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Abstract

In groundwater applications, Monte Carlo methods are employed to model the uncertainty on geological

parameters. However, their brute-force application becomes computationally prohibitive for highly detailed

geological descriptions, complex physical processes, and a large number of realizations. The Distance Kernel

Method (DKM) overcomes this issue by clustering the realizations in a multidimensional space based on the

flow responses obtained by means of an approximate (computationally cheaper) model; then, the uncertainty

is estimated from the exact responses that are computed only for one representative realization per cluster

(the medoid). Usually, DKM is employed to decrease the size of the sample of realizations that are consid-

ered to estimate the uncertainty. We propose to use the information from the approximate responses for

uncertainty quantification. The subset of exact solutions provided by DKM is then employed to construct

an error model and correct the potential bias of the approximate model. Two error models are devised that

both employ the difference between approximate and exact medoid solutions, but differ in the way medoid

errors are interpolated to correct the whole set of realizations. The Local Error Model (LEM) rests upon

the clustering defined by DKM and can be seen as a natural way to account for intra-cluster variability; the

Global Error Model (GEM) employs a linear interpolation of all medoid errors regardless of the cluster to

which the single realization belongs. These error models are evaluated for an idealized pollution problem

in which the uncertainty of the breakthrough curve needs to be estimated. For this numerical test case, we

demonstrate that the error models improve the uncertainty quantification provided by the DKM algorithm

and are effective in correcting the bias of the estimate computed solely from the MsFV results. The frame-

work presented here is not specific to the methods considered and can be applied to other combinations of

approximate models and techniques to select a subset of realizations.
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1. Introduction

In groundwater applications one has to deal with an incomplete characterization of the aquifer: only

sparse and uncertain measurements of the properties dictating the flow response is usually available. To

account for this partial information, Monte Carlo methods are employed (Dagan 2002), which treat aquifer

parameters, and in particularly the permeability (or equivalently the hydraulic conductivity), as stochastic

variables. Several realizations of the permeability field, conditioned on the available data, are generated

and the uncertainty is estimated from the variability of the responses obtained from different realizations.

Despite the conceptual simplicity of this approach, the geostatistical representation of the uncertainty is

rarely sufficient for realistically complex problems due to the large number of realizations required and the

consequent prohibitive computational costs.

One possible strategy to overcome this issue is to employ approximate models that are less computa-

tionally expensive. Since in many applications large geological models are considered to describe the aquifer

with high spatial resolution, one of the most effective techniques is to upscale the permeability on a coarser

grid and solve reduced models. Several classical techniques exist at this end (Wen and Gómez-Hernández

1996; Renard and de Marsiliy 1997; Christie 1996; Durlofsky 2005); more modern multiscale approaches

have been developed in the last decade that allow a better representation of the fine-scale details of the

permeability field which are described by means of local numerical solution (Hou and Wu 1997; Arbogast

2002; Aarnes et al. 2005; Jenny et al. 2003).

The Multiscale Finite Volume (MsFV) method (Jenny et al. 2003) belongs to the latter group and has

demonstrated great flexibility in modeling physically complex flows (Jenny et al. 2006; Lunati and Jenny

2006, 2007, 2008; Hajibeygi and Jenny 2009; Jenny and Lunati 2009; Künze and Lunati 2012). The accuracy

of the MsFV method has been studied in a deterministic context and evaluated in terms of the ability to

mimic the solution provided by the exact model in a single realization. This has fostered the development of

several iterative strategies aimed at reducing these differences, which might be large in case of particularly

challenging problems (Hajibeygi et al. 2008; Lunati et al. 2011; Zhou and Tchelepi 2012; Künze and Lunati

2012; Hajibeygi et al. 2012). In a stochastic context, however, a high level of accuracy might not be

necessary because the goal is not to model each realization exactly, but simply to represent the variability

of the ensemble of solutions (Chen and Durlofsky 2008; Chen et al. 2011; Aarnes and Efendiev 2008). As

all methods that provide an approximate and relative inexpensive solution, the MsFV method is well suited

to be applied in a stochastic context.

Another strategy to limit the computational cost of Monte Carlo approaches is to reduce the number

of realizations for which the exact model is solved to estimate the uncertainty. Several methods exist

to determine an optimal subset of realizations and coarsen the stochastic space. Some ranking methods

classify the realizations based on static criteria such as geostatistical measures of connectivity or conductivity
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(McLennan and Deutsch 2005). As they do not exploit information about the flow response, these methods

are extremely efficient in terms of computational costs but have limited accuracy, which may result in a

biased estimate of the uncertainty. Accuracy can be improved by using methods that sort the realizations

based on a measure that depends on the flow response, such as in dynamic ranking methods (Ballin et al.

1992) or in the Distance Kernel Method (DKM) (Scheidt and Caers 2009a,b). While those approaches lead

to much better results as they can be tailored to the question of interest, the problem remains of being able

to inexpensively compute the dynamic measure.

In this paper, the MsFV method and the DKM are combined. However, rather than simply employing the

MsFV method as approximate model to compute the dynamic measure in the DKM, the approximate MsFV

solutions are used to obtain a first estimate of the uncertainty. The DKM selects a subset of realizations for

which the exact model is solved; then, an error model to correct the potential bias of the MsFV estimate

is constructed from the difference between the exact and the approximate solutions, which are available for

the subset. Here, the ranking technique is used not solely to reduce the number of flow simulations, but

rather to provide a representative subset of exact solutions to be compared to the approximate solutions.

Note that whereas ranking techniques, or methods like DKM, make in general no direct use of the dynamic

measure, in our approach this information is further exploited to construct an error model with negligible

extra costs.

The paper is organized as follows: after a brief problem statement, we review the MsFV method and the

DKM; then we present two error models that are devised by combining MsFV and DKM; finally, we present

a thorough evaluation of the error models for a numerical test case that is representative of fluvio-glacial

aquifers. The paper ends with some concluding remarks and perspectives for future development.

2. Problem statement

Here we consider the problem of predicting the breakthrough curve of a contaminant, which behaves

as an ideal tracer (i.e., it does not alter the density and the viscosity of the fluid). The evolution of the

contaminant concentration in the aquifer, c, is described by the following system of equations:

∇ · (K∇h) = 0 (1)

φ
∂c

∂t
+∇ · (cu−D∇c) = 0 (2)

where

u = −K∇h, (3)

is the Darcy velocity; K the hydraulic conductivity (which is obtained dividing the permeability by the

water viscosity); φ the porosity; and D the hydromechanical-dispersion tensor, which includes the effects
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of molecular diffusion and dispersion. When appropriate boundary and initial conditions are assigned, the

system above can be solved and the breakthrough curve at the location of interest can be computed as a

function of time, C(t).

The solution strongly depends on the structure of permeability and porosity fields (Lunati et al. 2003),

which are usually not fully characterized on the basis of experimental observations. To model the uncertainty

on these parameters, Nr realizations are generated, {Ki, φi}i=1,2,...,Nr
, which represent the variability of the

properties due to the limited characterization of the aquifer. To evaluate the propagation of this uncertainty

to the quantity of interest, flow and transport problems are solved in each realization and the breakthrough

curve is computed, Ci(t). (Here, initial and boundary conditions are treated as deterministic variables). The

set of curves, {Ci(t)}i=1,2,...,Nr
, obtained by these procedures, allows a characterization of the uncertainty on

the breakthrough curve conditioned to the set of realizations that have been generated. In the following we

are concerned with the problem of reducing the computational cost of these procedures, which can become

prohibitive in presence of many geological realizations containing a large number of cells and involving

complex physical processes.

3. Methodology

There are two natural strategies to overcome this issue: one is to use an approximate model that

reduces the cost of computing a set of (approximate) curves {Ca
i (t)}i=1,2,...,Nr ; the other is to reduce the

dimensionality of the stochastic space and consider only a subset of Ns < Nr realizations with breakthrough

curves, {Ci(t)}i=1,2,...,Ns
. Both strategies, however, might lead to biased predictions of the uncertainty.

The main idea of the present work is that the bias can be reduced by a combination of these two

approaches. In the DKM, for instance, approximate models are used only to select the subset of realizations,

{Ki, φi}i=1,2,...,Ns , on the basis of their flow response. However, these approximate solutions can be used

to estimate the variability neglected by the subset selection. On the other hand, the exact-model responses

calculated for the selected realizations can be used to construct an error model and reduce the bias of the

uncertainty estimated by the approximate model. In this paper we are precisely concerned with the problem

of devising a methodology which allows an optimal exploitation of the information contained in the two sets

of curves, that is {Ca
i (t)}i=1,2,...,Nr

and {Ci(t)}i=1,2,...,Ns
.

3.1. The Multiscale Finite Volume (MsFV) method

The approximate model employed in this study is the MsFV method, which has been devised to efficiently

solve the flow problem, Eq. (1), and deliver an approximate but fully conservative velocity field that can be

used in the transport equation without introducing mass-balance errors (Jenny et al. 2003; Lunati and Jenny

2006). Although extensions of the MsFV method have been proposed in the past to solve the transport
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problem (Lee et al. 2009; Künze and Lunati 2012), here the MsFV method is employed only to solve the

flow problem, whereas the transport problem is solved exactly.

We use the operator formulations employed in Lunati and Lee (2009) to briefly present the MsFV method.

First, we introduce the discrete form of Eq. (1)

Ah = r, (4)

where h is the vector of the unknown hydraulic heads; A is the coefficient matrix, which depends on the

hydraulic conductivity K; and r is the vector containing the information about the boundary conditions. In

addition to the fine-scale grid introduced to define Eq. (4), the MsFV method employs two auxiliary coarse

grids: a (primary) coarse grid and the corresponding dual (coarse) grid, which are represented in Fig. 1.

The main idea of the MsFV method is to approximate the hydraulic head by means of a set of interpo-

lators, which are local numerical solutions computed on the cells of the dual grid, that is

h ≈ hms = Bhn + Cr, (5)

where B is the basis-function operator, whose columns interpolate the hydraulic head, hn, at the node of the

dual grid (which are at the centers of the coarse grid, see Fig. 1) to the fine-scale grid; C is the correction

function operator, which accounts for the local effects of r and can be regarded as a source-term interpolator.

In the MsFV method errors are introduced by the localization assumptions that are required to assign the

boundary conditions of the local problems and compute basis and correction functions. Depending on flow

conditions and on medium heterogeneity, localization might prevent a faithful description of long-correlation

structures as channels or flow barriers (Lunati and Jenny 2004, 2007; Lunati et al. 2011).

The node hydraulic head, hn, is solution of the coarse equation

Mnnhn = (χAB)hn = χ(I−AC)r, (6)

which is obtained by imposing the mass balance on the cells of the coarse grid (which serve as control

volumes), that is by applying to Ahms = r the summation operator, χ, which sums up all fine-cell values

belonging to the same coarse cell and is the discrete analogous of control-volume integration. The compu-

tational advantage of the MsFV method stems from the fact that a large problem, Eq. (4), is split into a

set of small local problems (which are solved to construct B and C), and a coarse problem, Eq. (6), whose

coefficient matrix, Mnn = χAB, is smaller than the original matrix, A.

Once the approximate pressure solution, hms, is obtained, a fine-scale conservative velocity field is

constructed by solving a second set of local problems on the cells of the coarse grid and used in the transport

equation. We refer to the existing literature for further details on the MsFV method (Lunati and Lee 2009

and references therein). Here, we simply remark that this framework offers great flexibility to implement
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several adaptive strategies: the MsFV method can be seen as a numerical upscaling procedure, if the fine-

scale velocity is not reconstructed and the transport is solved on the coarse grid (Lee et al. 2009; Künze and

Lunati 2012); as an iterative linear solver, if a procedure is introduced to iteratively correct the boundary

conditions of the localized problems (Hajibeygi et al. 2008; Lunati et al. 2011; Zhou and Tchelepi 2012); or

as a downscaling method, if the original grid is taken as the coarse grid (Künze and Lunati 2012). Here, we

use the MsFV method (with construction of a conservative velocity) as approximate model to compute a

velocity field in each geostatistical realization; then, the MsFV approximate velocity is used in the transport

equation, Eq. (2), to obtain a set of approximate breakthrough curves {Cms
i (t)}i=1,2,...,Nr

, which can be

used to estimate the uncertainty.

3.2. Distance Kernel Methods (DKM)

DKM (Scheidt and Caers 2009a,b) is an alternative to traditional ranking techniques to select a subset

of realizations that preserves the uncertainty spread of the sample. Dynamic ranking techniques (Ballin

et al. 1992) sort realizations based on the responses of an approximate model and solve the exact model

only for a subset of realizations that correspond to the desired quantiles. DKM, instead, employs the

approximate information to quantify similarities between geostatistical models and selects a subset aiming

at reproducing the same statistics as the full set of realizations. The first step is to compute a distance matrix

d (a square matrix of size Nr×Nr), which measures dissimilarity between realizations from the approximate

flow responses. Here, the distance between two realizations, i and j, is defined as the l2-distance between

their breakthrough curves

dij =

√√√√ nt∑
t=1

[Cms
i (t)− Cms

j (t)]2 (7)

where Cms
i (t) is the curve obtained using MsFV as approximate model, and the sum is taken over all nt

discrete times at which the concentration is recorded (in our case the nt time steps of the simulation). Eq.

(7) naturally defines a multidimensional space, S, where each realization is represented by a point and the

distance between points is proportional to their dissimilarity in term of breakthrough response. It is natural

to attempt to coarsen the space of uncertainty by grouping the realizations into Ns clusters based on their

distances and assume that each cluster, Γk, can be represented by a representative realization (e.g., the

medoid) weighted by the number of realizations in the cluster, NΓk
.

In DKM the clustering is not applied directly in the original multidimensional space, S, but a kernel

expansion is used to project the points onto a new space (the feature space F) in the attempt to lin-

earize the space of uncertainty. Although the expansion is associated with a kernel function of the form

κ[Cms
i (t), Cms

j (t)] = 〈ϕ[Cms
i (t)], ϕ[Cms

j (t)]〉, where ϕ is the mapping function from S to F , the distance

matrix in the feature space, dF , can be computed without an explicit definition of ϕ by using only the
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scalar product computed by κ. Then the distance in the feature space is written as

dFij =
√
Kii +Kjj − 2Kij (8)

where K is the kernel matrix associated to the kernel function. Among the many possible choices of the

kernel matrix, we use a standard gaussian kernel of the form

Kij = exp

{
−dij2

2σ2

}
(9)

where σ is the kernel width parameter.

Based on dF , a k-medoid clustering algorithm (Hastie et al. 2009) is applied to find the many-to-one

mapping, f , that assigns each curve, Cms
i (t), to a cluster (i.e., f(i) = k if Cms

i (t) ∈ Γk). The mapping

corresponds to an optimization procedure, which finds

f = arg min
f

∑
i,j:f(i)=f(j)

dFij (10)

and minimizes the average intra-cluster distances. In parallel to the definition of clusters, the algorithm

identifies the medoids as the realizations that satisfies

ik = arg min
i:f(i)=k

∑
j:f(j)=k

dFij . (11)

The main advantage of k-medoids over k-means is that it does not require to explicitly compute points

in the feature space and employs only the distance matrix in that space (Hastie et al. 2009). Moreover,

k-medoids is not limited to Euclidean distances as k-means. This gives some freedom in defining the choice

of the dissimilarity measure, which can be adapted to the question of interest.

The medoids define a subset of realizations, {Kik , φik}k=1,2,...,Ns
, for which the exact flow model is solved

and a subset of exact curves {Cik(t)}k=1,2,...,Ns is obtained. Classical DKM uses solely {Ci(t)}i=1,2,...,Ns

to compute experimental quantiles (Scheidt and Caers 2009a,b, 2010). This is done by assuming that all

the realizations behave as the medoid realization, which leads to compute the experimental quantiles by

weighting the medoid curves by the number of realizations in their cluster (or in other words, by considering

a multiset of medoid curves, each having multiplicity equal to the number of cluster elements).

3.3. Error models

With the techniques described above, two sets of curves can be used to estimate the uncertainty of the

predicted breakthrough curve that is {Cms
i (t)}i=1,2,...,Nr

and {Cik(t)}k=1,2,...,Ns
. In both cases, a sample of

Nr realizations

{C∗i (t)}i=1,2,...,Nr
, (12)
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is used to compute experimental quantiles. If one choose to use only the approximate curves

MsFV : C∗i (t) = Cms
i (t), (13)

the MsFV uncertainty estimation is obtained. Employing the standard DKM is equivalent to choose

DKM : C∗i (t) = Cik(t), with k = f(i), (14)

which construct a multiset where each medoid has multiplicity equal to the number of realizations in its

cluster.

When the DKM is employed, information from approximate and exact responses is available and can

be combined to improve uncertainty quantification at almost zero additional costs. On one hand, the

information contained in the approximate curves can be used to estimate the intra-cluster variability, which

is completely neglected by Eq. (14): the variability of cluster can be represented by the differences between

each approximate curve and the approximate curve of its medoid, Cms
i (t) − Cms

ik
(t). On the other hand,

the exact curves of the medoids can be used to construct an error model aimed at reducing potential

biases of the MsFV estimate: the difference between the exact and the approximate curves of the medoids,

Cik(t)−Cms
ik

(t), can be used to correct all the curves in the cluster. These conceptually different approaches

lead to exactly the same corrected curves

C∗i (t) = Cik(t) + [Cms
i (t)− Cms

ik
(t)] = Cms

i (t) + [Cik(t)− Cms
ik

(t)] (15)

with k = f(i).

An error model of this form has been proposed in Scheidt et al. (2011) to estimate an upscaling error

that is assumed to be the same for all realizations in the same cluster. In Scheidt et al. (2011), however,

the corrected curves are used to generate realizations constrained to dynamic data. Notice that, if applied

directly, Eq. 16 might lead to corrected curves that are unphysical and not constrained between zero and

one. This is a severe limitation if the corrected curves are used to obtain an estimate of the uncertainty.

To avoid this problem, the breakthrough curves are not corrected directly: first a logistic transformation

is applied to all curves, Ĉi = logit−1(Ci); then the transformed curves are corrected, Ĉ∗i ; and finally, the

corrected curves are transformed back via logit transformation, C∗i = logit(Ĉ∗i ). This yields the Local Error

Model (LEM)

LEM: C∗i (t) = Clem
i (t) = logit

{
Ĉms

i (t) + [Ĉik(t)− Ĉms
ik

(t)]
}
, (16)

which delivers corrected curves that lay between zero and one.

The error model above, which considers only intra-cluster information, can be readily extended by

considering a set of linear combinations of corrected curves

C∗i (t) =

Ns∑
k

βik{Cms
i (t) + [Cik(t)− Cms

ik
(t)]}, (17)
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where the weights, βik, might be chosen to enforce that the corrected curves have some desired characteristics

(e.g., that they are constrained between zero and one, or that they are monotonic). Although the choice of

the weighting function might be critical, here we chose a simple weighting function that depends exclusively

on the distance in the feature space

βik =
exp(−dFiik)∑Ns

k exp(−dFiik)
. (18)

The underlying assumption is that realizations that are closer in the feature space have more similar errors.

As for the LEM, to guarantee concentration values constrained between zero and one the logistic transfor-

mation used before applying the GEM and the corrected transformed curves are then transformed back via

a logit transformation. This yields the Global Error Model (GEM)

GEM: C∗i (t) = Cgem
i (t) = logit

{
Ĉms

i (t) +

Ns∑
k

βik[Ĉik(t)− Ĉms
ik

(t)]

}
, (19)

where it is assumed that
∑

k βik = 1, and observed that Cms
i (t) is independent of k.

Eq. 19 can be interpreted as an error model for the MsFV method. The exact curves computed for

the Ns medoids are compared with the approximate curves of the medoids, and their difference is used

to correct the approximate solution for each realizations i. Note that for an arbitrary weight, βik, all the

medoid differences are used to correct each approximate curve. If βik = δi,f(i), the GEM reduces to the

LEM and only intra-cluster information is used. If the constraint
∑

k βik = 1 is relaxed, the MsFV estimate

of the uncertainty can be obtained by choosing βik = 0. A flowchart of the uncertainty analysis proposed

here (which combines MsFV, DKM, and an error model) is presented in Fig. 2.

4. Numerical results

4.1. An idealized pollution problem

The methodology described above is applied to an idealized pollution problem in which the breakthrough

curve of a contaminant has to be predicted. We consider a two-dimensional section of a confined aquifer

of length 10.8 m and depth 5.1 m. The conductivity field, K, is inspired by the geology of a sedimentary

aquifer, typical of braided river deposits. A vertical section acquired at the Herten site (Germany) (Bayer

et al. 2011) is used as an input training image in the Direct Sampling method (MPDS) (Mariethoz et al.

2010) to perform multiple point geostatistical simulations and generate 1000 synthetic realizations. The 10

facies of the original data (Bayer et al. 2011) are reduced to 5 facies by grouping similar lithofacies. The

porosity and of hydraulic conductivity values are reported in Fig. 3, together with the facies distribution of

four realizations and the corresponding breakthrough curves.

No-flow conditions are applied at the upper and lower boundary of the domain, whereas two types of

boundary conditions are considered for the left and right boundaries: prescribed incoming flux (BCF),
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or prescribed hydraulic-head difference (BCH). The contaminant is released at the left boundary with

normalized concentration c = 1, and the breakthrough curves are computed by averaging the concentration

of the outcoming fluxes at the right boundary. In accordance with realistic natural gradient conditions

simulations in which contaminant transport is dominated by advection (Péclet number Pe > 50) are run.

4.2. Application of the methodology

In this section, the methodology outlined in Fig. 2 is applied to the idealized pollution problem. Simula-

tions with the exact model are performed on the full set of realizations and the variability of the responses,

{Ci(t)}i=1,2,...,Nr
(Fig. 4(a)), is taken has the reference uncertainty to evaluate the performance of the error

models. Estimates provided by MsFV and DKM are also computed to illustrate the improvement achieved

by LEM and GEM.

Experimental quantiles are calculated based on the approximate breakthrough curves, {Cms
i (t)}i=1,2,...,Nr

(Fig. 4(b)), and provide the MsFV estimate of the uncertainty. Then, a distance matrix is constructed using

MsFV curves and DKM is applied to identified NΓk
clusters and select a subset of realizations. The number

of clusters should be sufficient to capture the error and estimate the desired quantiles, but not too large

in order to limit the computational costs. Although a procedure could be devised to identify an optimal

number, here we simply set NΓk
= 20, which corresponds to a coarsening factor of 50 for the uncertainty

space and allows computing the 10th and 90th percentiles (P10 and P90, respectively) by the DKM. The

identification of the subset is performed in the feature space using a Gaussian-kernel expansion. After a

sensitivity analysis, the width parameter is set equal to the standard deviation of the distance matrix, which

0.55 and 0.98 for BCF and BCH, respectively. The clustering is performed only on the base of the kernel

matrix and does not require constructing the feature space explicitly. The k-medoids algorithm is used to

identify NΓk
medoids for which the exact responses are computed, {Cik(t)}k=1,2,...,NΓk

.

A two-dimensional representation of the clustering in the feature space is shown in Fig. 5. The realizations

seem continuously distributed rather than arranged in well separated clusters. Although this might be

partially due to the two-dimensional visualization of the feature space, the fact that clusters are not well

defined is confirmed by the instability of the clustering algorithm: different initializations of the algorithm

(which require an initial guess on the NΓk
medoids) lead to different cluster repartitions and different

uncertainty predictions, independently of the kernel width choice. A set of exact breakthrough curves

obtained for one of the cluster repartitions, {Cik(t)}k=1,2,...,NΓk
, is shown in Fig. 4(c).

The approximate curves for the entire set of realizations and for the medoid exact response are then

used to construct the error model. Here our approach differs from the standard DKM, which estimates

the quantiles based exclusively on the subset of exact curves and does not make any direct use of the set

of approximate curves. In contrast, we use the differences between the approximate and exact medoid

responses to correct the entire set of approximate curves, which is then used to estimate the quantiles.
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In the LEM the responses are corrected using only local (intracluster) information and the set of curves

{Clem
i (t)}i=1,2,...,Nr

(Eq. (16), Fig. 4(d)) is used to compute the quantile. In the GEM the responses are

corrected globally, regardless to the cluster to which they belong, and the set of curves {Cgem
i (t)}i=1,2,...,Nr

(Eq. (19), Fig. 4(e)) is obtained. Notice that few outliers are not effectively corrected due to the limited

coverage of the extreme regions by the set of medoids. As it will be seen in the next section, this few

outliers do not sensitively affect the estimate of P10, P50, and P90. However, in cases where uncertainty

on extremes needs to be quantified, a different strategy has to be used to identify the subset of realizations

used to construct the error models and extreme regions have to be more densely sampled. Note that due to

the non-clear repartitions of the realizations into well defined clusters, this global model is more consistent

with the data and it is expected to lead to more stable uncertainty estimations in terms of dependency on

the initial medoids guess.

4.3. Comparison of quantile-curve estimates

In general, the characterization of uncertainty is done on the basis of a limited number of experimental

quantiles; here we consider the 10th, 50th and 90th percentiles (P10, P50, and P90, respectively). Figs. 6

and 7 compare the three quantile curves obtained with the four models (MsFV, DKM, LEM and GEM)

with the reference quantile curves for both sets of boundary conditions. Notice that due to the instability of

the DKM algorithm, which depends on the initial guess on the medoids, very different quantile curves can

be obtained with DKM, LEM, and GEM. Here we present the comparison for an initialization with yield an

average performance, whereas the variability in model response due to the stability of DKM is investigated

in the next section.

For BCF, MsFV provides a good measure of the statistical variability but tends to slightly underestimate

contaminant concentration of about 4.5% at early times (note that the concentration will be overestimated

at later time due to the constraint that the approximate MsFV solution is conservative and therefore the

mean arrival time of the contaminant must be exact with this type of boundary conditions). DKM leads

to curves that are less smooth due to the reduction of statistical space, which deteriorates the estimates of

quantile curves; the average maximum fluctuations are of the order of 3%. LEM provides smoother curves

than DKM, whereas GEM gives an excellent estimation of the uncertainty (average maximum fluctuations

LEM and GEM are of 1.8% and 1.5% respectively). MsFV bias is effectively corrected and the uncertainty

is correctly represented by the MsFV approximate curves.

For BCH, MsFV quantile curves are in good agreement with the reference (maximum difference between

the curves is of 5.2%). DKM estimate is less good and the 20 exact medoid responses provide a worst

uncertainty estimate than the set of approximate responses (fluctuations of 6.1%). This shows that in some

case DKM can lead to a deteriorated prediction of approximate solutions on which it is based. LEM also

smooths the DKM estimation for this set of boundary conditions, but P10 and P90 remain underestimate
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(averaged maximum fluctuations of 4.3%); GEM leads again to an excellent estimate (3.3%).

4.4. Quantification of the quality of the estimate and stability

To illustrate the dependence of clustering on the initialization, DKM, LEM, and GEM are applied 500

times time with a different initial guess of the medoid set (seed). The overall quality of the different models

is evaluated by considering the l2−norm of the quantile error

l2 :

√∑
t

(PT (t)− PE(t))2, (20)

where PT (t) is the reference quantile curve and PE(t) is the estimated quantile.

Figs. 8 and 9 shows the errors for the two set of boundary conditions and for the 500 seeds. For each

quantiles, the mean error of each method is represented by a bar plot, whereas the error bars represent the

80% confidence interval (i.e., the interval in which one finds 80% of the 500 results obtained with different

seeds). These plots clearly show that the DKM error can be much larger than what observed in Figs. 6 and

7, which correspond to an initialization leading to an error close to the mean of the results from the 500

initializations.

For BCF, DKM performs, in average, better than MsFV for P50 and P90. MsFV responses provide an

accurate selection of representative realizations, but yield a relatively poor estimate of the uncertainty due

to the systematic underestimation of the concentration (see Fig. 6). However, DKM shows a large variability

depending on the initialization of the clustering algorithm and for some seed can lead to larger errors than

MsFV (1.7 times higher for P10 in 10% of the cases). LEM and GEM result in a much better estimate and

lead to a considerable reduction of the dependency on the initialization of the algorithm. GEM performs

better than LEM on both aspects (although for P90 GEM shows a slightly larger seed dependency).

For BCH, the MsFV estimate yields a sensibly lower error than the one obtained by DKM, and this despite

the fact that information from 20 exact simulations is used in DKM. This is likely due to the large instability

of the clustering algorithm that can lead to very unreliable estimates. This example clearly demonstrate

how dangerous could be to rely only on medoid information, thus on an extremely small stochastic space,

for estimate P10 and P90. The error models can correct this problem and lead to a better estimate than

MsFV for GEM. For P90, one can observe a dramatic reduction of the seed dependency with respect to

DKM, whose upper bound of the 80% confidence interval lays at 0.57; LEM reduces this to 0.39 and GEM

to 0.16.

In conclusion, MsFV provides a good estimate of the statistical variability but tend to present some

systematic bias. DKM provides a good subset of representative realizations, but is strongly affected by

the reduction of statistics. Both error models improve substantially the quantification of uncertainty by

combining the whole available information. They both lead to a reduction of dependency on the algorithm

seed; and GEM provides an excellent and much more stable estimate in both situations.
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4.5. Cumulative distribution function at a given time step

Finally, we consider the estimated Cumulative Distribution Function (CDF) at two time steps: t = 70

for BCF (Fig. 10), and t = 14 (Fig. 11) for BCH, respectively. The CDFs in Figs. 10 and 11 refer to a single

initialization (seed) of DKM, which has been chosen to be representative of the average result. Depending

on the cluster initialization, however, the quality of the DKM results would be different.

For fixed-flux boundary conditions (BCF), one can observe a systematic shift of the MsFV CDF towards

smaller concentrations; whereas for fixed-head boundary conditions (BCH), the MsFV CDF is close to

the reference. Depending on the percentile, the error of the DKM estimate could be as high as 5% of

concentration for BCF and 12% for BCH. The DKM CDF exhibits a staircase behavior, which is the result

of the clustering and the subsequent reduction of the number of realizations used to compute the CDF: the

DKM estimate employs only the NΓk
medoid curves and neglects intra-cluster variability. This problem

can be overcome by using the LEM or the GEM which construct a sample containing the same number of

realizations as the original set, {Clem
i (t)}i=1,2,...,Nr. As a consequence a smooth CDF is obtained and the

error is reduced. GEM provides an excellent estimate of the CDF for BCF and does just as well as MsFV

for BCH.

5. Conclusions

The DKM is applied to estimate uncertainty at lower computational costs than a brute-force Monte

Carlo approach. The method relies on an approximate model to select a subset of representative realizations

for which the exact model is solved; then, the uncertainty is estimated only on the basis of the exact-

response subset with no additional use of the approximate solutions. This approach neglects intra-cluster

variability, leads to a dimensional reduction of the statistical space, and provides uncertainty estimates with

a lower resolution than allowed by the original set of realizations. For our numerical test case, the DKM is not

stable with respect to the initialization (seed) of the clustering algorithm and that this can lead to inaccurate

predictions: in most critical cases, the DKM can even deteriorate the uncertainty estimate provided solely

by the approximate solutions. On the other hand, however, using only the approximate responses obtained

with the MsFV method can lead to biased estimates of the uncertainty due to the localization assumptions,

which reduce the accuracy of the solution in presence of long structures spanning several coarse cells. If this

is an issue in a deterministic context (where iterative schemes are usually required to achieve the desired

accuracy), in a stochastic framework this is a minor problem, which can be solved by means of an error

model.

Two error models are devised that aim at exploiting the whole available information and combine the

MsFV approximate responses with the exact responses obtained for medoids selected by the DKM. Both

models employs the difference between approximate and exact solutions for the medoid realizations, but
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differ in the way this discrepancy is interpolated to correct each realization. The LEM applies the same

correction to all realizations belonging the same cluster and can be seen as a natural way to model the

intra-cluster variability of the responses; the GEM corrects each realization by a linear interpolation of all

medoid errors (weighted by a function of the distance in the feature space) regardless to the cluster to which

it belongs. Both models improve the DKM estimate and reduce the dependency on the initialization of

the clustering. The GEM leads to excellent uncertainty estimates and performs systematically better than

the LEM; this is likely due to the fact that a global error model (which does not rely only on intra-cluster

information) is more consistent with the data considered in this study, which are not separated in clearly

defined clusters.

The framework presented here is not specific to the methods considered (namely MsFV and DKM) but

can be applied to other combinations of approximate models and techniques to select a subset of realizations.

For instance, it can be used in a multiphysics context where the approximate model employs a simplified

physical description and an error model is developed to predict a more complicated physical process (e.g.,

single phase vs. multiphase flow problems).

Some of the steps can be extended and generalized to ameliorate the reliability of the error model

for challenging test cases. In particular four main improvements can be suggested: the selection of the

representative realizations can be modified to obtain a larger number of realizations in regions of interest

rather than uniformly covering the entire feature space; the subset of representative realizations could be

iteratively enlarged until a number of realizations is selected that allows the required level of accuracy (note

that this would require an a-posteriori estimate of the accuracy to define the stopping criterion); the weights

used in the global error model can be obtained from the solution of an optimization problem, which can be

tailored to guarantee that the corrected responses satisfy certain physical constraints (this entails a more

profound re-thinking of all steps to determine the ideal subset); finally, Functional Data Analysis (FDA)

can be used to keep an explicit time dependence and work with breakthrough curves in a functional space

rather than with points in a feature space.
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Figure 1: Representation of the auxiliary coarse grids used in the MsFV method. The dual (coarse) grid

(red lines) is used to construct a set of local interpolators, which are local numerical solutions, whereas the

cells of the (primary) coarse grid (white lines) serve as control volumes to build a coarse problem that defines

the coarse-scale unknown at the nodes of the dual grid, or centers of the coarse grid (blue circles). Once the

coarse solution is obtained, the interpolator can be used to obtain an approximate fine-scale solution.
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Figure 2: Starting from an set of geostatistical realizations {Ki, φi}, MsFV simulations are run to compute

a set of breakthrough curves, {Cms
i (t)}. To select a subset of realizations, the euclidean distance between

the curves, Eq. (7), is interpreted as a measure of dissimilarity. After the distance matrix d (Eq. 7) is

constructed, a kernel method is used to compute a new distance in a feature space, dF , Eq. (8). Based on

dF the k-medoid algorithm, Eqs. (10) and (11), is used to cluster the realizations and finds a representative

realization for each cluster (the medoid). After exact breakthrough curves are obtained for the medoids,

the error model is constructed and generates the corrected curves, {C∗i (t)}, which are used to compute the

experimental quantiles.
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Figure 3: (a-d) Examples of stochastic fields generated by DS (Mariethoz et al. 2010); (e) Table of the

hydraulic conductivity and the porosity of the 5 lithofacies; (f) Breakthrough curves of the whole set of

realization (grey) and of the four fields depicted in a, b, c and d (colors).
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Figure 4: Ensemble of the breakthrough curves corresponding to each model, for the two types of boundary

conditions: BCH (left), and BCF (right).
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Figure 5: A two-dimensional representation of the feature space for BCH on the left and BCF on the right.

Each dot is a realization, and each color represent a cluster. The realizations represented by a square

are the medoids defined by the clustering algorithm, for which exact simulation are run. Note that this

representation is obtained by the Multidimensional Scaling (Borg and Groenen 2005; Cox and Cox 2008;

Scheidt and Caers 2009a), which is used here for visualization purposes only.
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Figure 6: Quantiles curves estimated by MsFV (blue), DKM (green), LEM (yellow), and GEM (red) for the

BCF.
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Figure 7: Quantiles curves estimated by MsFV (blue), DKM (green), LEM (yellow), and GEM (red) for

BCH
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the 80% confidence interval obtained for 500 results computed with different seeds. BCF is shown on the

left and BCH on the right. Results for the l∞-norm are shown in Fig. 9.
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Figure 10: CDF of contaminant concentration at time step t = 70 for BCF.
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Figure 11: CDF of contaminant concentration at time step t = 14 for BCH.
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