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OBJECTIVE—Our laboratory has previously established in
vitro that a caspase-generated RasGAP NH2-terminal moiety,
called fragment N, potently protects cells, including insulinomas,
from apoptotic stress. We aimed to determine whether fragment
N can increase the resistance of pancreatic �-cells in a physio-
logical setting.

RESEARCH DESIGN AND METHODS—A mouse line, called
rat insulin promoter (RIP)-N, was generated that bears a trans-
gene containing the rat insulin promoter followed by the cDNA-
encoding fragment N. The histology, functionality, and resistance
to stress of RIP-N islets were then assessed.

RESULTS—Pancreatic �-cells of RIP-N mice express fragment
N, activate Akt, and block nuclear factor �B activity without
affecting islet cell proliferation or the morphology and cellular
composition of islets. Intraperitoneal glucose tolerance tests
revealed that RIP-N mice control their glycemia similarly as
wild-type mice throughout their lifespan. Moreover, islets iso-
lated from RIP-N mice showed normal glucose-induced insulin
secretory capacities. They, however, displayed increased resis-
tance to apoptosis induced by a series of stresses including
inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N
mice were also protected from multiple low-dose streptozotocin-
induced diabetes, and this was associated with reduced in vivo
�-cell apoptosis.

CONCLUSIONS—Fragment N efficiently increases the overall
resistance of �-cells to noxious stimuli without interfering with
the physiological functions of the cells. Fragment N and the
pathway it regulates represent, therefore, a potential target for
the development of antidiabetes tools. Diabetes 58:2596–2606,
2009

E
limination of pancreatic �-cells by apoptosis is a
culminating event leading to type 1 diabetes (1)
and possibly type 2 diabetes (2,3). The develop-
ment of tools favoring �-cell survival in patients

is therefore of critical importance to delay or prevent the
development of the disease.

Apoptosis is induced when a family of proteases called
the caspases is activated (4,5). These enzymes cleave a
subset of cellular proteins, inducing the characteristic
biochemical and morphological features of apoptosis. Pan-
creatic islet cells undergo apoptosis in response to many
stimuli (6), including anoxia (7), nutrient deprivation (8),
hyperglycemia (9), and inflammatory cytokines (10).
Counteracting the proapoptotic effects of caspases would
therefore be advantageous to render islet cells more
resistant to a series of noxious stimuli.

Many proapoptotic signaling pathways have been char-
acterized in �-cells. These include the Fas death receptor
pathway, the endoplasmic reticulum stress response, and
the activation of the nuclear factor (NF)�B transcription
factor (6,11). The detrimental effect of sustained NF�B
activity observed in �-cells contrasts with the prosurvival
effect of NF�B activation in many other cell types (7,8). An
elegant in vivo support for the notion that NF�B can be
deleterious in �-cells comes from the demonstration that
transgenic mice expressing specifically in �-cells a degra-
dation-resistant NF�B inhibitor are protected from diabe-
togenic agents (12).

On the other hand, antiapoptotic pathways can be
induced in �-cells to allow for survival in stress conditions.
Akt is a kinase that inhibits apoptosis in many cell types by
regulating a vast variety of pro- and antiapoptotic mole-
cules (13,14). Expression of a constitutively active form of
Akt in �-cells in mice protected them from experimentally
induced diabetes (15,16). In at least one of the models, this
was accompanied by disturbed �-cell and islet morphol-
ogy, islet hyperplasia, and, paradoxically, a very significant
increase in the basal �-cell apoptotic rate (15). The in-
creased rate of proliferation was therefore compensating
for the loss of cells through apoptosis. These data indicate
that expression of an active form of Akt1 in �-cells
generates two opposing forces: an increase in basal apo-
ptosis and a stimulation of proliferation/growth. The latter
effect eventually promotes the development of insulino-
mas (17). The potential beneficial effects of Akt activity in
�-cells are therefore mitigated by a predisposition toward
malignancy and by an increased susceptibility to cell death
that is most likely mediated by the concomitant activation
of NF�B (6). Thus, unless Akt is prevented from stimulat-
ing NF�B (and hence apoptosis) and from inducing ex-
cessive cell proliferation, it remains unclear whether
expression of an active form of Akt is advantageous for the
long-term survival and functionality of �-cells.

RasGAP, a regulator of Ras and Rho, is a caspase-3
substrate bearing two cleavage sites. RasGAP is cleaved in
a stepwise manner as caspase activity increases in cells. At
low caspase-3 activity, RasGAP is cleaved only once,
generating an NH2-terminal fragment, called fragment N,
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that induces a potent antiapoptotic response (18,19). At
higher caspase activity, fragment N is further processed
into two additional fragments, called fragments N1 and N2,
that no longer protect cells (18,20). It is possible, however,
to prevent cleavage of fragment N by replacing, in the
second caspase cleavage site, the aspartate residue at
position 157 with an alanine (18). Fragment N induces cell
survival by activating the Ras-PI3K-Akt pathway (19).
Importantly, not only does fragment N not require NF�B
activity for its antiapoptotic properties, it inhibits the
ability of Akt to activate NF�B (19). This indicates that
different ways of activating Akt (i.e., via expression of an
active mutant of Akt or via expression of fragment N) does
not lead to the same cellular responses. We have recently
demonstrated that expression of fragment N in �-cells in
vitro leads to the stimulation of Akt-dependent protective
signals while blocking the ability of Akt to activate the
proapoptotic NF�B pathway (21). To determine whether
fragment N would display its protective functions in an in
vivo setting, a transgenic mouse was generated that ex-
presses an uncleavable form of fragment N under the
control of the rat insulin promoter to restrict its expres-
sion in pancreatic �-cells. This mouse model displayed an
increased resistance to experimentally induced diabetes,
and its �-cells were less susceptible to apoptosis induced
by a variety of death stimuli.

RESEARCH DESIGN AND METHODS

The supplemental methods for cell culture, chemicals and antibodies, trans-
gene detection by PCR, quantitative PCR, mouse islet isolation and dissocia-
tion, preparation of tissue sections and immunochemistry, insulin
quantitation, Western blot analysis, Southern blot, nuclear protein extract
preparation, and electromobility shift assay (EMSA) are found in the online
appendix (available at http://diabetes.diabetesjournals.org/cgi/content/full/
db09-0104/DC1).
Apoptosis assay. Apoptosis ex vivo was assessed by scoring the number of
cells with pycnotic nuclei after Hoechst 33342 staining (20). Apoptosis in vivo
was assessed by a terminal transferase dUTP nick-end labeling (TUNEL)
assay (DeadEnd Fluorometric TUNEL system, catalog no. G3250; Promega,
Basel, Switzerland) on islet paraffin sections as per the manufacturer’s
protocol.
Animal experimentation. All procedures on mice were performed accord-
ing to the Swiss legislation for animal experimentation. Unless noted other-
wise, the animals were used at an age of 8–12 weeks.
Transgenic lines. The transgenic construct (RIP-HA-N[D157A].xf3) bears
fragment N of RasGAP under the control of the rat insulin promoter (RIP). It
was obtained by ligation of a blunt-ended BamHI/SalI 1.4-kb fragment from
plasmid HA-N(D157A).bs (22) with a blunt-ended XbaI/HindIII 4-kb fragment
from RIP-vMos.xf3 plasmid. The correctness and functionality of the plasmid
were controlled by sequencing and transfection into insulinoma cell lines.
Finally, a BamHI 2.8-kb fragment from RIP-N.xf3 was microinjected into
FVB/N oocytes at the transgenic animal facility of the University of Lausanne.
Four independent RIP-N–expressing founders were obtained. Founders 1 and
2 were used in the experiments described here.
Blood glucose level measurements and intraperitoneal glucose toler-

ance test. Blood glucose content of mice under feeding or fasting (16 h)
conditions was determined with an Accu-Check Compact Plus glucometer
(Roche Diagnostics). For the intraperitoneal glucose tolerance tests (IPGTTs),
fasted (16 h) animals were injected intraperitoneally with 2 mg glucose per
kilogram body weight. Blood glucose levels were determined from a blood
drop taken after a short incision of the tail tip at increasing time intervals
(�30, 0, 15, 30, 60, 90, 120, and 150 min) following glucose injection.
Streptozotocin-induced diabetes. Type 1–like diabetes was induced by
multiple low-dose streptozotocin injections. Briefly, 4-h–fasted female RIP-N
mice were injected intraperitoneally with 50 mg streptozotocin per kg of mice.
This procedure was repeated every day for a total period of 5 days.
Streptozotocin was prepared and diluted in citrate buffer (pH 4.5) (sodium
citrate 25 mmol/l, citric acid 23 mmol/l) just before injection. Control mice
were injected with the citrate buffer alone. Blood glucose levels were assessed
biweekly.
In vitro insulin secretion measurement. Islets were isolated from mice
pancreas as described in the supplemental RESEARCH DESIGN AND METHODS

section in the online appendix. The islets (200 per 100-mm dish in 10 ml
culture medium) were incubated overnight at 37°C, 5% CO2. The next day, the
islets were hand-picked and cultured in Krebs-Ringer bicarbonate HEPES
buffer (KRBH)-BSA (120 mmol/l NaCl, 4 mmol/l KH2PO4, 20 mmol/l HEPES, 1
mmol/l MgCl2, 1 mmol/l CaCl2, 5 mmol/l NAHCO3, pH 7.4, with 0.5% BSA) at
37°C and 5% CO2. The following day, well preserved and good-quality islets
were again hand-picked and placed into 12-well plates (10 islets/well) in 1 ml
KRBH-BSA containing 2.8 mmol/l glucose for 1 h. The islets were then
transferred to new wells containing 2.8 or 20 mmol/l glucose with or without
10 nmol/l exendin-4 (catalog no. H-8370; Bachem) in 1 ml KRBH-BSA and
incubated for 2 additional hours. The supernatant and islets were collected
into separate tubes and placed on ice. The islets were lysed in 500 �l
acid/ethanol (75% ethanol/1.5% concentrated HCl) and sonicated 15 sec (using
a W-375 cell disruptor from Kontron equipped with a 3-mm tip). Insulin in the
supernatant and extracted islets was measured using an radioimmunoassay
kit (catalog no. RI-13K; Linco).
Statistical analysis. Unless stated otherwise, the statistical analyses were
done with Microsoft Office Excel 2003 SP1 using the two-tailed unpaired
Student t test. Significance is indicated by an asterisk when P � 0.05/n, where
P is the probability derived from the t test analysis and n is the number of
comparisons done (Bonferroni correction). All the other statistical analyses
were performed with the SAS/STAT software (version 9.1.3; SAS Institute,
Cary, NC).

RESULTS

Generation of a transgenic mouse expressing frag-
ment N in pancreatic �-cells. A transgenic vector was
constructed (see RESEARCH DESIGN AND METHODS) so as to
encode an HA-tagged form of fragment N bearing the
D157A mutation (preventing it from being cleaved by
caspases) under the control of the RIP and regulatory
sequences of the simian virus 40 (SV40) gene (Fig. 1A).
The construct was injected into FVB/N oocytes, and
transgene-positive mice were identified by Southern blot-
ting (Fig. 1B). In total, four founder mice were obtained.
The results presented here all include data from founder 1
(labeled mouse 5 in Fig. 1B). When indicated, some
experiments were also performed with mice derived from
founder 2 (labeled mouse 28 in supplemental Fig. S1). By
comparison, with the endogenous insulin promoters, it
was estimated that founders 1 and 2 bore 12–15 and 1
copies of the transgene in their genome, respectively (Fig.
1B and supplemental Fig. S1).

To determine the expression pattern of fragment N in
the transgenic line, lysates from pancreatic islets, liver,
brain, and spleen were analyzed by Western blotting using
antibodies specific for the HA tag or for the NH2-terminal
part of RasGAP. Figure 1C shows that fragment N was, as
expected, only expressed in islet cells. Immunofluores-
cence analysis of both founders revealed that fragment N
was restricted to the endocrine part of the pancreas (Fig.
1D and supplemental Fig. S2A and B) and that the vast
majority of fragment N–expressing cells corresponded to
�-cells (i.e., insulin-containing cells) (Fig. 1E).
Regulation of Akt and NF�B by fragment N in RIP-N
�-cells. In various cell types, fragment N, when ectopi-
cally expressed or when generated in response to mild
stress, activates Akt (19,21,23). As adaptive mechanisms
can take place in vivo, it was important to determine
whether fragment N could induce a chronic Akt activity in
islet cells in mice. Islets isolated from control and RIP-N
mice were therefore analyzed for the presence of activated
Akt. As shown in Fig. 2A, there was a significant approx-
imately threefold increase in Akt activity in islet cells from
RIP-N compared with control islets. This indicates that
fragment N can stimulate Akt on a long-term basis when
expressed in vivo.

A potential important property of fragment N in the
context of �-cell protection is its ability to block NF-�B
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FIG. 1. Expression and function of fragment N in RIP-N mice. A:
Schematic representation of the RIP-N transgene together with the
strategy for its detection by Southern blot. An HA-tagged form of
fragment N (amino acids 1–455 of RasGAP) followed by an SV40-
derived poly-A sequence was placed under the control of the RIP.
Band A corresponds to the transgene-specific EcoRI Southern blot
fragment. B1 and B2 are examples of EcoRI Southern blot frag-
ments derived from random insertions of the transgene into the
host’s genome. B: Identification of RIP-N transgenic mice. The
progeny of the injected pseudo-pregnant mice were genotyped by
Southern blot (see RESEARCH DESIGN AND METHODS for details). Band A
(2.8 kb) is specific for the transgene. Founder 1 (mouse 5) was

able to transmit the transgene to the F1 generation. C: Tissue expression of fragment N. Lysates from the indicated tissues were analyzed
for the presence of fragment N by Western blot using anti-HA and anti-RasGAP antibodies. D: Expression of fragment N in the pancreas.
The presence of fragment N was assessed by immunofluorescense analysis of paraformaldehyde-fixed cryosections using an antibody
recognizing the HA tag borne by fragment N. E: Colocalization of insulin and fragment N. The specific location of fragment N in pancreatic
�-cells was determined by immunofluorescence of paraformaldehyde-fixed cryo-sections from RIP-N mice using anti-insulin and anti-HA
antibodies. (A high-quality color digital representation of this figure is available in the online issue.)
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activation. This property, however, had so far only been
evidenced in cultured immortalized cell lines (19,21). As
shown in Fig. 2B, binding of nuclear factors to NF�B
binding elements was markedly diminished in nuclear
extracts from RIP-N mouse–isolated islet cells stimulated
with cytokines compared with similarly treated islets
isolated from control mice. Moreover, cytokine-induced
expression of the transcript encoding inducible nitric
oxide (iNOS) synthase, which participates in �-cells apo-
ptosis (24) and the gene of which is an NF�B target (25),
also appeared to be impaired in islets cells isolated from
RIP mice compared with wild-type islets (Fig. 2C).

These results indicate that fragment N regulates Akt and
NF�B in �-cells in vivo in a manner similar to what has
been described using cultured cell lines. As cytokines can
induce apoptosis of �-cells via NF�B–mediated NO pro-
duction (24), these results also suggest that the ability of
fragment N to protect �-cells might rely, at least in part, on
its capacity to target the NF�B–iNOS axis.
No detection of fragment N in the brain of RIP-N
mice. It was reported in transgenic models done using
RIP-Cre mice that the RIP promoter can also be active in
the brain (more specifically in the hypothalamus) (26,27).
Immunohistochemical analysis, however, did not reveal
the presence of fragment N in hypothalamic sections from
adult RIP-N mice (supplemental Fig. S3). This indicates
that the RIP-N transgene is not expressed in adult mouse
brain or, if it is expressed, at levels that are much lower
than those detected in the endocrine pancreas and that are
under the sensitivity limit of our assay.
Fragment N expression does not affect islet morphol-
ogy and cellularity. Expression of fragment N in insuli-
nomas and islet cells leads to Akt activation (Fig. 1F) (21).
Since Akt signaling has the potential to stimulate cell
survival and proliferation (28), and since transgenic mice
expressing a constitutively active form of Akt (myr-Akt)
show an increase in both �-cell size and total islet mass
(15), the presence of fragment N in islets might affect the
morphology and cellularity of the endocrine pancreas.
However, neither the proportion of �- and �-cells (Fig.
3A), nor the insulin content of the pancreas (Fig. 3B), were
affected by the presence of fragment N. Moreover, the size
of the islets did not appear to be different in RIP-N
transgenic mice compared with control mice (Fig. 3C).
Finally, the percentage of cells positive for the nuclear
protein Ki67 that is preferentially expressed in dividing
cells was similar in both types of mice (Fig. 3D). These
results indicate that fragment N does not favor �-cell
proliferation in an in vivo setting and that it does not affect
the normal development of the endocrine pancreas. Con-
sistent with this notion is the observation that RIP-N mice
did not develop insulinomas over an 18-month period (as
assessed by a drop in glucose blood level and increased
mortality) (Fig. 8).
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FIG. 2. Fragment N activates Akt and inhibits NF�B in islet � cells. A:
Lysates from islets isolated from the indicated mice were analyzed by
Western blot for the presence of fragment N using an HA-specific
antibody and for the activation of Akt using a phospho-specific anti-
Akt antibody (p-Akt). An Akt-specific antibody was used to assess
evenness in loading (total Akt). The numbers under the blots corre-
spond to the quantitation (arbitrary units) of the detected bands
(means � SD of three independent determinations). The asterisk
indicates a statistically significant difference as assessed by a paired t

test analysis. B: Islets isolated from wild-type (�/�) and RIP-N mice
(�/RIP-N) were stimulated or not for 30 min with inflammatory
cytokines (1,000 units/ml tumor necrosis factor-�, 1,000 units/ml in-

terleukin-1�, and 50 units/ml interferon-�). The ability of nuclear
proteins to interact with an NF�B-binding element-bearing radioactive
probe was then monitored by EMSA as described in RESEARCH DESIGN AND

METHODS. The locations of p65-p50 and p50-p50 complexes are indi-
cated. The asterisk denotes a nonspecific band. This experiment was
repeated once with similar results. C: Islets isolated from wild-type
(�/�) and RIP-N mice (�/RIP-N) were stimulated or not for the
indicated periods of time with 1,000 units/ml of interleukin-1�. The
expression of iNOS mRNA was then measured by quantitative real-time
PCR, normalized as described in RESEARCH DESIGN AND METHODS and
expressed as percent of the 6-h values. The results correspond to the
means � SE of three independent experiments performed in triplicate.
The asterisk indicates a significant difference as determined by a
nonparametrical Wilcoxon’s signed-rank test.
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Islets from RIP-N transgenic mice display increased
resistance to basal- and stress-induced apoptosis. In
wild-type mice, the basal apoptotic rate in islets is very low
(� 0.5%; Fig. 6B) or undetectable (15). In contrast, islets
from transgenic mice expressing a constitutively active
form of Akt show a marked increase in �-cell apoptosis
(15). Despite the ability of fragment N to activate Akt (Fig.
2A), there was no associated increase in the basal apoptotic
rate in islets from RIP-N mice compared with the wild-type
controls, either in vitro or in vivo (Fig. 4A and first two bars
of Fig. 6B). Moreover, islets isolated from RIP-N mice were

more resistant than those isolated from control mice when
subjected to a variety of stress stimuli, including inflamma-
tory cytokines, the free fatty acid palmitate, and high glucose
concentrations (Fig. 4). These results demonstrate that frag-
ment N efficiently protects pancreatic �-cells against various
noxious conditions and stimuli, including some that are
associated with the development of type 1 and type 2
diabetes (e.g., inflammatory cytokines and free fatty acids).
Fragment N does not adversely affect �-cell functions
in vivo. Transgenic mice expressing a nondegradable
form of I�B� under the control of Pdx1 promoter, which
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drives its expression in the �-cells of the pancreas, display
impaired glucose-induced insulin secretion (29). Fragment
N, by blocking NF�B activity (19,21), could potentially
similarly affect insulin secretion. However, fragment N
expression in �-cells did not modify glycemia under non-
fasted (Fig. 5A) or fasted (Fig. 5B, first points in the
graphs) conditions. Moreover, the ability of the transgenic
mice to metabolize glucose, assessed by IPGTTs, was not
negatively affected by the presence of the transgene in
�-cells (Fig. 5B). Finally, islets isolated from control and
RIP-N transgenic mice had a similar ability to secrete
insulin in response to glucose and the gluco-incretin
exendin-4 (Fig. 5C). These results indicate that fragment N
does not compromise the ability of �-cells to secrete
insulin in response to augmented glucose levels.
RIP-N transgenic mice are protected against strepto-
zotocin-induced diabetes. Multiple low-dose streptozo-
tocin injections in mice induce islet inflammation,
ultimately leading to �-cell loss and diabetes (30,31). This
model is thought to mimic the development of type 1
diabetes in humans (32). Using this protocol, it was found
that RIP-N mice were resistant to diabetes induction

compared with control mice (Fig. 6A). Assessment of
apoptosis by the TUNEL method showed that the percent-
age of �-cell apoptosis induced by streptozotocin in vivo
was significantly reduced in the RIP-N mice compared
with the wild-type controls (Fig. 6B).

To further characterize the reduced sensitivity to strep-
tozotocin-induced diabetes in RIP-N mice, pancreas sec-
tions from control and RIP-N mice treated or not with
streptozotocin were prepared. The mice were killed 3 days
after the last streptozotocin injection at a time were
increased apoptosis can be detected in wild-type mice (see
Fig. 6B) but before the apparition of an overt diabetes (see
Fig. 6A). At this time, leukocytic infiltration can be visual-
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palmitate (P) or 33 mmol/l glucose (G). Apoptosis was then assessed as
above. The results correspond to the means � SD of three independent
experiments (statistic analysis was performed for each condition
between wild-type and RIP-N mice [three comparisons]). * indicates a
statistically significant difference as described in the RESEARCH DESIGN

AND METHODS section.
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FIG. 5. Glycemia and glucose tolerance of RIP-N mice. A: Nonfasting
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described in RESEARCH DESIGN AND METHODS. B: Mice were subjected to an
IPGTT to analyze their response to hyperglycemic conditions. Results
correspond to the means � SD of six independent experiments.
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and RIP-N mice (eight comparisons). No significant differences were
recorded. C: Islets from wild-type and RIP-N female mice were stimu-
lated with low- or high-glucose concentration in the presence or in the
absence of exendin-4 (see RESEARCH DESIGN AND METHODS). Insulin secre-
tion was then determined. Results are expressed as the amount of
insulin secreted normalized to the initial cellular insulin content
(means � SD of quadruplicate determinations). #No statistical differ-
ences between insulin secretion of wild-type and RIP-N islets for a
given stimulation regimen (four comparisons).
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ized in the islets of wild-type streptozotocin-induced dia-
betic mice. This was accompanied by a loosening of the
islet structure. This was not seen in RIP-N mice (Fig. 7A).
Additionally, insulin staining was reduced in the islets of
wild-type streptozotocin-induced diabetic mice (Fig. 7B).
Moreover, there was almost no sign of insulinitis in the

transgenic mice after the streptozotocin injections, while
in similarly treated control mice, a strong insulinitis devel-
oped (Fig. 7C). Finally, there was a significant reduction in
CD3-positive leukocyte infiltration in RIP-N mice com-
pared with the control mice after the streptozotocin treat-
ment (Fig. 7D). Taken together, these results indicate that
streptozotocin induces less damage in RIP-N islets, which
results in a weaker inflammatory response compared with
wild-type islets.
The RIP-N transgene does not alter glucose ho-
meostasis or the lifespan of mice. In relatively young
mice (8–12 weeks), glucose homeostasis and insulin se-
cretion are unaffected by the presence of fragment N in
�-cells (Fig. 5). To determine whether the transgene could
nevertheless negatively affect the function of pancreatic
�-cells on a longer-term basis, the glycemia of a cohort of
female and male wild-type and RIP-N mice was followed
for up to 130 weeks (Fig. 8A). Males displayed higher
glycemia values than females. There was also a significant
decrease in glycemia as the mice aged. However, the
glycemia between wild-type and RIP-N mice for a given
sex was not statistically different. This indicates that
fragment N does not negatively affect the function of the
islets of Langerhans. Consistent with this is the observa-
tion that IPGTTs performed on very old animals did not
reveal differences between wild-type and RIP-N mice (Fig.
8B).

Constitutive expression of Akt in pancreatic �-cells
increases the likelihood of insulinoma development, lead-
ing to a reduction of the lifespan expectancy of the mice
(17). As fragment N activates Akt, it was relevant to check
if fragment N would have a negative impact on the survival
of the mice. Figure 8C shows that this is not the case.
While females lived significantly longer than males, the
presence of the transgene did not affect the percent
survival rate of the mice. Finally, there was no histological
difference that could be evidenced on islets from very old
wild-type and RIP-N mice (Fig. 8D). Altogether, these
results indicate that fragment N expressed in pancreatic
�-cells displays no negative effect throughout the lifespan
of mice.

DISCUSSION

Apoptosis, which is the cause of �-cell death in patients
with type 1 diabetes (33), might also participate in the loss
of �-cell mass observed in type 2 diabetes (34–37). The
notion, however, that there is a decrease in �-cell mass in
type 2 diabetes has been controversial for a number of
years. Nevertheless, if one considers those studies using
well-preserved pancreases obtained from autopsies, it
appears that there is a 3- to 10-fold increase in the rate of
�-cell apoptosis in type 2 diabetic patients compared with
control subjects (38). These results indicate that failure to
compensate for insulin resistance could result from de-
creased �-cell mass mediated by apoptosis.

Understanding the pathways leading to �-cell death and
�-cell protection might therefore be of crucial importance
to find new approaches to treat diabetic patients. Proce-
dures to block �-cell death could not only potentially
inhibit the development of diabetes but might also be
useful in the context of islet transplantation, where apoptosis
has been shown to adversely affect the number of islets
that can be implanted in patients. Here, we present an in
vivo model, the RIP-N transgenic mice, where the NH2-
terminal fragment of RasGAP (called fragment N) effec-

A

0

5

10

15

20

25

30

35

40

10 20 30 40

Days post treatment

m
M

 g
lu

co
se

+/+
+/RIP-N

* * * * * *
*

B

+/+ RIP-N
Control Strepto.

+/+ RIP-N

+/RIP-N
Streptozotocin-treated

+/+

Hoechst 33342 TUNEL

0

1

2

3

4

5

6

7

%
 o

f T
U

N
EL

 p
os

iti
ve

 c
el

ls

NS

*

FIG. 6. Resistance of RIP-N mice to streptozotocin-induced diabetes.
Wild-type (�/�) and RIP-N (�/RIP-N) females (nine each) were sub-
jected to multiple low-dose injections of streptozotocin (Strepto.) (see
RESEARCH DESIGN AND METHODS). Glucose blood levels were then deter-
mined at the indicated times. The results are expressed as the means �
SD (statistic analysis was performed for each time point between
wild-type and RIP-N mice [eight comparisons]). This experiment has
been repeated two more times with similar results (A). Alternatively,
the mice were killed 8 days after the first streptozotocin injection, and
apoptosis on islet sections was determined by the TUNEL assay (B).
The results shown in the graph correspond to the means � SD of the
quantitation performed on three and four mice for the control and
streptozotocin treatment, respectively (an average of 24 islets per
mice were analyzed). Statistic analysis was performed on the indicated
groups. As reported by others (47), we note that the percentage of
basal apoptosis in islet cells in vivo is >10-fold lower than what is
detected in in vitro cultured islets (compare with Fig. 4). * indicates a
statistically significant difference as described in the RESEARCH DESIGN

AND METHODS section. (A high-quality color digital representation of this
figure is available in the online issue.)
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tively protects the pancreatic �-cell against apoptosis
without affecting their ability to appropriately secrete
insulin in physiological conditions and without favoring
excessive proliferation.

Hyperlipidemia, a risk factor for the development of
diabetes (39), can cause �-cell apoptosis (40,41). Islets
isolated from RIP-N mice underwent less apoptosis in
conditions mimicking hyperlipidemia (i.e., high concentra-

tions of palmitate) compared with control islets. Hypergli-
cemia, which can lead to �-cell dysfunction and death (6),
also induced less apoptosis in fragment N–expressing
islets. Finally, RIP-N transgenic islets were more resis-
tant to interleukin-1�–, tumor necrosis factor-�–, and
interferon-�–induced death. Interestingly, these inflamma-
tory cytokines, known to be involved in the development
of type 1 diabetes, have also been shown to be produced at
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high concentrations in diabetes-prone obese patients
(42,43). These observations suggest that the protective
signals elicited by fragment N can counteract prodiabetic
conditions (e.g., hyperglycemia, hyperlipidemia, presence
of inflammatory cytokines) that are deleterious for �-cells.

Much work on the cellular mechanisms controlling cell
death and survival has been performed within the last few
years. This knowledge has been used to manipulate �-cells
in order to increase their survival capacities. One strategy

was based on Akt because it is a potent antiapoptotic
kinase in many cell types (13). Transgenic mice expressing
an active form of Akt (myr-Akt) in �-cells in mice have
larger �-cells and bigger islets (15) and this ultimately
favors the development of insulinomas (17). These trans-
genic mice are resistant to experimentally induced diabe-
tes, but, paradoxically, their �-cells have a much increased
basal apoptotic rate (15). Conceivably, this higher apopto-
tic rate is compensated by increased �-cell renewal to
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maintain an adequate �-cell mass. As NF�B activation can
induce �-cell death (6) and because Akt stimulates NF�B
(44), the increased apoptosis response observed in myr-
Akt–expressing �-cells likely results from the stimulation
of the NF�B pathway. Indeed, prevention of NF�B activa-
tion using a dominant-negative I�B mutant allows mice to
resist streptozotocin-induced diabetes (12,45). NF�B inhi-
bition might, however, not always be protective against
diabetes, as indicated by the increased susceptibility of
nonobese diabetic (NOD) mice to develop diabetes when
their �-cells express the dominant-negative I�B mutant
(45). Additionally, it has been shown that expression of a
dominant-negative I�B mutant in �-cells in mice can
inhibit glucose-stimulated insulin secretion (29).

The RIP-N mice appear to lack some of the defects
associated with the models described above. The activa-
tion of Akt by fragment N in the �-cells of RIP-N mice is
not accompanied by an increased basal apoptotic rate,
most likely because fragment N blocks Akt from stimulat-
ing NF�B. Moreover, in contrast to mice expressing an
active form of Akt in �-cells (17), RIP-N mice do not
display islet and �-cell hyperplasia, they do not develop
insulinomas, and have a normal lifespan. Finally, RIP-N
mice have no defect in glucose-induced insulin secretion
and display normal glucose homeostasis, even in very old
animals. Transgenic mice overexpressing proteins of the
IAP (inhibitor of apoptosis) family specifically in the
�-cells have been generated. Similarly to RIP-N mice, their
�-cells are less susceptible to apoptosis, and this is not
accompanied by alterations in islet morphology and func-
tion (46). It will therefore be important to define if there is
a link between fragment N and IAPs that could explain the
protective function of fragment N in �-cells. A detailed
characterization at the molecular level of the pathways
regulated by fragment N might ultimately lead to the
identification of new strategies to preserve �-cell mass.
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