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Selection methods regulate evolution of
cooperation in digital evolution

Paweł Lichocki1,†, Dario Floreano1,‡ and Laurent Keller2,†‡

1Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, Station 11, 1015 Lausanne,
Switzerland
2Department of Ecology and Evolution, Biophore, University of Lausanne, Dorigny, 1015 Lausanne, Switzerland

A key, yet often neglected, component of digital evolution and evolutionary

models is the ‘selection method’ which assigns fitness (number of offspring)

to individuals based on their performance scores (efficiency in performing

tasks). Here, we study with formal analysis and numerical experiments

the evolution of cooperation under the five most common selection methods

(proportionate, rank, truncation-proportionate, truncation-uniform and

tournament). We consider related individuals engaging in a Prisoner’s

Dilemma game where individuals can either cooperate or defect. A coopera-

tor pays a cost, whereas its partner receives a benefit, which affect their

performance scores. These performance scores are translated into fitness

by one of the five selection methods. We show that cooperation is positively

associated with the relatedness between individuals under all selection

methods. By contrast, the change in the performance benefit of cooperation

affects the populations’ average level of cooperation only under the propor-

tionate methods. We also demonstrate that the truncation and tournament

methods may introduce negative frequency-dependence and lead to the

evolution of polymorphic populations. Using the example of the evolution

of cooperation, we show that the choice of selection method, though it is

often marginalized, can considerably affect the evolutionary dynamics.
1. Introduction
Researchers address evolutionary questions with various methods ranging

from mathematical models to wet-laboratory and field experiments. These

approaches are highly successful, but have limitations. For example, mathe-

matical models make simplifying assumptions about complex ecological

interactions in order to be tractable [1]. Long-term evolutionary experiments

with organisms having generation times higher than bacteria are practically

impossible [2]. Digital evolution performed in a computer has been advocated

as an alternative and promising approach to bypass such limitations [2–8]. It

operates on a finite population of individuals [9], each having a genome encod-

ing its morphology and/or behaviour. The ‘selection method’ determines on

the basis of individual performance which individuals will contribute offspring,

after mutation and/or recombination, to the next generation.

Several selection methods are commonly used in digital evolution studies.

The proportionate selection method (PSM) chooses the individuals contributing

to the next generation proportionally to their performance scores [10]. The rank

selection method (RSM) chooses a parent proportionally to the ranks (positions

in a sequence of individuals sorted ascending by the performance scores) [11].

With both PSM and RSM, any individual has a chance to contribute to the next

generation. By contrast, with the ‘truncation’ methods of selection, only a

certain fraction of the population (i.e. the best performing individuals) contrib-

utes offspring to the next generation. The truncation-proportionate selection

method (TPSM) chooses a parent proportionally to performance scores,

whereas the truncation-uniform selection method (TUSM) chooses a parent uni-

formly at random [12–16]. Finally, the tournament selection method (TSM)

forms ‘tournaments’ by sampling individuals with replacement uniformly at

random from the entire population. The genotypes of the individuals with
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Figure 1. Mean+ s.d. (in grey) number of offspring that individuals contribute
to the descending generation versus their performance scores (10 000 replicates).
Population contained 1000 individuals, each having a fixed performance scores
drawn from a normal distribution with mean 0.5 and s.d. 0.125. In each of the
11 treatments, a different selection method was used: proportionate (PSM), trun-
cation-proportionate with threshold t ¼ 0.8 (TPSM 0.8), t ¼ 0.5 (TPSM 0.5) and
t ¼ 0.2 (TPSM 0.2), truncation uniform with threshold t ¼ 0.8 (TUSM 0.8),
t ¼ 0.5 (TUSM 0.5) and t ¼ 0.2 (TUSM 0.2), and tournament with size 2
(TSM 2), 3 (TSM 3) and 5 (TSM 5). (Online version in colour.)

Table 1. Normalized pay-off matrix of linear Prisoner’s Dilemma game: (a)
without and (b) with assortative meetings. Pay-offs denote the performance
scores of the row player. Using the performance scores a given selection
method assigned fitness to individuals. B is the performance benefit of
cooperation, C is the performance cost of cooperation where B . C . 0, and
1 � r � 0 is the relatedness level (i.e. the probability that the social partner
instead of its strategy adopted the strategy of the focal individual). Note that
with r ¼ 0 pay-off matrices in (a) and (b) are identical. In the formal
analyses, we also considered a more general version of the game (see
electronic supplementary material). In the numerical experiments, we fixed
C ¼ 1 and varied B from 1.1 to 5 with a step of 0.1.

cooperator defector

(a) cooperator B 0

defector B þ C C

(b) cooperator rB þ (1 2 r)B rB þ (1 2 r) . 0

defector rC þ (1 2 r)(B þ C) rC þ (1 2 r)C
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the highest performance scores in each tournament are

copied to the descending generation [17,18].

While all five selection methods are frequently used

to simulate differential selection (PSM in [19–32]; RSM

in [33,34]; TPSM in [35–37]; TUSM in [38–46], TSM in

[22,47,48]), the choice between them is rarely justified. More-

over, little attempt has been made to quantify the effects of

selection methods on the dynamics of the digital evolution

(but see [22,49]). This is a major issue, because each selection

method defines a different mapping between performance

scores and fitness (see the electronic supplementary material

and figure 1), thus having important implications on the

course of evolution [50–53]. To address this problem, we

investigate theoretically and with numerical experiments

how the five selection methods regulate the evolution of

cooperation. We focus on cooperation, because digital evol-

ution is especially popular in this domain [19–24,26–29,33,

38,41,47,48,54,55], and it is an important biological phenom-

enon that has attracted extensive scientific interest (see

[56–60] for reviews). We consider a population of related indi-

viduals, each having a genotype that consists of a haploid

allele encoding for cooperation or defection. The individuals

engage in a social game of Prisoner’s Dilemma [61,62] where
a cooperator pays a cost and its partner receives a benefit. In

mathematical models, the cost and benefit of cooperation

directly affect the fitness of the individuals [63,64]. We

extend this approach by considering that the cost and benefit

of cooperation affect performance scores, which are translated

into fitness by one of the five selection methods (PSM, RSM,

TPSM, TUSM and TSM). For each selection method, we ident-

ify with formal analysis the conditions in which cooperation

evolves and we experimentally quantify its level.
2. Material and methods
2.1. Cooperation scenario
Individuals met each other and received performance scores equal

to the pay-offs of the normalized linear Prisoner’s Dilemma game

[61] (table 1a). A cooperator received performance score B if it met

a cooperator, and 0 if it met a defector. A defector received per-

formance score B þ C if it met a cooperator, and C if it met a

defector. In the formal analysis, we also considered a more general

version of the Prisoner’s Dilemma game (see the electronic sup-

plementary material). In the numerical experiments, we fixed

the performance cost of cooperation C to 1.

The meetings of individuals were assortative, i.e. with prob-

ability r, an individual met an individual of the same strategy,

and otherwise it met an individual chosen uniformly at random

from the entire population [62] (table 1b). Thus, r measured the

relatedness between individuals [65], i.e. it reflected the ‘surplus’

of probability that the social partners used the same strategy

than was expected by random.

Prisoner’s Dilemma game has been used to model the logic

of animal conflict and cooperation [61]. One example is public

goods production in bacteria where producers pay an energetic

cost to secrete an enzyme and non-producers receive a benefit

by freely absorbing it (see [66] for more examples). In this con-

text, the positive relatedness would be due to spatial structure

of the population where an individual’s performance is affected

only by neighbouring production and/or absorption of public

goods. We further elaborate on the meaning of assortative

meetings and relatedness in the Discussion.

2.2. Selection methods
With PSM, the probability of selecting the individual i is equal to

fi=
Pn

j¼1 fj, where fi is the performance score of the individual i.

http://rsif.royalsocietypublishing.org/
http://rsif.royalsocietypublishing.org/


0.2

0.3

0.4

0.5

0.6

0.7

co
op

er
at

io
n 

le
ve

l

PS
M

R
SM

T
PS

M
 0

.8

T
PS

M
 0

.5

T
PS

M
 0

.2

T
U

SM
 0

.8

T
U

SM
 0

.5

T
U

SM
 0

.2

T
SM

 2

T
SM

 3

T
SM

 5

Figure 2. Mean+ s.d. cooperation level over all conditions (30 replicates).
There were 11 treatments, and in each a different selection method was used
(see caption of figure 1).
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With RSM, the probability of selecting the individual i is equal to

ri=
Pn

j¼1 rj, where ri is the rank of the individual i, i.e. its position

in the sequence of all individuals sorted ascending by perform-

ance scores (individuals with the same performance score had

the same rank). With TPSM and TUSM, only the t fraction of

individuals with the highest performance scores in the popu-

lation was considered viable. Let St denote the set of viable

individuals’ indices. With TPSM, the probability of selecting

the individual i is equal to fi=
P

j[St
fj if i [ St, and 0 otherwise.

With TUSM, the probability of selecting the individual i is equal

to 1=jStj if i [ St, and 0 otherwise. Finally, TSM with the tourna-

ment size s sampled with replacement s individuals uniformly at

random from the entire population, and selected the individual

with the highest performance score among the s individuals (ties

were resolved uniformly at random).

Selection methods have many biologically relevant interpret-

ations. For example, truncation selections may capture selection

by predation when individuals meeting certain criteria can

escape predators, survive and reproduce, whereas all others die

with no offspring [12]. In tournament selection, individuals

fight with each other for reproduction, a common situation in

sexual selection [67]. We further elaborate on the biological

meaning of selection methods in the Discussion.
2.3. Numerical experiments
We evolved a population of 1000 individuals in 11 treatments. In

each treatment, we used a different selection method: PSM, RSM,

TPSM with truncation threshold t ¼ 0.8, 0.5, 0.2, TUSM with

truncation threshold t ¼ 0.8, 0.5, 0.2 and TSM with tournament

size s ¼ 2, 3, 5 (see figure 1 for illustration of the performance

to fitness mapping defined by each selection method). For each

treatment, we investigated 40 � 51 conditions, with the perform-

ance cost of cooperation C fixed to 1, the performance benefits of

cooperation B ranging between 1.1 and 5 with a step of 0.1, and

the relatedness level r ranging between 0 and 1 with a step of

0.02. For each treatment and each condition, we replicated the

numerical experiment 30 times. The values of B and r are kept

constant during an evolutionary run.
2.4. Genetic architecture, selection and reproduction
Each individual had a genotype consisting of one binary allele

denoting the lack (0) or the possession (1) of the cooperative

trait. We, thus, assumed a one-to-one mapping from genotype

to phenotype. We used an on–off transition between cooperation

and defection to get clearer results on the processes regulating the

evolution of cooperation under different methods of selection.

Such a strong on–off transition may also occur in natural situ-

ations. For example, an ant worker contributes to the queen’s

wellbeing and forgoes reproduction, or lays its own eggs instead

[68]. Similarly, a single cell secretes an enzyme and pays energetic

cost, or saves energy and rides on public goods [69].

At the beginning of each evolutionary run, all 1000 individuals

had the allele set to 0. At each generation, every individual was

evaluated in the cooperation scenario and received a performance

score. To construct the descending generation, 1000 individuals

were independently selected from the entire population by a

selection method that depended on the treatment. These 1000 indi-

viduals were mutated (with probability 0.001 the value of an allele

was flipped) and then replaced all 1000 individuals from the

population. Each evolutionary run lasted for 1000 generations.

In the experiments presented in the main text, we assumed

that all individuals in the population are replaced every gener-

ation. We also performed additional experiments in which we

investigated the effects of the generational overlap by using the

Moran process [70] to update the population (see the electronic

supplementary material).
2.5. Statistical analysis
For each replicate, treatment and condition, we measured the

evolved cooperation level as the proportion of cooperators in a

population averaged across generations 900–1000. To compare

the selection methods, we considered mean cooperation level

over all conditions (figure 2). To investigate the effect of the

relatedness level r, we quantified the average cooperation level

over all conditions with the same value of r (figure 3, solid

line). To investigate the effect of the performance benefit of

cooperation B, we quantified the average cooperation level over

all conditions with the same value of B (figure 3, dashed line).

Statistical significance between all treatments was determined

with the Kruskal–Wallis test (non-parametric one-way analysis

of variance) and between a pair of treatments with the Wilcoxon

test (rank sum test for equal medians).
3. Results
3.1. Formal analyses
Prior to performing numerical experiments, we investigated

with formal analysis the spread of a cooperative allele in an

infinite population of individuals related at level r on average

(see the electronic supplementary material). A cooperator

paid a cost C . 0 which is subtracted from its performance

score, whereas the partner of a cooperator received a benefit

B . C which is added to its performance score. The perform-

ance scores of the individuals were translated into their

fitness values by one of the five selection methods: PSM,

RSM, TPSM, TUSM and TSM. Two of them (PSM and

RSM) do not have any free parameters. By contrast, TPSM

and TUSM are characterized by the truncation threshold t,
which determines the fraction of individuals (i.e. those with

the highest performance scores) which are viable. Finally,

TSM is characterized by the tournament size s, which indi-

cates the number of individuals that compete between each

other in randomly formed groups. Using each of the five

selection methods, we identified the conditions for evolution

of cooperation (table 2a) and defection (table 2b).

In general, we found that the conditions for evolution of

cooperation and defection depend on the frequency of coop-

erators in a population (see the electronic supplementary

material). Thus, we focused on the conditions when the

invading allele is under positive selection, assuming that

the opposite allele has reached fixation. Consequently, one

can predict when either the cooperative or the defective

allele reaches fixation, and when the two alleles coexist in

the population (table 2). In particular, cooperation reaches fix-

ation if it is under positive selection in a population of

http://rsif.royalsocietypublishing.org/
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Figure 3. Mean+ s.d. (in grey) cooperation level over: (dashed line) all con-
ditions with the same performance benefit of cooperation B, (solid line) all
conditions with the same relatedness level r (30 replicates). The population dis-
played an average relatedness level equal to r owing to assortative meeting of
the individuals. The performance score of a cooperator was set to B if it met a coop-
erator and to 0 if it met a defector. The performance score of a defector was set to
Bþ 1 if it met a cooperator and to 1 if it met a defector. There were 11 treatments,
and in each a different selection method was used (see caption of figure 1).

Table 2. Conditions in which (a) the cooperative allele is under positive
selection assuming the defective allele has reached fixation, and (b) vice versa.
Cooperation reaches fixation if the condition (a) is met exclusively. Similarly,
defection reaches fixation if the condition (b) is met exclusively. If both
conditions are met together, cooperation and defection coexist in the population.
r denotes the relatedness level between individuals, B is the performance benefit
of cooperation and C is the performance cost of cooperation. The performance
scores of the individuals were transformed into fitness by one of the five
selection methods: proportionate (PSM), rank (RSM), truncation-proportionate
with truncation threshold t (TPSM t), truncation-uniform with truncation
threshold t (TUSM t) and tournament with tournament size s (TSM s).

selection

(a) cooperation
invades defection
when

(b) defection
invades cooperation
when

PSM r . C/B r , C/B

RSM r . 1/2 r , 1/2

TPSM t r . tC/B r , 1 – tB/(B þ C )

TUSM t r . t r , 1 – t

TSM s r . 1/s r , 1 – 1/s
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defectors, and defection is not under positive selection in a

population of cooperators. Similarly, defection reaches fix-

ation if it is under positive selection in a population of

cooperators, and cooperation is not under positive selection

in a population of cooperators. Finally, the population is

polymorphic if both cooperation is under positive selection

in a population of defectors, and defection is under positive

selection in a population of cooperators.

With PSM, cooperation is under positive selection in a

population of defectors when r . C/B, whereas defection is

under positive selection in a population of cooperators

when r , C/B. With TPSM, these conditions are relaxed,

and cooperation is under positive selection in a population

of defectors when r . tC/B, whereas defection is under posi-

tive selection in a population of cooperators when r , 1 – tB/

(B þ C). In contrast to PSM and TPSM, with RSM, TUSM and

TSM, the conditions for invasion of cooperation and of defec-

tion are independent of C and B. Cooperation is under

positive selection in a population of defectors when r . 1/2
for RSM, r . t for TUSM, and r . 1/s for TSM. Similarly,

the defection is under positive selection in a population

of cooperators when r , 1/2 for RSM, r , 1 – t for TUSM,

and r , 1 – 1/s for TSM. All results are jointly presented

in table 2 (see the electronic supplementary material for

formal derivations and extended analyses).
3.2. Numerical experiments
To verify and extend our formal analyses, we performed

numerical experiments and quantified the average cooperation

level in 30 independent populations under each of the five

selection methods. Overall, there were 11 treatments, because

we systematically investigated different values of the trunca-

tion threshold t and of the tournament size s (PSM, RSM,

TPSM t ¼ 0.8, 0.5, 0.2, TUSM t ¼ 0.8, 0.5, 0.2, TSM s ¼ 2, 3,

5). For the sake of simplicity, we fixed the performance cost

of cooperation C ¼ 1, and investigated the combined effects

of the relatedness level r and the performance benefit of

cooperation B on the cooperation level. There were significant

differences in the level of cooperation averaged across all con-

ditions between all 11 treatments (figure 2, Kruskal–Wallis

test, d.f.¼ 10, p , 0.001) and between each pair of treatments

(55 pairwise Wilcoxon tests, d.f. ¼ 29, all p , 0.001).

The performance benefit of cooperation B had different

effects on the level of cooperation depending on the selection

method used. The cooperation level increased with B in the

four treatments with PSM and TPSM t ¼ 0.8, 0.5, 0.2. By

contrast, in the five other treatments, the value of B had no

effect on the level of cooperation (figure 3, dashed line).

In all 11 treatments, the level of cooperation increased

with relatedness r (figure 3, solid line). However, there

were differences among treatments about the nature of the

transition from defection to cooperation. There was a thresh-

olding effect in the four treatments with RSM, TUSM t ¼ 0.8,

TUSM t ¼ 0.5 and TSM s ¼ 2 as the evolved populations con-

tained either defectors (for low values of r) or cooperators

(for high values of r). By contrast, in the seven other treat-

ments, the transition from defection to cooperation with the
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and to the right of the dashed line in (b). Defection was always under positive selection (irrespective of the proportion of cooperators and defectors in the popu-
lation) in conditions below solid line in (a), and to the left of the solid line in (b). Either cooperation or defection was under positive selection depending on
the proportion of cooperators in a population in conditions above the solid line and below the dashed line in (a), and to the right of the solid line and to
the left of the dashed line in (b) (compare with table 2). (Online version in colour.)
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increase of r was gradual. This was because the cooperation

level depended on combined effects of r and B (figure 4a,

PSM, TPSM t ¼ 0.8, 0.5, 0.2), and because polymorphic

populations evolved (figure 4a, TPSM t ¼ 0.8, 0.5, 0.2,

TUSM t ¼ 0.2, TSM s ¼ 3, 5).

For all treatments, the outcomes of the numerical exper-

iments were in good agreement with the predicted

conditions where cooperation should invade defection, and

vice versa (figure 4a,b). Cooperation level was low in con-

ditions where a population of defectors was predicted to be

resistant against the invasion of cooperation (figure 4a, area

below the solid line). By contrast, cooperation always went

to fixation in conditions where it was predicted to invade a

population of defectors and defection was not predicted to

invade a population of cooperators (figure 4a, area above

the dashed line). Finally, populations were polymorphic in

conditions for which both cooperation was predicted to

invade a population of defectors and defection was predic-

ted to invade a population of cooperators (figure 4a, TPSM

t ¼ 0.8, 0.5, 0.2, TUSM t ¼ 0.8, 0.5, 0.2 and TSM s ¼ 3, 5, inter-

section of the area below the dashed line and the area above

the solid line).
Despite the good agreement between formal analyses

and experimental results, there were few small discrepan-

cies. In contrast to the predicted conditions for evolution of

cooperation under TUSM (i.e. r . t), cooperation evolved

when r was slightly lower than t (i.e. r ¼ 0.78 instead of

0.8 with TUSM t ¼ 0.8, and r ¼ 0.46, 0.48 instead of 0.5

with TUSM t ¼ 0.5). Similarly, in contrast to the predicted

conditions for evolution of cooperation under TSM (i.e.

r . 1/s), cooperation evolved in conditions when r was

slightly lower than 1/s (r ¼ 0.48 instead of 0.5 with TSM

s ¼ 2). These small discrepancies stem from the effects of

mutation in finite populations, which relaxed the conditions

for evolution of cooperation with TUSM and TSM (see the

electronic supplementary material).

In all 11 treatments and in all conditions, the evolved

populations were stable. The only exception was under

TPSM with t ¼ 0.2 and TUSM with t ¼ 0.2 in conditions

with r ranging between 0.25 and 0.5 (see the electronic

supplementary material). Owing to the low value of the trun-

cation threshold in these two methods of selection, the number

of parents was small in relation to the population size. Low

effective population size has been shown to suppress selection,

http://rsif.royalsocietypublishing.org/
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and amplify random drift [12,71], which explains the instabil-

ity of the evolved populations. Interestingly, a high level of

relatedness (r . 0.5) prevented instability of populations.

Additionally, instead of replacing the entire population

of 1000 individuals at each of the 1000 generations, we used

the Moran process [70] to replace one individual at each

of the 1000� 1000 iterations. We found very good agreement

between the cooperation levels that evolved without and

with the generational overlap, for all treatments under all inves-

tigated conditions (compare the electronic supplementary

material, figure S2 and figure 4b).
J.R.Soc.Interface
11:20130743
4. Discussion
The results show that cooperation level is positively associated

with the relatedness level, regardless of the selection method

used. This supports the long recognized view [28,52,72] that

relatedness between individuals (or, in general, any kind of posi-

tive assortment between individuals of the same type [62,73])

facilitates the evolution of cooperation. However, the results

also show that selection methods regulate the evolution of

cooperation, by strengthening or relaxing the conditions in

which cooperation could evolve. For example, a significant

level of cooperation evolved in a wide range of conditions

under TPSM and TUSM with a low truncation threshold (t¼
0.2), and under TSM with high tournament size (s¼ 5). Because

low truncation threshold and high tournament size, both reflect

high selection pressure, this suggests that cooperation may orig-

inate more easily (i.e. with lower relatedness) in harsh

environments, or at the beginning of invasion events when the

population is not yet well adapted to the new environment.

The level of cooperation was also positively associated with

the benefits of cooperation on performance, but only under PSM

and TPSM. With the other selection methods, the value of the

performance benefit did not affect the cooperation level. This

is because, RSM, TUSM and TSM select the genomes of the indi-

viduals to the descending generation based only on the ranked

performance scores (i.e. whether one individual has a higher

performance score than the other). Thus, the effect of

cooperation on performance scores does not affect the likeli-

hood of individuals to contribute to the next generation under

RSM, TUSM and TSM, provided that the general relationship

B . C . 0 holds. Consequently, with non-PSMs all Prisoner’s

Dilemma games are equivalent for a given relatedness level,

and lead to the same evolutionary outcome. This result is con-

sistent with a previous report on a hawk–dove game played

in populations of unrelated individuals [49].

Our analyses also demonstrate that polymorphic popula-

tions evolve with TPSM, TUSM and TSM in some conditions.

In polymorphic populations, cooperation and defection

coexist simultaneously which is a sign of frequency-dependent

selection. The reproductive advantage of cooperators over

defectors depends on their proportion in the population. With

a low proportion of cooperators, they have the reproductive

advantage and increase in numbers. However, with a high pro-

portion of cooperators, they lose the reproductive advantage

and decrease in numbers. Overall, TPSM, TUSM and TSM act

in such conditions as balancing selection that stabilizes the

cooperation level at an intermediate value. Similar conclusions

were reached for cooperation evolving under selection in

ephemeral networks [74], which in fact resemble the tournament

selection method.
At this point, we should discuss the relatedness level r in a

broader context. Here, r was explicitly defined as the ‘surplus’

of probability that a focal individual meets an individual

which is using the same strategy (in comparison with random

expectation). The relatedness level can also be expressed as

r ¼ covðxi; yiÞ=varðxiÞ;where xi is the strategy of the ith individ-

ual, yi is the strategy of the social partner of the ith individual

and i enumerates over all individuals in the population. Thus,

in general, r measures any kind of assortment between individ-

uals of the same type relative to the population’s average, an

idea already put forward by Hamilton [73], and formalized

by Queller [75]. Intuitively, the relatedness level reflects the

amount of available information about the social partner that

the evolution can take advantage of [76]. Consequently, our

results extrapolate beyond the situations in which relatedness

is strictly due to assortative meetings.

To begin with, r might reflect identity by descent [28],

i.e. an assortative meeting of level r is as if the two social part-

ners shared a recent common ancestor with probability r
(assuming that, like in this paper, individuals are haploid).

Consequently, our r is equivalent to the haploid version

of the relationship coefficient that measures the average frac-

tion of genes identical by descent, as used by Hamilton

in the landmark paper on inclusive fitness [72]. Similarly,

the simple genetic structure of our population makes the

relatedness level r equivalent to Wright’s F-statistics, i.e.

F ¼ 1 2 o/e ¼ r, where o ¼ 2p(1 – r)(1 – p) is the fraction of

individuals that met an individual of an opposite strategy

under assortative meetings, and e ¼ 2p(1 – p) is the fraction

of individuals that would have met an individual of an oppo-

site strategy under completely random meetings with no

assortment ( p is the proportion of cooperators in a population).

So far, we have described the relatedness r as a popu-

lation’s statistic, but mechanistic interpretations pointing to

proximate causes of positive assortment are also possible.

Then, r might be interpreted in terms of learning by imitation

where an individual mimics the behaviour of its social part-

ner with probability r [48]. Alternatively, r might be linked

to migration in viscous populations, where with probability

r an individual does not migrate (and, thus, meets an individ-

ual of the same type) and with probability 1 – r it migrates

and, thus, meets a randomly chosen individual [77].

Despite these various interpretations of positive relatedness,

we must point out two limitations of our study. First, we did not

directly study the proximate causes of assortative meetings, as

our model dictates that they simply do happen with the given

probability r. It has been shown that different mechanisms

such as kin recognition, viscous populations and green-beard

genes facilitate the evolution of cooperation to different degrees

[78]. How these intrinsic differences between the mechanisms

interplay with the selection methods studied in this paper

remains an interesting avenue for future research. Second, we

did not consider the ultimate causes of assortative meetings, as

we did not evolve the relatedness level which was fixed across

generations. The question of how the relatedness co-evolves

with cooperation [77,79] is important and to a large degree still

open, but was outside the scope of this paper.

The remaining question is which method of selection to use

in digital evolution. The short answer is that the choice depends

on the purpose of the model. With PSM, the performance score

is equal to fitness, because fitness is linearly proportional to per-

formance scores (see the electronic supplementary material)

and because fitness is irrelevant to scaling [80]. Thus, digital

http://rsif.royalsocietypublishing.org/
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evolution using PSM directly corresponds to mathematical

models which usually simply use fitness values [63].

Truncation selection was proposed based on the obser-

vation that many biological processes display a thresholding

effect [12,14,13]. For example, only the rabbits with a run-

ning speed higher than a certain threshold value may escape

predators, survive and reproduce [12]. Fitness distributions

supporting the idea of truncation were observed in social

insects in the wild [81]. Overall, truncation selection methods

approximate natural selection by predation [82], when the

weakest are eliminated from the gene pool. They also resemble

to some extent a purifying selection, which removes deleterious

mutations [83]. From yet another perspective, selection with

truncation mimics competition for limited resources in highly

mobile species, such as the competition for nest sites in birds.

Finally TSM, which simulates direct competition in small

groups, resembles intrasexual selection where individuals of

the same sex directly compete between each other to repro-

duce, and unsuccessful competitors have few or no offspring

[67]. This method is also similar to selection in ephemeral net-

works (i.e. short-lasting groups in which individuals interact

and compete, which form in microbes, marine invertebrates,

annual plants and other organisms; see [74] for more details).
The measurement of fitness of organisms in the wild is

difficult, and there has been considerable discussion

about how to measure fitness in natural populations and

how to represent it mathematically [80]. Our formal analyses

and numerical experiments indeed show that each of the five

commonly used selection methods regulates the evolution of

cooperation in a distinct way. The difference in outcomes

between the selection methods stems from differences in

the mapping between performance and the relative contri-

bution of genotypes to the next generation. The actual

mapping between phenotype and fitness poses a great chal-

lenge for both evolutionists and ecologists, because it likely

depends on many factors such as the nature of intra- and

interspecific competition [84]. Consequently, the choice of a

selection method, although often marginalized, is a crucial

step in the modelling process as it has important implications

on the evolutionary outcome of the investigated traits.
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