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Abstract

Summary: The positional Burrows-Wheeler transform (PBWT) data structure allows for efficient haplotype data
matching and compression. Its performance makes it a powerful tool for bioinformatics. However, existing
algorithms do not exploit parallelism due to inner dependencies. We introduce a new method to break the
dependencies and show how to fully exploit modern multi-core processors.

Availability and implementation: Source code and applications are available at https://github.com/rwk-unil/parallel_

pbwt.
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1 Introduction

The positional Burrows—Wheeler transform (PBWT) data structure
allows for the development of efficient matching algorithms be-
tween haplotypes (Durbin, 2014). That is, the PBWT allows
matching in linear time relative to the number of haplotypes in-
stead of the quadratic time of a naive all-versus-all approach.
Another advantage is the impressive data compression rate made
possible by this data structure. This makes the PBWT, and associ-
ated algorithms, a core component of bioinformatics tools, such as
Beagle, Eaglelmp, GLIMPSE or XSI (Browning et al., 2021;
Rubinacci et al., 2021; Wertenbroek et al., 2022; Wienbrandt and
Ellinghaus, 2022), and bioinformatics courses (Gagie et al., 2022).
However, algorithms relying on the PBWT for processing haplo-
types over a genomic region exhibit a positional dependency, i.e.
the state of the structure at a given position (genomic locus)
depends on the previous position. This makes it hard to parallelize.
Others (Sanaullah ef al., 2021; Shakya et al., 2022; Wang et al.,
2023) have proposed methods to make PBWT algorithms more ef-
ficient but are still sequential. In this article, we introduce a
method to manage the dependency and split the problem for paral-
lel execution. We show that with this new method haplotype
matching algorithms can achieve a speed-up of up to 8x on a mod-
ern 12-core processor.

©The Author(s) 2023. Published by Oxford University Press.

2 Methods

The algorithms presented in Durbin (2014) for haplotype matching
and compression rely on two key internal data structures: the pos-
itional prefix array a; which represents the ordering of haplotypes at
position k and the divergence array d, which stores the position
where a haplotype differs from the previous one in the current order-
ing. (For definitions (see Durbin, 2014), the same nomenclature is
used here). The g, and d}, arrays for a position k are built from the
arrays of the previous position a;_; and d,_;. This dependency
propagates back until the initial arrays @y and dy which are given.
The positional prefix array ag represents the arbitrary order the hap-
lotypes come in from the input data, at each position the haplotypes
are reordered given the genotype they carry at that position, either a
0 (reference genotype) or a 1 (alternative genotype). So when gener-
ating a; all haplotypes with the reference genotype (0) at the first
position (k=0) come before those that have an alternate genotype
(1) at position k= 0. This is equivalent to a radix sort (also known
as digital sort or bucket sort). Therefore, at each position k, the k
previous genotypes (reverse prefix) dictate the position of that
haplotype. The divergence array dy, is generated at the same time by
keeping track of at which position k, previously matching haplo-
types stop matching (do not share the same genotype anymore).
These two arrays are key in PBWT-based algorithms for matching
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Algorithm 1: Correction of positional prefix and divergence
arrays ay, dj, between start and stop given previous arrays
Ap—p, dip

Initialization, create array arr[stop — start]|
for i := start to stop — 1 do
artli — start] := a; ! [a[i]]
end
sort (arr)
for i := start to stop — 1 do
agli] == ag_plarr|i — start])
end
for i := start + 1 to stop — 1 do
scan_start := arr[i — start — 1] + 1
scan.stop := arr[i — start] + 1
dp|i] = max_element(d;_p[scan_start : scan_stop])
end

Algorithm 2: Correction of positional prefix and divergence
arrays ay, dj given correct previous arrays a;_p, dp_p

initialization, create array a;',[M], group_index: = 0
// Fill a !, array, reciprocal of a;_;, array
fori:=0to M — 1 do
aitylarpli]] =i
end
/I Tterate over the divergence array to find and fix matching
groups for i:=0to M — 1 do
if d[i] # p then
if i — group_index > 1 then
Algorithm 1 with start := group_index and stop := i
end
group_index: = i
end
end
if M — group_index > 1 then
Algorithm 1 with start := group_index and stop := M

end

or compression. To start processing at an arbitrary position k the
arrays a;, and d, must be known (iteratively computed from the
starting position 0 up to k). This dependency makes it difficult to
split a genomic region with N loci, k € [0, N[ between separate
threads for parallel processing.

2.1 Splitting the genomic region and breaking the
dependency

A key observation is that if we generate a;, and dj, from a previous pos-
ition k — b (over a chunk of b previous loci, b < k) with initial arrays
ap and d},_, (an array filled with the value k — b) instead of the actual
arrays dy,_;, and dj_y, then for all haplotypes, except the ones that are
identical over k — b to k, the computed values in the a;, and dj, arrays
will be correct. That is, as if computed from the start, i.e. starting at
k=0 with ay and dy and iterating over k loci instead of only b loci.
This means we have an approximated version of a;, and dj, that can
only have wrong values for groups of identical haplotypes over the
chunk of b loci. For a because they cannot be ordered given the b
observed loci and for d because they differ at a loci before k& — b.

Algorithm S: Sequential PBWT-based algorithm

Constants: N: #genotype loci, M: #haplotypes
Initialization, ap=10,1,2,...,M—1] and
dO = [0770]
for k := 0 to N do

Run matching [e.g. Algorithm 3 or 4 from Durbin (2014)]
or compression step

create array

Generate gy 1 and dj from a; and dj,
end

Algorithm P: Parallel PBWT-based algorithm

Constants: N: #genotype loci, M: #haplotypes, T: #threads
b = N/T//Chunk size
/I A: Parallel generation of approximate a and d arrays
Launch T — 1 threads with Algorithm 2 from Durbin (2014)
for b steps starting from positions k € {0,b,2b,3b,...,(T —
2)*xb}  with a,=100,1,2,....M—1] and
dp = [k,..., k]
that will generate the approximate a; and d; arrays (with
i€ {b,2b,3b,...,(T—1)xb})
/I B: Sequential correction of the approximate arrays 4;, d;
fort:=1toT —1do

join(thread ?)

if £>1 // (Note: a, dy, are already correct) then

Algorithm 2: correct a,, and d,;, with a,_1), and d(;_1),,
end

arbitrary

end

/I C: Parallel run of matching Algorithm 3 or 4

Launch T threads running Algorithm S with e.g. Algorithm 3
or 4 from Durbin (2014) for b steps starting from positions
k€ {0,b,2b,3b,...,(T — 1) * b} with the now available and
correct ay, dj arrays

Because dj,_, was initialized with k& — b the condition di[i] =k — b
lets us know for which indices i the values of a; and dj, might be
wrong. Keypoint: The correction of arrays a; and dj, computed from
position k — b (b steps) with ag and d},_, instead of a;_;, and dj,_;, can
be done in a single step if the correct a;,_;, and dj_;, are known.
Strategy: It is possible split the genomic region of N loci into ¢ chunks
of b = N/t loci for ¢ threads to handle in parallel. Each thread can
compute the approximated gy, and dj, arrays (end of the chunk) from
the position k — b (start of the chunk), with ag and d},_, instead of the
actual arrays for the start of each chunk. The a; and d,, arrays at the
end of the first chunk will be correct because the first chunk is sup-
posed to start with gy and dy (note, dj, = dy). Then, we can use the
keypoint above to correct the remaining ¢ — 1 @ and d arrays in¢ — 1
sequential steps. Because ¢ will typically be small (e.g. 2—-64 threads),
the number of steps executed sequentially is small compared to the
total number of steps N (e.g. in the millions). Also, the bigger the
chunk the smaller the chance to have identical haplotypes, the less
time will be required to correct the @ and d arrays. Once the ¢ arrays
are generated the heavier algorithms (matching, compression, etc.)
can be launched in parallel with # threads. The process is illustrated in
the Supplementary Figures SP1-SP4.

2.2 Algorithms to correct approximated a and d arrays
The method to correct a and d is decomposed into two algorithms;
Algorithm 1 shows how to fix a; and dj, between a start and stop
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index, given the arrays at k — b. The start and stop indices represent
a group of identical haplotypes over loci & — b to k. To rearrange
the haplotypes in a; between start and stop, they require to follow
the order given in aj_;,. To do so, the positions of the haplotypes in
the previous chunk are looked up in a;!,, which is the inverse of the
positional prefix array a;_;, (see Algorithm 2). These positions are
then sorted in incremental order and finally the correct order is set
in gy, by referring to the haplotype number in aj_; given the incre-
mentally sorted indices.

Now that the group of identical haplotypes are ordered correctly
(correct values in ag), we need to fix the divergence values, the first
value at position start will already be correct because it refers to the
previous non-matching haplotype. For the other values, they now need
to be updated to reflect the divergences in the previous chunk given the
corrected ordering. Although the haplotypes are grouped together in
the current chunk, they might have other haplotypes in between them
in the previous chunk. This requires to scan for the biggest value of d
between the previous haplotype and the current one referring to the
ordering in the previous chunk, similarly to what is done with p, g of
Algorithm 2 presented in Durbin (2014).Algorithm 2 allows to deter-
mine groups of matching haplotypes over k& — b to k and calls
Algorithm 1 to fix the values in a; and dj.. To do so Algorithm 2 has to
generate the array a;',, which is required for Algorithm 1. This is
done by looping through all entries of a;_; which are haplotype identi-
fiers, so if a,_;,[0] = id, it means the first haplotype is id,, therefore
ap!,lidy) = 0. So a maps positions to identifiers and a~!' maps identi-
fiers to positions. Then Algorithm 2 iterates over the d array keeping
track of haplotype groups matching over k — b to k, for each of such
groups it will call Algorithm 1 to correct the a and d arrays.

Algorithm 2 is used to sequentially correct the approximate a
and d arrays generated in parallel with the strategy proposed in
Section 2.1 (see Algorithm P in Section 2.3). A step-by-step example
of the execution of Algorithms 1 and 2 is provided in the
Supplementary Materials and illustrated with Supplementary
Figures S1 and S2.

2.3 From sequential to parallel algorithm

The sequential PBWT-based algorithms can be summarized with
Algorithm S which loops over all N genotype loci and alternates be-
tween updating the @ and d arrays and running the matching algo-
rithm or compression step.Our parallel implementation is described
in Algorithm P. The algorithm relies on the keypoint and strategy pre-
sented above. The algorithm starts by a parallel step to generate the
approximate a and d arrays, then runs a small sequential loop to cor-
rect these arrays with Algorithm 2 presented above. Finally, it
launches T threads that will each run Algorithm S with the heavier
matching or compression algorithms. Each thread handles a chunk of
the genomic region starting at positions k € {0,5,2b,3b, ..., (T —
1) - b} with the now available and correct a;, d), arrays (instead of a
single thread running Algorithm S over the whole genomic region
starting at k=0 with a¢ and dj and finishing at N).

2.4 Time and space complexity analysis
The worst case time complexity of Algorithm 1 relative to M input
haplotypes (if all haplotypes match from k& — b to k, with a and d
that require to be corrected) is quasilinear, O(M log M). Algorithm 1
can be split in four steps, three loops and one sorting algorithm: The
first two loops iterate over the matching haplotypes so they are
O(M). The sort is O(MlogM) because it is implemented with a
merge sort (Knuth, 1975). The last loop may look like it could have
quadratic complexity because of the inner max element look-up, but
it has not. The number of look-ups for the combined max elements
is bounded by the number of haplotypes, because the array arr is
comprised of sorted positions we have 0 < scanstart <
scan_stop < M and ) ;(scan_stop — scan_start) is bounded by M,
therefore the number of look-ups in this loop is O(M).

The worst case time complexity of Algorithm 2 relative to M in-
put haplotypes is quasilinear O(MlogM). Algorithm 2 has two

main parts: first, it generates a; ', which is done in M steps, there-
fore it is O(M). Second, it has to apply Algorithm 1 to a number of
matching haplotype groups. The time complexity of Algorithm 1 is
dominated by the sorting step which is O(Mlog M). The worst case
time complexity of the second part of Algorithm 2 is also
O(Mlog M), because either all haplotypes match and we have a sin-
gle group of size M to sort (apply Algorithm 1), or we have a given
number of smaller groups to sort. Because the sum of the group sizes
is bounded by M, running a number of smaller sorts will require a
lower or equal asymptotic number of steps than sorting all the hap-
lotypes (e.g. apply Algorithm 1 to M groups of size 1). Therefore,
the worst case time complexity of running Algorithm 2 is
O(Mlog M).

The space complexity is O(M) because a constant number of
arrays of size M is required and the merge sort also has linear space
complexity (Knuth, 1975).

The PBWT algorithms for matching and compression have a
worst case time complexity of O(NM) where N is the number of
genotype loci and M the number of haplotypes. Our parallel version
will have a worst case time complexity of O(NM/T + TMlog M)
where T is the number of threads. The added O(TM log M) quasilin-
ear complexity is negligible compared to the gains we have by divid-
ing NM by T. For example, with data from (1000 Genomes Project
Consortium and others, 2015): N > 88,000,000, M =5008, and T
will typically be small (e.g. 2-64 threads).

3 Results

We applied the strategy above on two haplotype matching algo-
rithms from Durbin (2014) and implemented them as the parallel
implementation shown in Algorithm P: Algorithm 3 which reports
all matches between haplotypes above a given length and Algorithm
4 which reports all set-maximal matches between haplotypes.
Figure 1 shows the runtime of the original single-threaded algorithm
(Algorithm S) and its multi-threaded counterparts (Algorithm P) for
different number of threads # on data from (1000 Genomes Project
Consortium and others, 2015). With an AMD 3900X processor.
The multi-threaded implementations achieve a speed-up of 7x and
8.37x on Algorithms 3 and 4 respectively running with 12 threads.
Results on the Human Reference Consortium data (McCarthy et al.,
2016) are available in the Supplementary Materials (with a similar
speed-up of 7.04x and 8.16x for 12 threads), as well as an example
application that implements the matching algorithms and reports
the results to a file to allow a direct comparison to the original soft-
ware from Durbin (2014). The Supplementary Materials also pro-
vide a comparison between generating the a and d arrays
sequentially with Algorithm 2 from Durbin (2014) against our par-
allel implementation with sequential correction (Algorithms 1 and
2) presented here (Sections A and B of Algorithm P) for different
number of threads. Supplementary Figure SPS shows that the paral-
lel version followed by the sequential correction can provide a
speed-up of up to 10.94x when generating the a and d arrays.

4 Discussion

In this article, we have presented a method and two algorithms that
allow parallel execution of PBWT-based haplotype matching algo-
rithms. The method allows to exploit modern multi-core processors
and has shown a 7x-8.37x reduction in execution time with 12
threads compared to the single-threaded version. For PBWT-based
compression, some methods break the per loci dependency by design
for better random access performance (e.g. Wertenbroek er al.,
2022). Therefore, these algorithms can be multi-threaded directly.
However, compression methods that do not break this dependency
(e.g. Deorowicz and Danek, 2019; Durbin, 2014; LeFaive et al.,
2021; Li, 2016) could be accelerated by the presented methods.
Beside these results, the @ and d arrays could be saved to a file so
that subsequent runs of the algorithms could be launched in parallel
directly and now these arrays can be generated efficiently in parallel
thanks to Algorithms 1 and 2 presented here, with up to a 10.94 x
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Algorithm 3 : Report Long Matches

| | Algorithm 4 : Report Set Maximal Matches
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Fig. 1. Runtime and speed-up of Algorithms 3 and 4 from Durbin (2014) and their parallel implementations running on a 12-core AMD 3900X processor (each run 10 times).
Algorithm 3 reports all matches longer than 2000 genotypes (loci) between all haplotypes, Algorithm 4 reports the set maximal matches between all haplotypes. Data are
chromosome 20 from (1000 Genomes Project Consortium and others, 2015) 5008 haplotypes, 1 822268 genotype loci

reduction in time. Algorithm 2 also exhibits another interesting
property: it provides the indices of groups of haplotypes that are
identical over a large genomic chunk. This information could be
leveraged to speed up PBWT-based methods, e.g. (Hofmeister et al.,
2022), by treating the whole group as a single haplotype block and
avoid redundant computations.
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