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SUMMARY
CD4+Tcells orchestrate theadaptive immune responseagainst pathogensandcancerby recognizingepitopes
presented on class II major histocompatibility complex (MHC-II) molecules. The high polymorphism of MHC-II
genes represents an important hurdle toward accurate prediction and identification of CD4+ T cell epitopes.
Here we collected and curated a dataset of 627,013 unique MHC-II ligands identified by mass spectrometry.
This enabled us to precisely determine the binding motifs of 88 MHC-II alleles across humans, mice, cattle,
and chickens. Analysis of these binding specificities combined with X-ray crystallography refined our under-
standing of the molecular determinants of MHC-II motifs and revealed a widespread reverse-binding mode
in HLA-DP ligands. We then developed a machine-learning framework to accurately predict binding specific-
ities and ligands of any MHC-II allele. This tool improves and expands predictions of CD4+ T cell epitopes
and enables us to discover viral and bacterial epitopes following the aforementioned reverse-binding mode.
INTRODUCTION

CD4+ T cells are key components of the adaptive immune sys-

tem. They are implicated in priming and modulating the immune

response to pathogens and cancer. CD4+ T cells also play an

essential role in cancer immunotherapy,1,2 as demonstrated by

CD4+ T cell responses following neoantigen-based cancer vac-

cines3–5 and CD4+ T cell-mediated regression of metastatic can-

cer following adoptive transfer of tumor-infiltrating lympho-

cytes.6,7 CD4+ T cell activation starts with the recognition of

epitopes presented by the highly polymorphic class II major his-

tocompatibility complex (MHC-II) on the surface of antigen-pre-

senting cells. Despite their central role in infectious diseases,

autoimmunity, and cancer, epitopes presented on MHC-II and

targeted by CD4+ T cells are still poorly described and difficult

to predict. This represents an important bottleneck for funda-

mental immunology, cancer immunotherapy, and personalized

cancer vaccines.

Peptides presented onMHC-II are processed by the class II an-

tigen-presentation pathway. Most of these peptides come from

extracellular proteins ingested and degraded in the endocytic
pathway.8 After cleavage, peptides—typically 12–25 amino acids

(AAs) long—are loaded on MHC-II and the peptide-MHC-II com-

plexes are displayed on the cell surface. The loading of peptides

on MHC-II is facilitated by the action of chaperones, including

HLA-DM and HLA-DO in humans.8 The binding site of MHC-II

molecules has beenextensively characterized byX-ray crystallog-

raphy, and MHC-II ligands adopt a conserved binding mode in

these structures. This canonical binding mode consists of a linear

9-mer binding core, whichmakesmost of the interactionswith the

MHC-II binding site and peptide flanking residues that extend on

the N- and C-terminal parts of the binding core.9 Specific pockets

are known to accommodate residues at anchor positions (mainly

P1, P4, P6, and P9) in the binding core of the MHC-II ligands.9 Ex-

ceptions to this conserved binding mode have been reported in

chickens where one MHC-II allele accommodates peptides with

a 10-mer binding core.10 In human, three peptides have been re-

ported to bind in both the canonical and the reverse orientation

(i.e., from N terminus to C terminus and from C terminus to

N terminus).11,12 It is, however, unclear how relevant and frequent

this reverse-binding mode is for naturally presented MHC-II

ligands and CD4+ T cell epitopes.
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Figure 1. Curation of MHC-II peptidomics data reveals binding specificities for 88 MHC-II alleles

(A) Schematic view of theMHC-II motif analysis and class II epitope prediction pipeline. Themain steps of our analyses consist of (1) collection of a large dataset of

naturally presented MHC-II ligands identified in multiple MHC-II peptidomics samples, (2) motif deconvolution and annotation, (3) structural analysis of MHC-II

binding specificities, and (4) development of a machine-learning predictor of MHC-II ligands and CD4+ T cell epitopes. In the binding motifs, the x axis corre-

sponds to the peptide-binding-core position and the y axis is the Shannon entropy measured in bits; for simplicity, these axes labels are omitted in the other

figures of binding motifs.

(legend continued on next page)
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In humans,MHC-II are also called class II human leukocyte an-

tigens (HLA-II) and consist of three gene loci directly involved in

presenting antigens to CD4+ T cells: HLA-DR (including HLA-

DRA1 and HLA-DRB1, -DRB3, -DRB4, and -DRB5 genes);

HLA-DP (including HLA-DPA1 and HLA-DPB1 genes); and

HLA-DQ (including HLA-DQA1 and HLA-DQB1 genes). Except

for HLA-DRA1, these genes are highly polymorphic and more

than 9,100 alleles have been identified in the IPD-IMGT/HLA

database13 as of 23.06.2022). Within each gene locus, MHC-II

form heterodimers composed of an alpha chain (e.g., HLA-

DPA1*02:01) and a beta chain (e.g., HLA-DPB1*01:01). Because

of all the possible combinations between the alpha and beta

chains, there is an even much higher number of potential

MHC-II heterodimers (‘‘MHC-II alleles’’). The polymorphic

residuesmostly lie in the peptide-binding site,14 resulting in high-

ly allele-specific peptide-binding motifs15–18 (graphically repre-

sented with sequence logos).

The polymorphism of MHC-II genes, the vast diversity of

MHC-II binding motifs and the complexity of the class II anti-

gen-presentation pathway represent important hurdles for

reliable predictions of naturally presented MHC-II ligands

and CD4+ T cell epitopes. In recent studies, we and others

have shown how high-throughput mass-spectrometry-based

MHC-II peptidomics can be used to improve these predic-

tions.15–17,19,20 This was achieved through the identification of

MHC-II motifs using either monoallelic samples15 or motif de-

convolution in polyallelic samples.16,17 Beyond MHC-II binding

motifs, MHC-II peptidomics also revealed specificity in the first

and last AAs in peptide-flanking residues and a specific peptide

length distribution (peaked at 15 AAs).16,21–23 We have also

observed that the peptide binding-core offset (defined as

the position of the binding core relative to the middle of the

peptide) is slightly shifted toward the C terminus of the

MHC-II ligands.16 The expression of both the epitope source

proteins and the HLA-II molecules in antigen-presenting cells

has also been found to correlate with antigen presentation,15,19

although this notion has been recently challenged.24 Influence

of the source protein subcellular localization has also been

reported.24

Today, several MHC-II ligand prediction tools are available.

These include allele-specific (e.g., MixMHC2pred-1.216 and

NeonMHC215), pan-HLA-DR (e.g., MARIA19), and pan-allele pre-

dictors (e.g., NetMHCIIpan-4.017 and MHCnuggets25). The latter

aim at capturing correlation patterns between MHC-II binding

sites and binding specificities. However, the data used to train

these predictors are limited to few alleles and consist mostly of

HLA-DR ligands. As a result, epitope predictions for poorly char-

acterized alleles, especially HLA-DP and HLA-DQ or alleles from

other species, have limited accuracy.

Here, we collected and curated a dataset of MHC-II ligands

and determined the binding specificities of more than 80
(B) Number of unique peptides per sample that were collected in this study, grou

(C) Number of MHC-II alleles for which we could determine the binding specifici

(D) Euler diagram of the alleles for which we could determine the binding specifi

(E) Number of ligands identified for each allele, grouped by genes and species o

(F) Number of samples in which the motif of a given allele was identified, groupe

(G) Peptide length distributions per genes and species of origin.

Box plots in (B), (E), and (F) indicate the medians and upper and lower quartiles.
MHC-II alleles. This enabled us to improve our molecular under-

standing and prediction capability of MHC-II ligands. These re-

sults refine and expand our understanding of the universe of

CD4+ T cell epitopes that could be therapeutically targeted in in-

fectious diseases, autoimmunity, and cancer immunotherapy.

RESULTS

Curation of MHC-II peptidomics data reveals binding
specificities for 88 MHC-II alleles
To improve our understanding of the specificity of class II antigen

presentation, we developed a pipeline to infer MHC-II binding

specificities and predict MHC-II ligands andCD4+ T cell epitopes

(Figure 1A). We first performed a thorough literature curation to

search for available mass-spectrometry-based MHC-II peptido-

mics datasets and collected data from 30 published studies for a

total of 322 samples and 615,361 unique peptides, including

MHC typing of each sample (Tables S1 and S2A). Most of these

samples were obtained from human cells using anti-HLA-DR or

anti-pan-HLA-II antibodies. Other samples were obtained using

anti-HLA-DP or anti-HLA-DQ antibodies26–28 and cells trans-

fected with tagged HLA-II allowing for the isolation of peptides

bound to a single allele.15 A few samples were obtained from

mice,29–31 cattle32 and chickens.10 To further enrich for HLA-

DP and HLA-DQ ligands, we used mass-spectrometry-based

MHC-II peptidomics to sequentially isolate peptides with anti-

HLA-DR, anti-HLA-DP, anti-HLA-DQ, and anti-pan-HLA-II anti-

bodies (see STAR Methods). Applying this strategy to six

different cell lines or meningioma tissues enabled us to obtain

44,334 unique peptides, including 11,779 HLA-DP and 16,146

HLA-DQ ligands (Tables S1 and S2B). This was especially useful

with respect to the limited number of publicly available HLA-DQ

ligands (31,045 unique peptides).

Combining all these data led to a total of 627,013 unique

peptides (1,540,995 peptides when counting duplicates across

samples) coming from 346 samples corresponding to 201

different cell lines or tissues with full MHC-II typing (Figure 1B;

Tables S1 and S2). These numbers compare favorably with ex-

isting databases, such as the Immune Epitope Database

(IEDB),33 which contains 508,070 unique MHC-II ligands derived

from different experimental methods, with 472,162 unique

MHC-II ligands obtained frommass-spectrometry-based exper-

iments (as of 29.08.2022).

We then performedmotif deconvolution using MoDec on each

sample and identified shared motifs across samples sharing the

same alleles, following the procedure described by Racle et al.16

(see STAR Methods). The motif identification and annotation

were manually verified in each sample. In total, we could confi-

dently describe the binding specificities of 88 MHC-II alleles,

including 43 HLA-DR, 18 HLA-DP, 14 HLA-DQ, 4 mouse H-2, 7

cattle BoLA-DR, and 2 chicken Gaga-BLB alleles (Figures 1C
ped by the type of study of origin of the sample.

ty with our motif deconvolution analysis pipeline.

city with respect to the different types of samples of origin.

f origin.

d by genes and species of origin.

See also Figure S1 and Tables S1 and S2.
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and S1A). These bindingmotifs are supported by 637,821 unique

peptide/MHC-II interactions, which almost doubles the number

of unique peptide/MHC-II interactions with fully resolved

MHC-II typing available in IEDB (346,154). Binding specificities

for 39 MHC-II alleles are supported by peptides from both

monoallelic and polyallelic samples—23 MHC-II alleles only by

monoallelic data and 26 MHC-II alleles only by polyallelic data

(Figure 1D). This demonstrates the importance of integrating

monoallelic andpolyallelic data to reach thebest allelic coverage.

The binding specificities of most alleles were supported by thou-

sands of peptides (Figure 1E). Motifs describing these alleles

were predominantly identified inmultiple samples sharing a com-

mon allele (Figure 1F; see also Racle et al.16), demonstrating the

robustness of our approach. Our data also show that the distribu-

tions of peptide lengths and binding-core offsets are broadly

conserved in human and nonhuman MHC-II alleles (Figures 1G

and S1B),16,34 with the main discrepancy observed in samples

transfected with tagged HLA-II (Figure S1C).

Our framework allowed us to describe the binding specificity

of virtually all HLA-DR alleles available in our dataset, as well

as most HLA-DP and HLA-DQ at the beta-chain level (Fig-

ure S1D). 67% of the peptides corresponded to motifs unambig-

uously annotated to unique MHC-II alleles; these peptides were

used to build the final motifs. 9% of the peptides had length

shorter than 12 AAs and were not considered here. The remain-

ing 24% of the peptides could not be fully annotated; these

represent, for example, peptides assigned to ambiguous motifs

describing multiple alleles with similar binding specificities in a

sample or to unspecific motifs (putative contaminants).

MHC-II binding specificities reflect biochemical
properties of the MHC-II binding pockets
Our MHC-II binding motifs provide a unique opportunity to better

understand the characteristics of MHC-II binding specificities.

Consistent with previous studies, we observed that the HLA-DR,

HLA-DP,mouse, and cattle alleles usually have four clear anchors

at positions P1, P4, P6, and P9. HLA-DQs have slightly weaker

binding specificitieswithmain anchors at P3, P4, andP6 and sub-

anchors at P1 and P9, in general (Figure S1A). The binding spec-

ificities for all human, mouse, and cattle alleles can be described

by 9-mer motifs, suggesting that the bulging mechanism

observed inMHC-I alleles is rare for most MHC-II alleles (see pre-

vious analysis in Racle et al.16). For the only exception known to

accommodate a longer binding core (chicken allele Gaga-

BLB2*002:01),10 we additionally used MoDec to search for a

10-mermotif.Weobserved that thebindingspecificityof this allele

could be well described by twomotifs, with almost half of ligands
Figure 2. MHC-II binding specificities reflect biochemical properties o
(A) For each type of human MHC-II (HLA-DR, -DP, and -DQ) and each anchor p

position and the different clusters are shown as different rows for each position.

specificity of the MHC-II alleles in a cluster. The second motif (e.g., 86b) represe

residue in the ligand at the specified anchor position. The structural arrangemen

chain) and the ligand (yellow) is shown on the right based on existing X-ray stru

orange rectangle.

(B) Multiple binding specificities for HLA-DRB1*08 alleles. Percentage above the

(C) Molecular interpretation of themultiple specificities observed in HLA-DRB1*08

various peptides with 0, 1, or 2 positively charged AAs at P4 and P6 (see also Tab

one single negatively charged residue (D28b) that is able to interact with positive

See also Figure S2 and Table S3.
possessing a binding core of 9 AAs and the other half a binding

core of 10 AAs (Figure S2A; see also STAR Methods).

To investigate the molecular determinants of MHC-II binding

specificities, we performed unsupervised clustering of the bind-

ing motifs for all human alleles for each HLA locus (i.e., HLA-DR,

-DP, and -DQ) and for each anchor position (see STARMethods).

We could observe different classes of specificities (Figure 2A,

left). We then retrieved the sequences of the most variable resi-

dues in the MHC-II binding pockets interacting with the anchor

residue in the ligand for all alleles found in each cluster (Figure 2A;

Tables S3A–S3C; see STAR Methods). As expected, alleles

found in distinct specificity clusters (i.e., rows within each col-

umn of Figure 2A) had differences in their binding pockets. To

interpret these different clusters structurally, we used available

crystal structures of representative alleles in each cluster (Fig-

ure 2A). For a few cases, no crystal structure was available,

and we used structural modeling (see STAR Methods). This re-

vealed a clear correspondence between the MHC-II binding mo-

tifs and the binding pockets of MHC-II alleles. For example, for

HLA-DR alleles, large and bulky AAs (mainly F or Y) are observed

at P1 when glycine (G) is found at 86b (P1 binding pocket), while

less bulky hydrophobic AAs (I, L, or V) are observed at P1 in HLA-

DR alleles when valine (V) is found at 86b (Figure 2A; Table S3A),

recapitulating previous findings obtained from specific HLA-DR

alleles.35,36 This mutual exclusivity reflects the steric clash that

would happen between F or Y in the ligand and V in the binding

pocket. For HLA-DP alleles, a small AA at 84b (G) correlated with

bulky AA at P1 (F, L, Y, or I), and a negatively charged AA at 84b

(D) correlatedwith positively chargedAA at P1 (K or R) (Figure 2A;

Table S3B). Furthermore, a long polar AA at 31a (Q) correlated

with K at P1, while a long nonpolar AA at 31a (M) correlated

with R at P1 (Figure 2A; Table S3B). K at P1 can simultaneously

engage into polar or charged interactions with D84b and Q31a,

whereas the two nitrogens of R at P1 would preferentially face

the two oxygens of the carboxyl group of D84b (Figure S2B).

This conformation is more favorable if M is found at 31a instead

of Q. Similar analyses for other anchor positions are detailed in

Table S3D. Most of the observations in Figure 2A could be ex-

plained by steric hindrance or polar and charged interactions.

This demonstrates a clear correspondence between our

MHC-II motifs and the sequences of MHC-II binding sites.

Several of these observations have already been made based

on structural analyses of limited sets of HLA-II alleles.35,37,38 In

those cases, our results provide stronger statistical evidences

and larger allelic coverage, as well as a unified picture of the de-

terminants of HLA-II specificity across all anchor positions in

HLA-DR, -DP, and -DQ alleles.
f the MHC-II binding pockets
osition, MHC-II alleles were clustered based on the binding specificity at this

On each row, the first motif (e.g., P1) represents the average peptide-binding

nts the sequence of the MHC-II residues making important contacts with the

t of the residues in the MHC-II binding site (pink for alpha chain, gray for beta

ctures. Cases where structural modeling was used are indicated by a dashed

motifs indicate the fraction of peptides assigned to each sub-specificity.

:01. The top box plot shows the calculated change in the FoldX energy score for

le S3E). The bottom image shows a model of HLA-DRB1*08:01, which contains

ly charged sidechains at either P4 or P6, but not both simultaneously.
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For most alleles, a single binding specificity was observed.

Yet, for several HLA-DRB1*08 we observed two binding motifs

(Figure 2B). The two motifs suggest that a positively charged

AA (K or R) is favorable either at P4 or P6, but not at both posi-

tions at the same time. To understand the molecular mechanism

of this bi-specificity, we calculated the FoldX energy score39 of

several peptides with a charged residue either at P4 or P6, two

charged residues at these positions or no charged residue (see

STAR Methods). Our calculations indicate that peptides with

two charged residues have higher energy scores (i.e., weaker

predicted binding affinity) than those with only one charged res-

idue (Figure 2C). This can be understood since the central part of

the binding site of HLA-DRB1*08 alleles contains one negatively

charged residue (D28b), which can interact with positively

charged sidechains either at P4 or P6, but not at both P4 and

P6 (Figure 2C). This mutual exclusivity of charged residues at

P4 and P6 appears to be restricted to HLA-DRB1*08 alleles

and may require G at 13b (Figures S2C and S2D).

MHC-II binding specificities reveal a widespread
reverse-binding mode in HLA-DP ligands
Another type of bi-specificity was observed for 7 out of 18 HLA-

DP alleles (Figure S1A) across multiple samples. These include

several monoallelic samples, indicating that both motifs indeed

describe the binding specificity of a single allele. For these al-

leles, superimposing the motifs revealed a clear symmetry be-

tween the first and the second binding motifs (Figure 3A). It is un-

likely that residues with opposite biochemical properties (e.g., K

versus E at P1) could fit at the same position. Therefore, we hy-

pothesized that the second motif corresponded to a reverse-

binding mode where the peptides are bound from the C terminus

to the N terminus. This hypothesis was further supported by the

fact that the distribution of binding-core offsets for peptides

following the second motifs was skewed toward the N terminus,

unlike all other MHC-II ligands (Figure S3A).

To validate our hypothesis, we first tested the binding of

different peptides to HLA-DPA1*02:01-DPB1*01:01 (see STAR

Methods). Starting with two peptides predicted to bind in the ca-

nonical orientation, we observed that replacing with alanine the

predicted P1 (K) and P9 (E) anchor residues abrogated the bind-

ing, while replacing K at P1 with R did not affect the binding

(Figures 3BandS3B; Table S4A).We then reversed the sequence

in order to obtain peptides following the second binding motif.

Figure 3B shows that the binding was preserved. In general, the

binding was stronger for peptides following the first motif (i.e.,

the predicted canonical binders) than for those with the reversed

sequence (the predicted reverse binders). We confirmed this

observation with 39 peptides synthesized in both directions (Fig-

ure 3C; Table S4B). These results were consistent with the

weights of the motifs in Figure 3A. As a sidenote, one should

not conclude that we can reverse the sequence of any ligand

and that it would still bind, as demonstrated in Figure 3C.

We then attempted to crystallize peptides predicted to bind

in either the canonical or the reverse orientation (see STAR

Methods). We first obtained the X-ray crystal structure (at a res-

olution of 1.62 Å) of a peptide which matches the first motif

(KNLEKYKGKFVREID, core underlined). This peptide binds in

the canonical orientation to HLA-DPA1*02:01-DPB1*01:01,

with K5 filling the P1 binding pocket and E13 filling the P9 binding
1364 Immunity 56, 1359–1375, June 13, 2023
pocket (Figures 3D, left and S3C). We then crystallized a peptide

compatible with the second motif (IEFVFKNKAKEL, resolution of

2.9 Å). We observed that the binding happens in the reverse

orientation with the first residue of the core (E2) filling the P9

binding pocket, and the last residue of the core (K10) filling the

P1 binding pocket (Figures 3D and S3C). Most of the interactions

mediated by each anchor residue were preserved (Figure 3D).

Overlaying the two structures further demonstrated a remark-

able alignment not only of the sidechains (Figure S3D) but also

of the backbone N–H and C=O groups (Figure S3E), as well as

a conservation of most backbone H-bonds (Figure S3F). These

results reveal how HLA-DP alleles can accommodate different

peptides’ binding in different orientations without extensively re-

modeling their binding site.

During class II antigen presentation, MHC-II ligands are pro-

cessed by different proteases. Footprints of this process are

visible in the N- and C-terminal contexts of MHC-II ligands.22,40

However, the timing and the impact of the positioning of pep-

tides in the MHC-II binding site are still unclear.41,42 MHC-II li-

gands binding in the reverse orientation provide an opportunity

to shed light on this process. Figure S3G shows that the motifs

of the N- and C-terminal contexts of the reverse-binding pep-

tides were very similar to those of the canonical binding pep-

tides. Consistent with previous predictions,15 this observation

supports a model in which the cleavage and trimming takes

place first, independently of the positioning of the peptides in

the MHC-II binding site.

To investigate the detection limit of our approach to identify

reverse ligands, we simulated the presence of ligands reversely

bound to HLA-DR or HLA-DQ alleles at different fractions and

determined if the reverse motif could be identified with MoDec

(see STAR Methods). Our results indicate that in a monoallelic

sample of 3,000 ligands, the reverse motif was found when

5%–10% of the ligands were reverse ligands. In polyallelic sam-

ples with 3,000 ligands, a minimum of 20% of reverse ligands of

the allele that included this binding mode was needed (Fig-

ure S3H). In terms of absolute numbers, we observed a limit

of 150–200 reverse ligands to be detectable by MoDec (Fig-

ure S3I). Considering that monoallelic samples with 3,000–

6,000 peptides cover a large fraction of our MHC-II alleles

(Figures 1B and 1C; Table S1), we can provide an upper bound

of roughly 5% for the fraction of ligands that could be bound in

the reverse orientation to a given allele without being detected

by our approach.

MHC-II binding specificities can be accurately predicted
for alleles without known ligands
The high polymorphism of MHC-II genes prevents the experi-

mental determination of the binding specificity for all alleles.

Our collection of MHC-II motifs provides an opportunity to train

an accurate predictor of MHC-II ligands for any allele (referred

to as pan-allele predictor). To this end, we designed a ma-

chine-learning framework composed of two distinct successive

blocks (Figure 4A). In the first block, the aim was to predict the

MHC-II binding motifs, defined as position probability matrices

(PPMs) (see STAR Methods) directly from the MHC-II se-

quences. In the second block, the aim was to predict actual

MHC-II ligands based on their sequence and the PPM of the cor-

responding MHC-II allele.
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Figure 3. MHC-II binding specificities reveal a widespread reverse-binding mode in MHC-II ligands

(A) HLA-DP alleles with symmetrical multiple binding specificities. Percentage above themotifs indicate the fraction of peptides assigned to each sub-specificity.

(B) Binding competition assays of peptide variants bound to HLA-DPA1*02:01-DPB1*01:01. The different peptides correspond to (1) predicted canonical binders,

(2) alanine mutations at anchor residues P1 and P9, (3) predicted reverse binders (reversed sequences), and (4) alanine mutations at P1 and P9 in the reversed

sequence. Additional peptides are shown in Figure S3B. Stars indicate peptides that were seen in MHC-II peptidomics data.

(C) Half-maximal inhibitory concentrations (IC50) in binding-competition assays for 39 peptides fitting the reverse-binding motif and the corresponding 39 inverse

sequences (fitting therefore the canonical binding motif). Average IC50 between 2 repetitions are shown. Box plots indicate the medians and upper and lower

quartiles; result of a paired two-sided Wilcoxon signed rank test is indicated.

(D) Crystal structures of the canonical binder KNLEKYKGKFVREID (PDB: 7ZAK) and the reverse binder IEFVFKNKAKEL (PDB: 7ZFR) bound to HLA-DPA1*02:01-

DPB1*01:01. The four panels on the right show the overlap of the two structures at the four binding pockets.

See also Figure S3 and Table S4.
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Technically, the first block consists of a set of fully connected

neural networks for each binding-core position (Figure S4A, left;

see STAR Methods). The binding sites corresponding to each

position and used as inputs of the neural networks were deter-

mined based on existing crystal structures (see STAR Methods).

This block also incorporates the different multiple specificities

and was trained on our set of PPMs (see STAR Methods). The

second block of the predictor consists of a fully connected neu-

ral network (Figure S4A, right). It takes as input the score of the
peptide against the PPMs of the corresponding MHC-II allele

together with other features linked to antigen presentation (i.e.,

peptide length, binding-core offset, and peptide processing

and cleavage features) (see STAR Methods). This block was

trained on our dataset of MHC-II ligands and random negative

peptides (see STAR Methods).

We first benchmarked how accurate our predictor

(MixMHC2pred-2.0) was in predicting the MHC-II binding

motifs for alleles without known ligands. We performed a
Immunity 56, 1359–1375, June 13, 2023 1365
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Figure 4. MHC-II binding specificities can be accurately predicted for alleles without known ligands
(A) Schematic description of the pan-allele predictor comprising two consecutive blocks of neural networks. (See Figure S4A and STAR Methods for the full

details of the model.)

(legend continued on next page)
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leave-one-allele-out cross-validation, where all the data from

one allele are removed from the training (see STAR Methods).

To compare with the current state-of-the-art pan-allele pre-

dictor NetMHCIIpan-4.0, we focused on MHC-II alleles absent

from its training set. For both predictors, predicted PPMs

were built by considering 100,000 random human peptides

and selecting the top 1% best predicted peptides (see

STAR Methods). The resulting PPMs were compared

with those derived from MHC-II peptidomics studies using

the Kullback-Leibler divergence (KLD) (see STAR Methods).

Our results showed that MixMHC2pred better inferred the

binding specificities of alleles without known ligands

(Figures 4B and 4C; Table S5A). The multiple specificities

(including the reverse-binding specificity) could be well pre-

dicted by MixMHC2pred, while they were not detectable

with NetMHCIIpan (Figure 4B) (see STAR Methods). Results

were similar when directly predicting the ligands of each allele

instead of the PPMs (Figure S4B; Table S5B; see STAR

Methods).

To quantify the impact of the similarity between alleles on their

binding-specificity predictions, we compared the sequence sim-

ilarity of the 88 alleles available in our training data and the pre-

diction accuracy in the leave-one-allele-out cross-validation (see

STAR Methods). A clear correlation was observed (Figure S4C).

We then computed for all alleles in multiple species the

sequence similarity to the 88 alleles with known ligands (Fig-

ure S4D; Table S3F; STAR Methods). Our results showed that

all humanHLA-DR and -DP alleles had a high sequence similarity

to some allele with known ligands. This suggests that obtaining

MHC-II peptidomics data for these alleles would not dramatically

improve the prediction accuracy. A fraction of HLA-DQ alleles

showed low sequence similarity with alleles with known ligands.

The majority of these cases corresponded to unstable HLA-DQ

heterodimers like DQA1*01:03-DQB1*02:02,43 but some other

HLA-DQ alleles may benefit from MHC-II peptidomics data

(e.g., DQA1*04:01-DQB1*04:01 or DQA1*01:03-DQB1*06:01)

(Table S3F). DR genes fromMHC-II alleles in other species often

have an intermediate sequence similarity to alleles with known li-

gands (Figure S4D), suggesting that a decent accuracy would be

reached. Regarding MHC-II DQ genes from other species, we

saw more evolutionary divergence with lower similarity to alleles

with known ligands. For these alleles, predictions should have

limited accuracy and would benefit from additional MHC-II pep-

tidomics data.

We finally explored the impact of different choices for the

parameters of our neural networks (see STARMethods). Overall,

the number of hidden nodes had only a minimal impact on

the prediction accuracy. The model architecture chosen for

MixMHC2pred was also the most accurate in predicting the

binding specificities (Figure S4E).
(B) Comparison between actual and predictedmotifs for alleles observed inmono

Multiple specificities, when present, are shown and the fraction of peptides

NetMHCIIpan themultiple specificities were analyzed withMoDec, see STARMet

per peptide core position, between the motifs observed in MHC-II peptidomics a

(C) KLD between the specificities observed inMHC-II peptidomics and predicted

absent from NetMHCIIpan training. Box plots indicate the median, upper, and

indicated (*p < 0.05, **p < 0.01, ***p < 0.001).

See also Figure S4 and Tables S5A and S5B.
MixMHC2pred improves predictions of MHC-II ligands
and CD4+ T cell epitopes
We then benchmarked the accuracy of MixMHC2pred to predict

naturally presented MHC-II ligands, using the leave-one-allele-

out cross-validation setting and the area under the curve of the

receiver operating characteristic curve (ROC AUC) as a measure

of prediction accuracy (see STAR Methods). Results showed

improved predictions for MixMHC2pred compared with other

pan-allele predictors (Figures 5A–5C; Table S5C).We then deter-

mined the relative impact of the different input parameters of

MixMHC2pred (see STAR Methods). Results showed that the

full model was significantly better than any variant (Figure S5A).

These results also showed that the binding score was the most

important input to the model, followed by the N- and C-terminal

contexts of the peptide that lie within the peptide. The context

outside of the peptide had a smaller impact, as well as the bind-

ing-core offset and peptide length (Figure S5A).

As MixMHC2pred incorporated the reverse-binding mode, we

could then use it to estimate the fraction of ligands bound in the

reverse orientation in different contexts. Our analysis indicated

that the presence of reverse-binding ligands was not influenced

by the origin of the sample (Figure S5B), nor by the expression of

HLA-DM (Figure S5C), although the number of samples available

for this analysis was limited.

HLA-DP and HLA-DQ are polymorphic on both alpha and beta

chains. This can give rise to cis- and trans-heterodimers, respec-

tively (i.e., alpha and beta chains from the same, respectively

different chromosomes). For HLA-DQ, two groups of genotypes

are known.43 In the first group (G1), alpha chains come from

HLA-DQA1*02, 03, 04, 05, and 06 and beta chains come from

HLA-DQB1*02, 03, and 04. In the second group (G2), alpha

chains come from HLA-DQA1*01 and beta chains come from

HLA-DQB1*05 or 06. Heterodimers consisting of two chains

from the same group bind stably.44 Conversely, trans-hetero-

dimers with alpha and beta chains coming from different groups

(i.e., G1a-G2b or G2a-G1b, or G1G2 for simplicity) are unsta-

ble.43,44 Following recent studies about HLA-DQ trans-hetero-

dimers,43,45 we investigated the fraction of ligands coming

from cis- or trans-HLA-DP and HLA-DQ heterodimers. For

HLA-DQ samples with two different genotypes, our results

suggest that on average less ligands are presented by G1G2

HLA-DQ trans-heterodimers compared with cis-heterodimers

(Figures S6A and S6B; see STAR Methods). Motifs annotated

through our deconvolution pipeline also never corresponded to

such HLA-DQ trans-heterodimers (Figure S1A). Regarding

HLA-DQ samples with the four alleles from the same group

(either G1 or G2) and HLA-DP samples, our analysis showed

that the two heterodimers with the highest fraction of ligands

often share a common alpha or beta chain (Figures S6A and

S6B). This suggests that both cis- and trans-heterodimers can
allelic MHC-II peptidomics samples and absent fromNetMHCIIpan training set.

observed and predicted per specificity is indicated above each motif (for

hods). The average distance, measured with Kullback-Leibler divergence (KLD)

nd the predicted ones is shown below each allele.

byMixMHC2pred (leave-one-allele-out) and NetMHCIIpan for all MHC-II alleles

lower quartiles; results of a paired two-sided Wilcoxon signed rank test are
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Figure 5. MixMHC2pred improves predictions of MHC-II ligands and CD4+ T cell epitopes

(A–C) ROC AUC for predictions of peptides presented byMHC-II. Only samples that are absent from the training set of all predictors are included. MixMHC2pred

results were obtained in a leave-one-allele-out context. (A) All human samples; (B) human HLA-DR only samples; (C) all nonhuman samples (mouse, cattle, and

chicken samples). MARIA could only be applied on HLA-DR and MHCnuggets only on human and mouse alleles.

(D) ROC AUC for predictions of peptides presented by MHC-II in mouse, cattle, and chicken, using our prediction framework trained on (1) all data except those

from the species where predictions are made (leave-one-species-out), (2) all data except those containing the allele for which predictions are made (leave-one-

allele-out), or (3) all data (full model).

(E and F) ROC AUC for predictions of CD4+ T cell epitopes found in IEDB for (E) all human data, (F) only HLA-DR alleles.

Numbers in parentheses below each predictor’s name correspond to the average ROC AUC values. Box plots indicate the medians and upper and lower

quartiles; the results of a paired two-sided Wilcoxon signed rank test are indicated (*p < 0.05, **p < 0.01, ***p < 0.001).

See also Figures S5 and S6 and Tables S5C–S5E.
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bind peptides. These results are consistent with what is currently

known about HLA-DQ heterodimers and with the recent analysis

of this phenomenon by Nilsson and colleagues.45 From a prac-

tical point of view, our results support the use of all four isoforms

when predicting HLA-DP or HLA-DQ ligands, except for the

G1G2 HLA-DQ trans-heterodimers.
1368 Immunity 56, 1359–1375, June 13, 2023
We next examined if MixMHC2pred would be amenable to

predictions for species without known MHC-II ligands for any

allele. To this end, we retrained our predictor by removing all

data coming from one species and predicted the MHC-II ligands

from this species (leave-one-species-out cross-validation) (see

STAR Methods). We compared the predictions of this model
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(legend on next page)
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with the predictions obtained in the leave-one-allele-out setting

and in the cases where all available data from all species

were used (full model). As expected, the full model was more ac-

curate, followed by the leave-one-allele-out model and then the

leave-one-species-out model (Figure 5D). This was consistent

with the results reported in Figures S4C and S4D. Still, AUC

values were better than random when the predictor was not

trained on any data from a given species, demonstrating that

MHC-II ligand predictions can be extrapolated to other species,

although with some loss in prediction accuracy (Figure 5D).

We then benchmarked the predictions for CD4+ T cell epi-

topes, using data coming from IEDB33 (see STAR Methods).

Even though many of these epitopes had been selected based

on exiting MHC-II ligand predictors (mainly NetMHCIIpan), we

observed that the predictions of MixMHC2predweremore accu-

rate than those of other tools (Figures 5E and 5F; Table S5D). We

also explored the impact of the multiple specificity representing

the reverse-binding mode in predictions of CD4+ T cell epitopes.

Our results show that MixMHC2pred was better at predicting

HLA-DPCD4+ T cell epitopes than amodel including only canon-

ical binders (Figure S6C).

Multiple specificities reveal reverse-binding CD4+ T cell
epitopes
To capitalize on the ability of our tool to model multiple binding

specificities of MHC-II alleles, we scanned common viral and

bacterial proteomes and selected 39 peptides that were pre-

dicted to follow only the reverse-binding mode of HLA-

DPA1*02:01-DPB1*01:01 (Figure 6A; see STAR Methods). Bind-

ing-competition assays validated the binding of 26 of these

peptides (Figure 3C; Table S4B). We then stimulated CD4+

T cells isolated from peripheral blood mononuclear cells

(PBMCs) of two HLA-DPA1*02:01-DPB1*01:01+ donors using

pools of these peptides and measured cytokine production. Af-

ter deconvolving the responses, we could identify seven pep-

tides eliciting TNF-a and IFNg production (Figure 6B;

Table S6A). We then built peptide-MHC-II multimers with four

of those peptides. A clear multimer+ population was found for

each epitope, demonstrating that the responses originated

from the peptides bound to HLA-DPA1*02:01-DPB1*01:01 (Fig-

ure 6C; STAR Methods). To gain insights into the clonality of

these reactive CD4+ T cells, we sequenced their T cell receptor

(TCR). Oligoclonal responses were observed for each epitope

(Table S6B), including a quasi-monoclonal recognition of the

Epstein-Barr virus (EBV) epitope GELALTMRSKKLPIN (with a

single TCRa and a dominating TCRb). To investigate whether

these TCR could be found in other donors, the alpha and beta-
Figure 6. Multiple specificities reveal reverse-binding CD4+ T cell epito
(A) Schematics of the search strategy for reverse-binding epitopes restricte

DPB1*01:01+ donors were then stimulated with the selected peptides. Responses

the individual peptides.

(B) TNF-a and IFNg response of the positive viral and bacterial peptides observed

(The predicted binding core of the peptide is underlined; EBV, Epstein-Barr virus

toxin protein.)

(C) Validation with peptide-MHC-II multimers of the reverse-binding epitopes (ne

(D) FACS results directly on ex vivo CD4+ T cells of donor 1G6I, showing that re

effector memory CD4+ T cells, not naive CD4+ T cells.

See also Table S6.
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chain sequences were used to query separately TCRa and

TCRb repertoires through the iReceptor web platform46 (see

STAR Methods). Most of the alpha and beta CDR3 sequences

of our study have been already observed in other donors,

including 13 cases (out of 32) with exactly the same CDR3, V

and J genes (Table S6B). Overall, these observations show

that TCR chains recognizing reverse-binding epitopes can be

found in multiple human TCR repertoires.

Next, we investigated whether these epitopes could have eli-

cited a memory response. To this end, CD4+ T cells from the

two donors were stained directly ex vivo (i.e., without any prior

stimulation) using the four multimers validated above. For one

donor we could observe a direct ex vivo response that wasmedi-

ated by effector and effector memory CD4+ T cells (Figure 6D).

This suggests that reverse-binding MHC-II ligands can elicit nat-

ural CD4+ T cell recognition. Reverse-binding epitopes identified

in this work had poor scores (% rank > 20) with other MHC-II

ligand predictors or when considering only canonical binding

orientation in our model (Table S6A). This demonstrates how

thorough analysis of large datasets of MHC-II ligands, together

with machine-learning algorithms, can improve and expand the

scope of CD4+ T cell epitope predictions.

DISCUSSION

CD4+ T cells and MHC-II alleles play a central role in the immune

recognition of infected or malignant cells and have been linked

with multiple autoimmune diseases.47,48 Here we capitalized

on both public and in-house MHC-II peptidomics data to derive

accurate MHC-II motifs for a large panel of MHC-II alleles (see

also our MHC Motif Atlas [http://mhcmotifatlas.org]18) and

improve predictions of CD4+ T cell epitopes. The fact that the

different classes of binding specificities could be rationalized in

terms of molecular interactions with residues in the different

binding pockets provides an independent validation of our

MHC-II motifs. Some of the correlation patterns between the

MHC-II binding motifs and MHC-II binding pockets were already

reported in structural analyses of a limited number of MHC-II al-

leles35,38 and were used in the definition of MHC-II supertypes.37

However, several other observations are specific to this work.

For instance, HLA-DPB1*01:01 and HLA-DPB1*04:02 were as-

signed to the same supertype,37 while both their specificity at

P1 (K or R, respectively F, L, Y or I) and their P1 binding pockets

(D, respectively G at 84b) are clearly different. Thismainly reflects

the limited numbers (<30 alleles) and lower resolution of MHC-II

motifs used to define MHC-II supertypes. As such, our results

provide both a refined view of the main MHC-II binding
pes
d to HLA-DPA1*02:01-DPB1*01:01. CD4+ T cells from HLA-DPA1*02:01-

were evaluated through cytokine release assays deconvolving the response to

after deconvolving the response in twoHLA-DPA1*02:01-DPB1*01:01+ donors.

; HCMV, human cytomegalovirus; HSV-1, herpes simplex virus 1; TT, tetanus

gative controls based on irrelevant HLA-matched donors).

cognition of the epitope NHELTLWNEARKLNP happens through effector and

http://mhcmotifatlas.org
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specificities, in line with the recent classification proposed for

HLA-DP alleles,49,50 and a robust incorporation of these obser-

vations into an accurate MHC-II ligand prediction tool

(MixMHC2pred-2.0).

Multiple specificities were especially frequent in HLA-DP al-

leles, and we anticipate that a few multiple specificities may

have been missed with our motif deconvolution approach for

MHC-II alleles with fewer ligands (e.g., HLA-DPA1*02:01-

DPB1*11:01 and HLA-DRB1*08:03). These observations were

consistent with the previously reported multiple specificity of

HLA-DPA1*02:02-DPB1*05:01.26 For HLA-DP alleles, our work

demonstrated that the two different motifs correspond to two

different binding modes (i.e., canonical and reverse) of HLA-II li-

gands.Wedo not exclude that reverse bindersmay also be found

among the ligands of other alleles, similar to the CLIP peptides

observed to bind in both orientations to HLA-DRB1*01:01.11

However, we could never detect multiple motifs with the same

type of symmetry for HLA-DR or HLA-DQ alleles. Moreover,

most alleles do not have the same specificity at P1 and P9, or

at P4 and P6. For this reason, we can rule out the hypothesis

that reverse binders would fit the same motif as canonical

binders, which would make them difficult to detect by sequence

analysis only. This absenceof detectable reverse-binding ligands

in HLA-DR (and HLA-DQ) could explain why the earlier observa-

tions of reverse binders based on some very specific pep-

tides11,12 have not been followed by other similar observations.

Furthermore, the reverse-binding mode was not captured

by existing predictors and was not particularly anticipated from

a structural point of view, since several contacts between

MHC-IIs and their ligands are mediated by the backbone atoms

of the ligands and would not necessarily be conserved in the

reverseorientation. This demonstrates thepower of unbiasedan-

alyses of MHC-II ligands to unravel properties of MHC-II alleles.

Within humans, our work revealed that MHC-II binding motifs

and MHC-II ligands could be accurately predicted even for al-

leles without known ligands. This is an important improvement

of MixMHC2pred-2.0 compared with MixMHC2pred-1.2 and

NeonMHC2, which were not applicable to most patients and

could not be included in our benchmarks. When attempting to

make predictions in species without any information about

MHC-II ligands (i.e., leave-one-species-out cross-validation),

we observed lower, though not random, accuracy. This is likely

a limitation of all pan-allele MHC-II ligand predictors, which

should be used with care in distant species like fish or birds.

For instance, most tools would not be able to predict the

10-mer binding core of the chicken allele Gaga-BLB2*002:01,

if not explicitly trained on these data.

Altogether, our work provides a high-quality dataset of MHC-II

ligands; precise definition of MHC-II binding motifs; refined un-

derstanding of the molecular determinants of these motifs,

including a widespread reverse-binding mode of HLA-DP li-

gands; and improved machine-learning predictions of CD4+

T cell epitopes. The fact that the viral epitopes following the

reverse-binding mode and eliciting responses in effector mem-

ory CD4+ T cells could not have been identified with other

MHC-II ligand predictors demonstrates the promise of ma-

chine-learning algorithms like MixMHC2pred to better charac-

terize and expand the repertoire of CD4+ T cell epitopes. The

improved accuracy of CD4+ T cell epitope predictions may
contribute to accelerating personalized immunotherapy ap-

proaches in autoimmune diseases or cancer.

Limitations of the study
Our study demonstrated the presence of reversely bound HLA-

DP ligands but did not observe a similar binding mode for alleles

from other gene loci. We cannot exclude that such binding may

happen for some other alleles, but that these ligands were too

rare to reach the detection limit from our framework. Enhanced

methods specifically searching for such ligands may be able to

find some already in the currently available samples, or new

experimental methods targeting these may be needed. Addi-

tional studies will further be essential to better characterize the

impact of the reverse-binding mode on T cell recognition.

Regarding the predictions, our model incorporated steps of

antigen processing and presentation as well as of peptide bind-

ing, thanks to the MHC-II peptidomics data used for training our

model. This enabled accurate predictions of MHC-II ligands for

most alleles. However, we cannot exclude the presence of

some technical biases in such data, for instance, linked to

mass spectrometry experiments.20 As expected, accuracy was

lower for predictions of CD4+ T cell epitopes. Integrating addi-

tional features of peptide presentation or T cell recognition

may therefore help to further strengthen epitope predictions.
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M., Bukur, V., Tadmor, A.D., Luxemburger, U., Schrörs, B., et al. (2017).
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Critical commercial assays

DNeasy kit Qiagen 69504

TruSight HLA v2 Sequencing Panel kit CareDx #20000215

Dynabeads mRNA DIRECT purification kit ThermoFisher 61011

MessageAmp II aRNA Amplification Kit Ambion AMB17515

CD4 T cell isolation kit Miltenyi 130-045-101

Deposited data

MHC-II peptidomics data This paper PRIDE: PXD034773

MHC-II peptidomics data from other studies Multiple studies See Table S1 for the list of studies

X-ray structure of a peptide bound to HLA-DP

in canonical orientation

This paper PDB: 7ZAK
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X-ray structure of a peptide bound to HLA-DP

in reverse orientation

This paper PDB: 7ZFR

TCR sequencing data This paper GEO: GSE205588

Experimental models: Cell lines

JY ATCC 77441

CM467 and RA957 In house N/A

Software and algorithms

MixMHC2pred-2.0 This paper https://doi.org/10.5281/zenodo.7737217;

https://github.com/GfellerLab/MixMHC2pred

Assign TruSight HLA v.2.1 CareDx https://labproducts.caredx.com/software/assign/

trusight

MaxQuant platform v.1.5.5.1 Cox and Mann52 https://www.maxquant.org/; RRID: SCR_014485

MoDec v1.2 Racle et al.16 https://github.com/GfellerLab/MoDec

ggseqlogo Wagih53 https://github.com/GfellerLab/ggseqlogo

Clustal Omega v.1.2.2 Sievers et al.54 http://www.clustal.org/omega/

PyMOL v.2.3.3 Schrödinger https://pymol.org/; RRID: SCR_000305

Modeller software v10.1 Webb and Sali55 https://salilab.org/modeller/; RRID: SCR_008395

FoldX v5.0 Schymkowitz et al.39 https://foldxsuite.crg.eu/; RRID: SCR_008522

XDS program package Kabsch56 https://xds.mr.mpg.de/; RRID: SCR_015652

drc v.3.0.1 R package https://cran.r-project.org/web/packages/drc/

Phenix Suite v1.19.2-4158 Liebschner et al.57 http://www.phenix-online.org/; RRID: SCR_014224

Coot v0.9.4 Emsley and Cowtan58 https://www2.mrc-lmb.cam.ac.uk/personal/

pemsley/coot/; RRID: SCR_014222

Keras v2.7 R package https://cran.r-project.org/package=keras

Tfdatasets v2.7 R package https://cran.r-project.org/package=tfdatasets

NetMHCIIpan-4.0 Reynisson et al.17 https://services.healthtech.dtu.dk/service.php?

NetMHCIIpan-4.0

MHCnuggets v2.3.2 Shao et al.25 https://karchinlab.org/apps/appMHCnuggets.html

MARIA Chen et al.19 https://maria.stanford.edu

FlowJo v10.7.1 BD https://www.flowjo.com/; RRID: SCR_008520

MIGEC Shugay et al.59 https://migec.readthedocs.io/en/latest/;

RRID: SCR_016337

Other

Human MHC-II sequences IPD-IMGT/HLA https://www.ebi.ac.uk/ipd/imgt/hla/;

RRID: SCR_002971

MHC-II sequences from various species IPD-MHC https://www.ebi.ac.uk/ipd/mhc/;

RRID: SCR_007749

UniProt database containing protein sequences The UniProt Consortium60 https://www.uniprot.org/;

RRID: SCR_002380

iReceptor web platform containing TCRa and

TCRb repertoires

Corrie et al.46 https://gateway.ireceptor.org/;

RRID: SCR_022294
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to David Gfeller (david.gfeller@unil.ch).

Materials availability
Materials generated in this study are available upon request from the lead contact, David Gfeller (david.gfeller@unil.ch).
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Data and code availability
d Mass spectrometry-based MHC-II peptidomics data generated for this study have been deposited in the ProteomeXchange

Consortium via the PRIDE partner repository61 (PRIDE: PXD034773). The models of the crystal structures resolved in this

work have been deposited in the worldwide Protein Data Bank62 (PDB: 7ZAK [canonical binder] and PDB: 7ZFR [reverse

binder]). TCR sequencing data have been deposited in NCBI’s Gene Expression Omnibus63 (GEO: GSE205588).

d MixMHC2pred-2.0 has been deposited at Zenodo (https://doi.org/10.5281/zenodo.7737217); it is also available at https://

github.com/GfellerLab/MixMHC2pred and through a webserver http://mixmhc2pred.gfellerlab.org.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines
Epstein–Barr-virus-transformed human B-cell lines JY (ATCC,77441), CM467, RA957, (a gift from P. Romero (Ludwig Institute for

Cancer Research Lausanne), were maintained in RPMI-1640+GlutaMAX medium (Life Technologies) supplemented with 10%

heat-inactivated FBS (Dominique Dutscher) and 1% penicillin–streptomycin solution (BioConcept). Cells were grown to the required

cell numbers, collected by centrifugation at 1,200 rpm for 5min, washed twice with ice cold PBS and stored as dry cell pellets

at �20 �C until use.

Patient material
PBMCs from donor 1G6I, PBMCs from melanoma patient LAU52 and snap-frozen meningioma tissues from patients (3865-DM,

3947-GA, 4021) were obtained from the bio-bank of the Centre Hospitalier Universitaire Vaudois (CHUV, Lausanne, Switzerland).

Informed consent of the participants was obtained following requirements of the Institutional Review Board (Ethics Commission,

CHUV). Protocol F-25/99 has been approved by the local ethics committee and the biobank of the Lab of Brain Tumor Biology

and Genetics. Protocol 2017-00305 for antigen and T cell discovery in tumors has been approved by the local ethics committee. Pro-

tocol F-42/92 has been approved by the local ethics committee.

METHOD DETAILS

Curation of published MHC-II peptidomics data
We searched in the literature and on ProteomeXchange (http://www.proteomexchange.org/)64 for available high-throughput mass

spectrometry-based MHC-II peptidomics datasets in which the MHC-II typing was also known. This led us to consider the following

studies10,15,16,19,24,26–32,51,65–80: as well as the study PRIDE: PXD019466 that is available on ProteomeXchange but without any cor-

responding publication.

We downloaded the sequences of different reference proteomes from EMBL-EBI (https://ftp.ebi.ac.uk/pub/databases/

reference_proteomes/): human (UP000005640_9606), mouse (UP000000589_10090), cattle (UP000009136_9913) and chicken

(UP000000539_9031), obtaining both the canonical and additional sequences in fasta format (from release 2020_04). The peptides

obtained from MHC-II peptidomics datasets were then mapped to these proteomes, in order to identify their protein of origin and

determine their N- and C-terminal contexts (3 residues upstream of the peptide + 3 N-terminal residues of the peptide (N-terminal

context); 3 C-terminal residues of the peptide + 3 residues downstream of the peptide (C-terminal context)).

HLA typing
Genomic DNA was extracted using DNeasy kit from Qiagen and 500ng of genomic DNA was used for the typing. High-resolution

4-digit HLA typingwas performedwith the TruSight HLA v2 Sequencing Panel kit fromCareDx according to themanufacturer instruc-

tion. Briefly, class I and class II genes were amplified by PCR. Illumina adapters were added by tagmentation. After normalization and

purification, the samples were sequenced on aMiSeq instrument (Illumina). Sequencing data were analyzed with the Assign TruSight

HLA v.2.1 software (CareDx).

Generation of antibody-crosslinked beads
Anti-pan-HLA-II and anti-HLA-DR monoclonal antibodies were purified from the supernatant of HB145 (ATCC, HB-145) and HB298

cells (ATCC, HB-298), respectively, grown in CELLLine CL-1000 flasks (Sigma-Aldrich) using protein A-sepharose 4B beads (pro-A

beads; Invitrogen) while anti-HLA-DP (Leinco Technologies) and anti-HLA-DQ (from either Biorad or MyBioSource) were purchased

from the respective providers. Antibodies were cross-linked separately to pro-A beads at a concentration of 1 to 2 mg of antibodies

per milliliter of beads following incubation with pro-A beads for 1h at room temperature. Chemical crosslinking was performed by

addition of dimethyl pimelimidate dihydrochloride (Sigma-Aldrich) in 0.2M sodium borate buffer, pH 9 (Sigma-Aldrich) at a final con-

centration of 20mM for 30min. The reactionwas quenched by incubation with 0.2M ethanolamine, pH 8 (Sigma-Aldrich) for 2h. Cross-

linked antibodies were kept at 4 �C in PBS until use.
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Purification of HLA-II bound peptides
Cells were lysed in PBS containing 0.25% sodium deoxycholate (Sigma-Aldrich), 0.2mM iodoacetamide (Sigma-Aldrich), 1mM

EDTA, 1:200 protease inhibitors cocktail (SigmaAldrich), 1mM phenylmethylsulfonylfluoride (Roche) and 1% octyl-beta-dglucopyr-

anoside (Sigma-Aldrich) at 4 �C for 1h. The lysis buffer was added to cells at a concentration of 13108 cells per milliliter. Cell lysates

were cleared by centrifugation with a table-top centrifuge (Eppendorf Centrifuge) at 4 �C at 14,200 rpm for 50min. Meningioma tis-

sues were placed in tubes containing the same lysis buffer and homogenized on ice in three to five short intervals of 5 s each using an

Ultra Turrax homogenizer (IKA) at maximum speed. For 1 g of tissue, 10–12ml of lysis buffer was required. Cell lysis was performed

at 4 �C for 1h. Tissue lysates were cleared by centrifugation at 20,000 rpm in a high-speed centrifuge (Beckman Coulter, JSS15314)

at 4 �C for 50min.

Tissue cleared lysates were loaded first on affinity purification columns (BioRad, 731-1550) containing pro-A beads (pre-clear col-

umn, to remove non-specific antibodies). Tissues and cells lysates were loaded sequentially on columns containing cross-linked

beads in the following order: CM467 samples on anti-DQ, DP, DR, pan-HLA-II antibodies, 3865 and JY on anti-DR, DQ, DP, pan-

HLA-II antibodies, and samples RA957, 3947-GA, 4021 on anti-DR,DP,DQ, pan-HLA-II antibodies. The affinity columns were then

washed with 2 column volumes of 150 mM sodium chloride (NaCl; Carlo-Erba) in 20 mM Tris-HCl pH 8, 2 column volumes of

400 mM NaCl in 20 mM Tris-HCl pH 8, and again 2 column volumes of 150 mM sodium chloride in 20 mM Tris-HCl pH 8. Finally,

the beads were washed in 1 column volume of 20 mM Tris-HCl pH 8. HLA complexes and the bound peptides were eluted by adding

twice 1% trifluoroacetic acid (TFA) or 4 times Acetic acid 0.1N at a volume equivalent to or slightly higher than the volume of beads

present in the column. HLA peptides were purified and concentrated with by loading into Sep-Pak tC18 96-well plates (Waters) pre-

conditioned with 1 mL of 80% acetonitrile (ACN) in 0.1% TFA and then with 2 mL of 0.1% TFA. The C18 wells were then washed with

2 mL of 0.1% TFA. The HLA peptides were eluted with 500 mL of 32% ACN in 0.1% TFA into Eppendorf tubes. Recovered peptides

were dried using vacuum centrifugation (Thermo Fisher Scientific) and stored at �20�C.

LC–MS/MS analyses of HLA-II peptides
HLA-II, HLA-DR, HLA-DP and HLA-DQ peptide samples were resuspended in 10 ml of 2% ACN in 0.1% formic acid (FA) and aliquots

of 3 ml were used for eachMSanalysis. The LC-MS/MS systemconsisted of an Easy-nLC 1200 (Thermo Fisher Scientific) coupled to a

Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific). Peptides were separated on a 450-mm analytical column (8-mm tip,

75-mm inner diameter, PicoTip emitter, New Objective) packed with ReproSil-Pur C18 (1.9-mm particles, 120 Å pore size, Dr Maisch

GmbH). The separation was performed at a flow rate of 250 nl/min by a gradient of 0.1% formic acid in 80% acetonitrile (solvent B)

and 0.1% formic acid in water (solvent A). HLA-II peptides were eluted by the following gradient: 0 to 80 min (2 - 32%B); 80 to 84 min

(32 – 45% B); 84 to 85 min (45 – 100% B); and 85 to 95 min (100% B). Data were acquired using a data-dependent acquisition (DDA)

method. Full-scan MS spectra were acquired in the Orbitrap at a resolution of 60,000 (at 200 m/z) with an auto gain control (AGC)

target value of 33106 ions. For Tandem mass spectrometry (MS/MS), ten most abundant precursor ions were sequentially isolated,

activated by higher-energy collisional dissociation (NCE = 27) and accumulated to an AGC target value of 23105 with a maximum

injection time of 120 ms. In the case of assigned precursor ion charge states of one, and from six and above, no fragmentation

was performed. MS/MS resolution was set to 15,000 (at 200m/z). Selected ions were dynamically excluded for additional fragmen-

tation for 20 s. The peptide match option was disabled. The raw files and MaxQuant output tables have been deposited to the

ProteomeXchange Consortium via the PRIDE61 partner repository with the dataset identifier PRIDE: PXD034773.

Peptide identification
We employed the MaxQuant platform v.1.5.5.152 to search the peak lists against a fasta file containing the human proteome

(Homo_sapiens UP000005640_9606, the reviewed part of UniProt, including 21,026 entries downloaded in March 2017) and a list

of 247 frequently observed contaminants. Peptides with a length between 8 and 25 amino acids were allowed. The second peptide

identification option in Andromeda was enabled. The enzyme specificity was set as unspecific. A false-discovery rate of 1% was

required for peptides and no protein false-discovery rate was set. The initial allowed mass deviation of the precursor ion was set

to 6ppm and the maximum fragment mass deviation was set to 20ppm. Methionine oxidation and N-terminal acetylation were set

as variable modifications.

Deconvolution and annotation of MHC-II motifs
To search for motifs describing the binding specificities of the alleles present in our compiledMHC-II peptidomics dataset (Table S1),

we used our motif deconvolution tool MoDec.16 MoDec uses a probabilistic framework to search for commonmotifs of size L (L=9 in

general for MHC-II ligands) present anywhere along the sequence of the MHC-II ligands identified by mass spectrometry in a given

sample. MoDec does not rely on any prior knowledge of the potential allele binding specificities from the sample, and it will find these

motifs in an unsupervised manner. The different motifs identified per sample typically correspond to binding specificities of the

different MHC-II alleles. Both the mapping of each peptide to a specific motif and the identification of the binding core are derived

from the maximum responsibility value returned by MoDec. Potential contaminant peptides are also identified during the deconvo-

lution. MoDec-1.2 was run using the recommended options ‘‘–MHC2 –makeReport -r 50’’, searching for motifs of length 9 AAs, and

searching between 1 and up to 12 different motifs per sample (depending on the sample). For the chicken samples, when looking only

at 9-mers motifs, one of the motifs that we find does not contain anchors at the end of the motif (Figure S2A inset). Searching instead
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for 10-mers motifs (i.e., 10-mer binding core in MoDec), we see a clear motif with anchor residues at the beginning and the end (Fig-

ure S2A, 2nd motif). This corresponds to the bulging mode that had been previously described for this allele.10

Following our previously established procedure,16 all samples weremanually reviewed, and few samples that were of too low qual-

ity to be included in the analyses were not included in Tables S1 and S2 (e.g., samples with too few peptides present, or incorrect

MHC-II typing, where clear motifs are present but are describing other alleles than the alleles supposed to be present in the given

sample). MHC-II motifs were then annotated to their respective MHC-II allele by identifying shared motifs across samples sharing

the same MHC-II allele. In this way, we could identify the motifs of 88 different alleles. Further, peptides clearly assigned to motifs

corresponding to alleles not supposed to be in the sample were considered as contaminants and were removed from further ana-

lyses. Peptides that could not confidently be assigned to a specific allele were not considered for the analyses of binding specificities.

These include cases with too few peptides to build a clear motif, peptides assigned to a very flat non-specific motif or the flat motif of

MoDec, peptides assigned to a clear motif but without a known allele because MHC-II typing was incomplete (e.g. only the HLA-DR

and HLA-DQ were known but not the HLA-DP), or cases when two alleles of similar binding specificity are present in a sample but a

unique motif describing these alleles was obtained. These peptides were nevertheless kept for the prediction benchmarks of MHC-II

ligands to prevent any potential biases in our validation datasets. Multiple specificities appear when two (or more) clearly different

motifs from a sample are identified as coming from the same allele (either because the sample is monoallelic or because the

same multiple specificity motifs are appearing in multiple samples sharing only the given allele). Motifs shown in Figure S1A were

obtained by grouping together the peptides assigned to each allele from all samples and aligning them based on the binding core

identified byMoDec. ggseqlogo53 was used to plot thesemotifs in all the figures (with the height of themotifs corresponding to Shan-

non entropymeasured in bits). After motif deconvolution,MoDec also returns the binding core offset of each peptide and these values

were used for Figure S1B. Following our previous definition,16 this binding core offset is symmetric around 0 for each peptide (i.e., a

binding core offset is equal to 0 when the binding core of the peptide is perfectly at the middle of the peptide, a negative value means

the binding core is towards the peptide N-terminus and a positive value means the binding core is towards the peptide C-terminus).

The list of all peptides assigned to each allele in each sample can be found in Table S2.

MHC-II sequences retrieval and alignment
Human MHC-II sequences were retrieved from IPD-IMGT/HLA database.13

Mouse MHC-II sequences (called H2-IAx and H2-IEx, where x gives the name of the allele) were manually retrieved from NCBI’s

Protein database (https://www.ncbi.nlm.nih.gov/protein/), searching for MHC class II sequences of Mus musculus.

Cattle MHC-II sequences and MHC-II sequences from multiple other species (Figure S4D; Table S3F) were retrieved from IPD-

MHC database.81

Chicken MHC-II sequences (Gaga-BL) are not yet part of IPD-MHC database. We found the accession numbers corresponding to

the different alleles in theOnline Resource 2 of Afrache et al.,82 searched for these accession on NCBI’s Nucleotide database (https://

www.ncbi.nlm.nih.gov/nuccore) and obtained the translated CDS sequences of some BLB1 and BLB2 genes.

TheMHC-II sequences of human, mouse, cattle (BoLA-DR) and chicken were aligned together using Clustal Omega v.1.2.2.54 The

MHC-II sequences from the other species were then aligned against these with Clustal Omega using the results from the first align-

ment as a profile1. Table S3F lists all these aligned sequences.

Motifs clustering
For each allele for which we could obtain a motif, we started by computing a position probability matrix, PPMa

l;i, (a: the allele, l: the

binding core position, i: the amino acid identity), using all the identified binding cores of all the peptides assigned to this allele

(Table S2). We further included a pseudocount based on the BLOSUM62 substitution matrix with a parameter b=200.83 The

Kullback-Leibler divergence (KLD) was then computed between all pairs of alleles from a same gene locus (HLA-DR, HLA-DP or

HLA-DQ), for each binding core position l:

KLDa;b
l = �

X20
i = 1

PPMa
l;i,log

 
PPMb

l;i

PPMa
l;i

!
(Equation 1)

These KLD were then clustered through hierarchical clustering (using hclust function from R with the average clustering method).

Thresholds to define the different clusters based on the hierarchical clustering were manually defined. Resulting clusters are given in

Tables S3A–S3C. The binding specificities plotted in Figure 2A (first motifs to the left in each column) correspond to the average

PPMa
l;i between the alleles of each cluster. Clusters containing a single allele were not considered in the analysis. We also note

that the HLA-DP ligands corresponding to the reverse binding mode (see section ‘‘MHC-II binding specificities reveal a widespread

reverse binding mode in HLA-DP ligands’’) were not included in the analyses of Figure 2A, since our results subsequently revealed

that AAs at P1, resp. P4, actually fit in the P9, resp. P6, binding pocket, and vice versa.

Analysis of published MHC-II structures
Crystal structures in PDB format where obtained from the RCSB PDB (https://www.rcsb.org/).84,85 Structures containing human

MHC-II alleles were retrieved based on the following SequenceMotif: ‘‘WRLEEFGRFASFEAQGALANIAVDKANLEIMTKRSNYTPITN’’

for HLA-DR, ‘‘FYVDLDKKETVWHLEEFG’’ for HLA-DP and ‘‘CLVDNIFPPVVNIT’’ for HLA-DQ. A custom script was used to determine
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to whichMHC-II alpha and beta chains each PDB file corresponded (based on the chain A and chain B sequences in the PDB files and

the MHC-II sequences obtained above).

We thenmanually reviewed these structures to determine the peptide binding cores. Residues in theMHC-II alpha and beta chains

that were in close contact to each peptide binding core position (distance < 5 Å) were determined and kept in our list of contact po-

sitions if the same residue passed the distance threshold for at least two different MHC-II alleles and if the AA at this residue was not

conserved among theMHC-II alleles for which we had obtained a bindingmotif. These residues inMHC-II alleles are thosemost likely

to influence the binding specificity at a given binding core position in MHC-II ligands.

Sequence logos of themost important allele contact positions in each cluster (see above) were drawnwith ggseqlogo53 (Figure 2A;

Tables S3A–S3C includes all contact positions). The numbering of the contact position residues follows the numbering found in X-ray

structures for the alpha and beta chains. For the alleles from the first cluster of HLA-DQ at P1, we manually renumbered the amino

acids F or L found at the residue 51a to exchange them with the gap found at 52a as they structurally better align to the residues at

position 52a from the other HLA-DQ alleles.

We used PyMOL (https://pymol.org) to show representative images of the MHC-II and peptide contacts (Figures 1A and 2A),

obtained from the following PDB IDs: 1BX2, 1DLH, 1KLU, 1S9V, 1UVQ, 2NNA, 3C5J, 3LQZ, 3PL6, 3WEX, 4IS6, 4MAY, 4MDJ,

4OZF, 4P57, 4P5M, 6BIR, 6CPL, 6DIG, 6PX6, 7N19 and 7ZAK.

Structural modeling
HLA-DR alpha chain, HLA-DR beta chain and peptide sequences were used as starting points for themodeling. Homology models of

the HLA-II-peptide complexes were generated using Modeller software v10.1.55 Template structures were retrieved from Protein

Data Bank.85 Top matching templates were identified from the template library using an internal database with annotated alleles.

The closest template was determined using the BLOSUM62 scoring function.86 A total of 2,000 models were produced for each

HLA-II-peptide complex. These models were subsequently ranked based on the sum of the Discrete Optimized Potential Energy

(DOPE) calculated using Modeller over the peptide residues, as well as the HLA residues within 6 Å from the peptide. For each

HLA-II-peptide complex, molecular interactions were analyzed in the top 5 ranked models over the 2,000. The final HLA-II-peptide

structural model corresponds to the one with best score and highest number of favorable interactions.

The effect of amino acid mutations on HLA-II-peptide structural stability was estimated using FoldX software v5.0 after modeling

the mutation using its buildmodel function.39 Changes in FoldX energy score (DG mutant – DG wild-type) were calculated for each

mutant using an ensemble of 10 conformations. A change > 1kcal/mol means a destabilizing effect while a change < -1 kcal/mol

means a stabilizing effect. In Figures 2C and S2C, differences in FoldX energy scores are relative to the ‘‘LK’’ case.

Production of HLA-DPA1*02:01-DPB1*01:01
The extracellular region of the HLA-DPA1*02:01 and HLA-DPB101:01 chains were separately cloned into pMT\BiP\V5-His A

(ThermoFisher scientific). The alpha chain construct harbors the acidic leucine zipper and terminates by a 6His-tag. The beta chain

construct contains the basic leucine zipper and terminates with AviTag sequence. To generate cell lines expressing HLA-

DPA1*02:01-DPB1*01:01, the two plasmids with a third plasmid conferring puromycin resistance, were cotransfected into

Drosophila S2 cells using Cellfectin (ThermoFisher Scientific) according to the manufacturer protocol. Protein expression was

induced by addition of 1 mMCuSO4. MHC class II molecules were purified from supernatants with Chelating Sepharose FF (Merck).

Peptide loading was performed in citrate saline buffer (100mMcitrate, pH 6.0, 0.2% b-octyl-glucopyranoside (Calbiochem), 13com-

plete protease inhibitors (Roche)) with 100 mM peptide at 37�C for 24 hours, buffer-exchanged on a HiPrep 26/10 desalting column

(Merck) into AviTag buffer and subsequently biotinylated with the BirA enzyme according to the manufacturer instructions (Avidity,

Denver, Colorado, USA). Biotinylated MHC class II-peptide complexes were purified on a HisTrap HP column (Merck) and kept at

-80�C until multimerization with streptavidin conjugates.

For protein crystallization ‘‘empty’’ HLA-DPA1*02:01-DPB1*01:01 was purified on a Superdex 75 10/300 GL column (Merck) into

20mM Tris pH 8.0, 150mM NaCl and concentrated at 10mg/ml.

Binding competition assays
Four peptides following well one of the two observed binding specificities of HLA-DPA1*02:01-DPB1*01:01 and present in multiple

MHC-II peptidomics samples containing this MHC-II allele were selected. These sequences were additionally reversed in order to

have four peptide sequences fitting well the observed canonical binding specificity and four sequences fitting well the reversed bind-

ing specificity. In addition, we also added the same sequences but where the AA present in the predicted P1 binding pocket was

replaced by arginine (or lysine if the WT sequence had arginine), and we also added expected negative binders where the predicted

peptide binding anchors P1 and P9 were replaced by alanine.

In addition to this first set of 24 human-derived peptides, we selected a second set of 2*39 peptides from viral and bacterial origins.

For these, we downloaded viral proteomes found in UniProt60 (https://www.uniprot.org/), from EBV (Ebstein-Barr virus), HCMV

(human cytomegalovirus), HSV-1 (herpes simplex virus type 1), HSV-2 (herpes simplex virus type 2), Influenza A virus (only from

the HA and NA proteins), SARS2 (SARS-CoV-2) and VZV (Varicella-zoster virus), considering only the reviewed proteins, potentially

coming frommultiple strains of the given viruses. We also downloaded fromUniProt the tetX gene of tetanus toxin protein (TT), which

is produced by the bacteria clostridium tetani. These proteomes were then cut in all overlapping 15-mer peptides and we selected

39 peptides (4-5 peptides per proteome) whose sequence fitted well to the reverse binding motif of HLA-DPA1*02:01-DPB1*01:01
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and not to the canonical binding motif of this allele. These 39 sequences were also reversed to have peptides predicted to bind in the

canonical orientation.

All these peptides were chemically synthesized using standard fmoc chemistry, purified by RP-HPLC (>80% purity) and analyzed

by UPLC-MS. Peptides were kept lyophilized at -80�C. To test the binding of these peptides to HLA-DPA1*02:01-DPB1*01:01,

competition assays were performed by mixing in v-bottom 96-well plate (Greiner Bio-One) in 50 ml of citrate saline buffer (described

above) 1 mg of the biotinylated empty allele with a FLAG-tagged peptide (IKTEKKTVQFSDDVQ for the 1st set of 24 peptides;

TGVKIGEMPLTDSIL for the 2nd set of 78 peptides) at fixed concentration of 2 mM and candidate peptides were added to each

well to a final concentration of 0, 0.13, 0.41, 1.2, 3.7, 11.1, 33.3, and 100 mM. For the control, untagged peptide

(IKTEKKTVQFSDDVQ, respectively TGVKIGEMPLTDSIL) was used at the respective concentrations to the mix of allele and

FLAG-tagged peptide. After incubation at 37 �C overnight. The binding of the tagged peptides to HLA-II molecule was measured

by ELISA. Themixwas transferred to a plate coatedwith avidin and the FLAG-peptidewas detectedwith an anti-FLAG-alkaline phos-

phatase conjugate (Merck), developed with pNPP SigmaFAST (Merck) substrate and absorbance was read with a 405-nm filter

(named Abs405 below).

Half maximal inhibitory concentrations (IC50) for the binding competition assays were computed in R with the functions drm

and ED from the drc package v.3.0.1,87 fitting the data with a four-parameter log-logistic function. Non binders were defined

as the peptides with ‘‘0.8 * Abs405(@0 mM) < Abs405(@100 mM)’’, while weak binders were defined as peptides with ‘‘0.5 *

Abs405(@0 mM) < Abs405(@100 mM) < 0.8 * Abs405(@0 mM)’’ (i.e., peptides that partially replaced the FLAG-tagged peptide at

the higher tested concentration, but not sufficiently to reach their half maximal inhibitory concentration).

Protein crystallization and structure determination
HLA-DP (HLA-DPA1*02:01-DPB1*01:01) protein at around 10mg/ml was mixed with peptides at a final concentration of 10 mM, and

co-crystallized by hanging drop vapor diffusion method. Crystals of HLA-DP- canonical binder (sequence: KNLEKYKGKFVREID)

formed in a couple of weeks in 15% w/v PEG 4000, 0.2 M Magnesium chloride hexahydrate, 0.1M Sodium cacodylate pH 6.5

and crystals of HLA-DP-reverse binder (sequence: IEFVFKNKAKEL) in 8% w/v PEG 20K, 8% v/v PEG 500 MME, 0.2M Potassium

thiocyanate, 0.1M Sodium acetate pH 5.5. The crystals were cryoprotected with 25% glycerol. Diffraction data were collected at

the Paul Scherrer Institute (SLS, Villigen) at PXIII beamline. Data were processed with the XDS Program Package.56 Structures

were solved by molecular replacement using Phaser-MR and PDB: 3WEX as template model. Manual model building and structure

refinement were carried out in Phenix Suite57 using coot software58 and phenix-refine, respectively. After validation, the models were

deposited in the PDB database under identifiers PDB: 7ZAK (canonical binder) and PDB: 7ZFR (reverse binder). Data collection and

refinement statistics are summarized (Table S4C). The structures were displayed with PyMOL (https://pymol.org). The polar and

charged interactions between the peptide and residues in the MHC-II binding site (Figures S2B and S3F) were determined with

PyMOL, using default parameters.

Motifs of the N- and C-terminal contexts
Only peptides that were annotated as coming from an allele with the observed reversed binding mode were considered for this anal-

ysis (i.e., corresponding to the ligands shown in Figure 3A). ggseqlogo53 was then applied on the N-terminal and C-terminal context

sequences of these peptides, separately for the peptides following the canonical or reverse orientation (Figure S3G).

Simulation of reverse binding ligands
To study the detection limits of reversely bound ligands using MoDec, we built in silico samples containing different fractions of ca-

nonical and simulated reverse ligands. These samples were based on ligands from different alleles (DRB1*01:01, DRB1*07:01,

DRB1*15:01, DRB4*01:03, DQA1*05:01-DQB1*02:01 and DQA1*05:01-DQB1*03:01), where the ligands from the given allele were

randomly selected among all the ligands identified in our data for this allele (Table S2 – only ligands from these alleles were included,

no contaminant peptides). Simulated samples were either monoallelic or contained amix of 2-5 of these alleles (using a same number

of ligands per allele in polyallelic samples). We then reversed the sequence from a fraction of the ligands of one of the alleles from the

sample to have only one allele possessing simulated reverse ligands per sample (e.g., in a sample with 3 alleles and 3,000 total li-

gands, each allele had 1,000 ligands, and a fraction of 0.1 reverse binders means that 100 of these ligands corresponded to reverse

ligands). Such in silico samples were built for different total number of ligands and different fraction of simulated reverse ligands.

We then ranMoDec on each sample, searching for 1-8motifs, andwemanually verified if the results contained amotif correspond-

ing to the simulated reverse ligands. When a reverse binding motif was evident, we indicated in Figures S3H and S3I that reverse

ligands could be found in the sample. We indicated that the sample contained only a weak motif of reverse binders when this motif

was less clear (weak specificities at the anchor positions, such that if we did not know that an allele had reverse ligands, we would

likely have considered this motif as not representing an allele’s binding specificity).

Pan-allele MHC-II ligand predictor development
Our pan-allele predictor, MixMHC2pred-2.0 is composed of 2 successive blocks of neural networks with distinct tasks (Figures 4A

and S4A). We implemented these neural networks in R, using the packages keras (version 2.7) and tfdatasets (version 2.7), relying on

TensorFlow (version 2.6).
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The first block describes the binding specificity. The idea of this block is to determine the binding specificity of an allele based on

the sequence of its binding site residues (i.e., residues that are near of the peptide) (Figure S4A left part). This is a similar idea than the

PickPocket method that was developed for HLA-I predictions,88 but PickPocket gives identical importance to all binding site resi-

dues, while our neural networks can learn the relative importance of each residue. In our model, this block consists of independent

neural networks for each peptide binding core position, l (hereafter we refer to these independent neural networks asNN1
l). The input

of NN1
l is the sequence of the contact AA residues in the Pl binding pocket of the MHC-II allele a, and the output is the PPM at this

binding core position for this allele (i.e. PPMa
l;i, including the BLOSUM62 pseudocount, described above, corresponding therefore to

a vector of the frequency of the 20 AAs at this binding core position). The contact AA residues used as input are the joint set of close

contact residues fromHLA-DR, -DP and -DQ explained above (Tables S3A–S3C), after renumbering these based on the alignment of

all the MHC-II sequences together, including human and non-humanMHC-II (Table S3F). Each input AA was encoded to a numerical

vector of size 21 equal to the sum of the one-hot encoding of the given AA plus the row corresponding to this AA in the BLOSUM62

probability matrix86; the 21st element of this vector represents a gap or absent AA (this 21st element has value 0 except when the given

‘‘residue’’ in the allele is a gap instead of a true AA, in which case this last element has a value of 2). EachNN1
l is composed of one fully

connected hidden layer with 100 hidden nodes, based on rectified linear unit (ReLU) activation function and a gaussian noise of std

0.1. A dropout of 0.2 was added after these hidden nodes during the model training, and a softmax activation function was used for

the output layer. The loss optimized corresponded to the Kullback Leibler divergence, and it was optimized using Adam optimizer

with a learning rate of 0.005, a decay 0.005/250 and other parameters at default values. A maximum of 250 epochs was set and opti-

mization stopped after no improvement of the loss during 30 epochs.

In order to account for themultiple specificities that are observed for some alleles, we replicated theseNN1
l three times: a first time

including only all the canonical binders of specificity 1, a second time where the canonical binders of specificity 2 are used instead

when the given allele had two canonical binders specificity (i.e. for the DRB1*08 alleles at present, but could accommodate additional

if observed), and a third timewhere the reverse binders are used instead of the corresponding canonical binders when a reverse bind-

ing specificity was observed for the given allele (the sequence of the reverse binding peptides was inverted there, to have the correct

peptides’ AA in the P1 binding pocket of the allele for example). A last independent neural network of the 1st block is implemented to

predict the fraction of peptides in these different binding specificities. The input here is the full list of contact residues from theMHC-II

alleles, encoded in the same way as above and the output is the fraction of peptides observed in each of the 3 sub-specificities

(canonical 1, canonical 2 or reverse) for the given allele. This neural network has similar structure than above’s NN1
l except that

50 hidden nodes are used, with a learning rate of 0.0025, amaximumof 500 epochs and the loss corresponds to the categorical cross

entropy. To avoid cases where multiple specificities would be present but with too few ligands to be observed, we restricted the

training of this part to MHC-II alleles with more than 3,000 observed ligands. When predicting allele specificities, an MHC-II allele

is assumed to possess multiple specificities only if this last neural network predicts a fraction of canonical specificity 2 or reverse

specificity of at least 1% for the given allele. The training of all these neural networks of the 1st block is repeated 5 times with

same parameters and the final outputs are the average between these.

After having trained the first block, we can give the sequence of any MHC-II allele as input and this first block will return the

predicted binding specificities of this allele (PPMa;s
l;i ) (with s for the specificity: canonical 1, canonical 2 and reverse), as well as the

relative fraction of peptides that are predicted to be bound to this allele in each of the three specificities (ws). The second neural

network block, NN2, combines these with other features directly linked to a given peptide sequence (its sequence, length, binding

core offset, peptide’s N- and C-terminal contexts), in order to predict if the peptide is presented by the given allele (Figure S4A right).

First, a PPM-based binding score is determined based on the given MHC-II allele specificities and peptide sequence:

B =

 X3
s = 1

ws,max
c˛CS

 
wc

YL
l = 1

PPMa;s
l;xl4c

fxl4c

!!
(Equation 2)

Wherewc is the relative weight of the binding core offset c (similar to Figure S1B) and the best (maximum) value among all potential

peptide binding core offsets is used for the inner parenthesis; L is the binding core length (i.e. 9 AAs); xj indicates which amino acid is

found in the peptide at the position j; fi is a normalization factor, equal to the frequency of amino acid i in the human proteome. The ‘‘l4

c’’ in xl4c is the ‘‘special sum’’ previously defined,16 which makes that the binding core offsets are symmetric around 0 for each pep-

tide. The binding score B of the peptide is then transformed to a percentile rank Brank based on the scores of 10,000 random human

peptides of the same size. The 1st input of NN2 corresponds to a min-max scaling between 0 and 1 of the log(Brank + 10-4) (where the

min Brank is 0 and the max is 100, and 10-4 avoids log(0)). The 2nd input of NN2 is a one-hot encoding of the best binding core offset c

(determined from Equation 2 above), with values considered between -6 and 6. The peptide length is also one-hot encoded, for sizes

between 12 and 21. The last set of inputs corresponds to the 12 AAs of the N- andC-terminal contexts, whichwere encoded following

the same procedure as described above for the NN1
l (in case of an unknown AA (‘‘X’’), the value 1/20 is used for the corresponding

elements of this input vector).

Following these encoded input features, the NN2 consists of a fully connected neural network with 1 hidden layer of 200 hidden

nodes following a ReLU activation function with a gaussian noise of std 0.1. A dropout of 0.2 was added after these hidden

nodes during the model training, and a sigmoid activation function was used for the single output node (with a value 1 if the given

input peptide is presented by the given MHC-II alleles and 0 if not). Adam optimizer was used, with a learning rate of 0.001, a decay
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of 0.001/150 and other parameters at default values. The binary cross entropy loss was optimized. A validation split of 1/5 was used

and early stopping after 50 epochs without validation loss improvement was set (or a maximum of 150 epochs otherwise).

To train this NN2, we used as positives the peptides observed in the MHC-II peptidomics samples (Table S2). We did not consider

samples with missing MHC-II typing (e.g. samples obtained through anti-pan-HLA-II peptidomics when the HLA-DP had not been

typed, but if the sample was obtained through anti-HLA-DR it was sufficient to have the HLA-DR typing), nor samples from chicken

or cattle origin or containing a high fraction of predicted contaminant peptides, nor samples obtained from experiments where cells

had been transfected with tagged HLA-II15 due to the observed bias towards longer peptides (Figure S1C). Only peptides of sizes

12-21 AAs long were kept, and peptides whose context could not be determined were also removed. We then downsampled the

training set to keep a maximum of 200,000 positive peptides. In multiallelic samples, all potential MHC-II alleles were kept (i.e. we

did not use the allele annotation from MoDec): Equation 2 was applied to each allele of this sample and the best Brank score was

used for the inputs of NN2. We finally removed peptides with best Brank > 30 (better binders have lower values), which likely corre-

spond to contaminant peptides observed in MHC-II peptidomics. For negative peptides we used four times more random human

peptides than positives, with a uniform length distribution between 12 and 21 AAs.

After its training, the scores of NN2 are transformed to percentile ranks (%Rank) based on the scores of 106 random human pep-

tides and making that these follow the peptide length distribution observed in MHC-II peptidomics. For our final model,

MixMHC2pred-2.0, the training of NN2 is repeated 5 times and results correspond to the average of these repetitions. When running

MixMHC2pred-2.0 in multiallelic samples, the%Rank against each allele is returned and the score of this sample is taken as the best

(lowest) %Rank.

Benchmarking MHC-II binding specificity predictions
To compare the MHC-II binding specificities predicted by MixMHC2pred and NetMHCIIpan, we used 100,000 random human pep-

tides of size 12-21 AAs and scored these using the different predictors against each allele of interest. For each allele, the best scoring

1% peptides were considered as the ligands to this allele, and their binding cores (returned by the predictor) were used to determine

the frequency of each amino acid at each binding core position. We then compared these frequencies with the frequencies observed

in MHC-II peptidomics data of the given allele by computing the KLD for each peptide binding core position between these fre-

quencies (Equation 1). These KLD were averaged between all binding core positions. Lower KLD values mean that the predicted fre-

quencies are closer to the frequencies observed in MHC-II peptidomics data. In Figure 4B, the comparison is performed against

MHC-II peptidomics data coming only from monoallelic samples, while in Figure 4C it includes all MHC-II peptidomics data based

on above’s annotation of the motifs after the deconvolution using MoDec. MARIA and MHCnuggets were not included in these an-

alyses as their output only consists of the predicted peptide presentation score, but they do not predict the binding core, which pre-

vents inferring themotifs. Likewise, MixMHC2pred-1.2 and NeonMHC2were not included in these analysis as they are allele-specific

predictors and therefore cannot do any prediction for an allele that would be left-out from their training set in a leave-one-allele-out

context.

To determine how accurate these specificities are for MHC-II alleles without known ligands, only alleles that were absent from

NetMHCIIpan training were considered here. In this respect, we trained MixMHC2pred in a stringent leave-one-allele-out cross-vali-

dation setting: when doing the predictions for allele A, no peptide annotated as coming from allele A is used during the training of the

first predictor block NN1, and all peptides coming from all samples containing this allele A are removed from the second predictor

block NN2 (i.e., even if the peptide is annotated as coming from another allele in this sample, as long as the allele A is part of the

list of alleles from this sample).

Multiple specificities were considered, and the fraction of peptides observed in each sub-specificity (when present) in MHC-II

peptidomics data is indicated above the corresponding motifs (Figure 4B). One of the outputs of MixMHC2pred tells the predicted

sub-specificity for each peptide andwe directly used this. NetMHCIIpan does not return any information about fromwhich sub-spec-

ificity a peptide would be coming. To allow having multiple specificities for NetMHCIIpan as well, we applied MoDec on the binding

cores of the top 1% best predicted peptides from NetMHCIIpan, (running MoDec with the options ‘‘–nruns 50 –makeReport –spec-

Inits –no_flat_mot’’). For alleles possessing multiple or reverse specificities, we show in Figure 4B the two motifs determined in this

way for NetMHCIIpan, while for the alleles possessing a single specificity the motifs are directly obtained from NetMHCIIpan without

applying MoDec.

In Figure S4B, we further benchmarked the predictions of the ligands observed for each allele instead of predicting the binding

motifs. This was done by using the peptides fromMHC-II peptidomics data annotated to each allele as above for the positives (keep-

ing only peptides of sizes 12–21 AAs) and adding four times more random peptides as negatives (with a uniform length distribution).

Here the predictions of the full peptide sequences were done (without needing to know or predict the binding cores); therefore,

MARIA and MHCnuggets could be included in this benchmark. The area under the curve of the Receiver Operating Characteristic

curve (ROC AUC) was computed for each predictor and for each allele separately.

The sequence similarity between two alleles a and b was computed similarly than in Nielsen et al.89 It was obtained through the

following equation:

Sima;b =
Sða;bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sða; aÞ � Sðb;bÞp (Equation 3)
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Where S(a,b) is the BLOSUM50 alignment score86 computed between the sequences of the contact AA residues in any of the 9 Pl

binding pockets of theMHC-II alleles a and b (Table S3F). Based on this we defined the similarity of allele a to the alleles in the training

set as

Sima
training = max

b˛ training alleles

�
Sima;b

�
(Equation 4)

Where the alleles in the training set are those with peptidomics data (the 88 alleles present in the training of MixMHC2pred, or 87

alleles when in the leave-one-allele-out context).

To compare the impact of different model architectures on the binding specificity predictions, we trained different variant models in

the leave-one-allele-out cross-validation setting described above. All data from one allele were removed, the models were then

trained on the remaining data, and the binding specificity of the left-out allele was predicted by considering the best 1% scoring pep-

tides among a set of 100,000 random peptides. The KLD distance between the predicted allele’s binding specificity and the binding

specificity observed in our data for this allele was next computed, and it was compared to the KLD distance obtained in the sameway

for the model corresponding to MixMHC2pred’s architecture, in order to quantify the improvement or worsening of using another

model than MixMHC2pred’s one. This was repeated for the 88 different alleles from our data and results are shown in Figure S4E.

For these analyses, only variants of the NN1 part of our neural network were considered as this is the part where that is responsible

for predicting the binding specificity of alleles. Following variants were considered: 1) using the same architecture than

MixMHC2pred, but with different number of hidden nodes in the intermediate layer; 2) considering a similar architecture than

MixMHC2pred, but considering a single specificity for each allele (by merging the peptides from each sub-specificity and thus

not replicating themodel three times); 3) considering one single neural network predicting directly the binding specificity of the 9 bind-

ing core positions (instead of 1 neural network per core position), where all input contact AA residues are connected to all nodes of the

intermediate hidden layer; the intermediate layer consists of 9 groups of 100 hidden, nodes and each group of hidden node is con-

nected to a separate output vector of size 20 (corresponding to the PPMa
l;i of one of the 9 binding core positions); this model was still

also replicated three times to account for the multiple specificities; 4) this variant is similar to the variant Nr. 3, but all intermediate

hidden nodes (either 100 or 9*100 nodes) are connected to all 9*20 output nodes. The loss optimized, activation function used

and other parameters of the neural network were kept as in our original model.

Benchmarking MHC-II ligand predictions
The benchmark in Figures 5A–5Cwas performed using the data from the variousMHC-II peptidomics samples (Tables S1 and S2). All

peptides from a given sample were used together with the set of alleles describing this sample (while in Figure S4B the benchmark

was done per allele, based on all ligands annotated to the given allele coming from multiple samples). Peptides of sizes 12-21 were

considered.We did not include samples withmissingMHC-II typing, theAUT01_xx samples fromMarcu et al.51 due to high predicted

contamination, nor samples from experiments where cells had been transfected with tagged HLA-II15 due to observed biases

described above (Figure S1C). The positives were the peptides observed in each sample and we added four times more random

peptides as negatives, taken from the same proteins as the proteins observed in the positive peptides and following a uniform length

distribution between 12 and 21 AAs. Inmultiallelic samples, the scores of all these peptides for all alleles were computed and the best

score among the sample’s alleles was kept (lowest %Rank for MixMHC2pred, lowest %Rank_EL for NetMHCIIpan, lowest ic50 for

MHCnuggets and highest score for MARIA). Using the predicted scores of each peptide, the ROC AUC was computed for each pre-

dictor and for each sample separately.

To avoid using the same peptides in testing and training of the predictors, we considered only samples that were absent from

NetMHCIIpan and MARIA’s training sets (MHCnuggets is not trained on any of these samples as it only considers binding affinity

data). In this way, the tested samples were therefore absent from the training of NetMHCIIpan, MARIA and MHCnuggets, but the

MHC-II alleles from these test samples were often still part of the training of these predictors (i.e., the same alleles were present

in some other samples used in the training of these predictors, and therefore the specificity of these alleles could already be well

described by these predictors). For our predictor we used the same stringent leave-one-allele-out cross-validation setting than

described above, where the %Rank of each allele was obtained separately based on this leave-one-allele-out setting and then

the best %Rank among those was used, ensuring that no peptide coming from any sample containing the test allele was present

in its training set.

For MARIA, the gene expression of each protein fromwhich a peptide is originating is needed as further input. The gene expression

pre-defined in MARIA were used, based on our annotation of from which type of tissue each sample or cell line is originating (BRCA,

COAD, K562, .).

The impact of the different peptide-related parameters of ourmodel were studied using this same benchmarkMHC-II ligands data-

set. Two complementary analyses were performed. In the first analysis, we retrained the NN2 part of our model, after removing one of

the features from the model (e.g., the PPM binding score, or all the amino acids describing the peptide’s N-terminal context). The

model training and predictions were done in a 5-fold cross-validation setting, where the test data was split in 5 groups on a per sam-

ple basis (i.e., all peptides coming from a same sample were kept together in the same cross-validation test set) and all peptides

present in a given test set were removed from the corresponding training set to ensure no overlap of the peptides between training

and testing sets. ROC AUC were then computed per sample from the test set samples (i.e., computing one ROC AUC value for each

sample from the test set), and this ROC AUC was compared to the value obtained by our full model trained in the same 5-fold cross-
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validation setting. In the second analysis, we used our full model trained in the leave-one-allele-out cross-validation setting described

above (without retraining the model), and we computed the ROC AUC values per sample when doing the predictions after randomly

shuffling the values from one of the feature of the model between all the peptides from the given sample (e.g., after randomly reas-

signing the 6 AAs of the peptide’s N-terminal context between the peptides (keeping the 6 AAs together, but shuffling these between

peptides)). We again compared these ROC AUC values with the values obtained using our full model without any shuffling of the pa-

rameters. For these two analyses, we note that the binding core offset feature is appearing at two places in our model: as some input

nodes in NN2 and also in the binding score computation through Equation 2 above and we therefore tested the effect of this feature

separately at each place (models Nr. 2 and 3 in Figure S5A (done by using a flatwc in Equation 2 for model Nr. 3)) or simultaneously at

the two places (model Nr. 4). Concerning the peptide’s N- and C-terminal contexts, we considered different cases, where either only

the part of the contexts that lies inside (or outside) of the peptidewas removed or shuffled, or where only the context from one terminal

was considered, or without any context. Finally, model Nr. 11 consisted of a full shuffling of all the input features, where the shuffling is

done separately per feature (i.e., this corresponds to a model where the input values are fully random, within the ranged of allowed

values).

To compare the prediction accuracy for species without known ligands (Figure 5D), the test sets were composed of all MHC-II

peptidomics samples from the given species (mouse, cattle or chicken) and random negative peptides, as described above. In addi-

tion to the leave-one-allele-out model and to the full model (trained on all peptides from all samples described above), we also trained

leave-one-species-out models, where all data from the given test species were removed from the training and the model was trained

on the remaining data only.

Proportion of reverse ligands in different samples
We considered the samples containing HLA-DP alleles accommodating reverse ligands. These samples were obtained either with

anti-pan-HLA-II or with anti-HLA-DP antibodies. We used a slightly modified version of MixMHC2pred which returned separately

the %Rank predicted in the canonical or reverse orientations. Using this predictor, we computed the %Rank of each peptide

from the sample towards all the alleles of the sample, and we kept only peptides with best %Rank < 20 and whose best %Rank

was towards the HLA-DP of interest (independently of the binding orientation). To give more confidence that peptides were bound

in a given orientation, we further filtered these to only keep those with %Rankbest-orientation < %Rankother-orientation – 5. We then

computed the fraction of these peptides who had a better score in the reverse orientation than canonical orientation. In samples con-

taining multiple HLA-DP alleles with reverse ligands, this analysis was repeated for each allele, in order to compute separately the

fraction of reverse ligands for each allele. Results are shown, either by grouping samples per type of experiments from which

they were obtained (Figure S5B, annotation of the sample’s type of experiment is given in Table S1) or shown separately for

some samples containing a same allele (Figure S5C).

Analysis of cis- and trans- heterodimers
To study the fraction of ligands presented by cis- vs. trans-heterodimers, we considered all samples containing two different alpha

chains and two different beta chains of the HLA-DP or HLA-DQ genes. We then used MixMHC2pred to predict the %Rank of each

peptide with respect to all the alleles of the sample (considering all possible combinations of HLA-DP or -DQ alpha-beta chains, as

well as HLA-DR alleles when the sample was obtained with anti-pan-HLA-II antibodies). To avoid potential contaminants, we only

considered peptides with a%Rank < 20, andwe only kept the peptides whose best score was obtainedwith anHLA-DP (respectively

HLA-DQ) allele (‘‘Case 1’’ in Figure S6A). We further considered a more stringent way to assign allelic restriction ("Case 2’’ in Fig-

ure S6A) by keeping only peptides with %Rankbest-allele < 20 and %Rankbest-allele < %Rankother-alleles – 5 (i.e., asking that the score

of the given peptide towards the other alleles of the sample is not too much similar to the best allele’s score). Only samples that con-

tained at least 200 predicted HLA-DP (resp. HLA-DQ) ligands after this filteringwere considered. For each sample, we then computed

the percentage of ligands for each of the 4 possible HLA-DP (resp. HLA-DQ) alleles.

For samples with HLA-DQ genotypes of different groups (i.e., G1G2), we know which pairs of alleles are in cis and which are in

trans. This enabled us to compare the fraction of peptides assigned to cis-heterodimers (referred to as cis1 and cis2 in Figure S6A,

where cis1 was the cis-heterodimers with most ligands) or trans-heterodimers (referred to as trans1 and trans2 in Figure S6A). For

other samples (i.e., HLA-DQ with the same genotype or HLA-DP), this information cannot be inferred from the HLA-II typing. We

therefore named the heterodimer with the highest fraction of predicted ligands as A1-B1 in Figure S6A and named the other hetero-

dimers accordingly. The motifs on the right of Figure S6A were built based on the binding core predicted for the ligands of each allele

of the sample.

Benchmarking CD4+ T-cell epitope predictions
All data for human CD4+ T cells from the IEDB database were downloaded (as of 06.08.2021). We then filtered this data to keep

the peptides of sizes 12-21 AAs which were observed in ‘‘multimer/tetramer’’, ICS and ELISPOT assays, and whose 4-digits

MHC-II typing had been determined, considering the ‘‘Allele evidence codes’’: "MHC binding assay’’, "Single allele present",

"T cell assay - Mismatched MHC molecules/ Biological process measured/ MHC subset identification/ T cell subset identification"

and "Statistically inferred by motif or alleles present". This dataset included directly peptides annotated either as positives or neg-

atives (Table S5E), and no artificial negatives were added for this analysis. The ROC AUC was computed for predictions made per

allele separately, keeping only alleleswith at least 3 positive and 3 negative peptides. As in the experiments from this dataset the short
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peptides were usually directly tested, the antigen presenting cells did not need to cleave these peptides before presentation. There-

fore, the part related to context encoding is not meaningful and we used here the option of not encoding this peptide context in

NetMHCIIpan. MixMHC2pred includes a similar option, which consists in internally replacing the AAs from the context by ‘‘X’’s

and where the %Ranks are recomputed accordingly.

To study the impact of including the reverse binding mode into predictions of CD4+ T cell epitopes, we considered epitopes found

in IEDB data for HLA-DP alleles that accommodate reverse ligands. In this data, only positive epitopes were however available and

we therefore added 10 random negative peptides per positive peptide, coming from the same protein as each positive, with a uniform

peptide length distribution. The ROC AUC per allele was computed using MixMHC2pred, as well as for a samemodel where only the

canonical binding specificity was included.

Selection of candidate epitopes following the reverse binding mode
The proteomes from various viral and bacterial proteins (see above, section about the binding competition assays) were cut in all

overlapping 15-mer peptides, and we computed the binding scores of all these peptides with HLA-DPA1*02:01-DPB1*01:01, keep-

ing separate the scores from the canonical and reverse specificity (i.e., scores from Equation 2 but keeping the scores from the index

s separate instead of summing over them, corresponding to the canonical and reverse specificity). We then selected a set of 4-5 pep-

tides per proteome that had a good score towards the reverse specificity and only a weak score towards the canonical specificity and

we synthesized these peptides for experimental testing.

Peptides and peptide-MHC-II multimers
Peptides and peptide-MHC-II multimers were produced by the Peptide & Tetramer Core Facility of the University Hospital of Lau-

sanne (CHUV). Peptides were chemically synthesized using standard fmoc chemistry, purified by RP-HPLC (>90 % purity) and

analyzed by UPLC-MS. Peptides were kept lyophilized at -80�C. Biotinylated peptide-MHC-II monomers, loaded with peptides of

interest were multimerized using streptavidin-PE (Cat# SA10044, Thermofisher Scientific) or streptavidin-APC (Cat# 405207, Bio-

legend) conjugates, then stored at 4�C and used within a week.

Identification of antigen-specific CD4+ T-cell responses
Primary CD4+ T cells were cultured in RPMI 1640 Glutamax media (GIBCO) supplemented with 8 % human serum (Biowest), non-

essential amino acids (GIBCO), 2-mercaptoethanol (GIBCO), sodium pyruvate (GIBCO), HEPES (GIBCO), penicillin/streptomycin

(BioConcept) and 100 IU.mL-1 of rhIL2 (Novartis).

CD4+ T cells were isolated (ref 130-045-101, Miltenyi) from cryopreserved PBMC and co-incubated (106 mL-1) with autologous

irradiated CD4-depleted PBMCs (106 mL-1) and pools of 3 to 4 peptides (2 mM) in RPMI supplemented with 8 % human serum

and IL-2 (100 IU mL�1). After 11 days, cells were put in RPMI supplemented with 8 % human serum without any IL2. At day 12, cells

were washed with RPMI, diluted at 2.106 mL-1, and 200,000 cells plated in 96w round bottom plates. Then 100 uL of peptide pools

were added (2 mMfinal in R8) and cells were incubated 1 h at 37�C. Protein Transport Inhibitor (1/1000, eBioscience 00-4980-93) was

added and cells incubated for additional 4 h at 37�C. Cells were thenwashed with PBS and stained for 15min at RTwith fixable Near-

IR Dead Cell Staining Kit (Thermofisher L10119, 1/1000 in PBS). After three washes, cells were stained with CD4 antibody (BD

562970) for 20 min at 4�C. After additional three washes, cells were incubated with Fix/perm kit (Biolegend 426803) for 20 min at

4�C in the dark, and stained with anti TNFa (BD 340512) and anti IFNg (BD 554702) for 30 min at 4�C.
After final washing, cells were resuspended in FACS buffer (PBS 0.5 % FBS 2 mM EDTA) and analyzed on a Cytoflex S1 flow cy-

tometer. Data were analyzed using the FlowJo v10.7.1 software. Positive and negative controls were obtained by incubating cells

with PMA/ionomycin (Thermofisher, Cat# 00-4975-93) or without peptide, respectively. For peptide pools leading to an immune

response, experiment was repeated with single peptides.

Sorting of naive and effector memory CD4+ T cells
Naive CD4+ T cells and effector and effector memory CD4+ T cells were isolated by Fluorescence-activated Cell Sorting (FACS) upon

staining with anti-CD4 antibody (BD 562970), anti-CCR7 antibody (353227 BioLegend) and anti-CD45RA antibody (304108

BioLegend) for 30 min at 4�C. After three washes with FACS buffer (PBS 0.5 % FBS 2 mM EDTA) cells were incubated 10 min

with DAPI (Sigma, Cat#10236276001) at 250 nM and washed again three times. Naı̈ve (CCR7+ and CD45RA+) CD4+ T cells and

effector and effector memory (CD45RA-) CD4+ T cells were collected separately.

Peptide-MHC-II multimer validation and sorting of CD4+ T cells
CD4+ T cells were incubated with multimers (1/50 dilution) 45 min at 4�C in FACS buffer (PBS supplemented with 0.5 % FBS and

2 mM EDTA), isolated by FACS and either directly used for TCR sequencing or expanded with autologous irradiated CD4-depleted

feeders in RPMI supplemented with 8 % human serum, phytohemagglutinin (Invivogen, 1 mg mL-1) and IL2 (150 IU mL-1).

Bulk TCR sequencing
mRNA was extracted using the Dynabeads mRNA DIRECT purification kit according to the manufacturer instructions

(ThermoFisher) and was then amplified using the MessageAmp II aRNA Amplification Kit (Ambion) with the following modifications:

in vitro transcription was performed at 37�C for 16 h. First strand cDNA was synthesized using the Superscript III (Thermofisher) and
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a collection of TRAV and TRBV specific primers. Unique Molecular identifiers (UMI) of length 9 were added to each read. TCRs were

then amplified by PCR (20 cycles with the Phusion from NEB) with a single primer pair binding to the constant region and the

adapter linked to the TRAV and TRBV primers added during the reverse transcription. A second round of PCR (25 cycles with

the Phusion from NEB) was performed to add the Illumina adapters containing the different indexes. The TCR products were pu-

rified with AMPure XP beads (Beckman Coulter), quantified and loaded on the MiniSeq instrument (Illumina) for deep sequencing of

the TCRa or TCRb chain.

Analysis of TCR sequences
The fastq files were processed with MIGEC,59 using default parameters to demultiplex them and identify the TCRa and TCRb clono-

types. For each sample, the frequency of each TCR chain was computed based on UMI corrected counts. Only TCRs with more than

one UMI count and representing more than 1% of the total UMI counts were considered. TCRs with the same amino acid sequences

were merged in Table S6B.

The CDR3 sequences of the alpha and beta chains were used to search TCRa and TCRb repertoires through the iReceptor web

platform,46 which contains, as of June 2022, 7,111 repertoires for a total of 5.1 billion sequences. Hits were defined as those having

the same CDR3 sequence (Table S6B). We further restrict our analysis by considering only TCRs with the same CDR3 and the

same V, J genes (100% sequence identity).

QUANTIFICATION AND STATISTICAL ANALYSIS

P-values for the comparisons between IC50, KLD or AUC values in the different comparisons were computed with paired two-sided

Wilcoxon signed rank-tests, as indicated in the corresponding figure legends. Statistical analyses were performed with R software.
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