain the representative time-series [29] [30]. 79 

Other popular one-step solutions are either to compute the average cortical activity in each ROI by means of 80 

the instantaneous average of the signed magnitude of all the dipoles within the ROI  [31] or to consider only the 81 

source activity of the solution point closest to the geometric center of each ROI, i.e., the centroid, as the 82 

representative source waveform [32] [33] [34] [35]. However, the selection of only one dipole out of hundreds 83 

does not necessarily properly represent the activity in a given ROI. Concerning the averaging approach, a common 84 

observation is a drastic amplitude reduction. Indeed, due to the extensive folding of the human cerebral cortex, 85 

some sources in the ROI may be almost perfectly parallel to each other, but inverted in orientation, leading to 86 

cancelation when averaging them. The resulting signal amplitude reduction could lead to decrease in accuracy of 87 

the subsequent analysis and affect the final results. For instance, connectivity estimation involves computing the 88 

inverse of the matrix containing the representative source waveforms, which, if the values are small, may lead to 89 

a bad-conditioned matrix with a high condition number [36], i.e., even a small error in the data can produce a 90 

large deviation in the solution. Moreover, low-amplitude time-series may increase the rate of false positive 91 

connections, e.g., low-amplitude time-series may easily fit in large-amplitude time-series leading to misleading 92 

high autoregressive coefficients [37]. 93 

In this work, we propose to extract the dominant signal reflecting the main pattern of variation of all the 94 

solution points in the same ROI by using Singular-Value Decomposition (SVD) and considering the first singular 95 

vector. This method enables both to identify the main direction of all the dipoles of a ROI and to discard the 96 

contribution of the outlier dipoles. The novelty with respect to the other approaches proposed in the literature is 97 

that SVD provides a population signal that incorporates the behavior of all the dipoles within the ROI without 98 

choosing or selecting specific active voxels, as it is usually done [38] [29] [30] [27]. 99 

 As a demonstration of the validity of the method, we present the analysis of two different data sets (visual 100 

evoked potentials and epileptic spikes) using this method and comparing it to the common procedure of both 101 

extracting the time-series of the centroid in each ROI and extracting the time-series with the highest power in 102 

each ROI. We also evaluated its performance in realistically simulated data, where the ground-truth is known. 103 
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METHODS 104 

Data description 105 

Dataset 1. Visual evoked potential of face perception. Many behavioral studies have investigated the process 106 

involved in visual stimuli such as face images [39] [40] [41]. Traditional measures are based on the N170 face-107 

sensitive evoked response component [42]. Human faces evoke a large negative potential (N170) over the 108 

occipital-parietal scalp, more prominent over the right than the left hemisphere, which is reduced in evoked 109 

potentials elicited by other animate and inanimate non-face stimuli [43]. Applying effective connectivity in face 110 

perception, i.e., describing the network of directional effects of one brain region over another, may be a powerful 111 

instrument to study this visual process. In order to study these causal effects, it is important to precisely 112 

reconstruct the face-response stimulus in the source space. For this reason, we investigated the ability of our 113 

method to reconstruct the dynamics of visual evoked potential (VEP) in source space based on high density EEG 114 

(hdEEG) data.  115 

Participants (N=13, 2 males, age=24.15 ± 3.41) sat in a dimly lit sound-attenuated and electrically shielded 116 

room with their head positioned on a chinrest at ~70 cm from the monitor. Each trial lasted 1.2 seconds and 117 

started with a blank screen lasting 500 ms. After the blank interval, one image (either a face or a scramble image) 118 

was presented for 200 ms and participants had the remaining 1000 ms to respond. The task was to report whether 119 

they saw a face or not (Yes/No task) by pressing two buttons in a response box. Faces and scrambled images were 120 

randomly interleaved across trials. After the participant’s response, there was a random interval (from 600 to 900 121 

ms) before the beginning of a new trial.  122 

The experiment consisted of 4 blocks of 150 trials each, for a total of 600 trials, i.e., 300 with faces and 300 123 

with scrambled images [44]  For this study, we used the EEG data in response of the face images (300 trials per 124 

subject).  125 

During the experiment, EEG data were recorded continuously at 1024 Hz through a 128-channel Biosemi 126 

Active Two EEG system (Biosemi, Amsterdam, The Netherlands). Electrode impedance was kept < 20 kΩ. 127 

Dataset 2. Interictal epileptiform discharges in focal epilepsy. hdEEG source imaging plays a central role in 128 

diagnosis and management of patients with focal epilepsy [45]. However, recent work in the literature provided 129 

evidence that epilepsy is a disorder affecting neural networks [46]. Thus, connectivity measures and graph analysis 130 

are promising tools to extract network information from both hdEEG and neuroimaging data [47] [48] [49]. We 131 

applied our method on pre-surgical interictal spikes (IEDs) recorded in patients with pharmaco-resistant focal 132 

epilepsy, who subsequently underwent epilepsy surgery.  133 

The patients (N=7, 3 males, age=23±14 y) were selected from those admitted for pre-surgical evaluation to 134 

the EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva (HUG), Switzerland. 135 

They underwent hdEEG long-term (>4 h) recording with 256 electrodes in the context of their pre-surgical 136 

evaluation, and subsequently underwent resection of the estimated epileptogenic zone causing their focal 137 

epilepsy. The outcomes of the surgery after 12 months along with the exact location of the resection zone were 138 



This is a pre-print of an article published in Brain Topography. The final authenticated 

version is available online at https://link.springer.com/article/10.1007/s10548-018-0691-2 

 

5 
 

available from postoperative structural MRI and were used as validation for the localization of the generators of 139 

the interictal epileptic discharges.  140 

The hdEEG was recorded with the Geodesic Sensor Net with 256 electrodes (Electrical Geodesic, Inc., Eugene, 141 

OR, U.S.A.). Electrode-skin impedances were maintained <15 kΩ. The recordings were sampled at 1 kHz, 142 

referenced to Cz. Then, an epileptologist, G.T., marked 41±18 hdEEG epochs containing the interictal spikes for 143 

each patient. Then, the 1-s hdEEG epochs centered on the spike peak were used as input of the analysis. 144 

Preprocessing 145 

The VEP EEG signals were downsampled at 𝑓𝑠 = 200 𝐻𝑧 and detrended to remove slow fluctuations and 146 

linear trends [50]. The line and monitor noise (50 and 75 Hz, plus harmonics) were attenuated with an adaptive 147 

multitaper filter (Cleanline plugin for EEGLAB). EEG epochs were then extracted from the continuous dataset and 148 

time-locked from −1000 𝑚𝑠 to 1000 𝑚𝑠 relative to the onset of each image. Noisy channels were identified by 149 

visual inspection and removed before preprocessing. Individual epochs containing non-stereotyped artifacts, peri-150 

stimulus eye blinks and eye movements (occurring within ±500 ms from stimulus onset) were also identified by 151 

visual inspection and removed from further analysis (mean number of epochs removed across participants: 6±5). 152 

Data were cleaned from remaining physiological artifacts (eye blinks, horizontal and vertical eye movements, 153 

muscle potentials and other artifacts) through a PCA-informed ICA algorithm implemented in EEGLAB. After ICA 154 

cleaning, the identified artifact channels were interpolated using the nearest-neighbor spline method and the 155 

data were re-referenced to the average reference. 156 

The EEG data containing the spikes of epileptic patients were filtered from [0.5 40] 𝐻𝑧 with 5th order 157 

Butterworth filter avoiding phase distortion. Finally, the data were down-sampled at 𝑓𝑠 = 250 𝐻𝑧.  158 

EEG source estimation 159 

 In this study, we applied the LAURA algorithm implemented in Cartool [51] to compute the source 160 

reconstruction in the individual MRI applying the Local Spherical Model with Anatomical Constraints (LSMAC) and 161 

taking into account the patient’s age to calibrate the skull conductivity [10] [52] [53]. The LSMAC method restricts 162 

the solution space to the gray matter of the individual brain. 163 

Whole brain segmentation and parcellation 164 

Starting from the high-resolution T1-weighted image, using the Connectome Mapper open-source processing 165 

[54] that calls the version 6 of the Freesurfer image analysis suite [55], we resampled the image to isotropic 166 

1𝑥1𝑥1 𝑚𝑚3 and we segmented the whole brain in white matter, grey matter, i.e., cortical and sub-cortical 167 

structures, and cerebrospinal fluid based on the anatomical Desikan-Killiany [14] and Destrieux [56] atlases. At 168 

the end of the process, the cortex was parcellated into a total of 83 regions, which accounted for all the cortical 169 

structures of the Desikan-Killiany anatomical atlas, as well as the deep-grey nuclei and the brainstem [54]. 170 

Projection method based on SVD 171 

An estimate of the 𝑥 −  𝑦 −  𝑧 − space coordinates of the circa 𝑀 = 5000 cortical dipoles was obtained for 172 

each time point. The estimation of the dipole sources �̃� is based on the solution of the following regularized 173 
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equation: 174 

�̃� = 𝑎𝑟𝑔𝑚𝑖𝑛𝒙(‖𝑳𝒙 − 𝒚‖𝑁
2 + 𝛾2‖𝒙‖𝑀

2 )      (1) 175 

where ‖∙‖M represents the M-norm, 𝑳 is the lead field matrix, 𝒙 the dipole sources, 𝒚 the EEG scalp potentials 176 

and γ is the regularization parameter which can be estimated by different criteria, e.g., by the L-curve approach 177 

[57]. 178 

Subsequently, first, we associated the dipoles to their respective ROI based on the 82 atlas labels (the 179 

brainstem was excluded). Second, for each ROI separately, we collected all the 𝑁 time samples of the 𝑥 −  𝑦 −180 

 𝑧 − space coordinates of the 𝑛 dipoles included in a given ROI and we organized the data in a matrix 181 

𝑫, [𝑁 𝑥 (𝑛 𝑥 3)] , as follows: 182 

𝑫 = [

𝑑𝑥1
(𝑡1) 𝑑𝑦1

(𝑡1) 𝑑𝑧1
(𝑡1) ⋯ 𝑑𝑥𝑛

(𝑡1) 𝑑𝑦𝑛
(𝑡1) 𝑑𝑧𝑛

(𝑡1)

⋮ ⋱ ⋮
𝑑𝑥1

(𝑡𝑁) 𝑑𝑦1
(𝑡𝑁) 𝑑𝑧1

(𝑡𝑁) ⋯ 𝑑𝑥𝑛
(𝑡𝑁) 𝑑𝑦𝑛

(𝑡𝑁) 𝑑𝑧𝑛
(𝑡𝑁)

]           (2) 183 

After that we applied the SVD to this matrix: 184 

𝑫 = 𝑼𝑺𝑽𝑻        (3) 185 

where the apex 𝑇 stands for the transpose and the columns of 𝑫 can be seen as the linear combinations of 186 

the columns of 𝑼 with the coefficients given by the columns of 𝑺𝑽𝑇. Because of the singular values contained in 187 

the diagonal of 𝑺 appear in a decreasing order, we considered the first column of 𝑼 𝒖𝟏 [𝑁 𝑥 1], i.e., the 188 

orthonormal vector projected along the axis that represents the major orientation of all the dipoles, like the signal 189 

that explains most the variability of the data and as the best representation of the ROI content.  In other words, 190 

Equation (3) assumes that the data matrix 𝑫 comprises hidden components 𝒖𝒊 that are mixed together through 191 

coefficients 𝑺. Standard matrix factorizations in linear algebra, such as SVD, owe their uniqueness to hard and 192 

restrictive constraints such as orthogonality [58].  193 

Connectivity estimation 194 

Among the different techniques for extracting effective connectivity, information partial directed coherence 195 

(𝑖𝑃𝐷𝐶) properly accounts for size effects in gauging connection strength, as reported in detail in [59]. In 196 

particular, 𝑖𝑃𝐷𝐶 is a multivariate spectral measure to compute only the directed influences between any given 197 

pair of signals (𝑖, 𝑗) of a multivariate dataset. This information is condensed in a complex function 𝑖𝑃𝐷𝐶𝑖←𝑗(𝑓) of 198 

the frequency 𝑓, which measures the relative interaction of the signal 𝑗 with regard to signal 𝑖 as compared to all 199 

𝑗’s interactions to other signals in the multivariate dataset. While we refer the reader to [60] for the mathematical 200 

details, the procedure for computing 𝑖𝑃𝐷𝐶 is briefly described by the following two steps. 201 

In the first step, the cortical waveforms �̃� computed after applying the projection method described in the 202 

previous section, are fitted against a time-variant (tv) multivariate autoregressive (MVAR) model to overcome the 203 

problem of non-stationarity of the EEG data. If the EEG data are available as several trials of the same length, the 204 

cortical waveforms computed from the EEG data generates a collection of realizations of a multivariate stochastic 205 

process which can be combined in a multivariate, multi-trial time series: 206 
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�̃�(𝑡) = [
�̃�1

(1)
(𝑡) ⋯ �̃�𝑑

(1)
(𝑡)

⋮ ⋱ ⋮

�̃�1
(𝐾)

(𝑡) ⋯ �̃�𝑑
(𝐾)

(𝑡)

] 𝑡 = 𝑡1, . . , 𝑡𝑁         (4) 207 

where 𝑡 refers to the time points, 𝑁 the length of the time-series, 𝐾 the number of trials and 𝑑 the number 208 

of ROIs. 209 

Then the data in �̃� are fitted against a tvMVAR model in the general form: 210 

�̃�(𝑡) = − ∑ 𝑨𝒓(𝑡)𝑿(𝑡 − 𝑟) + 𝑾(𝑡)𝑝
𝑟=1           (5) 211 

where 𝐴𝑟(𝑡) are the [𝑑 𝑥 𝑑] AR matrices containing the model coefficients, 𝑊(𝑡) is the stationarity zero-mean 212 

white noise process also called innovation process with covariance matrix ∑𝑤, and 𝑝 is the model order, usually 213 

estimated by means of the Akaike Information Criteria for MVAR processes [61]. The General Linear Kalman filter 214 

approach is applied in order to estimate the coefficients of the time-variant AR matrices and the innovation 215 

process ∑𝑤 [62].  216 

As the MVAR model is estimated, for each time-point 𝑡, having defined the complex matrix 𝑩(𝑓) as: 217 

𝑩(𝑓) = 𝑰𝒅 − ∑ 𝑨𝒓𝑒−𝑗2𝜋𝑓𝑝
𝑟=1          (6) 218 

where 𝐼𝑑 is the identity matrix and 𝑗 is the imaginary unit in this equation, the 𝑖𝑃𝐷𝐶 complex function from the 219 

time-series 𝑗 to the time-series 𝑖 is obtained by: 220 

𝑖𝑃𝐷𝐶𝑖←𝑗(𝑓) = 𝜎𝑤𝑖𝑖

−1/2 𝑏𝑖𝑗(𝑓)

√𝒃𝒋
𝑯(𝑓)𝜮𝒘

−𝟏𝒃𝒋(𝑓)
           (7) 221 

where 𝒃𝑗  (𝑓) and 𝑏𝑖𝑗  (𝑓) are respectively the j-th column and the (𝑗, 𝑖)-th element of matrix 𝑩(𝑓),  𝜎𝑤_𝑖𝑖  is the 222 

(𝑖, 𝑖)-th element of the innovation covariance matrix ∑𝑤 , and the apex 𝐻 in 𝒃𝑗
𝐻stands for Hermitian transpose, 223 

i.e., obtained from 𝒃𝑗  by taking the transpose and then the complex conjugate of its components.  224 

The complex function 𝑖𝑃𝐷𝐶𝑖←𝑗(𝑓) of eq. (7) is usually analysed in terms of its absolute value. 225 

Simulation 226 

To test if the SVD method is capable of detecting an effective connectivity map of the human brain, we 227 

simulated a simple four-node (ROI) network with different delays. We generated the time-course of the dipoles 228 

laying in the right occipital region of the brain and then a delayed version of 3 ms with the same profile in the left  229 

occipital region. The same signals with a reduced amplitude (80%) and a delay of 5 ms were placed in the the left 230 

and right inferior temporal regions of the brain. The time-course chosen was the average VEP reconstructed in 231 

the source space of the Dataset 1 in the right occipital cortex in the first 500 ms after the stimulus. The orientation 232 

of the dipoles was chosen perpendicular to the cortex. Each realization had a sample rate of 200 Hz with 100 time 233 

points. 234 

After having reconstructed these waveforms, white Gaussian noise with a SNR=5 was added to the simulated 235 

waveforms and it also generated the background activity of the other dipoles of the model. These M=5000 dipoles 236 

were then multiplied with the lead field matrix 𝐿 estimated for each subject of the Dataset 1 obtaining the 237 

simulated EEG. We obtained 20 epochs for each subject by adding 20 different profiles of noise.  238 
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RESULTS 239 

Application on visual evoked potentials 240 

In Figure 1 (panel (a)), we report the dipoles (arrows in the figure) representing the source waveforms in the 241 

right lateral occipital cortex of a representative subject (sub #1) in the 500 ms after the face stimulus from 242 

different perspective views. We chose the right lateral occipital cortex to visualize the results, because we clearly 243 

localized the N170 component in this region. In addition, this source localization is also consistent with the 244 

literature [63] using MRI localizer scan that revealed two additional extrastriate regions beyond the fusiform face 245 

area that responded more strongly when subjects viewed faces than when they viewed objects. These include 246 

brain regions in the occipital gyri and in the superior temporal sulcus [41]. To be able to compress four dimensions, 247 

i.e., 𝑥, 𝑦, 𝑧 and 𝑡𝑖𝑚𝑒 axes, in a 2-D figure, the 𝑥-axis is carrying both the information of the 𝑥 dimension and 248 

the 𝑡𝑖𝑚𝑒 dimension. In other words, we rigid translated each dipole along the 𝑥-dimension to represent its time 249 

evolution. In panel (b), we report the three different projection planes of the space represented in panel (a). In 250 

panel (c), the time-series representing the time-course of the source waveforms in the right lateral occipital cortex 251 

projected in the x, y and z axes are depicted respectively from top to bottom. Interestingly, in the estimated VEP 252 

source waveforms after the visual stimulus, the orientation over time of all the set of dipoles is not random. 253 

Furthermore, we qualitatively observe the existence of a main direction that maximizes the magnitude of the 254 

majority of dipoles. Having noticed that, summing the dipoles content in each ROI by the orthonormal vector 255 

projected along the axis in space that represents the major orientation of all the dipoles should explain most the 256 

variability of the data and be an accurate representation of the ROI content.   257 
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As previously stated, in several previous studies, e.g., [32] [33], the dipole lying in the centroid is considered 258 

Figure 1 (a) All dipoles representing the solution points in the source space are reported as arrows. Each colour represents 

the dynamics of a different dipole over time in the right lateral-occipital brain region in a representative subject (sub #1). (b) 

Views of the x-z-plane, x-y-plane and z-y plane are represented from top to bottom for dipoles of panel (a). (c) x- y- z- time-

components of all the dipoles in the Right Lateral-occipital region.  

Figure 2 Signal and corresponding power spectral density average among trials of (a) 128 high-density EEG time-courses 

representing the visual evoked potential in a representative subject (sub #1), (b) ROI time-series computed though SVD in sub 

#1, and (c) the first principal component of the time-series lying in the centroid of each ROI. 
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as representative for the entire ROI. For this reason, in Figure 2, we compared the temporal patterns and the 259 

frequency content of the hdEEG recordings 500 ms following the stimulus presentation (panel (a)) with the 260 

reconstructed time-series in the inverse space obtained from the proposed SVD method (panel (b)) and the source 261 

activity in the centroid (panel (c)) for sub#1. In panels (b) and (c) respectively, we reported the first principal 262 

component computed from both the first eigenvector for each ROI and for the three x- y- z- components of the 263 

source activity in the centroid. After applying SVD, dealing directly with the first eigenvector or re-projecting the 264 

first eigenvector on the original data space is a user choice. It depends if the user needs to deal with normalized 265 

time-series or if she/he cares about the amplitude content of the signal. Observing both the proposed 266 

reconstruction (Figure 2 panel (b)) and the centroid time-series (Figure 2 panel (c)), we found that they strongly 267 

differ in the amplitude magnitude as visible in their absolute power spectral density values. However,  the relative 268 

power distribution among the canonical EEG-frequency bands does not significantly differ between the two 269 

different reconstructions (Mann-Whitney U-test, p>0.98). 270 

To emphasize the differences between the two methods, we compared the ability in detecting the P100 and 271 

N170 peaks of the proposed representative time-series based on SVD computation and the centroid one. P100 is 272 

the first dominant component in response to visual stimuli with a lateral occipital positivity [64], followed by the 273 

N170. The N170 is a component of the evoked potential that reflects the neural processing of faces and its 274 

response should be maximal over occipital-temporal electrodes [65] [66]. In Figure 3, we report for a 275 

representative subject and for all the subjects the average EEG signal in the sensor space at electrode B11 (P8) 276 

located over the right parietal lobe (panels (a) and (b)) and the reconstructed time-series in the source space 277 

through the SVD and the centroid in the right lateral-occipital cortex (panels (c) and (d)). Figure 3 shows that the 278 

centroid time-series has lower amplitude and a flatter morphology than the SVD time-series in a representative 279 

subject (panel (c)) and across subjects (panel (d)) in the source space. The results in Figure 3 confirmed that the 280 

SVD time-series present a coherent pattern compared to the signal recorded on the scalp and the amplitude and 281 

the latency of the peaks of interest can be easily estimated. In order to check for latency differences between the 282 

methods, we computed as reference the Global Field Power (GFP) [52] from the hdEEG for each subject in order 283 

to determine the latency of the maxima of the components P100 and N170. For instance, for sub#1, the two 284 

detected latencies were t=105 ms for P100 and t=145 ms for N170. We then calculated the inverse solution on 285 

the average evoked potential with Cartool [52] and we localized the ROI containing the maximum of the norm of 286 

the source waveforms for both peaks. We then compared the latencies estimated in the time-series obtained by 287 

the proposed projection method (Figure 4 panel (a)) with the time-series derived from the centroid method 288 

(Figure 4 panel (b)) in the selected ROI. Results in a boxplot form (Figure 4 panel (c)) show the latencies 289 

estimated through the GFP, in blue, the SVD time-series, in green, and the centroid time series, in red. Figure 4 290 

panel (d) shows that the absolute difference between the latencies estimated through the GFP and the 291 

reconstructed time-series in the source space is higher for the centroid compared to the SVD time-series. From 292 

this evaluation, the SVD time-series seem to more reliably estimate the peak latencies in the VEP.  293 
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 294 

Figure 3 . (a) Average ± SEM among trials of the EEG signal recorded on B11 (P8) electrode in sub#1. (b) Average ± SEM 295 
among subjects of the average of the EEG signal on B11 (P8). (c)Average ± SEM among trials of the proposed representative 296 
time-series in the source space computed through SVD (green) and of the centroid (red) in sub#1 in the right lateral-occipital 297 
cortex. (d) Average ± SEM among subjects of the average proposed representative time-series computed through SVD (green) 298 
and of the average centroid (red) in the right lateral-occipital cortex. 299 
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 300 

Figure 4 (a) Proposed representative time-series (green) computed through SVD for the Right Lateral-occipital region. (b) 301 
Norm (violet) and the first principal component (green) of the x- y- z- time-components (respectively, blue, orange and yellow 302 
dotted lines) of the dipole lying in the centroid of the Right Lateral-occipital region. (c) Boxplot representing the latency in 303 
ms for each subject for P100 and N170 estimated through the EEG GFP (blue), the representative time-series computed 304 
through SVD (green) and the centroid time-series (red). (d) Boxplot representing the absolute difference in latency in ms for 305 
each subject for P100 and N170 estimated between the EEG GFP and the representative time-series computed through SVD 306 
(green) and the centroid time-series (red). 307 

We then computed the values of the explained variance (average among trials) of each of the 82 308 

representative time-series summing up the information content of the ROIs for all the subjects (Figure 5 panel 309 

(a)). The majority of the brain areas expected to be involved in face perception (red circles in Figure 5) show 310 

higher explained variance. In Figure 5 panels (b) and (c), we report the histogram containing all the explained 311 

variances for all the trials for sub#1 fitted against the generalized extreme value distribution [43]. For instance, 312 

the average value of the location parameter was 94% for the left lateral occipital cortex and 70% for the right 313 

lateral occipital cortex in sub#1. 314 

Finally, after computing the |iPDC| values during the first 500 ms after the stimulus, we compared the values 315 

of the outflow from each ROIs at N170 among the reconstructions based on SVD, the selection of the centroid for 316 

each ROI and the selection of the time-series containing the maximum power for each ROI [27]. The connectivity 317 

patterns between the different cortical regions were summarized by representing the total outflow from a cortical 318 

region toward the others, generated by the sum of all the statistically significant links obtained by application of 319 

the iPDC to the cortical waveforms (with their values). The total outflow for each ROI is represented by a sphere 320 

centered on the cortical region, whose radius is linearly related to the magnitude of all the outcoming directed 321 

links to the other regions. Such information is also coded through a color scale. The greatest amount of 322 

information outflow depicts the ROI as one of the main sources (drivers) of functional connections to the other 323 

ROIs [67]. In Figure 6, we report the average values computed across subject of the outflow for the SVD-time-324 
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series, the centroid time-series and the maximum-power time-series. We can note that the ROIs with the 325 

maximum outflow (>95% percentile) were localized in the right lateral-occipital cortex, and in the inferior 326 

temporal cortex (panel (a)) when using the SVD reconstruction, in mesial temporal cortex near the hippocampus 327 

(panel (b)) when using the centroid time-series and in the right lateral-occipital cortex and in the right inferior 328 

temporal cortex (panel (c)) when using the maximum-power time-series. In the literature, the generation of N170 329 

was proposed to be attributed to neural sources in lateral, basal temporal, and extrastriate occipital cortices [63] 330 

[68] [69] [70] [71] [72], to the fusiform gyrus of the inferior temporal cortex [73] in recognition of faces, which is 331 

in accordance with our estimation through the SVD reconstruction. The SVD reconstruction results in a precise 332 

and less blurry localization of the major drivers for the proposed VEP. 333 

 334 

 335 

Figure 5. VEP: (a) Boxplot representing the percentage of explained variability for the proposed representative time-series 336 
for each ROI computed though SVD for all the subjects. Red circles highlight the ROIs that are mainly involved in the VEP. 337 
(b) Histogram representing the percentage of explained variance in the representative subject (sub #1) for all the time-series 338 
representing the left lateral-occipital brain region. (c) Histogram representing the percentage of explained variance in sub #1 339 
for all the time-series representing the right lateral-occipital brain region. 340 
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 341 

Figure 6 VEP: Mean outflow across subjects computed from iPDC matrix for (a) the SVD time-series, (b) the centroid time-342 
series and (c) the maximum-power time-series. Nodes dimension and colour identify the value of the outflow. 343 

 344 

Application on interictal spikes 345 

For each epileptic patient, we applied our method to compute the representative time-series for each ROI. 346 

First, we evaluated if the frequency distribution did not significantly differ passing from the scalp EEG to our 347 

inverse representation. The Mann-Whitney U-test confirmed that the relative power distributions between scalp 348 

EEG and our inverse representation were not different in each frequency band for each patient (p>0.95). After 349 

that, in order to compare the power of localization among the SVD time-series, the centroid time-series and the 350 

maximum-power time-series, we selected 7 patients with anterior-mesial temporal lobe epilepsy with ILAE class 351 

I after surgery, i.e., completely seizure free, no auras [74], in which part of the left temporal lobe was removed. 352 

For each patient, after computing the iPDC matrices, we estimated the outflow of information from each ROI 353 

during the advent of the spike. In Figure 7 we report the mean outflow across patients computed with the SVD-354 

time-series (panel (a)), the centroid time-series (panel (b)) and the maximum-power time-series (panel (c)). The 355 

ROIs with the value of the outflow above the 95% percentile, considered to be the main drivers during the advent 356 

of the spikes are: left fusiform, middle-temporal brain areas for the SVD time-series, left temporal-pole brain areas 357 

near the hippocampus for the centroid time-series and left inferior frontal brain areas for the maximum-power 358 

time-series.  The first two methods correctly identified the left temporal lobe, but for the centroid time-series we 359 

can note that the range of outflow values (colorbar in panel (b)) is almost 10 times smaller compared to the one 360 

of the SVD time-series (colorbar in panel (a)), thus, the resolution obtained exploiting the SVD resulted to be 361 

higher. We used the postoperative structural MRI as validation for the localization of the generators of the 362 

interictal epileptic discharges, the area removed from the surgery was the left anterior temporal lobe for all the 363 

7 patients classified as good outcome. Moreover, considering all the patients, we computed the laterality index 364 

defined as in [32] to assess whether this group of patients had more summed outflow ipsilateral or contralateral 365 

to the epileptic source. We found that 7 out of 7 patients had a greater ipsilateral outflow exploiting the SVD time-366 

series, whereas 4 out of 7 exploiting the centroid time-series. In addition, we computed the mean efficiency of 367 

the network across patients. Efficiency is a measure of how efficiently each node exchanges information. Using 368 

the SVD time-series we found that the most efficient nodes of the network (with values above the 95% percentile) 369 
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were the left fusiform and the left middle-temporal brain areas, the same brain areas labeled as main drivers by 370 

the outflow measure. Brain regions having high efficiency suggest the existence of a high level of efficiency in 371 

communicating with the rest of the brain during the advent of the spike [75]. 372 

 373 

Figure 7 Interictal spikes: Mean outflow across good-outcome patients with left temporal lobe epilepsy computed from iPDC 374 
matrix for (a) the SVD time-series, (b) the centroid time-series and (c) the maximum-power time-series. Nodes dimension and 375 
color identify the value of the outflow.  376 
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Finally, we computed the values of the explained variance of each of the 82 representative time-series 377 

summing up the information content of the ROIs in all the trials/epochs for each subject (Figure 8). Each obtained 378 

histogram was fitted against the generalized extreme value distribution  [76]. The average value of the location 379 

parameter ± scale parameter was 75% ± 15%. Considering that we are trying to summarize the content of three 380 

different time-series in a unique signal, explaining more than 60% of the variance of all the dipoles in a ROI means 381 

being able to capture and describe at least the information contained in two out of three components. The data 382 

Figure 8 Interictal spikes: Boxplot representing the percentage of explained variability for the proposed representative time-

series for each ROI computed though SVD for all the subjects. (b) Histogram representing the percentage of explained 

variance in the representative subject (sub #1) for all the time-series representing the left middle temporal cortex. (c) 

Histogram representing the percentage of explained variance in sub #1 for all the time-series representing the left fusiform 

brain region. 
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loss in a dimensionality reduction is unavoidable, but the fraction of the variance of the original data explained 383 

with our one-dimension representation seems to be a good achievement.  384 

 385 

Application on simulated data 386 

In Figure 9 (panel (a)), the simulated 128 hdEEG time-courses averaged among the 20 trials for one of the 13 387 

simulated subjects are shown. These hdEEG signals were the input of the LAURA algorithm to estimate the source 388 

waveforms. The obtained SVD time-series averaged among the 20 trials for the same simulated subject of panel 389 

(a) are reported in panel (b). After computing the |iPDC| values during the first 500 ms after the stimulus, we 390 

compared the values of the outflow from each ROIs at N170 for all the simulated subjects. The ROIs with the 391 

maximum outflow (>95% percentile) were consistently localized in the right lateral-occipital cortex, and in the 392 

inferior temporal cortex as imposed by the simulation. The average outflow across all simulated subjects is 393 

displayed in Figure 9 (panel (c)). 394 

 395 

Figure 9 Simulated VEP: (a) 128 high-density EEG time-courses and (b) ROI time-series computed though SVD average 396 
among trials in a representative simulated subject, and (c) mean outflow across all simulated subjects computed from iPDC 397 
matrix for the SVD time-series. Nodes dimension and colour identify the value of the outflow. 398 

CONCLUSION AND DISCUSSION 399 

With the final aim to improve connectivity estimation, we proposed a method able to overcome both the 400 

dipole orientation problem and to sum up of the information of different solution points in the same region of 401 

interest. The proposed projection method based on singular value decomposition sums up the information carried 402 

by hundreds of 3-D time-series in a unique 1-D signal representing most of the variability of the sources in each 403 

region of interest. Thanks to the orthogonality constraints (U V are orthogonal matrices and S is a diagonal matrix), 404 

the solution of SVD is unique and can be considered a reliable way for dimensionality reduction. The amplitude 405 

of the representative signal computed as the first orthonormal vector of the unitary matrix U is by definition 406 

independent on the original signal amplitudes. Thus, this solution overcomes a major drawback of the common 407 
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procedure of averaging the dipoles, namely drastically reduced amplitudes after averaging all the dipoles in the 408 

same region of interest. Dealing with smaller amplitudes may distort the results of the connectivity estimation 409 

because it involves computing of the inverse of the matrix containing the data [20] [77].  410 

Additionally, we proposed a method able to create a population signal that summarizes the sources activity in 411 

each region of interest (ROI) giving an indication of the global explained variance and considering all gray matter 412 

solution points in the brain. In the majority of previous studies, a few voxels are selected for each ROI, for example 413 

the most active voxels, and afterwards the information carried by these most active voxels is summarized in a 414 

unique signal by a decomposition method. Indeed, in [29] [30], the authors defined the ROIs by carefully selecting 415 

voxels corresponding to cortical areas that showed significant differences in the gamma-band range. For analyzing 416 

the information transfer between the identified regions of interest in source space through partial-directed-417 

coherence, a multivariate autoregressive model was fitted to the time series revealed by the inverse solution at 418 

each ROI. To overcome the problem that each current source density consists of three directions (X, Y and Z), they 419 

computed the first principal component of each triplet. In our work, we aimed to create a population signal 420 

directly from the activity of all the voxels contained in the same ROI without introducing a priori condition to 421 

select specific points/areas. Also in [38], an fMRI connectivity analysis approach combining both principal 422 

component analysis (PCA) and Granger causality method was proposed to study directional influence between 423 

functional brain regions, but before applying this combined measure, the authors selected only the activated 424 

brain regions/voxels with BrainVoyager QX.  425 

Moreover, the computational cost should also be considered as it influences the usefulness of the method in 426 

practice. The computational cost of singular value decomposition is much lower than the computational cost of 427 

other approaches based on the canonical polyadic decomposition [78]. We also showed that the projection 428 

method based on SVD provides robust results for visual evoked potentials and epileptic spikes. The results have 429 

also been confirmed by simulations. Furthermore, by analysing the frequency content of the proposed time-series 430 

and comparing its features with the centroid time-series, the signal based on the SVD seemed to both resemble 431 

the EEG scalp observations features and to prevent to deal with signals with too low amplitudes for the 432 

subsequent connectivity estimation. The novelty of the SVD method also lies in the fact that it exploits the 433 

information of the overall population of dipoles in each ROI instead of considering only one time-series as 434 

representative of the complex activity pattern in a given brain region. Despite the lack of availability of an objective 435 

ground truth in both estimating the source activities and the causal interactions among them, observing the 436 

dynamics and the orientation of the dipoles over time in visual evoked potential and epileptic spikes seems to 437 

confirm the existence of a principal component that accounts for most of the variability in the data.  438 

Since the results may be influenced by the choice of the algorithm for estimating the source waveforms and 439 

from the brain parcellation, there are other approaches to define EEG networks that circumvent the issue of how 440 

to best segment the source maps into ROIs [79] by explaining the EEG in terms of a discrete set of causally 441 

interacting clusters. However, this direct approach relies on several assumptions such as (1) bioelectromagnetic 442 

activity is generated by a set of distributed sources; (2) the dynamics of these sources can be modelled as random 443 
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fluctuations of a small number of mesostates; (3) the number of mesostates engaged by a cognitive task is small; 444 

(4) the mesostates interact according to a full Dynamical Causal Network that can be estimated; (5) the dynamics 445 

of the mesostates can switch between multiple approximately linear operating regimes; (6) each operating regime 446 

remains stable over finite periods of time (temporal clusters); and (7) the total number of times the mesostates' 447 

dynamics can switch is small. Our intention was to estimate source activity in the whole brain without any a priori 448 

assumption about the number and distribution of the sources. Such an approach is better suited in studies that 449 

aim to compare and combine the effective connectivity among ROIs with the structural connectivity estimated by 450 

diffusion MRI in the same framework. 451 
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