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Abstract. In a weighted spatial network, as specified by an exchange
matrix, the variances of the spatial values are inversely proportional to
the size of the regions. Spatial values are no more exchangeable under in-
dependence, thus weakening the rationale for ordinary permutation and
bootstrap tests of spatial autocorrelation. We propose an alternative
permutation test for spatial autocorrelation, based upon exchangeable
spatial modes, constructed as linear orthogonal combinations of spatial
values. The coefficients obtain as eigenvectors of the standardised ex-
change matrix appearing in spectral clustering, and generalise to the
weighted case the concept of spatial filtering for connectivity matrices.
Also, two proposals aimed at transforming an acessibility matrix into a
exchange matrix with with a priori fixed margins are presented. Two ex-
amples (inter-regional migratory flows and binary adjacency networks)
illustrate the formalism, rooted in the theory of spectral decomposition
for reversible Markov chains.
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Permutation tests of spatial autoccorelation are justified under exchangeabil-
ity, that is the premise that the observed scores follow a permutation-invariant
joint distribution. Yet, in the frequently encountered case of geographical data
collected on regions differing in importance, the variance of a regional score is ex-
pected to decrease with the size of the region, in the same way that the variance
of an average is inversely proportional to the size of the sample in elementary
statistics: heteroscedasticity holds in effect, already under spatial independence,
thus weakening the rationale of the celebrated spatial autocorrelation permu-
tation test (e.g. Cliff and Ord 1973; Besag and Diggle 1977) in the case of a
weighted network.

This paper presents an alternative permutation test for spatial autocorre-
lation, whose validity extends to the weighted case. The procedure relies upon
spatial modes, that is linear orthogonal combinations of spatial values, originally
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based upon the eigenvectors of the standardized connectivity or adjacency ma-
trix (Tiefelsdorf and Boots 1995; Griffth 2000). In contrast to regional scores,
the variance of the spatial modes turn out to be constant under spatial indepen-
dence, thereby justifying the modes permutation test for spatial autocorrelation.

Section 2.1 presents the definition of the local variance and Moran’s I in the
arguably most general setup for spatial autocorrelation, based upon the nor-
malised, symmetrical exchange matrix, whose margins define regional weights
(Bavaud 2008a). Section 2.2 presents, in the spirit of spatial filtering (Griffth
2000), the spectral decomposition of the exchange matrix, or rather of a stan-
dardised version of it, currently used in spectral graph theory (Chung 1997; von
Luxburg 2007; Bavaud 2010), supplying the orthogonal components defining in
turn the spatial modes. Section 2.3 presents the mode permutation test, and its
bootstrap variant, illustrated in section 2.4 on Swiss migratory and linguistic
data.

Section 3 addresses the familiar case of binary or weighted adjacency matri-
ces, which have to be first converted into exchange matrices with a priori fixed
margins. Two proposals, namely a simple rescaling with diagonal adjustment
(Section 3.1) and the construction of time-embeddable exchange matrices (Sec-
tion 3.2) are presented, and illustrated on the popular “distribution of Blood
group A in Eire” dataset (Section 3.3).

2 Spatial autocorrelation in weighted netwoks

2.1 Local covariance and the exchange matrix

Consider a set of n regions with associated weights fi > 0, normalized to∑n
i=1 fi = 1. Weights measure the importance of the regions, and define weighted

regional averages and variances as

x̄ :=

n∑
i=1

fixi var(x) :=

n∑
i=1

fi(xi − x̄)2 =
1

2

∑
ij

fifj(xi − xj)2 . (1)

Here x = (xi) represents a density variable or a spatial field, that is a numerical
quantity attached to region i, transforming under aggregation i, j → [i ∪ j] as
x[i∪j] = (fixi + fjxj)/(fi + fj), as for instance “cars per inhabitants”, “average
income” or “proportion of foreigners”.

The last identity in (1) is straightforward to check (Lebart 1969), and shows
the variance to measure the average squared dissimilarity between pairs (i, j) of
regions, selected independently with probability fifj . A more general sampling
scheme consists in selecting the regional pair (i, j) with probability eij , such that

eij ≥ 0 eij = eji ei• :=
∑
j

eij = fi e•• = 1 (2)

where ”•” denotes the summation over the replaced index. A n × n matrix
E = (eij) obeying (2) is called an exchange matrix (Berger and Snell 1957;
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Bavaud 2008a), compatible with the regional weights f . The exchange matrix
defines an undirected weighted network, with edges weights eij and regional
weights fi = ei•. It contains loops in general (eii ≥ 0), denoting regional self-
interaction or autarachy (Bavaud 1998).

By construction, the exchange matrix generates a reversible Markov transi-
tion matrix W = (wij) (Bavaud 1998) with stationary distribution f :

wij :=
eij
fi
≥ 0

∑
j

wij = 1
∑
i

fiwij = fj fiwij = fjwji = eij . (3)

W constitutes a row-normalized matrix of spatial weights, entering in the au-
toregressive models of spatial econometrics (see e.g. Anselin 1988; Cressie 1993;
Leenders 2002; Haining 2003; Arbia 2006; LeSage and Pace 2009).

In spatial applications, the components of the exchange matrix are large for
nearby regions and small for regions far apart. The quantity

varloc(x) :=
1

2

∑
ij

eij(xi − xj)2 (4)

defines the local variance, that is the average squared dissimilarity between neigh-
bours. Comparing the local and the ordinary (weighted) variance defines Geary’s
c and Moran’s I, measuring spatial autocorrelation (e.g. Geary 1954; Moran
1950 ; Cliff and Ord 1973; Tiefelsdorf and Boots 1995; Anselin 1995). Namely,
c(x) := varloc(x)/var(x) (differing from its usual variant by a factor n/(n − 1))
and

I(x) := 1− c(x) =
var(x)− varloc(x)

var(x)
=

∑
ij eij(xi − x̄)(xj − x̄)∑

i fi(xi − x̄)2
.

2.2 Spatial filtering and spatial modes

Spatial filtering primarily aims at visualizing and extracting the latent factors in-
volved in spatial autocorrelation (Tiefelsdorf and Boots 1995; Griffith 2000, 2003;
Griffith and Peres-Neto 2006; Chun 2008; Dray 2011; and references therein).

Its first step consists in spectrally decomposing a matrix expressing inter-
regional connectivity in some way or another, such as the adjacency matrix or the
exchange matrix. Various choices are often equivalent under uniform weighting
of the regions, but the general weighted case calls for more precision. Arguably,
the most fruitful decomposition considers the so-called standardized exchange
matrix Es, with components (Chung 1997, von Luxburg 2007; Bavaud 2010)

esij =
eij − fifj√

fifj
i.e. Es = Π−

1
2 (E − ff ′)Π− 1

2 with Π = diag(f) . (5)

Its spectral decomposition

Es = UΛU ′ with U = (uiα) orthogonal and Λ = diag(λ) diagonal
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generates a trivial eigenvalue λ0 = 0 associated with the trivial eigenvector
ui0 =

√
fi. The remaining non-trivial decreasingly ordered eigenvalues λα (for

α = 1, . . . , n − 1) lie in the interval [−1, 1], as a consequence of the Perron-
Froebenius theorem and the symmetry of Es.

Also, λ1 = 1 iff E is reducible, that is consisting of two or more disconnected
components (Figure 1), and λn−1 = −1 iff E is bipartite, i.e. partitionable into
two sets without within connections (e.g. Kijima 1997; Aldous and Hill 2002).

Fig. 1. Reducible network, with λ1 = 1 (left) and bipartite network, with λn−1 = −1
(right)

The exchange matrix itself expresses as

eij = fifj +
√
fifj

n−1∑
α=1

λαuiαujα = fifj [1 +
∑
α≥1

λαciαcjα] (6)

where the raw coordinates

ciα :=
uiα
ui0

=
uiα

±
√
fi

can be used at visualizing distinct levels of spatial autocorrelation (Griffith 2003),
or at specifying the positions of the n regions in a factor space (Bavaud 2010).

Raw coordinates are orthogonal and standardized, in the sense∑
i

ficiα = δα0
∑
i

ficiαciβ = δαβ . (7)

As a consequence, the n regional values x can be converted into n modal values
x̂, and vice-versa, as

x̂α :=
∑
i

ficiαxi xi =
∑
α≥0

ciαx̂α = x̄+
∑
α≥1

ciαx̂α . (8)

Equations (8) express orthogonal, Fourier-like correspondence between regional
values and modes. The latter depict global patterns, integrating the contributions
from all regions. In particular, the trivial mode yields the field average: x̂0 = x̄.

Borrowing an analogy from solid-state Physics, the spatial field x can describe
the individual displacements of each of the n atoms of a crystal. The modes x̂
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then provide global parameters describing the collective motion of atoms, con-
sisting of a superposition of sound waves or harmonics, whose specific eigen-
frequencies are determined by the nature of the crystal, and whose knowledge
permit to reconstruct the individual atomic displacements.

2.3 The modes permutation test

2.3.1 Heterodasticity of the spatial field The hypothesis H0 of spatial in-
dependence requires the covariance matrix of the spatial field X = (X1, . . . , Xn)
to be diagonal with components inversely proportional to the spatial weights,
that is of the form (see the Appendix)

σij = Cov(Xi, Xj) = δij
σ2

fi
where σ2 = Var(X̄) . (9)

In its usual form, the direct or regional permutation test compares the ob-
served value of Moran’s I(x) to a set of values I(π(x)), where π(x) denotes a
permutation (that is a sampling without replacement) of the n regional values
x (e.g. Cliff and Ord 1973; Thioulouse et al. 1995; Li and al. 2007; Bivand et al.
2009a). Sampling with replacement, generating bootstrap resamples can also be
carried out.

Both procedures are justified by the fact that the spatial variables Xi are
identically distributed under H0. Yet, (9) shows the latter assertion to be wrong
whenever the regional weights differ, thus jeopardizing the rationale of the direct
approach, based upon the permutation or the bootstrap of regional values.

The possible heteroscedasticity of regional values has been addressed by quite
a few researchers, in particular in epidemiology, and various proposals (transfor-
mations of variables or weights, reformulations in terms of residuals, Bayesian
approaches) have been investigated (see e.g. Waldhör 1996, Assunção and Reis
1999 or Haining 2003).

2.3.2 Homoscedasticity of the spatial modes As annouced in the intro-
duction, this paper proposes a presumably new modal test, identical in spirit to
the direct test but based upon modes permutation, together with a variant based
upon modes bootstrap. Its existence results from two fortunate circumstances (see
the Appendix), namely i) the homoscedasticity of the modes under H0

σ̂αβ := Cov(X̂α, X̂β) = δαβ σ
2 with X̂α =

∑
i

fi ciα Xi (10)

and ii) the simplicity of Moran’s I expression in terms of spatial modes, which
reads

I(x) ≡ I(x̂) =

∑
α≥1 λαx̂

2
α∑

α≥1 x̂
2
α

. (11)

As expected, the trivial mode x̂0 = x̄ does not contribute to Moran’s I. Under
H0, its expectation and variance under all remaining (n− 1)! non-trivial modes
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permutations read (see the Appendix)

Eπ(I | x̂) =
1

n− 1

∑
α≥1

λα =
trace(W )− 1

n− 1
≥ −1

n− 1
(12)

Varπ(I | x̂) =
s(x̂)− 1

(n− 1)(n− 2)
[
∑
α≥1

λ2α −
1

n− 1
(
∑
α≥1

λα)2] (13)

where

s(x̂) := (n− 1)

∑
α≥1 x̂

4
α

(
∑
α≥1 x̂

2
α)2
≥ 1

is a measure of modes dispersion.

2.3.3 The test The modes autocorrelation test consists in refuting H0, which
denies spatial dependence, if the value (11) of I(x̂) is extreme w.r.t. the sample
{I(π(x̂))} of B permuted or boostrapped mode values, that is if its quantile is
near 1 (evidence of positive autocorrelation) or near 0 (negative autocorrelation).

As expected, the trivial mode x̂0 = x̄ does not contribute to Moran’s I.
Also, I(x) together with its permuted or boostrapped values lie in an interval
comprised in [λn−1, λ1] ⊆ [−1, 1]. The interval reduces to a single point I(π(x̂)) ≡
I0, invariant under permutations or boostraping, with a corresponding variance
(13) of zero, thus ruining the autocorrelation test, if (see 11, 13):

a) s(x̂) = 1, that is x̂2α ≡ x̂2 or equivalently x̂α ≡ εα x̂, where x̂ ∈ R and
εα = ±1 for all α ≥ 1. Following (8), this occurs for “untestable” spatial
fields of the form xi = x̄ + x̂zi where zi =

∑
α≥1 εαuiα/ui0 actually defines

a set of 2n−1 configurations depending on the choice of the εα, whose sign is
arbitrary, as is the sign of the eigenvectors uα.
Noticeably, the constant field xi ≡ x̄ is untestable, with a value I(x) =
0/0 not even defined. However intriguing, the empirical relevance of those
“untestable” spatial fields is debatable, in view of the vanishing probability
to encounter exactly such a spatial pattern.

b) λα ≡ λ for all α ≥ 1, as with the :

i) frozen networks E := E(0), where e
(0)
ij := fiδij is the disconnected

graph1, associated to the immobile Markov chain with λα ≡ 1 and
I(x) ≡ 1 (Figure 2 left)

ii) or as with the perfectly mobile networks E := E(∞), where e
(∞)
ij :=

fifj is the complete weighted graph, free of distance-deterrence effects,
associated to the memoryless Markov chain with λα ≡ 0 and I(x) ≡ 0
(Figure 2 middle)

1 Here the notations match the higher-order discrete time extensions of the exchange
matrix, resulting (under weak regularity conditions) from the iteration of the Markov
transition matrix as

E(r) := ΠW r E(0) = Π E(2) = EΠ−1E E(∞) = ff ′ .
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as well as with their linear combinations E := aE(0) + (1 − a)E(∞). Also,
networks made of n = 2 regions are untestable: they automatically satisfy
b) and a) above (Figure 2 right).

Under the additional normal assumption X̂α ∼ N(0, σ2) for α ≥ 1, one can
show E(s(x̂)) = 3(n − 1)/(n + 1) by the Pitman-Koopmans theorem (Cliff and
Ord 1981 p.43) and hence

E(Varπ(I | x̂)) =
2

n2 − 1
[
∑
α≥1

λ2α −
1

n− 1
(
∑
α≥1

λα)2]

=
2

n2 − 1
[tr(W 2)− 1− (tr(W )− 1)2

n− 1
] . (14)

Fig. 2. Moran’s I(x) is constant, independent of the value of the field x for the dis-
connected or frozen network (left), for the fully connected or perfectly mobile network
(middle), and their linear combinations. Its minimum I(x) ≡ −1 occurs for the loopless
network with n = 2 (right).

2.4 Illustration: Swiss migratory and linguistic data

Flows constitute a major source of exchange matrices (e.g. Goodchild and Smith
1980; Willekens J. 1983; Fotheringham and O’Kelly, M.E. 1989; Sen and Smith
1995; Bavaud 1998, 2002). Let nij(T ) denote the number of units (people, goods,
matter, etc.) initially in region i and located in region j after a time T . Quasi-
symmetric flows are of the form nij = aibjcij with cij = cji, as predicted by
Gravity modelling. They generate reversible spatial weights wij := nij/ni•, with
stationary distribution fi, whose product fiwij defines the exchange matrix eij
(Bavaud 2002).

Consider the inter-regional migrations data nij(T ) between the n = 26 Swiss
cantons for T = 5 years (1985-90), together with the spatial fields x = “proportion
of germanophones” or x = “proportion of anglophones”, for each canton. After
determining the quasi-symmetric ML estimates n̂ij (Bavaud 2002), the exchange
matrix is computed, and so are the spatial modes x̂α from (8) and Moran’s
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index I(x̂) from (11). Figure 3 depicts the distribution of 10′000 permutation
and boostrap resamples of I(π(x̂)), from which the bilateral p-values of Table 1
can be computed (see Section 3.2 for the details).
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Fig. 3. Permutation (above) and bootstrap (below), modal (red) and regional (blue)
testing of the ”migation-driven” spatial autocorrelation among germanophones (left)
and anglophones (right). B = 10′000 samples are generated each time, and compared
with the observed I, marked vertically.

Most people do not migrate towards other cantons in five years, thus making
the exchange matrix “cold” (that is close to the frozen E(0)), with a dominating
diagonal, accounting for the high values of I and Eπ(I) in Table 1.

Swiss native linguistic regions divide into German, French and Italian. Mi-
grants tend to avoid to cross the linguistic barriers, thus accounting for the
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germanophones anglophones

I 0.962 0.924
Eπ(I) 0.917 0.917

Varπ(I|x̂) 0.00044 0.000082
z 2.13 0.74

s(x̂) 11.29 2.90

germanophones anglophones

modal permutation .0006 .048
regional permutation .0002 .075

modal bootstrap .0036 .46
regional bootstrap .0004 .76

Table 1. Left: observed I, its modal permutation expectation (12) and variance (13)
together with the z-value z := (I − Eπ(I))/

√
Varπ(I|x̂) and s(x̂) in (13). Right: p-

values associated to the modal and direct autocorrelation test, in their permutation
and bootstrap variants.

spatial autocorrelation of “germanophones” (Table 1, right). Detecting spatial
patterns in the anglophones repartition is, as expected from the above migra-
tory scheme, less evident.

Bootstrap tests (modal or regional) appear here less powerful than permu-
tation tests - a possibly true conjecture in general (Corcoran and Mehta 2002;
Janssen and Pauls 2005).

Modal autocorrelation tests of “anglophones” seem more sensitive than their
regional conterparts, while the opposite holds for “gemanophones”: the usual
test of autocorrelation underestimates the dispersion of the resampled values of
I(π(germanophones)) (Figure 3, left), thus inflating the risk of type I errors for
size-unadjusted Moran’s I, in accordance with the simulation results of Assunção
and Reis (1999).

3 Adjacency graphs and accessibilities

Very commonly, space is defined by a binary, off-diagonal and symmetric con-
nectivity or adjacency matrix n×n matrix A = (aij), specifying whether distinct
regions i and j are direct neighbours (aij = 1) or not (aij = 0). This scheme
can also, as in gravity modelling, be extended to “weighted adjacencies” or ac-
cessibilities aij = f(dij) defined by a non-negative distance deterrence function
f(dij) decreasing with the distance dij between distinct regions i and j.

In the sequel, we consider accessibility matrices with aij ≥ 0, aij = aji and
aii = 0, with the interpretation that distinct regions i and j are direct neighbours
iff aij > 0. By construction, the three quantities

εij =
aij
a••

κij =
aij
ai•

σi =
ai•
a••

= εi• (15)

respectively constitute an exchange matrix, its associated transition matrix and
the stationary distribution, proportional to the (possibly weighted) number of
neighbours or degree.

Although the series of steps of Section 2 can be wholly carried out by adopting
ε := (εij) as the reference exchange matrix, this procedure reveals itself far form
satisfactory in general: exchanges between non-adjacent regions are precluded,
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as are the diagonal exchanges, thus mechanically generating negative eigenvalues
in view of 0 = trace(εs) = 1 +

∑
α≥1 λα. Even worse, the normalized degree

σ in (15), reflecting the regions centrality, strongly differs in general from the
regions weights f , reflecting their importance: a densely populated region can
be weakly connected to the rest of the territory, and inversely.

Proposals A and B below aim at converting an accessibility matrix A into
an exchange matrix E with given margins f , while keeping the neighborhood
structure expressed by A as intact as possible.

3.1 Proposal A: simple rescaling with diagonal adjustment

Define the symmetric exchange matrix

eij :=

{
Cbibjaij if i 6= j
hi otherwise.

(16)

where C, b and h are non-negative quantities obeying the normalisation condition
(recall aii = 0)

Cbi
∑
j

aijbj + hi = fi for all i. (17)

By construction, ei• = fi and, for i 6= j, eij = 0 whenever aij = 0.
An obvious choice, among many possibilities, consists in defining b as the first

normalised eigenvector of the accessibility matrix A, that is obeying Ab = µb,
where µ > 0 is the largest eigenvalue of A, and b (normalised to

∑
i b

2
i = 1)

is non-negative by the Perron-Froebenius theorem on non-negative matrices. bi
(or b2i ) is a measure of relative centrality of region i, sometimes referred to as
eigenvector centrality in the social networks literature.

Condition (17) becomes Cµb2i + hi = fi, implying C = (1 − η)/µ, where
the quantity η :=

∑
i hi fixes the diagonal parameters to hi = fi − (1 − η)b2i ,

and ranges in η ∈ [H, 1] to insure the non-negativity of C and h, where H :=
1−mini(fi/b

2
i ) ≥ 0.

The free parameter η controls the “autarchy of the network”: in the limit
η → 1, one recovers the frozen network of Section 2.3.3, while η → H yields
at least one region with eii = 0. Note that eii = 0 cannot hold for all regions,
unless b ≡

√
f precisely, in which case H = 0.

3.2 Proposal B: time-embeddable exchange matrices

The second proposal is based upon the observation that κij in (15) constitutes a
jump transition matrix, defining the probability that j will be the next, distinct
region to be visited after having been in region i (recall κii = 0). Suppose in
addition that, once arrived in j, the state remains in j for a certain random
time tj with cumulative distribution function Fj(t), with average waiting time
or sojurn time τj =

∫
t dFj(t). This set-up precisely defines a so-called semi-

Markov process (e.g. Çinlar 1975, Barbu and Limnios 2008).
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Together, the stationary distribution σj (15) of the jump transition matrix
κij and the sojurn times τj determine the fraction of time spend in region j,
that is the regional weight fj , as (see e.g. Bavaud 2008b)

fj =
σjτj
τ

where τ :=
∑
j

σjτj or equivalently
1

τ
=
∑
j

fj
τj

. (18)

Furthermore, requiring exponentially distributed random times tj ensures the
semi-Markov process to be continuous or time-embeddable, that is of the form
W (t) = exp(tR) (matrix exponential) where R = (rij) is the n×n rate transition
matrix, with components rij = (κij − δij)/τi. In particular,∑

j

rij = 0
∑
i

fi rij = 0 . (19)

The existence of transition matrices W (t) = (wij(t)) defined for any continuous
time t ≥ 0, rather than limited to integer values t = 0, 1, 2, . . ., characterises time-
embeddable Markov chains. The symmetry of the associated exchange matrices
eij(t) := fi wij(t) follows from the reversibility of W (t), itself insured by the
reversibility of the jump matrix.

In summary, proposal B considers the adjacency matrix A as an infinitesimal
generator of the exchange matrix E; tuning the freely adjustable sojurn times τj
in (18) permits to transform any degree distribution σ into any given regional
weights f , as required.

To achieve the pratical, numerical construction of the time-embeddable ex-
change matrix E(t), consider the “standardised rate matrix” Q = (qij) with
components

qij := f
1
2
i f
− 1

2
j rij =

εij − δijσj
τ
√
fifj

. (20)

Q is semi-negative definite (see the Appendix). Its eigenvalues µα and associated
normalised eigenvectors uiα satisfy µ0 = 0 with ui0 =

√
fi, together with µα ≤ 0

for the non-trivial eigenvalues α = 1, . . . , n − 1. Now the eigenvectors of the
standardized exchange matrix Es(t) = (esij(t)) (5) turn out to be identical to
those of Q, irrespectively of value of t, (see the Appendix), while the non-trivial
eigenvalues of Es(t) are related to those of Q by λα(t) = exp(µαt) for α =
1, . . . , n− 1. Substituting back in (6) finally yields the exchange matrix as

eij(t) = fifj [1+
∑
α≥1

λα(t)ciαcjα] whereciα =
uiα√
fi

andλα(t) = exp(µαt). (21)

The eigenvalues λα(t) of the standardized exchange matrix Es(t) (5) are non-
negative. This characterizes continuous-time Markov chain and diffusive pro-
cesses, by contrast to oscillatory processes associated to negative eigenvalues,
as in the bipartite network of Figure 1, or as in the direct accessibility-based
approach (15).

As a matter of fact, temporal dependence enters through the quantity t/τ
only: defining Q∗ as (20) with τ = 1 and µ∗ as the corresponding non-trivial
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eigenvalues, one gets λα(t) = (exp(µ∗α))
t
τ , which can be directly susbstituted

into (11) to compute Moran’s I. Note the modes x̂α =
∑
i

√
fiuiαxi, where the

uiα are the eigenvectors of Q∗, to be time-independant.
The free parameter t (or t/τ) represents the (relative) “age of the network”.

E(t) tends to the frozen network for t→ 0, and to the perfectly mobile network
for t→∞ (Section 2.3.3). One expects spatial autocorrelation to be more easily
detected for small values of t, that is for networks able to sustain strong contrasts
between local and global variances.
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Fig. 4. “Blood group A in Eire” dataset: proposal A. Left: Moran’s I as a function
of η ∈ [H, 1]. Right: two-tailed p-values of the modes autocorrelation test, based upon
B = 10′000 permutation (bold line) or bootstrap (dashed line) resamples.

3.3 Illustration: the distribution of Blood group A in Eire

Let us revisit the popular “distribution of Blood group A in Eire” dataset (Cliff
and Ord 1973; Upton and Fingleton 1985; Griffith 2003; Tiefelsdorf and Griffith
2007), recording the percentage x of the 1958 adult population with of Blood
group A in each of the n = 26 Eire counties, as well as the relative population
size f , and the inter-regional adjacency matrix A (data from the R package
spdep (Bivand 2009b)).

Following the “proposal A” procedure of Section 3.1 yields µ = 5.11 and
H = 0.904, echoing the existence of a region whose weight fi is about ten times
smaller than its “eigenvector centrality” b2i . Both permutation and boostrap
modes autocorrelation tests reveal statistically significant spatial autocorrela-
tion, without obvious dependence upon the autarchy index η.

“Proposal B” procedure of Section 3.2 yields p-values depicted in Figure
5, left. As expected, they reveal statistically significant spatial autocorrelation
for small values of t/τ , and increase with t/τ . Starting the procedure with one
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Fig. 5. “Blood group A in Eire” dataset: proposal B. Left: two-tailed p-values of the
modes autocorrelation test, based upon B = 10′000 permutation (bold line) or boot-
strap (dashed line) resamples. Right: the same procedure, applied to an arbitrarily
selected permutation π(x) of the original spatial field x.

among the many possible permutations of the field produces p-values as in Figure
5 (right) and indicates no spatial autocorrelation, as it must.

4 Conclusion

Real spatial networks are irregular and subject to aggregation. They are bound
to exhibit regions differing in sizes or weights. This paper proposes a weighted
analysis of Moran’s I, in the possibly most general set-up provided by the ex-
change matrix formalism, rooted in the theory of reversible Markov chains and
gravity flows of geographers.

Besides providing a rationale for overcoming the heteroscedasticity problem
in the direct application of permutation or boostrap autocorrelation tests, the
concept of spatial modes we have elaborated upon arguably generalises the con-
cept of spectrally-based spatial filtering (e.g. Griffith 2003) to a weighted setting,
and helps integrating other network-related issues in a unified setting: typically,
the first non-trivial raw coordinate c1 of Section 2.2 has beeen known for some
time to provide the optimal solution to the spectral clustering problem, parti-
tioning a weighted graph into two balanced components (e.g. Chung 1997; von
Luxburg 2007; Bavaud 2010).

Finally, local variance (4) can be generalised to local inertias 1
2

∑
ij eijDij

(where D represents a squared Euclidean distance between regions) and to local
covariances 1

2

∑
ij eij(xi−xj)(yi− yj), whose future study may hopefully enrich

formal issues and applications in spatial autocorrelation.
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5 Appendix

Proof of (7): U being orthogonal,
∑
i ficiαciβ =

∑
i uiαuiβ = δαβ and

∑
i ficiα =∑

i

√
fiuiα =

∑
i ui0uiα = δα0.

Proof of (9): independence implies the functional form σij = δij g(fi) where
g(f) expresses a possible size dependence. Consider the aggregation of regions
j into super-region J , with aggregated field XJ =

∑
j∈J fjXj/fJ , where fJ :=∑

j∈J fj . By construction,

g(fJ) = Var(XJ) =
1

f2J

∑
i,j∈J

fifjσij =
1

f2J

∑
j∈J

f2j g(fj)

that is f2J g(fJ) =
∑
j∈J f

2
j g(fj), with unique solution g(fj) = σ2/fj (and

g(fJ) = σ2/fJ), where σ2 = Var(X̄).

Proof of (10): σ̂αβ := Cov(X̂α, X̂β) =
∑
ij fifjciαcjβCov(Xi, Xj) =

= σ2
∑
i ficiαciβ = σ2

∑
i uiαuiβ = σ2δαβ .

Proof of (11):
∑
α≥1 x̂

2
α =

∑
ij

√
fifjxixj

∑
α≥0 uiαujα− x̂20 =

∑
i fix

2
i − x̄2 =

var(x). Also, varloc(x) = 1
2

∑
ij eij(xi−xj)2 =

∑
i fix

2
i−
∑
ij eijxixj =

∑
i fix

2
i−

x̄2 −
∑
α≥1 λα

∑
i ciαxi

∑
j cjαxj = var(x)−

∑
α≥1 λαx̂

2
α .

Proof of (12) and (13): define

aα :=
x̂2α∑
β≥1 x̂

2
β

with
∑
α≥1

aα = 1 and I(x̂) =
∑
α≥1

λαaα .

Under H0, the distribution of the non-trivial modes is exchangeable, i.e. f(a) =
f(π(a)). By symmetry, Eπ(aα) = 1/(n − 1), Eπ(a2α) = s(x)/(n − 1)2 where
s(x) =

∑
β≥1 a

2
β/(n− 1) and Eπ(aαaβ) = (1− s(x)/(n− 1))/[(n− 1)(n− 2)] for

α 6= β. Further substitution proves the result.

Proof of the semi-negative definitness of Q in (20): for any vector h,

0 ≤ 1

2

∑
ij

εij(hi − hj)2 =
∑
i

σih
2
i −

∑
ij

εijhihj = −
∑
ij

(εij − δijσj)hihj .

Relation between the eigen-decompositions of Es(t) and Q in (20): in

matrix notation, Q = Π
1
2RΠ−

1
2 , and hence Q

√
f = 0 by (19), showing u0 =

√
f

with µ0 = 0. Consider another, non-trivial eigenvector uα of Q, with eigenvalue
µα, orthogonal to

√
f by construction. Identity E(t) = Π exp(tR) together with

(5) yield

Es(t) =
∑
k≥0

tk

k!
Qk −

√
f
√
f
′

Es(t)uα =
∑
k≥0

tkµkα
k!

uα = exp(µαt)uα .


