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Abstract
Let Z(t) = exp

(√
2BH (t) − |t |2H

)
, t ∈ Rwith BH (t), t ∈ R a standard fractional Brown-

ian motion (fBm) with Hurst parameter H ∈ (0, 1] and define for x non-negative the Berman
function

BZ (x) = E

{
I{ε0(RZ) > x}

ε0(RZ)

}
∈ (0,∞),

where the random variable R independent of Z has survival function 1/x, x � 1 and

ε0(RZ) =
∫

R

I{RZ(t) > 1}dt .

In this paper we consider a general random field (rf) Z that is a spectral rf of some stationary
max-stable rf X and derive the properties of the corresponding Berman functions. In par-
ticular, we show that Berman functions can be approximated by the corresponding discrete
ones and derive interesting representations of those functions which are of interest for Monte
Carlo simulations presented in this article.
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1 Introduction

In the study of sojourns of rf’s in a series of papers by Berman, see e.g., (1982; 1992) a key
random variable (rv) and a related constant appear. Specifically, let Z(t) = exp(

√
2BH (t)

− |t |2H ), t ∈ R, with BH a fractional Brownian motion (fBm) with Hurst parameter H ∈
(0, 1], that is a centered Gaussian process with stationary increments, Var(BH (t)) = |t |2H ,

t ∈ R and continuous sample paths. In view of Berman (1992, Thm 3.3.1, Eq. (3.3.6)) the
following rv (hereafter I{·} is the indicator function)

ε0(RZ) =
∫

R

I{RZ(t) > 1}dt

plays a crucial role in the analysis of extremes of Gaussian processes. Throughout this paper
R is a 1-Pareto rv (ln R is unit exponential) independent of any other random element.

The distribution function of ε0(RZ) is known only for H ∈ {1/2, 1}. For H = 1
as shown in Berman (1992, Eq. (3.3.23)) ε0(RZ) has probability density function (pdf)
x2e−x2/2/(2

√
π), x > 0, whereas for H = 1/2 its pdf is calculated in Berman (1992, Eq.

(5.6.9)).
The so-called Berman function defined for all x � 0 (see Berman (1992, Eq. (3.0.2)))

given by

BZ (x) = E

{
I{ε0(RZ) > x}

ε0(RZ)

}
∈ (0,∞) (1.1)

appears also in Berman (1992, Thm 3.3.1, Eq. (3.3.6)).
An important property of the Berman function is that for x = 0 it equals the Pickands

constant, see (Berman 1992, Thm 10.5.1) i.e., BZ (0) = HZ , where HZ is the so called
generalised Pickands constant

HZ = lim
T→∞

1

T
E

{
sup

t∈[0,T ]
Z(t)

}
.

This fact is crucial sinceBZ (0) is the first known expression ofHZ in terms of an expectation,
which is of particular usefulness for simulation purposes, see Falk et al. (2010), Dieker and
Yakir (2014), and Hüsler and Piterbarg (2017) for details on classical Pickands constants.

Besides, Berman’s representation of Pickands constant yields tight lower bounds forHZ ,
see Dȩbicki et al. (2019, Thm 1.1). As shown in Dȩbicki et al. (2019) for all x � 0

BZ (x) = lim
T→∞

1

T
B([0, T ], x), BZ ([0, T ], x) :=

∫ ∞

0
P

{∫ T

0
I(Z(t) > s)dt > x

}
ds.

Motivated by the above definition, in this contribution we shall introduce the Berman func-
tions for given δ � 0 with respect to some non-negative rf Z(t), t ∈ R

d , d � 1 with càdlàg
sample paths (see e.g., Janson (2020), and Bladt et al. (2022) for the definition and properties
of generalised càdlàg functions) such that

E{Z(t)} = 1, t ∈ R
d . (1.2)

Specifically, for given non-negative δ, x define

Bδ
Z (x) := lim

T→∞
1

T d
Bδ
Z ([0, T ]d ∩ δZd , x),
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where

Bδ
Z ([0, T ]d ∩ δZd , x) :=

∫ ∞

0
P

{∫

[0,T ]d∩δZd
I(Z(t) > s)λδ(dt) > x

}
ds.

Here λ0(dt) = λ(dt) is the Lebesgue measure on R
d , 0Zd = R

d and λδ(dt)/δd is the
counting measure on δZd if δ > 0. Hence Bδ

Z (x), δ > 0 is the discrete counterpart of BZ (x)
and B0

Z (x) = BZ (x).
In general, in order to be well-defined for the function Bδ

Z (x), x � 0 some further restric-
tion on the rf Z are needed. A very tractable case for which we can utilise results from the
theory of max-stable stationary rf’s is when Z is the spectral rf of a stationary max-stable rf
X(t), t ∈ R

d , see (2.1) below.
An interesting special case is when ln Z(t) is a Gaussian rf with trend equal to the half of

its variance function having further stationary increments. We shall show in Lemma 4.3 that
for such Z the corresponding Berman function BZ (x) appears in the tail asymptotic of the
sojourn of a related Gaussian rf.

Organisation of the rest of the paper. In Section 2we first present in Theorem 2.1 a formula
for Berman functions and then in Corollary 2.3 and Proposition 3.1 we show some continuity
properties of those functions. In Theorem 2.5 and Lemma 2.4 we present two representations
for Berman functions and discuss conditions for their positivity. Section3 is dedicated to
the approximation of Berman functions focusing on the Gaussian case. All the proofs are
postponed to Section 4.

2 Main Results

Let the rf Z(t), t ∈ R
d be as above defined in the non-atomic complete probability space

(�,F,P). Let further X(t), t ∈ R
d be a max-stable stationary rf, which has spectral rf Z in

its de Haan representation (see e.g., de Haan (1984), Kulik and Soulier (2020))

X(t) = max
i�1

�−1
i Z (i)(t), t ∈ R

d . (2.1)

Here �i = ∑i
k=1 Vk with Vk, k � 1 mutually independent unit exponential rv’s being

independent of {Z (i)}∞i=1 which are independent copies of Z . For simplicity we shall assume
that the marginal distributions of the rf X are unit Fréchet (equal to e−1/x , x > 0) which in
turn implies E{Z(t)} = 1 for all t ∈ R

d .
Suppose further that for all T > 0

E

{
sup

t∈[0,T ]d
Z(t)

}
< ∞ (2.2)

and Z has almost surely sample paths on the space D of non-negative càdlàg functions f :
R
d �→ [0,∞) equippedwith Skorohod’s J1-topology.We shall denote byD = σ(πt , t ∈ T0)

the σ -field generated by the projection maps πt : πt f = f (t), f ∈ D with T0 a countable
dense subset of Rd . In view of Hashorva (2018, Thm 6.9) with α = 1, L = B−1, see also
Planinić and Soulier (2018, Eq. (5.2)) the stationarity of X is equivalent with

E{Z(h)F(Z)} = E{Z(0)F(Bh Z)}, ∀h ∈ R
d (2.3)

valid for every measurable functional F : D → [0,∞] such that F(c f ) = F( f ) for all
f ∈ D, c > 0. Here we use the standard notation Bh Z(·) = Z(· − h), h ∈ R

d .
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We shall suppose next without loss of generality (see Hashorva (2021, Lem 7.1)) that

P

{
sup
t∈Rd

Z(t) > 0

}
= 1. (2.4)

Under the assumption that X is stationary Bδ
Z (x) is well-defined for all δ, x non-negative as

we shall show below. We note first that, see e.g., Dȩbicki et al. (2019, 2022)

lim
T→∞

1

T d
Bδ
Z ([0, T ]d ∩ δZδ, 0) = Bδ

Z (0) = Hδ
Z ∈ (0,∞),

where Hδ
Z is the discrete counterpart of the classical Pickands constant HZ = H0

Z . Hence
for any x > 0 we have

Bδ
Z (x) � Hδ

Z < ∞.

Set below for δ > 0

Sδ = Sδ(Z) =
∫

δZd
Z(t)λδ(dt) = δd

∑

t∈δZd

Z(t)

and let S0 = S0(Z) = ∫
Rd Z(t)λ(dt). In view of (2.4) we have that S0 > 0 almost surely.

Sincewe do not consider the case δ > 0 and δ = 0 simultaneously, we can assume that Sδ > 0
almost surely (we can construct a spectral rf Z for X that guarantees this, see Hashorva (2021,
Lem 7.3)).

In view of Dȩbicki et al. (2022, Cor 2.1) if P{S0 = ∞} = 1, then HZ = 0 implying

Bδ
Z (x) = HZ = 0, ∀δ, x � 0.

The next result states the existence and the positivity of Berman functions presenting further
a tractable formula that is useful for simulations of those functions.

Theorem 2.1 If P{S0 = ∞} < 1, then for any δ, x non-negative constants we have

Bδ
Z (x) =

∫ ∞

0
E

{
Z(0)

Sδ

I
(∫

δZd
I(Z(t) > s)λδ(dt) > x

)}
λ(ds) < ∞. (2.5)

Moreover, (2.5) holds substituting Sδ by Sη, where η > 0 if δ = 0 and η = kδ, k ∈ N if
δ > 0, provided that

{S0(Z) < ∞} ⊂ {Sη(B
r Z) ∈ (0,∞)}, ∀r ∈ δZd (2.6)

almost surely.

Remark 2.2 (i) If x = 0, then we retrieve the results of Dȩbicki et al. (2022, Prop 2.1).
(ii) As shown in Dȩbicki et al. (2022) condition (2.6) holds in the particular case that

Z(t) > 0, t ∈ R
d almost surely.

(iii) One example for Z , see for instance Dȩbicki et al. (2022) is taking

Z(t) = exp(V (t) − σ 2
V (t)/2)), t ∈ R

d ,

where V (t), t ∈ R
d is a centered Gaussian rf with almost surely continuous trajectories

and stationary increments, σ 2
V (t) = Var(V (t)) and σV (0) = 0. For this case Z(t) > 0,

t ∈ R
d almost surely, condition (2.6) is satisfied and (2.5) reads

Bδ
Z (x) =

∫ ∞

0
E

{
1

Sδ

I
(∫

δZd
I(V (t) − σ 2

V (t)/2 > ln s)λδ(dt) > x
)}

λ(ds) < ∞.

(2.7)
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Corollary 2.3 If Z has almost surely continuous trajectories, then for all x0 � 0

lim
x→x0

B0
Z (x) = B0

Z (x0). (2.8)

Define next a probability measure μ on D by

μ(A) = E{Z(0)I{Z/Z(0) ∈ A}}, A ∈ D. (2.9)

Let � be a rf with law μ. By the definition, � has also càdlàg sample paths and since D is
Polish, in view of Varadarajan (1958, Lem. p. 1276) we can assume that � is defined in the
same probability space as Z . Recall that λδ(dt)/δd is the counting measure on δZd if δ > 0
and λ0 is the Lebesgue measure on R

d . Since we can rewrite (2.5) as

Bδ
Z (x) =

∫ ∞

0
E

{
1

Sδ(�)
I
(∫

δZd
I(�(t) > s)λδ(dt) > x

)}
λ(ds) < ∞, (2.10)

where

Sδ(�) =
∫

δZd
�(t)λδ(dt)

and the law of � is uniquely determined by the law of the max-stable stationary rf X and
does not depend on the particular choice of Z , see Hashorva (2018, Lem A.1), hence if Z∗
is another spectral rf for X , then

Bδ
Z (x) = Bδ

Z∗(x) (2.11)

for all δ � 0. Assume next that P{S0 < ∞} = 1 and let

Z∗(t) = (p(T ))−1BT Q̄δ(t), t ∈ δZd (2.12)

be a spectral rf of the max-stable rf Xδ(t) = X(t), t ∈ δZd , where Q̄δ is independent of a rv
T , which has pdf p(s) > 0, s ∈ δZd . We choose p to be continuous when δ = 0. In view of
Dȩbicki and Hashorva (2020, Thm 2.3) one possible construction is

Q̄δ(t) = c
�(t)

Sδ(�)
, t ∈ δZd ,

with c = 1 if δ = 0 and c = δd otherwise. Set below Qδ = Q̄δ/c.

Lemma 2.4 (i) If P{S0 < ∞} = 1, then for Qδ as above and all δ, x non-negative we have

Bδ
Z (x) =

∫ ∞

0
P

{∫

δZd
I(Qδ(t) > s)λδ(dt) > x

}
λ(ds) < ∞. (2.13)

(ii) If P{S0 < ∞} > 0, then with V (t) = Z(t)|S0 < ∞ for all δ, x non-negative we have

Bδ
Z (x) = P{S0(�) < ∞}Bδ

V (x) < ∞. (2.14)

Let in the following Y (t) = R�(t)with R a 1-Pareto rv with survival function 1/x, x � 1
independent of � and set hereafter

εδ(Y ) =
∫

δZd
I{Y (t) > 1}λδ(dt).

Recall thatwhen δ = 0we interpret δZd asRd .We establish below theBerman representation
(1.1) for the general setup of this paper.
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Theorem 2.5 If P{S0 = ∞} < 1, then for all δ, x non-negative

Bδ
Z (x) = E

{
I{εδ(Y ) > x}

εδ(Y )

}
< ∞. (2.15)

Corollary 2.6 Under the conditions of Theorem 2.5 we have that ε0(Y ) has a continuous
distribution if Z has almost surely continuous trajectories. Moreover, Bδ

Z (x) > 0 for all
x � 0 such that P{εδ(Y ) > x} > 0.

Proposition 2.7 For all δ � 0 and x > 0 we have

P{εδ(Y ) > x}2
E{εδ(Y )} � Bδ

Z (x) � x−1
P{εδ(Y ) � x}. (2.16)

Remark 2.8 (i) If x = 0, the lower bound in (2.16) holds with 1 in the numerator, see
Dȩbicki et al. (2019), and Hashorva (2021).

(ii) If E
{
ε
p
δ (Y )

}
is finite for some p > 0, then combination of the upper bound in (2.16)

with the Markov inequality gives the following upper bound

Bδ
Z (x) � x−p−1

E
{
ε
p
δ (Y )

}
, x > 0. (2.17)

(iii) If E{εδ(Y )} < ∞ and
∫∞
0 esx (Bδ

Z (x))1/2dx < ∞, then it follows that for all s > 0

E

{
esεδ(Y )

}
� 1 + s(E{εδ(Y )})1/2

∫ ∞

0
esx (Bδ

Z (x))1/2dx .

(iv) Since Y = R�, we can calculate in case of known � the expectation of εδ(Y ) as
follows

E{εδ(Y )} =
∫

δZd
P{R�(t) > 1}λδ(dt) =

∫ ∞

1

∫

δZd
P{�(t) > 1/r}λδ(dt)r

−2dr .

If Z(t) = exp(V (t) − σ 2
V (t)/2)), t ∈ R

d is as in Remark 2.2, Item (iii), then in view
of Dȩbicki et al. (2019, Lem 5.4), and Hashorva (2021, Eq. (5.3)) we have

E{εδ(Y )} =
∫

δZd

∫ ∞

1
�

(
σV (t)

2
− ln r

σ(t)

)
r−2λδ(dt)dr

= 2
∫

t∈δZd
�(σV (t)/2)λδ(dt),

(2.18)

where � is the survival function of an N (0, 1) rv.

3 Approximation of Bı
Z(x) and its Behaviour for Large x

We show first that BZ = B0
Z can be approximated by considering Bδ

Z (x) and letting δ ↓ 0.

Proposition 3.1 For all x � 0 we have that

lim
δ↓0 B

δ
Z (x) = B0

Z (x).

We note in passing that for x = 0 we retrieve the approximation for Pickands constants
derived in Dȩbicki et al. (2022). An approximation of Bδ

Z (x) can be obtained by letting
T → ∞ and calculating the limit of
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Bδ
Z ([0, T ]d ∩ δZd , x)

T d
.

For such an approximation we shall discuss the rate of convergence to Bδ
Z (x) assuming

further that

Z(t) = exp

(
V (t) − σ 2

V (t)

2

)
, t ∈ R

d

is as in Remark 2.2, Item (iii).
A1 σ 2

V (t) is a continuous and strictly increasing function, and there exists α0 ∈ (0, 2] and
A0 ∈ (0,∞) such that

lim sup
‖t‖→0

σ 2
V (t)

‖t‖α0
� A0,

where ‖·‖ is the Euclidean norm.
A2 There exists α∞ ∈ (0, 2] such that

lim inf‖t‖→∞
σ 2
V (t)

‖t‖α∞ > 0.

The following theorem constitutes the main finding of this section.

Theorem 3.2 Under A1-A2 we have for all δ, x non-negative and λ ∈ (0, 1)

lim
T→∞

∣∣∣∣∣B
δ
Z (x) − Bδ

Z ([0, T ]d ∩ δZd , x)

T d

∣∣∣∣∣ T
λ = 0. (3.1)

Remark 3.3 (i) For x = 0 the rate of convergence in (3.1) agrees with the findings in
Dȩbicki (2005).

(ii) The range of the parameter λ ∈ (0, 1) in Theorem 3.2 cannot be extended to λ � 1.
Indeed, following Ling and Zhang (2020), for V (t) = √

2B1(t), δ = 0, T > x and
d = 1 we have

BZ ([0, T ], x) = 2�(x/
√
2) + √

2(T − x)ϕ(x/
√
2)

implying
BZ (x) = √

2ϕ(x/
√
2), (3.2)

where ϕ(·) is the pdf of an N (0, 1) rv. Consequently, we have

lim
T→∞

∣∣∣∣BZ (x) − BZ ([0, T ], x)
T

∣∣∣∣ T = |2�(x/
√
2) − √

2xϕ(x/
√
2)| > 0.

In the rest of this section we focus on d = 1 log-Gaussian case. In view of (3.2) for some
finite positive constant C

ln(Bδ
Z (x)) ∼ −Cσ 2

V (x), x → ∞.

The next result gives logarithmic bounds for Bδ
Z (x) as x → ∞ that supports this hypothesis.

Proposition 3.4 Suppose that d = 1 and V satisfies A1-A2. Then

lim inf
x→∞

ln(Bδ
Z (x))

σ 2
V (x/2)

� −1

123

Page 7 of 27 2



Methodology and Computing in Applied Probability (2024) 26:2

Table 1 Values of E{εδ(Y )} for δ = {0, 1, 5, 10} and V (t) = √
2BH (t)

E{εδ(Y )} \ H 0.1 0.2 0.3 0.4 0.5

δ = 0 60480 72.216267 12.309822 5.866446 4

δ = 1 48824.040913 72.594979 12.632020 6.140195 4.232120

δ = 5 57667.986631 74.736598 14.803952 8.344951 6.474827

δ = 10 59291.12614 77.87128 18.22637 12.07630 10.54057

E{εδ(Y )} \ H 0.6 0.7 0.8 0.9 1

δ = 0 3.198992 2.777685 2.527405 2.366354 2.256758

δ = 1 3.395236 2.942920 2.665777 2.481422 2.351603

δ = 5 5.685059 5.295399 5.104008 5.026130 5.004070

δ = 10 10.09794 10.00788 10.00016 10 10

and

lim sup
x→∞

ln(Bδ
Z (x))

σ 2
V (x/2)

� −3 − 2
√
2

2
.

Remark 3.5 (i) If we suppose additionally that σ 2
V is regularly varying at∞with parameter

α > 0, then it follows from Proposition 3.4 that

− 1

2α
� lim inf

x→∞
ln(Bδ

Z (x))

σ 2
V (x)

� lim sup
x→∞

ln(Bδ
Z (x))

σ 2
V (x)

� −3 − 2
√
2

2α+1 .

(ii) If follows from the proof of Proposition 3.4 that under A1-A2

−1

2
� lim inf

x→∞
ln(P{εδ(Y ) > x})

σ 2
V (x/2)

� lim sup
x→∞

ln(P{εδ(Y ) > x})
σ 2
V (x/2)

� −3 − 2
√
2

2
.

Example 3.6 Let V (t) = √
2BH (t), with H � 1, i.e., σ 2

V (t) = 2t2H . Then E{ε0(Y )}
= 41/(2H)+0.5√

π�(1/(2H)+0.5)
, see Dȩbicki et al. (2019). For δ > 0 we use (2.18) to compute E{εδ(Y )},

see Table 1. The graph of E{εδ(Y )} as a function of δ and the upper bound (2.17) with p = 1
for Berman constants as a function of x ∈ [1, 10] are presented on Fig. 1.

We simulated Berman constant BZ (x) using estimator (2.15) for different x and H see
Table 2. In our simulation we generated N = 20000 trajectories by means of Davies-Harte
algorithm on the interval [−64, 64]with the step e = 1/29 = 0.001953125. Since the sample

Fig. 1 E{εδ(Y )} as a function of δ ∈ [0, 2] and H = {0.5, 0.9} and the upper bound (2.17) with p = 1
for Berman constants as a function of x ∈ [1, 10] for H = 0.5, δ = 1 and H = 0.9, δ = 10 where
V (t) = √

2BH (t)
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paths of fractional Brownian motion are very torn by the negative correlation of increments
for H < 0.5 we cannot trust the simulation for H close to 0 and we estimated Berman
constant for H ≥ 0.4 (see the half width of 95% confidence interval in Table 2). Let us note
that the estimator (2.15) for x = 0 is different from the estimator of Pickands constant in
Dieker and Yakir (2014). Compare our simulation for x = 0 with the results of Dieker and
Yakir (2014) for Pickands constant.

Example 3.7 Let X(t), t ∈ R be a stationary Ornstein-Uhlenbeck process, i.e., a centered
Gaussian process with zero mean and covariance E{X(t)X(s)} = exp(−|t − s|), s, t ∈ R.
Then the random process

V (t) =
⎧
⎨
⎩

√
2
∫ t
0 X(s)ds if t � 0

−√
2
∫ 0
t X(s)ds if t < 0

is Gaussian with stationary increments and variance σ 2
V (t) = 4(|t |+ e−|t | − 1). Using (2.15)

we simulated the Berman constant for δ = 0 and different x , see Table 3 and for x = 0 and
δ = {0, 0.1, 0.2, 0.5, 1, 2, 5, 10}, see Table 4. We generated N = 20000 trajectories with

the step e = 10−5 on the interval [−15, 15]. In Fig. 2 we graphed BZ (x) and ln(BZ (x))
σ 2
V (x/2)

as

function of x and we get that this ratio is asymptotically around −0.4. Note that according
to Remark 3.5 it should be between −0.5 and −0.04289322.

Using (2.18)we computedE{εδ(Y )} and 1/E{εδ(Y )} for δ = {0, 0.1, 0.2, 0.5, 1, 2, 5, 10},
see Table 5. The graph of the lower bound of Bδ

Z (0) for the integrated Ornstein-Uhlenbeck
process that is 1/E{εδ(Y )} as a function of δ ∈ [0, 10] is given in Fig. 2. The value of BZ (0)

Table 3 Estimation ofBZ (x) for integrated Ornstein-Uhlenbeck process and the half width of 95% confidence
interval

x 0 0.5 1

BZ (x) 0.5267956 ± 0.01817717 0.452556 ± 0.004676632 0.3482289 ± 0.003180162

x 1.5 2 2.5

BZ (x) 0.2621687 ± 0.002588018 0.1900299 ± 0.002216284 0.1376086 ± 0.001910763

x 3 4 5

BZ (x) 0.09881259 ± 0.00163841 0.05088893 ± 0.00116684 0.02715927 ± 0.0008278098

x 6 7 8

BZ (x) 0.01433577 ± 0.0005788133 0.007437053 ± 0.0003983809 0.003796336 ± 0.0002730899

x 9 10 11

BZ (x) 0.001998398 ± 0.0001906838 0.001205136 ± 0.0001414664 0.000631948 ± 9.837308e-05

x 12 13 14

BZ (x) 0.0003812784 ± 7.355149e-05 0.0001845301 ± 4.89203e-05 0.00010499 ± 3.593126e-05

x 15 16 17

BZ (x) 9.130422e-05 ± 3.276786e-05 2.426165e-05 ± 1.594309e-05 2.103512e-05 ± 1.463212e-05
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Table 4 Estimation of Bδ
Z (0) for

integrated Ornstein-Uhlenbeck
process and the half width of
95% confidence interval

δ 0 0.1

Bδ
Z (0) 0.5267956 ± 0.01817717 0.5131973 ± 0.007850686

δ 0.2 0.5

Bδ
Z (0) 0.5126575 ± 0.007194036 0.4934096 ± 0.005746635

δ 1 2

Bδ
Z (0) 0.4484668 ± 0.00402201 0.3843544 ± 0.001995524

δ 5 10

Bδ
Z (0) 0.1908583 ± 0.0004065713 0.09984 ± 3.913749e-05

constant for the integrated Ornstein-Uhlenbeck process with the same parameters as here
was simulated in Dȩbicki et al. (2003) resulting in the value 0.528.

4 Further Results and Proofs

Let in the following X(t), t ∈ R
d be a max-stable stationary rf with càdlàg sample paths

and spectral rf Z as in Theorem 2.1 and define � as in (2.9). Define Y (t) = R�(t), t ∈ R
d

with R an 1-Pareto rv (with survival function 1/x, x � 1) independent of � and set MY ,δ

= supt∈δZd Y (t). Note in passing that

P
{
MY ,δ > 1

} = 1

since MY ,δ � R�(0) > 1 almost surely by the assumption on R and by the definition
P{�(0) = 1} = 1.

Recall that Sδ = Sδ(Z) = ∫
δZd Z(t)λδ(dt). In view of (2.4) we have that P{S0 > 0} = 1.

In the following, for any fixed δ � 0 (but not simultaneously for two different δ’s) we shall
assume that Sδ > 0 almost surely, i.e., Z is such that P

{
supt∈δZd Z(t) > 0

} = 1. Such a
choice of Z is possible in view of Hashorva (2021, Lem 7.3).

A functional F : D → [0,∞] is said to be shift-invariant if F( f (· − h)) = F( f (·)) for
all h ∈ R

d .

Fig. 2 The graphs of BZ (x) and ln(BZ (x))
σ2
V (x/2)

as function of x and the lower bound of Pickands constant as a

function of δ for integrated Ornstein-Uhlenbeck process
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Table 5 Estimation of E{εδ(Y )}
and 1/E{εδ(Y )} for
δ = {0, 0.1, 0.2, 0.5, 1, 2, 5, 10}

δ 0 0.1 0.2 0.5

E{εδ(Y )} 3.234658 3.245584 3.248405 3.268183

1/E{εδ(Y )} 0.3091517 0.308111 0.3078434 0.3059804

δ 1 2 5 10

E{εδ(Y )} 3.339158 3.626068 5.482154 10.05426

1/E{εδ(Y )} 0.2994767 0.2757808 0.1824101 0.09946035

We state first two lemmas and proceed with the postponed proofs.

Lemma 4.1 If P{S0 < ∞} = 1, then P{Sδ < ∞} = 1, δ > 0 and for all x > 0

P{εδ(Y/x) < ∞} = 1, ∀x > 0,∀δ � 0. (4.1)

Moreover P
{
MY ,δ < ∞} = 1.

Proof of Lemma 4.1 In view of (2.4) S0 > 0 almost surely. The assumption that S0 < ∞
almost surely is in view of Dombry and Kabluchko (2017, Thm 3) equivalent with Z(t) → 0
almost surely as ‖t‖ → ∞, with ‖·‖ some norm on R

d . Hence Sδ < ∞ almost surely
follows from Dombry and Kabluchko (2017, Thm 3). By the definition of � and the fact that
P{S0(Z) ∈ (0,∞)} = 1 we have

0 = E

{
Z(0)I

{
lim sup
‖t‖→∞

Z(t) > 0

}}
= E

{
Z(0)I

{
lim sup
‖t‖→∞

Z(t)/Z(0) > 0

}}

= E

{
I

{
lim sup
‖t‖→∞

�(t) > 0

}} (4.2)

implying that P
{
lim‖t‖→∞ �(t) = 0

} = 1. Consequently, P
{
lim‖t‖→∞ Y (t) = 0

} = 1 and
hence the claim follows. ��

Below we interpret ∞ · 0 and 0/0 as 0. The next result is a minor extension of Soulier
(2022, Lem 2.7).

Lemma 4.2 If P{S0 < ∞} = 1, then for all measurable shift invariant functional F and all
δ, x non-negative

xE

{
F(Y/x)

εδ(Y )
I
{
MY ,δ > max(x, 1)

}} = E

{
F(Y )

εδ(Y )
I
{
MY ,δ > max(1/x, 1)

}}
. (4.3)

Proof of Lemma 4.2 For all measurable functional F : D → [0,∞] and all x > 0

xE{F(Y )I(Y (h) > x)} = E

{
F(x BhY )I(xY (−h) > 1)

}
(4.4)

is valid for all h ∈ R
d with BhY (t) = Y (t − h), h, t ∈ R

d . Note in passing that BhY can
be substituted by Y in the right-hand side of (4.4) if F is shift-invariant. The identity (4.4)
is shown in Bladt et al. (2022). For the discrete setup it is shown initially in Planinić and
Soulier (2018), and Basrak and Planinić (2021) and for case d = 1 in Soulier (2022).
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Next, if x ∈ (0, 1], since Y (0) = R > 1 almost surely and by the assumption on the
sample paths we have that P{εδ(Y/x) > 0} = 1, recall P{�(0) = 1} = 1. By Lemma
4.1 P

{
MY ,δ ∈ (1,∞)

} = 1, hence for all x > 1 we have further that MY ,δ > x implies
εδ(Y/x) > 0. Consequently, in view of (4.1) εδ(Y/x)/εδ(Y/x) is well defined on the event
MY ,δ > x, x > 1 and also it is well-defined for any x ∈ (0, 1].

Recall that λδ(dt) is the Lebesgue measure on R
d if δ = 0 and the counting measure

multiplied by δd on δZd if δ > 0. Let us remark that for any shift-invariant functional F , the
functional

F∗(Y ) = F(Y/x)I
{
MY ,δ > max(x, 1)

}

εδ(Y )εδ(Y/x)

is shift-invariant for all h ∈ R
d if δ = 0 and any shift h ∈ δZd if δ > 0. Thus applying the

Fubini-Tonelli theorem twice and (4.4) with functional F∗ we obtain for all δ � 0, x > 0

xE

{
F(Y/x)

εδ(Y )
I
{
MY ,δ > max(x, 1)

}}

= x
∫

δZd
E

{
F(Y/x)I

{
MY ,δ > max(x, 1)

}

εδ(Y )εδ(Y/x)
I{Y (h) > x}

}
λδ(dh)

=
∫

δZd
E

{
F(Y )I

{
MY ,δ > max(1/x, 1)

}

εδ(xY )εδ(Y )
I{xY (−h) > 1}

}
λδ(dh)

= E

{
F(Y )I

{
MY ,δ > max(1/x, 1)

}

εδ(xY )εδ(Y )

∫

δZd
I{xY (h) > 1}λδ(dh)

}

= E

{
F(Y )

εδ(Y )
I
{
MY ,δ > max(1/x, 1)

}}
,

hence the proof follows. ��

Proof of Theorem 2.1 Let δ � 0 be fixed and consider for simplicity d = 1. By
the assumption we have E

{
supt∈[0,T ] Z(t)

}
< ∞ for all T > 0. Since we assume that

P
{
supt∈R Z(t)>0

}=1, thenP{S0>0} = 1. Using the assumptionwe haveP
{
Sη < ∞} > 0

for all η � 0 and thus by (2.3) we obtain

∞ > E

{
sup

t∈[0,2]
Z(t)

S0
S0

}
=
∫

R

E

{
Z(h) sup

t∈[0,2]
Z(t)/S0

}
λ(dh)

=
∫

R

E

{
Z(0) sup

t∈[−h,2−h]
Z(t)/S0

}
λ(dh)

=
∑
i∈Z

∫ i+1

i
E

{
Z(0) sup

t∈[−h,2−h]
Z(t)/S0

}
λ(dh)

≥
∑
i∈Z

E

{
Z(0) sup

t∈[−i,1−i]
Z(t)/S0

}

� E

{
Z(0) sup

t∈R
Z(t)/S0

}
.
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Since also for any M > 0 and η > 0

0 < E

{
sup

t∈[0,M]
Z(t)

Sη

Sη

}
< ∞

we conclude as above that for all η � 0

E

{
Z(0) sup

t∈R
Z(t)/Sη

}
< ∞,

∫

ηZ

E

{
Z(0) sup

h�t�h+1
Z(t)/Sη

}
λη(dh) < ∞. (4.5)

Next, for any x � 0 and η � 0

T−1
∫ ∞

0
P

{∫

[0,T ]∩ηZ

I(Z(t) > s)λη(dt) > x, Sη = ∞
}
ds

� T−1
∫ ∞

0
P

{∫

[0,T ]∩ηZ

I(Z(t) > s)λη(dt) > 0, Sη = ∞
}
ds

= T−1
∫ ∞

0
P

{
sup

t∈[0,T ]∩ηZ

Z(t) > s, Sη = ∞
}
ds

= T−1
E

{
sup

t∈[0,T ]∩ηZ

Z(t), Sη = ∞
}

→ 0, T → ∞,

where the last claim follows fromDȩbicki et al. (2022, Cor 2.1). We shall assume that Sδ > 0
almost surely (this is possible as mentioned at the beginning of this section). For notational
simplicity we consider next δ = 0. For any M > 0, T > 2M by the Fubini-Tonelli theorem
and (2.3)

∫ ∞

0
P

{∫

[0,T ]
I(Z(t) > s)λ(dt) > x

}
ds

=
∫

R

E

{
Z(h)

S0

∫ ∞

0
I

{∫

[0,T ]
I(Z(t) > s)λ(dt) > x

}
ds

}
dh

=
∫

R

E

{
Z(0)

S0

∫ ∞

0
I

{∫

[0,T ]
I(Z(t − h) > s)λ(dt) > x

}
ds

}
dh

=
∫

R

∫ ∞

0
E

{
Z(0)

S0
I

{∫ T+h

h
I(Z(t) > s)λ(dt) > x

}}
dsdh

=
∫ −M

−M−T

∫ ∞

0
E

{
Z(0)

S0
I

{∫ T+h

h
I(Z(t) > s)λ(dt) > x

}}
dsdh

+
∫

h<−M−T or h>−M

∫ ∞

0
E

{
Z(0)

S0
I

{∫ T+h

h
I(Z(t) > s)λ(dt) > x

}}
dsdh

=: IM,T + JM,T .

Thus we obtain
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IM,T

T
=
∫ −M/T

−M/T−1
E

{
Z(0)

S0

∫ ∞

0
I
(∫ T (1+h)

Th
I(Z(t) > s)λ(dt) > x

)
ds

}
dh

=
∫ 0

−1
E

{
Z(0)

S0

∫ ∞

0
I
(∫ T (1+h)−M

Th−M
I(Z(t) > s)λ(dt) > x

)
ds

}
dh

→
∫ 0

−1
E

{
Z(0)

S0

∫ ∞

0
I
(∫

δZ

I(Z(t) > s)λ(dt) > x
)
ds

}
dy, T → ∞

= E

{
Z(0)

S0

∫ ∞

0
I
(∫

δZ

I(Z(t) > s)λδ(dt) > x
)
ds

}

� E

{
Z(0)

S0

∫ ∞

0
I
(∫

R

I(Z(t) > s)λ(dt) > 0
)
ds

}

= E

{
Z(0)

S0
sup
t∈R

Z(t)

}
= H0

Z < ∞,

whereH0
Z is the Pickands constants, see Dȩbicki et al. (2022, Prop 2.1) for the last formula.

Let us consider the second term

JM,T

T
=
∫

(−∞,−1)∪(0,∞)

E

{
Z(0)

S0

∫ ∞

0
I
(∫ T (1+h)−M

Th−M
I(Z(t) > s)λ(dt) > x

)
ds

}
dh

=
∫ −1

−∞
E

{
Z(0)

S0

∫ ∞

0
I
(∫ T (1+h)−M

Th−M
I(Z(t) > s)λ(dt) > x

)
ds

}
dh

+
∫ ∞

0
E

{
Z(0)

S0

∫ ∞

0
I
(∫ T (1+h)−M

Th−M
I(Z(t) > s)λ(dt) > x

)
ds

}
dh

=: KM,T + LM,T .

Further, assuming for simplicity that T is a positive integer we get

KM,T ≤
∫ −1

−∞
E

{
Z(0)

S0

∫ ∞

0
I
(∫ T (1+h)−M

Th−M
I(Z(v) > s)λ(dv) > 0

)
ds

}
dh

=
∫ −1

−∞
E

{
Z(0)

S0
sup

t∈[Th−M, T (1+h)−M]
Z(t)

}
dh

= 1

T

∫ −T−M

−∞
E

{
Z(0)

S0
sup

t∈[h, h+T ]
Z(t)

}
dh

≤ 1

T

T−1∑
i=1

∫ −T−M

−∞
E

{
Z(0)

S0
sup

t∈[h+i, h+i+1]
Z(t)

}
dh

= 1

T

T−1∑
i=1

∫ −T−M+i

−∞
E

{
Z(0)

S0
sup

t∈[h, h+1]
Z(t)

}
dh

≤ 1

T

T−1∑
i=1

∫ −M

−∞
E

{
Z(0)

S0
sup

t∈[h, h+1]
Z(t)

}
dh

=
∫ −M

−∞
E

{
Z(0)

S0
sup

t∈[h, h+1]
Z(t)

}
dh → 0, M → ∞,
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where the last convergence follows from (4.5). The same way we show that LM,T → 0 as
M → ∞ establishing the proof.

We prove next the second claim. In view of Dȩbicki et al. (2022, proof of Prop 2.1) almost
surely for all δ, η ∈ [0,∞)

1

Sη(�)
= 1

Sη(�)

Sδ(�)

Sδ(�)
�(0), {Sη(�) < ∞} = {Sδ(�) < ∞}. (4.6)

Consequently, for any δ, η, x non-negative

Bδ,η(x)

:=
∫ ∞

0
E

{
Z(0)

Sη

I
{
Sη < ∞}I

(∫

δZ

I(Z(t) > s)λδ(dt) > x
)}

ds

=
∫ ∞

0
E

{
1

Sη(�)
I
{
Sη(�) < ∞}I

(∫

δZ

I(�(t) > s)λδ(dt) > x
)}

ds

=
∫ ∞

0
E

{
1

Sη(�)

Sδ(�)

Sδ(�)
I{Sδ(�) < ∞}I

(∫

δZ

I(�(t) > s)λδ(dt) > x
)}

ds.

We proceed next with the case δ = 0, the other case follows with the same argument where
it is important that η = kδ for the shift transformation. Taking δ = 0, η > 0 we have

B0,η(x)

=
∫

R

∫ ∞
0

E

{
1

Sη(�)

�(r)

S0(�)
I{S0(�) < ∞}I

(∫

R

I(�(t) > s)λ(dt) > x
)}

dsλ(dr)

=
∑

v∈ηZ

∫

r+v∈[0,η]

∫ ∞
0

E

{
Z(0)

Sη(Z)

Z(r)

S0(Z)
I{S0(Z) < ∞}I

(∫

R

I(Z(t) > s)λ(dt) > x
)}

dsλ(dr)

=
∫ ∞
0

E

⎧⎨
⎩
∑

v∈ηZ

∫

r+v∈[0,η]
Z(0)

Sη(Z)

Z(r)

S0(Z)
I{S0(Z) < ∞}I

(∫

δZ
I(Z(t) > s)λ(dt) > x

)
⎫⎬
⎭λ(dr)ds

=
∫ ∞
0

E

⎧⎨
⎩
∑

v∈ηZ

∫

r∈[0,η]
Z(0)

Sη(Z)

Z(r − v)

S0(Z)
I{S0(Z) < ∞}I

(∫

R

I(Z(t) > s)λ(dt) > x
)
⎫⎬
⎭λ(dr)ds

=
∫ ∞
0

E

⎧⎨
⎩
∫

r∈[0,η]
1

η

∑

v∈ηZ

ηZ(v − r)

Sη(Br Z)
λ(dr)

Z(0)

S0(Z)
I{S0(Z) < ∞}I

(∫

R

I(Z(t) > s)λ(dt) > x
)
⎫⎬
⎭ds

=
∫ ∞
0

E

{
Z(0)

S0(Z)
I
(∫

R

I(Z(t) > s)λ(dt) > x
)}

ds,

where we used (2.3) with h = r − v to obtain the second last equality above and (2.6) to get
the last equality, hence the proof follows. ��

Proof of Corollary 2.3 Given x � 0 consider the representation (2.5)

B0
Z (x) =

∫ ∞

0
E

{
Z(0)

S0
I
(∫

Rd
I(Z(t) > s)λ(dt) > x

)}
ds.

By the monotonicity with respect to variable x of the function

E

{
Z(0)

S0
I
(∫

Rd
I(Z(t) > s)λ(dt) > x

)}
(4.7)
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in order to show the continuity of B0
Z (x) it suffices to prove that

E

{
Z(0)

S0
I
(∫

Rd
I(Z(t) > s)λ(dt) = x

)}
= 0 (4.8)

for almost all s > 0. Let us define the following measurable sets

As = I
(∫

Rd
I(Z(t) > s)λ(dt) = x

)
.

Since Z has almost surely continuous trajectories we have As ∩ As′ = ∅ if 0 < s < s′ and
x > 0. Thus there are countably many s > 0 such that P{As} > 0 because if there were not
countably many ones we would find countably many disjoint As such that

∑
P{As} = ∞.

Thus we get (4.8) for almost all s > 0. The continuity at x = 0 follows from the right
continuity of (4.7). ��

Proof of Lemma 2.4 Item (i): In view of (2.5) and substituting �(t) = Qδ(t)/Sδ(�) to
(2.10) we get

Bδ
Z (x) =

∫ ∞

0
E

{
1

Sδ(Qδ)
I
(∫

δZd
I(Qδ(t) > s)λδ(dt) > x

)}
ds.

Since Sδ(Qδ) = 1 the claim follows.
Item (ii): If P{S0 < ∞} > 0 we can define V (t) = Z(t)|S0 < ∞ and set (recall S0 = S0

(Z),E{Z(0)} = 1)

b = E{Z(0)I{S0 < ∞}} = P{S0(�) < ∞} > 0.

For this choice of b by (2.3) we have

E{V (t)} = E{Z(t)I{S0 < ∞}}
P{S0(�) < ∞} = E{Z(0)I{S0 < ∞}}

P{S0(�) < ∞} = 1

for all t ∈ R. Clearly, P
{
supt∈Rd V (t) > 0

} = 1. In view of Dombry and Kabluchko (2017)
V is the spectral rf of a stationary max-stable rf X∗ with càdlàg sample paths and moreover
S0(V ) = ∫

Rd V (t)λ(dt) < ∞ almost surely. In view of Dȩbicki et al. (2022, proof of Prop.
2.1) we have that

{Sδ(�) < ∞} = {S0(�) < ∞}
almost surely for all δ > 0. Consequently, we obtain for all δ > 0

Bδ
Z (x) =

∫ ∞

0
E

{
Z(0)

Sδ

I
(∫

δZd
I(Z(t) > s)λδ(dt) > x

)
I{Sδ < ∞}

}
ds

=
∫ ∞

0
E

{
1

Sδ(�)
I
(∫

δZd
I(�(t) > s)λδ(dt) > x

)
I{Sδ(�) < ∞, S0(�) < ∞}

}
ds

=
∫ ∞

0
E

{
Z(0)

Sδ(Z)
I
(∫

δZd
I(Z(t) > s)λδ(dt) > x

)
I{S0(Z) < ∞}

}
ds

= b
∫ ∞

0
E

{
V (0)

Sδ(V )
I
(∫

δZd
I(V (t) > s)λδ(dt) > x

)}
ds

= bBδ
V (x) < ∞

establishing the proof. ��
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Proof of Theorem 2.5 Assume first that P{S0 < ∞} = 1. In view of (4.1) we have that
εδ < ∞ almost surely, hence as in Kulik and Soulier (2020), and Soulier (2022) where d = 1
is considered it follows that (2.12) holds with

Q̄δ(t) = c
Y (t)

εδ(Y )MY ,δ

, t ∈ R,

with c = 1 if δ = 0 and c = δd otherwise. Set below Qδ = Q̄/c and for simplicity omit
the subscript below writing simply MY instead of MY ,δ . Since Y (t)/MY � 1 almost surely
for all t ∈ δZd and P{MY ∈ (1,∞)} = 1, in view of Lemma 2.4 we have using further the
Fubini-Tonelli theorem and Lemma 4.2

Bδ
Z (x) =

∫ ∞

0
E

{
I
(∫

δZd
I(Qδ(v) > s)λδ(dv) > x

)}
ds

=
∫ ∞

0
E

{
1

εδ(Y )

1

MY
I{εδ(Y/s) > x}

}
ds

=
∫ ∞

0
E

{
1

εδ(Y )
I{MY > s} 1

MY
I{εδ(Y/s) > x}

}
ds

=:
∫ ∞

0
E

{
1

sεδ(Y )
I{MY > s}F(Y/s)

}
ds

=
∫ ∞

0

1

s2
E

{
I{εδ(Y ) > x}

εδ(Y )MY
I{MY > max(1/s, 1)}

}
ds

= E

{
I{εδ(Y ) > x}

εδ(Y )MY

∫ ∞

0

1

s2
I{MY > max(1/s, 1)}ds

}

= E

{
I{εδ(Y ) > x}

εδ(Y )

}
.

The last equality follows from (recall MY ∈ (1,∞) almost surely)
∫ ∞

0

1

s2
I{MY > max(1/s, 1)}ds =

∫ ∞

1

1

s2
ds +

∫ 1

0

1

s2
I{MY > 1/s}ds = MY .

In view of (4.1) for all x non-negative such that P{εδ(Y ) > x} > 0 we have that Bδ
Z (x) ∈

(0,∞), hence the proof follows.
Assume now that P{S0 < ∞} ∈ (0, 1). In view of Lemma 2.4 we have

Bδ
Z (x) = bBδ

V (x),

with V (t) = Z(t)|S0 < ∞, which is well-defined since P{S0 < ∞} > 0 by the assumption.
Since S0(V ) < ∞ almost surely and Y∗(t) = Y (t)|S0(�) < ∞, t ∈ R by the proof above

Bδ
Z (x) = P{S0 < ∞}E

{
I{εδ(Y∗) > x}

εδ(Y∗)

}

= E

{
I{εδ(R�) > x}

εδ(R�)
I{S0(�) < ∞}

}
.

In view of Soulier (2022, Lem 2.5, Cor 2.9) and Hashorva (2021, Thm 3.8) and the above

H δ
Z = Bδ

Z (0) = E

{
1

εδ(R�)

}
= E

{
1

εδ(R�)
I{S0(�) < ∞}

}
(4.9)

and thus εδ(R�) < ∞ implies S0 < ∞ almost surely. Hence the proof is complete. ��
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Proof of Corollary 2.6 In view of (2.3), the representation (2.15) and the finiteness of B0
Z (x)

for all x � 0, the monotone convergence theorem yields for all x0 � 0

lim
x↓x0

E

{
I{x0 � ε0(Y ) < x}

ε0(Y )

}
= E

{
I{ε0(Y ) = x0}

ε0(Y )

}
= 0

consequently, since by our assumption Lemma 4.1 implies P{ε0(Y ) ∈ (0,∞)} = 1, then

P{ε0(Y ) = x0} = E{I{ε0(Y ) = x0}} = 0

follows establishing the claim. ��

Proof of Proposition 2.7 In order to prove (2.16) note first that for any non-negative rv U
with df G and x � 0 such that P{U > x} > 0

1

P{U > x}
∫ ∞

x

1

y
dG(y) � P{U > x}∫∞

x ydG(y)
� P{U > x}

E{U } .

Consequently, we obtain for all x > 0

Bδ
Z (x) � P{εδ(Y ) > x}2

E{εδ(Y )I{εδ(Y ) > x}} � P{εδ(Y ) > x}2
E{εδ(Y )}

establishing the proof of the lower bound (2.16). The proof of the upper bound follows from
the fact that

Bδ
Z (x) =

∫ ∞

x

1

y
dF(y) � 1

x

∫ ∞

x
dF(y) = x−1

P{εδ(Y ) � x},

where F is the distribution of εδ(Y ). This completes the proof. ��

Proof of Proposition 3.1 Since Bδ
Z (0) is the generalised Pickands constant Hδ

Z , then the
claim follows for x = 0 from Dȩbicki et al. (2022). In view of (2.14) we can assume without
loss of generality that P{S0 < ∞} = 1. Under this assumption, from the proof of Lemma
4.1 we have that Y (t) → 0 almost surely as ‖t‖ → ∞. Hence for some M sufficiently large
Y (t) < 1 almost surely for all t such that ‖t‖ > M . Consequently, for all δ � 0

εδ(Y ) =
∫

δZd∩[−M,M]d
I{Y (t) > 1}λδ(dt).

Moreover, εδ(Y ) < ∞ almost surely for all δ � 0 implying εδ(Y ) → ε0(Y ) almost surely
as δ ↓ 0. In view of Soulier (2022, Lem. 2.5, Cor. 2.9) and Hashorva (2021, Thm 3.8) for all
δ � 0

Hδ
Z = E{1/εδ(Y )}.

Applying Dȩbicki et al. (2022, Thm 2) and (4.9) yields

E{1/εδ(Y )} = Hδ
Z → H0

Z = E{1/ε0(Y )}, δ ↓ 0.

Hence 1/εδ(Y ), δ > 0 is uniformly integrable and hence

Bδ
Z (x) = E

{
I{εδ(Y ) > x}

εδ(Y )

}
→ B0

Z (x), δ ↓ 0

establishing the proof. ��
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4.1 Proof of Theorem 3.2

Suppose that V (t), t ∈ R
d is a centered Gaussian field with stationary increments and

variance function σ 2
V (·) that satisfies A1-A2. Then, by stationarity of increments σ 2

V (·) is
negative definite, which combined with Schoenberg’s theorem, implies that for each u > 0

Ru(s, t) := exp

(
− 1

2u2
σ 2
V (s − t)

)
, s, t ∈ R

d

is positive definite, and thus a valid covariance function of some centered stationary Gaussian
rf Xu(t), t ∈ R

d , where s − t is meant component-wise. The proof of Theorem 3.2 is based
on the analysis of the asymptotics of sojourn time of Xu(t). Since the idea of the proof is the
same for continuous and discrete scenario, in order to simplify notation, we consider next
only the case δ = 0.

Before we proceed to the proof of Theorem 3.2, we need the following lemmas, where

Z(t) = exp

(
V (t) − σ 2

V (t)
2

)
is as in Remark 2.2, Item (iii).

Lemma 4.3 For all T > 0 and x � 0

(i)

lim
u→∞

P

{∫
[0,T ]d I(Xu(t) > u)dt > x

}

�(u)
= BZ ([0, T ]d , x).

(ii) For all x � 0

lim
u→∞

P

{∫
[0,ln(u)]d I(Xu(t) > u)dt > x

}

(ln(u))d�(u)
= BZ (x),

lim
T→∞

BZ ([0, T ]d , x)
T d

= BZ (x) ∈ (0,∞).

Proof of Lemma 4.3 Item (i) follows straightforwardly from Dȩbicki et al. (2023, Lem.
4.1). The proof of Item (i) follows by the application of the double sum technique applied
to the sojourn functional, as demonstrated e.g., in Dȩbicki et al. (2023, Prop. 3.1). The
claim in Item (ii) follows by the same argument as its counterpart in Dȩbicki et al. (2023,
Lem. 4.2). ��

The following lemma is a slight modification of Piterbarg (1996, Lem 6.3) to the family
Xu, u > 0. Let i = (i1, ..., id), with i1, ..., id ∈ {0, 1, 2, ...}, Ri := ∏d

k=1[ikT , (ik + 1)T ]
and

K̂ := {i = (i1, ..., id) : 0 � ik, (ik − 1)T � ln(u), k = 1, ..., d},
qK := {i = (i1, ..., id) : 0 � ikT � ln(u), k = 1, ..., d}.

Lemma 4.4 There exists a constant C ∈ (0,∞) such that for sufficiently large u, for all
i, j ∈ K̂, i �= j we have

P

{
max
t∈Ri

Xu(t) > u,max
t∈Rj

Xu(t) > u

}
� CT 2d exp

(
−1

8
inf

t∈Ri,s∈Rj

σ 2
V (t − s)

)
�(u).

Proof of Theorem 3.2 The proof consists of two steps, where we find an asymptotic upper
and lower bound for the ratio
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P

{∫
[0,ln(u)]d I(Xu(t) > u)dt > x

}

(ln(u))d�(u)
,

as u → ∞. We note that by Lemma 4.3 the limit, as u → ∞, of the above fraction is positive
and finite.
Asymptotic upper bound. If T > 0, then for sufficiently large u

P

{∫

[0,ln(u)]d
I(Xu(t) > u)dt > x

}

� P

⎧⎨
⎩
∑

i∈K̂

∫

Ri

I(Xu(t) > u)dt > x

⎫⎬
⎭

� P

{
∃i∈K̂

∫

Ri

I(Xu(t) > u)dt > x

}
+ P

{
∃i,j∈K̂,i�=j max

t∈Ri

Xu(t) > u, max
t∈Rj

Xu(t) > u

}

�
∑

i∈K̂
P

{∫

Ri

I(Xu(t) > u)dt > x

}
+ P

{
∃i,j∈K̂,i�=j max

t∈Ri

Xu(t) > u, max
t∈Rj

Xu(t) > u

}

�
⌈

(ln(u))d

T d

⌉
P

{∫

[0,T ]d
I(Xu(t) > u)dt > x

}

+P

{
∃i,j∈K̂,i�=j max

t∈Ri

Xu(t) > u, max
t∈Rj

Xu(t) > u

}
, (4.10)

where �·� is the ceiling function and the last inequality above follows from the stationarity
of Xu . Using again the stationary of Xu , we obtain

P

{
∃i,j∈K̂,i�=j max

t∈Ri

Xu(t) > u, max
t∈Rj

Xu(t) > u

}

�
∑

i,j∈K̂,i�=j

P

{
max
t∈Ri

Xu(t) > u, max
t∈Rj

Xu(t) > u

}
(4.11)

�
⌈

(ln(u))d

T d

⌉ ∑

k∈K̂,k�=0

P

{
max
t∈R0

Xu(t) > u, max
t∈Rk

Xu(t) > u

}

=
⌈

(ln(u))d

T d

⌉⎛⎜⎝
∑

k∈K̂,k�=0,R0∩Rk �=∅
P

{
max
t∈R0

Xu(t) > u, max
t∈Rk

Xu(t) > u

}

+
∑

k∈K̂,k�=0,R0∩Rk=∅
P

{
max
t∈R0

Xu(t) > u, max
t∈Rk

Xu(t) > u

}
⎞
⎟⎠

=:
⌈
lnd(u)

T d

⌉
(�1 + �2) . (4.12)

Next, by Lemma 4.4, for sufficiently large T , u and some Const0 > 0
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�2 � CT 2d
∑

k∈K̂,k�=0,R0∩Rk=∅
exp

(
−1

8
σ 2
V (Tk)

)
�(u)

� CT 2d
∑
k>0

exp
(−Const0T

α∞‖k‖α∞)�(u)

� Const1T
2d exp

(−T α∞/2)�(u). (4.13)

The upper bound for �1 follows by a similar argument as used in the proof of Piterbarg
(1996, Lem. 6.3), thus we explain only main steps of the argument. For a while, consider the
following probability

P

{
max
t∈R0

Xu(t) > u, max
t∈R(1,0,...,0)

Xu(t) > u

}
.

Then, for each ε > 0 and sufficiently large T , u,

P

{
max
t∈R0

Xu(t) > u, max
t∈R(1,0,...,0)

Xu(t) > u

}

� P

{
max

t∈[0,T ε]×[0,T ]d−1
Xu(t) > u

}

+ P

{
max

t∈[0,T ]d
Xu(t) > u, max

t∈[T ε,T ε+T ]×[0,T ]d−1
Xu(t) > u

}

� Const2T
d−1+ε�(u) + Const3T

2d exp
(−T ε/2) , (4.14)

where the above inequality follows by Lemma 4.4 and

lim
u→∞

P
{
maxt∈[0,T ε]×[0,T ]d−1 Xu(t) > u

}

�(u)

� �T �(d−1)(1−ε) lim
u→∞

P
{
maxt∈[0,T ε]d Xu(t) > u

}

�(u)

= �T �(d−1)(1−ε)BZ ([0, T ε]d , 0)
� Const4T

d−1+ε,

which is a consequence of the stationarity of Xu and statement (i) of Lemma 4.3 applied to
x = 0. Again, by the stationarity of Xu we can obtain the bound as in (4.14) uniformly for
all the summands in �1.

Application of the bounds (4.12), (4.13), (4.14) to (4.10) leads to the following upper
estimate

lim sup
u→∞

P

{∫
[0,ln(u)]d I(Xu(t) > u)dt > x

}

lnd(u)�(u)

� BZ ([0, T ]d , x)
T d

+ Const4
1

T d

(
T d−1+ε + T 2d exp

(−T α∞/2)+ T 2d exp
(−T ε/2)) , (4.15)

which is valid for all ε > 0 and T sufficiently large.
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Asymptotic lower bound. Taking T > 0, for sufficiently large u

P

{∫

[0,ln(u)]d
I(Xu(t) > u)dt > x

}

� P

⎧⎨
⎩
∑

i∈ qK

∫

Ri

I(Xu(t) > u)dt > x

⎫⎬
⎭

� P

{
∃
i∈ qK

∫

Ri

I(Xu(t) > u)dt > x

}

�
∑

i∈ qK
P

{∫

Ri

I(Xu(t) > u)dt > x

}

−
∑

i,j∈ qK,i�=j

P

{
max
t∈Ri

Xu(t) > u, max
t∈Rj

Xu(t) > u

}
(4.16)

�
⌊
lnd(u)

T d

⌋
P

{∫

[0,T ]d
I(Xu(t) > u)dt > x

}

−
∑

i,j∈ qK,i�=j

P

{
max
t∈Ri

Xu(t) > u, max
t∈Rj

Xu(t) > u

}
, (4.17)

where in (4.16) we used Bonferroni inequality.
Using that qK ⊂ K̂ with the upper bound for

∑

i,j∈K̂,i�=j

P

{
max
t∈Ri

Xu(t) > u, max
t∈Rj

Xu(t) > u

}
(4.18)

derived in (4.11), we conclude that for each T sufficiently large and ε > 0,

lim inf
u→∞

P

{∫
[0,ln(u)]d I(Xu(t) > u)dt > x

}

(ln(u))d�(u)

� BZ ([0, T ]d , x)
T d

−Const4
1

T d

(
T d−1+ε + T 2d exp

(−T α∞/2)+ T 2d exp
(−T ε/2)) . (4.19)

Thus, by statement (ii) of Lemma 4.3 combined with (4.15) and (4.19), in view of the fact
that ε can take any value in (0, 1), we arrive at

lim
T→∞

∣∣∣∣BZ (x) − BZ ([0, T ]d , x)
T d

∣∣∣∣ T λ = 0

for all λ ∈ (0, 1) establishing the proof. ��

Proof of Proposition 3.4 The idea of the proof is to analyze the asymptotic upper and lower
bound of

P{εδ(Y ) > x}
as x → ∞ and then to apply Proposition 2.7. In order to simplify the notation, we consider
only the case δ = 0. Let Z(t) = V (t) − σ 2

V (t)/2, t ∈ R with V a centered Gaussian process
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with stationary increments that satisfies A1-A2 and W an independent of V exponentially
distributed rv with parameter 1.
Logarithmic upper bound. Let A ∈ (0, 1/2). We begin with an observation that

P{εδ(Y ) > x}
= P

{∫

R

I{W + V (t) − σ 2
V (t)/2 > 0}dt > x

}

� P

{
W � Aσ 2

V (x/2),
∫

R

I{Aσ 2
V (x/2) + V (t) − σ 2

V (t)/2 > 0}dt > x

}

+ P
{W > Aσ 2

V (x/2)
}

� e−Aσ 2
V (x/2) + P

{∫

R

I{Aσ 2
V (x/2) + V (t) − σ 2

V (t)/2 > 0}dt > x

}

� e−Aσ 2
V (x/2) + P

{
sup

t∈(−∞,−x/2]∪[x/2,∞)

V (t) − σ 2
V (t)/2 > −Aσ 2

V (x/2)

}

� e−Aσ 2
V (x/2) + 2P

{
∃t∈[x/2,∞)V (t) >

(
1

2
− A

)
σ 2
V (t)

}
(4.20)

= e−Aσ 2
V (x/2) + 2P

{
∃t∈[x/2,∞)

V (t)

σ 2
V (t)

>

(
1

2
− A

)}
, (4.21)

where in (4.20) we used that {V (−t), t � 0} d= {V (t), t � 0} and the assumption that σ 2
V is

increasing. Next, by A1, for sufficiently large x and s, t � x/2 such that |t − s| � 1

Cov

(
V (t)

σV (t)
,
V (s)

σV (s)

)
� exp

(−|t − s|α0/2) =: Cov (Z(t), Z(s)) ,

where Z is some centered stationary Gaussian process. Hence, by Slepian inequality (see,
e.g., Corollary 2.4 in Adler (1990))

P

{
∃t∈[x/2,∞)

V (t)

σ 2
V (t)

>

(
1

2
− A

)}
�

∞∑
k=0

P

{
∃t∈[x/2+k,x/2+k+1]

V (t)

σ 2
V (t)

>

(
1

2
− A

)}

�
∞∑
k=0

P

{
∃t∈[0,1]Z(t) >

(
1

2
− A

)
σV (x/2 + k)

}

and by Landau-Shepp (see, e.g., Adler (1990, Eq. (2.3))), uniformly with respect to k

lim
x→∞

ln
(
P
{∃t∈[0,1]Z(t) >

( 1
2 − A

)
σV (x/2 + k)

})

σ 2
V (x/2 + k)

= −1

2

(
1

2
− A

)2

.

The above implies that

lim
x→∞

ln

(
P

{
∃t∈[x/2,∞)

V (t)
σ 2
V (t)

>
( 1
2 − A

)})

σ 2
V (x/2)

� −1

2

(
1

2
− A

)2
.

Thus, in order to optimize the value of A in (4.21) it suffices now to solve
(
1

2
− A

)2
= 2A
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that leads to (recall that A < 1/2)

A = 3 − 2
√
2

2
.

Hence

lim
x→∞

ln (P{εδ(Y ) > x})
σ 2
V (x/2)

� −3 − 2
√
2

2
,

which combined with (2.16) in Proposition 2.7 completes the proof of the logarithmic upper
bound.
Logarithmic lower bound. Taking A > 1/2 we have

P{εδ(Y ) > x} = P

{∫

R

I{W + V (t) − σ 2
V (t)/2 > 0}dt > x

}

� P

{
W > Aσ 2

V (x/2),
∫

R

I{Aσ 2
V (x/2) + V (t) − σ 2

V (t)/2 > 0}dt > x

}

� P
{W > Aσ 2

V (x/2)
}
P

{
inf

t∈[−x/2,x/2] V (t) > −(A − 1/2)σ 2
V (x/2)

}

= e−Aσ 2
V (x/2)

(
1 − P

{
sup

t∈[−x/2,x/2]
V (t) > (A − 1/2)σ 2

V (x/2)

})
.

Using that

P

{
sup

t∈[−x/2,x/2]
V (t) > (A − 1/2)σ 2

V (x/2)

}

� 2
∑

i∈{0,...,�x/2�−1}
P

{
sup

t∈[i,i+1]
V (t) > (A − 1/2)σ 2

V (x)

}
(4.22)

+2P

{
sup

t∈[�x/2�,x/2]
V (t) > (A − 1/2)σ 2

V (x)

}
(4.23)

and the fact that by the stationarity of increments of V

E

{
sup

t∈[i,i+1]
V (t)

}
= E

{
sup

t∈[i,i+1]
(V (t) − V (i)) + V (i)

}
= E

{
sup

t∈[0,1]
V (t)

}
=: μ < ∞

we can apply Borell inequality (e.g., Adler (1990, Thm 2.1)) uniformly for all the summands
in (4.23) to get that for sufficiently large x (recall that σ 2

V is supposed to be increasing)

P

{
sup

t∈[−x/2,x/2]
V (t) > (A − 1/2)σ 2

V (x/2)

}
� 4(x + 1) exp

(
− ((A − 1/2)σ 2

V (x/2)−μ)2

2σ 2
V (x/2)

)

� exp

(
− (A − 1/2)2σ 2

V (x/2)

4

)
→ 0

as x → ∞.
Hence we arrive at

lim inf
x→∞

ln(P{εδ(Y ) > x})
σ 2
V (x/2)

� −A,
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which combinedwith (2.16) in Proposition 2.7 and the fact that, by the proof of the logarithmic
upper bound E{εδ(Y )} < ∞ implies

lim inf
x→∞

ln(BZ (x))

σ 2
V (x)

� −2A

for all A > 1/2. This completes the proof. ��
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