Major Power Capabilities and Interstate Wars:

Anne Etienne
etienne@unt.edu

Department of Political Science

ECON 5660

INTRODUCTION

Since the end of World War II, the international system (a system that comprises all nations in the world) has experienced a decrease in the occurrence of international wars accompanied by a steady increase of intrastate wars (also referred to as civil war, civil conflict), conflicts that occur within a nation-state rather than between two or more nation states. Many scholars have attempted to identify the characteristics that lead to civil war onset (Anyanwu, 2003; Fearon and Laitin, 2003; Gurr, 1968; Lake, 2003; Mansfield and Snyder; Posen, 1993 2002; Sambonis, 2001; Saxton, 2005; Tilly, 2003) by mainly focusing on the characteristics of countries and how these either promote or preclude the occurrence of a civil war. However, the effects of systemic factors (the aggregate characteristics of the international system rather than characteristics of its members individually) on civil war onset remains impressively understudied. Additionally, scholars have overlooked the potential causes of the frequency of civil wars within the international system over time. In order to fill these gaps, this study aims at answering the following question: Does the hegemon's level of capabilities impact the number of civil wars occurring within the international system? The international system represent the world under which countries operate and interact; the hegemon represents the stronger state in the said system - in this paper, the hegemenon is the United States for the entire time period and the capabilities of the hegemon represent the portion of total world power (the aggregated international power) that the hegemon owns in terms of electricity consumption, military power, and population indices. The paper is organized in the following manner: first, the data sources are identified and explained; second, some background on times series variables and processes are defined; then, the characteristics of the data are presented; the fourth section presents the
statistical analyses and the interpretation thereof; the final questions addresses implications, conclusions and avenues for future research.

Data
In this study, I propose that the capabilities of the main power in the international system represent a leading variable of the frequency of interstate wars over time. Thus, the degree of capabilities is my independent variable and frequency of interstate war is the dependent variable. I utilize the Correlates of War (COW) data on National Material Capabilities and use the data for the US since it has been identified as the hegemon for the period under study - 1946 through 2001 (Singer et al., 1972; Singer, 1987 - the original dataset and the subsequent revisions remain updated through the COW project on an ongoing basis). As the official website indicates, "[t]he National Material Capabilities data set contains annual values for total population, urban population, iron and steel production, energy consumption, military personnel, and military expenditure of all state members, currently from 1816-2001. The widely-used Composite Index of National Capability (CINC) is based on these six variables and included in the data set." This dataset is accessible online (available at http://cow2.la.psu.edu/). I use the CINC as an indicator of US capabilities; this indicator is a fraction that represents the proportion of total international capability possessed by a given country. For the US, this variable takes values ranging from 0.131 to 0.364 .

In order to account for the number of interstate wars occurring within the international system each year, I use the Uppsala Armed Conflict Dataset on civil conflict (Eriksson et al., 2003; Gleditsch et al., 2002). This research group constructed a "Monadic Table" that presents civil unrest occurring in every country each year; additionally, each observation contains a "count" column that adds all civil unrest for each country per year. Of relevance to this study are
the last two types of conflict they identify, mainly "internal armed conflict" and "internationalized internal armed conflict"; the former represents wars between a government and an opposition group while the second refers to the same phenomenon with the addition that the opposition is backed by a foreign government. The Uppsala project classified an event as a "war" when a country reaches at least 25 conflict-related civilian deaths within any given year. Because this project focuses on the effect of a systemic component (the share of total capabilities owned by the hegemon), the aggregated value of this variable represents the dependent variable. As such, the "war" series contains the yearly summation of civil wars in the international system. This variable takes values that range from 14 to 81 . I can now start looking at the characteristics of both variables in terms of stationarity.

Times Series Statistics and Models

Unlike traditional cross-sectional data, time series variables contain several unique dynamics that a researcher needs to identify in order to adequately come up with a model that addresses time-series characteristics. When faced with this kind of data, the investigator first needs to determine whether a series is stationary of not. A stationary process is a stochastic process whose probability distribution at fixed time or position is the same for all times or positions; as such, the unconditional variance and mean of such a process remains constant at different points in time. Furthermore, a variable is non-stationary, it usually contains a unit root whereby one or more of the coefficients in an autoregressive model of order 1 (explained below) has a value superior or equal to one (for other types of autoregressive models, one needs to conduct a unit root test to decipher whether a series is stationary or not). If a unit root is present in the model, the latter has a stochastic trend and is integrated - denoted as $\mathrm{I}(0), \mathrm{I}(1), \mathrm{I}(2)$, etc. An integrated series necessitate being differenced (by subtracting the previous value of the
variable to the current one for one difference) in order to be stationary; an $I(0)$ series denotes a variable that is stationary "as is", an I(1) necessitate one difference in order to be stationary, and so on. As a result, a stationary variable represents the sole type of variable for which one can estimate a reasonable model. However, many time series data have non-stationary characteristics insofar as they may have time-dependent heteroskedasticity (non-constant variance overtime) an aspect which necessitates some manipulation of the variable in question in order to render it stationary. Usually, differencing the original version of a non-stationary variable suffice to make it stationary. There exist several tools and techniques to decipher whether a series is stationary or not.

The first step in identifying whether a variable is stationary or not consists in graphing it over time. When graphing a series, one can decipher whether a variable is stationary or not. If the data appears to have a constant variance and mean over time, then it most likely is stationary. On the other hand, if the data behaves in an unpredictable manner (it either appears to have an inconstant variance over time, or a time trend, or both), then mist likely is non-stationary. Such a variable can be described as a "random walk", of which there are three types. A "simple random walk" depicts a variable that has no intercept and has non-constant variance over time. A "random walk with drift" has an intercept and shares the other characteristics of a "simple random walk". Finally, a "random walk with time trend and drift" has an intercept and also some sort of time-dependent variation: the values of the variable either accrue or decrease across time. Once a series has been examined from a graphical perspective, the researcher conducts further tests to decide whether the series is indeed stationary of not from a statistical perspective, and if so, what sort of steps need be undertaken.

The first statistical tool available consists of looking at the autocorrelation plots (ACF) of the series. This plot simply shows autocorrelations for data values at different points in time: it presents the different lags of the series and presents the levels to which the values of the series at time t are correlated to previous values. If the ACF quickly declines to zero, it indicates that the series most likely mist likely is stationary. However, if it really slowly declines to zero, it signifies that the series is non-stationary. The partial autocorrelation of a value at lag k shows the correlation between the variable at time t and $t-k$ that is not accounted for by lags 1 through lag $k-1$. Additionally to helping identifying the kind of model needed for a series, the PACF also help finding the number of augmentations needed for a Dickey-Fuller test (subsequently DF or ADF for Augmented Dickey-Fuller test).

Once the ACF and PACF of a series have been studied and identified, the next step consists in conducting the DF. A DF tests whether a unit root is present in an autoregressive model (on AR process may have unit roots). The ADF is an improved version of the original test that deals with more complicated time series variables (this is the test used in this paper). There exist three types of test: a single mean test, an intercept and mean test, and a time trend test. Those three tests directly relate to the three different types of random walks, therefore, the type of test to use is based on the plot of the data. Additionally, the test has several possible augmentations. The appropriate number of augmentations is determined by the PACF: one looks at the number of significant lags in the PACF and uses that at the number of needed augmentations. In this paper, the null hypothesis states that he variable is non-stationary. Thus, if one fails to reject the null, one concludes that the series is non-stationary. If the series is nonstationary, it needs be differenced (by basically subtracting the current value by the previous value, losing one observation in the data) and tested again for stationarity. Several differences
may be needed though most time series variable are integrated of order 1 (or $\mathrm{I}(1)$), meaning that they need one difference to become stationary. After making the series stationary, the researcher attempts to select the "best-fitting" model for the series.

The primary tools for deciding whether a series necessitates a WN, AR, or MA process are the ACFs and PACFs. A WN process has "no flavor" and has an ACF and PACF that never is statistically significant. The equation form of such a model is $\mathrm{Y}_{\mathrm{t}}=\varepsilon_{\mathrm{t}}$ and such a model cannot be estimated for the behavior of the series is totally unpredictable. An AR process has an ACF function that gradually, but relatively quickly, declines to zero. On the other hand, its PACF function is significant for p lags. The value of p helps determine the order of the AR process, i.e., the number of lagged values of the series that should have a statistical significance. Such a model simply tests the correlation between a variable and its past values. The equation form of these models is: $\mathrm{Y}_{\mathrm{t}}=\beta_{0}+\beta_{1} \mathrm{Y}_{\mathrm{t}-1}+\ldots+\beta_{\mathrm{p}} \mathrm{Y}_{\mathrm{t}-\mathrm{p}}+\varepsilon_{\mathrm{t}}$. An MA process has an ACF that is significant for q lags and a PACF that gradually, but relatively quickly, declines to zero. The value of q determines the order of the MA. Such a process states that the values of the dependent variable depend on shocks in the past: $\mathrm{Y}_{\mathrm{t}}=\theta_{0}+\varepsilon_{\mathrm{t}}-\theta_{1} \varepsilon_{\mathrm{t}-1}-\ldots-\theta_{\mathrm{q}} \varepsilon_{\mathrm{t}-\mathrm{q}}$. Additionally, a variable may contain both AR and MA components and is thus said to an ARMA process. The ACF and PACF function cannot help determine whether a variable necessitates an ARMA process. Thus, in order to decipher whether a model is AR, MA, or ARMA, it is helpful to use information based criterion such as an Aikake Information Criteria (AIC) by estimating different models and figuring out which has the best AIC. However, on theoretical grounds, this study proposes to elucidate on the potential relationship between two variables rather than doing a simple AR, MA, or ARMA on a variable of interest. Consequently, the above-mentioned models are inadequate and a transfer function is more appropriate.

A transfer function takes the following form: $\mathrm{Y}_{\mathrm{t}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{t}}+\ldots+\beta_{\mathrm{p}} \mathrm{X}_{\mathrm{t}-\mathrm{p}}+\varepsilon_{\mathrm{t}}$, where p relates to the last lagged dependent variable included in the model. X is the leading indicator of Y : changing values of X overtime account for changing values of Y overtime. Ideally, theory should help determine whether one wants to use a transfer function or not. Unfortunately, even good theory may postulate that a there exist a relationship between X and Y - whereby X supposedly causes Y - statistics may prove otherwise. In order to determine whether a posited transfer function is appropriate, one looks at the cross-correlation of the two proposed variables. Cross-correlations help measure the extent to which two series are related. The cross-correlation functions shown by SAS show both negative and positive lags; if the negative lags are significant, the two variables are not fit for a transfer function. On the other hand, if only positive lags are significant, then, the variables should fit a transfer model. Additionally, the number for which the lags are significant determine the number of lagged values of X that need to be included in the model. Now that the specifics of time-series data and the different types of potentially applicable models here have been identify, it ensues that the first task consists in testing for stationarity for both variables.

Data Characteristics

The first necessary step entails identifying the characteristics of the dependent variable, i.e., the frequency of civil war (all commands and \log window outputs are included in the Appendix). Figure 1 show the plot for this variable. Evidently, it appears that the number of civil war from 1946 to 2001 has a time trend and an intercept. This preliminary finding seems to indicate that the "civil wars" series contains heteroskedastic components but the finding remains too weak to ascertain that the series is non-stationary, necessitating further tests. These tests will help elucidate whether the variable is stationary or not and whether it needs being differenced in
order to become stationary. As explained in the previous section, the next step involves deriving the ACF and PACF for the non-differenced series; then, the appropriate ADF unit root test is identified.

Figure 1: Frequency of Civil Wars, 1946-2001.

Graph 1 shows the behavior of the "civil wars" ACF. The series gradually, and rather quickly, declines to zero, which could be an indicator of an AR process or, alternatively, of a non-stationary series.

Graph 1: Autocorrelation Function for Frequency of Civil Wars

Lag	Covariance	Correlation	-1987654321	01234567891	Std Error
1	151.585	0.74372	\| .	\|***************	0.133631
2	137.010	0.67221	\| .	$\mid * * * * * * * * * * * * ~$	0.193936
3	116.320	0.57070	,	\|***********	0.231839
4	104.089	0.51069	\|	\|**********	0.255698
5	98.554733	0.48354	\| .	$\mid * * * * * * * * * *$.	0.273306
6	88.252414	0.43299	\|	\|*********	0.288177
7	91.578922	0.44931	\| .	\|*********	0.299570
8	104.221	0.51134	\| .	\|**********	0.311371
9	79.657958	0.39082	\|	$\mid * * * * * * * *$	0.326022

10	73.952578	0.36283		\|*******		0.334283
11	52.511867	0.25764	-	\|*****		0.341243
12	56.033528	0.27492	-	\|*****		0.344699
13	46.541158	0.22834	-	\|*****		0.348593
14	38.872130	0.19072	-	\|****		0.351254

In order to figure out which type of unit root test is required, the level of significance of the PACF indicates this. This paper already demonstrated that the series has both an intercept and a time trend. The PACF presented in Graph 2 only contains one significant lag (mainly, the first one), therefore, we need to check whether the Augmented Dickey Fuller unit root test is significant for one lag with intercept and unit trend. The unit root test with these specifications has a degree of significance of .0976 . Normally, one would want a 95% confidence in this number; however, due to the limited amount of data, this value may suffice for the purpose of this paper. Further stationarity tests over the dependent variable will help decide whether it needs to be differenced in order to be stationary.

Graph 2: Partial Autocorrelation Function for Frequency of Civil Wars

Figure 2 portrays the plot of the differenced version of the "civil wars" variable. The process of differencing evidently helped remove most of the variation and rendered the variable evidently more stochastic than its original version. Thus, this differenced variable contains no time trend; it does, however, possess an intercept, aspect to keep in mind for the ADF. Deriving
the ACF, PACF, and ADF unit root test for the differenced dependent variable will shed light on the nature of the differenced version of the dependent variable.

Figure 2: Frequency of Civil Wars, 1946-2001 - After One Difference

Graph 3 shows the pattern of the ACF. With the differenced version of the variable, the ACF becomes white noise for the most part and only has significance for the first lag and the eighth lag. This indicates that differencing succeeded in removing the heteroskedastic components of the original version of the series.

Graph 3: First-Differenced Autocorrelation Function for Frequency of Civil Conflicts.

The PACF along with the plot of the variable indicate that one needs to conduct a unit root test with an intercept and time trend and one augmentation term (see Graph 4 for the PACF). The ADF with drift one and (there is an intercept but apparently no time trend based figure 2) with one augmentation meets an appropriate level of statistical significance (0.001) which seems to suggests that the appropriate variable for the proposed model necessitate one difference. Based all the above diagnoses, it appears that the main variable under investigation in this study needs to be differenced one in order to become stationary. Therefore, the model utilized below will use the differenced version of this variable.

Graph 4: First-Differenced Partial Autocorrelation Function for Frequency of Civil Conflicts.

After investigating the characteristics of the dependent variable and deciding that it needs one difference to become stationary, we undergo the same process with the independent variable of this study, mainly, hegemonic capabilities.

The same order as for the dependent variable to determine the characteristics of the independent variable (here identified as CAP in SAS). Figure 2 shows the graph of the capabilities of the hegemon - the United States - from 1946 to 2001. Similarly to the dependent variable, the independent variable clearly has both a time trend and an intercept; the only difference comes from the direction of the curve, i.e., the frequency of war seems to constantly increase over time while the relative capabilities of the hegemon follow a declining path over the
time period under investigation. This graphical display may indicate that this variable is nonstationary, which leads to further statistical tests in order to decipher whether such is the case.

Figure 3: Hegemon's Capabilities, 1946-2001.

In a similar fashion to the dependent variable, the ACF gradually and relatively slowly declines to zero (See Graph 5). Again, this may indicate that the variable is either some sort of AR process or that it is non-stationary in its raw form. Yet, just looking at the ACF does not help generate satisfying conclusions about the nature of the independent variable insofar as the decline to zero seems a little too abrupt to ascertain that the variable is non-stationary.

Graph 5: Autocorrelation Function for Hegemon's Capabilities

The PACF function is significant for the first lag only (see Graph 4) and loses significance directly thereafter, which indicates that it is an AR(1) process and that the ADF necessitates one augmentation term. The Augmented Dickey Fuller unit roots test with an intercept and time trend and one augmentation term has a statistical significance of 0.93 . We therefore fail to reject the null that the series is non-stationary, which entails that it must first be differenced at least once to see whether such a variable will have become stationary

Graph 6: Partial Autocorrelation Function for Hegemon's Capabilities

Once differenced, the plot of the independent variable still has an intercept but it loses its time trend - therefore, when looking at the ADF unit root test, one needs to look at it with a drift
only (see Figure 4 for the plot of the differenced "hegemon's capabilities" variable). However, the plot of the variable still shows a lot of variation since the series appears to vary greatly at the beginning of the time period under study to then vary at a moderate rate and around zero - which means that the series becomes rather stable towards the end of the time under study. With regards to the statistical tests necessary to address this differenced version, the ADF unit root test will be one with only a drift insofar as no time trend appears on the graphical expression of the series.

Figure 3: Hegemon's Capabilities, 1946-2001 - After One Difference

After one difference, the ACF for the hegemon's capabilities series becomes mostly white noise though its first lag seems to meet statistical significance (see Graph 7 for the ACF). Consequently, differencing the variable appears to have successfully removed the heteroskedasticity from the original version.

Graph 7: First-Differenced Autocorrelation Function for Hegemon's Capabilities.

Lag	Covariance	Correlation	-1987654 31	01234567891	Std Error
1	0.00003156	0.23155	\| .	\|*****	0.134840
2	9.28911E-6	0.06816	\| .	*	0.141885
3	-0.0000259	-. 19037	****	\|	0.142479
4	-0.0000330	-. 24240	. ${ }^{* * * * *}$	\|	0.147031
5	0.00001357	0.09955	\| .	**	0.154126
6	0.00001060	0.07781	-	**	0.155291
7	0.00001387	0.10176	\| .	\|**	0.155998
8	7.77656E-6	0.05706	\| .	*	0.157200
9	2.22065E-6	0.01629	\| .	.	0.157576
10	4.57472E-6	0.03357	\| .	*	0.157607
11	0.00002246	0.16478	\| .	***	0.157737
12	9.51935E-6	0.06985	\| .	*	0.160836
13	9.77856E-6	0.07175	\| .	*	0.161387

The PACF shows that the series needs one augmentation for the ADF unit root test (see Graph 8 for the PACF). This test meets statistical significance at the .001 level, leading to the rejection the null that the series is non stationary. In essence, this series needs be differenced once in order to be stationary. In the section that follows - the analysis - the models utilize the first difference version of both the dependent and independent variables.

Graph 8: First-Differenced Partial Autocorrelation Function for Hegemon's Capabilities.

After looking at the characteristics of the dependent and independent variables, the next step requires analyzing whether the two variables fit a transfer function. The computation of the cross-correlation between the frequency of civil wars and the share of total world capabilities possessed by the United States accomplishes this task. Additionally, this study needs to include the lags of the dependent variable that should have an impact on its current values - the number of necessary lagged values emanates from the results of the ACF and PACF for the differenced dependent variable. Referring back to the ACF and PACF of the differenced version of the dependent variable, (Graph 3 and Graph 4), only the first lag is significant in both function and then the series becomes non-significant. These findings does not help identify whether, on its own, the civil war variable necessitate and $\operatorname{AR}(1)$, $\mathrm{MA}(1)$, or an ARMA process. An information criteria tool, through the use of a MINIC procedure - a procedure that automatically identifies the best fitting model for a stationary variable - assist us in determining the best model (see appendix). The MINIC procedure indicates that the series is an $\operatorname{AR}(1)$, therefore, in the event the variables are amenable to a transfer function, the equation will also include the first lag of the dependent variable on the right hand side of the equation. The cross correlation function should help us decide whether 1) the variables fit a transfer function and, if this is the case, 2) how many lags of the independent variable must be included in the model.

Graph 9 shows the results of the cross-correlations between frequency of wars and hegemonic capabilities. Though the cross-correlations between the frequency of wars and the capabilities of the US are all insignificant for the negative lags (which is what we would look for), they are also insignificant for positive lags, which seems to indicate that there is no relationship between the two variables.

Graph 9: Cross-Correlations Between Frequency of War and Hegemonic Capabilities.

In spite of this shortcoming and based on the theory proposed above (mainly that a decrease in the capabilities of the hegemonic power should lead to an increase in the occurrence of civil conflicts), four illustration purposes, this project depicts the results of the $\operatorname{AR}(1)$ model as well as that of the transfer function model including the lagged dependent and independent variables. For both models, and contrarily to what the plots seem to suggest, the intercept is irrelevant, therefore, only results excluding the intercept are shown (results with the intercept appear in the appendix). Also, because PRIO has data on conflicts till 2004, I will forecast the next three periods to compare and contrast them with the actual values. The results of the analysis appear in Table 1.

Table 1: Estimates from the $\operatorname{AR}(1)$ and Transfer Function)

	$\operatorname{AR}(1)$	Transfer Function
War Lagged	$-0.397^{* * *}$	$-0.383^{* * *}$
	(0.01)	(0.01)

Capabilities Lagged	-	-105.30
	59.71	(0.20)
2002 Forecast	(8.65)	59.94
	62.98	(8.69)
2003 Forecast	(10.12)	-
	61.69	
2004 Forecast	(12.07)	-
N		55

* $\mathrm{p}<.10$; ** $\mathrm{p}<.05$; *** $\mathrm{p}<.01$. The p -values are in parentheses for the coefficient estimates; the standard error is in parentheses for the forecasts.

As table 1 illustrates, hegemonic capabilities do not have a significant effect on the number of civil conflicts in the international system. In spite of this lack of significance, the relationship is in the expectation direction since a one unit increase in the hegemon's capabilities leads to a decrease of 105 civil conflicts in the system. On the other hand, and in both models, the lagged value of the dependent variable seems to explain move of the variation in current values therefore. Both coefficients are significant at the .01 level. Thus, a one unit increase in the change of frequency of civil wars in the most recent period leads to a decrease of .397 in the change of frequency in civil war - which means that roughly 40% of the change in the dependent variable is explained by its lagged value.

The forecasts for 2002 indicate that, based on the $\operatorname{AR}(1)$ model, one should expect to observe between 42.41 and 77.01 (by subtracting and adding the double of the standard error to the actual forecast). PRIO accounted for 48 conflicts in 2002, a number included in the range of confidence of the forecast presented here. This first forecast can thus be said to be adequately accurate. For 2003, the model predicts a number of wars that falls between 42.74 and 83.22 with 95% confidence. PRIO accounted for 46 in 2003, again, a number that falls with the 95% confidence interval here though barely. Additionally, the 2003 forecast contains a huge confidence interval; consequently, one can barely say that this forecast is accurate enough for
there exists a strong gap between 42 wars and 83 wars. As for 2003, the forecasts indicate that the world should experience somewhere between 37.55 and 85.83 - with 95% confidence. For the same year, PRIO reported 91 wars, a number that does not even fall within our level of confidence. A shortcoming of forecasting comes from the fact that they become less and less efficient as we move into the future for there are less and less "actual" observations on which to base the later forecasts. Overall, the range of the forecasts (maybe with the exception of the forecast 2002) appear too wide for anyone to be confident as to their accuracy.

DISCUSSION \& FUTURE RESEARCH

This research project attempted to test whether there exists a relationship between the capabilities of the world's hegemonic power and the frequencies of civil conflicts therein. More precisely, this project posited that it expected a negative relationship between the two whereby a decrease in the major power's capabilities should diminish her ability to prevent and pre-empt conflict on the international scene, leading to an increase in civil wars. In order to determine whether the postulated hypothesis holds, data was gathered from competent sources and statistical analyses over the characteristics of those data ensued. The results demonstrate that there is no apparent relationship between the two proposed variables and that, instead, past civil wars explain the current amount of civil wars within the system. These contradictory (or rather non-supportive) findings raise several problems.

First, the models utilized remain very limited in their scope and the inclusion of variables. Much more factors than just past civil wars and the hegemon's power should account for the frequency of civil war at the global level. Second, the number of observations reduces the degrees of freedom and potentially precludes our ability to actually outline an existing relationship. Finally, the characteristics of the variables remain unclear. Both appear to be non-
stationary in their raw form (and the unit root tests also seem to suggest this) but they may only necessitate partial difference in order to become stationary (as opposed to the full differencing that was conducted throughout this project). Thus, future research on the topic should attempt to address the points raise in 1) adding further variables through precise theorizing, 2) look for alternative sources of data in order to hopefully cover a longer time period, and 3) adequately manage to find the "true" characteristics of all variables included in the model.

References

Anyanwu, John. 2003. "Economic and Political Causes of Civil Wars in Africa: Some Econometric Results." Peace, Conflict and Development, 4: 4-14.

Eriksson, Mikael, Peter Wallensteen \& Margareta Sollenberg. 2003. "Armed Conflict, 19892002." Journal of Peace Research 40(5): 593-607.

Fearon, James and David Laitin. 2003. "Ethnicity, Insurgency, and Civil War." American Political Science Review, 97(1): 75-90.

Gleditsch, Nils Petter, Peter Wallensteen, Mikael Eriksson, Margareta Sollenberg, and Håvard Strand. 2002. "Armed Conflict 1946-2001: A New Dataset." Journal of Peace Research 39(5): 615-637.

Gurr, Ted. 1968. "A Causal Model of Civil Strife: Comparative Analyses Using New Indices." American Political Science Review, 62(4): 1104-1124.

Lake, David. 2003. "International Relations Theory and Internal Conflict: Insights from the Interstices." International Studies Review, 5(4): 81-89.

Mansfield, Edward and Jack Snyder. 2002. "Democratic Transition, Internal Strength, and War." International Organization, 56(2): 297-337.

Posen, Barry. 1993. "The Security Dilemma and Ethnic Conflict." Survival, 35(1): 27-47.
Sambonis, Nicholas. 2001. "Do Ethnic and Non-Ethnic Civil Wars Have the Same Causes?" Journal of Conflict Resolution, 45(3): 259-282.

Singer, J. David, Stuart Bremer, and John Stuckey. 1972. "Capability Distribution, Uncertainty, and Major Power War, 1820-1965." in Bruce Russett (ed) Peace, War, and Numbers, Beverly Hills: Sage, 19-48.

Singer, J. David. 1987. "Reconstructing the Correlates of War Dataset on Material Capabilities of States, 1816-1985." International Interactions, 14: 115-32.

Saxton, Gregory. 2005. "Repression, Grievances, Mobilization, and Rebellion: A New Test of Gurr's Model of Ethnopolitical Rebellion." International Interactions, 31(1): 87-116.

Tilly, Charles. 2003. The Politics of Collective Violence. Cambridge: Cambridge University Press.

APPENDIX

The commands to read the data are:

```
/* These are the commands for final paper */
title 'Anne Etienne';
filename indata 'C:\Documents and Settings\Anne Etienne\Desktop\Classes\Time
Series\paper.csv';
data war;
infile indata delimiter=',';
input date cap war;
format date year4.;
run;
```

I got the following window upon reading the data into SAS:

```
267 /* These are the commands for final paper */
268 title 'Anne Etienne';
269 filename indata 'C:\Documents and Settings\Anne Etienne\Desktop\Classes\Time Series\paper.csv';
270 data war;
2 7 1 \text { infile indata delimiter=',';}
272 input date cap war;
273 format date year4.;
274 run;
NOTE: The infile INDATA is
    File Name=C:\Documents and Settings\Anne Etienne\Desktop\Classes\Time Series\paper.csv,
    RECFM=V,LRECL=256
NOTE: 56 records were read from the infile INDATA.
    The minimum record length was 15.
    The maximum record length was }15
NOTE: The data set WORK.WAR has 56 observations and 3 variables.
NOTE: DATA statement used (Total process time):
    real time 0.01 seconds
    cpu time 0.01 seconds
```

I used the following command to check for the unit roots and to get the ACF and PACF of the number of civil wars in the international system as well as for these characteristics with regards to the US capabilities:

```
proc arima;
identify var=war stationarity=(ADF=(0,1,2,3));
identify var=war(1) stationarity=(ADF=(0,1,2,3));
run;
identify var=cap stationarity=(ADF=(0,1,2,3));
identify var=cap(1) stationarity=(ADF=(0,1,2,3));
run;
```

SAS generated the following log window after this command:
NOTE: PROCEDURE ARIMA used (Total process time):

```
real time 1:51.62
    cpu time 0.61 seconds
```

283 proc arima;
284 identify var=war stationarity=(ADF=(0,1,2,3));
285 identify $\operatorname{var}=w a r(1)$ stationarity $=(\operatorname{ADF}=(0,1,2,3))$;
286 run;
287 identify var=cap stationarity=(ADF=(0,1,2,3));
288 identify $\operatorname{var}=\mathrm{cap}(1)$ stationarity=($\operatorname{ADF}=(0,1,2,3))$;
289 run;

I gathered the following output:

> Name of Variable $=$ war
> Mean of Working Series $\quad 41.96429$

Standard Deviation Number of Observations

Autocorrelations

Lag	Covariance
0	203.820
1	151.585
2	137.010
3	116.320
4	104.089
5	98.554733
6	88.252414
7	91.578922
8	104.221
9	79.657958
10	73.952578
11	52.511867
12	56.033528
13	46.541158
14	38.872130

Lag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Lag
1
2
3
4
5
6
7
8
9
10
11
12
13
14

To	Chi-
Lag	Square
6	123.16
12	184.46

Partial Autocorrelations

Autocorrelation Check for White Noise
Pr >

DF	ChiSq$<.0001$	-------------------Autocorrelations--------------------				
6		0.744	0.672	0.5710 .511	0.484	0.433
12	<.0001	0.449	0.511	0.3910 .363	0.258	0.275
Augmented Dickey-Fuller Unit Root Tests						
Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	$\mathrm{Pr}>$
0	-0.1435	0.6468	-0.09	0.6486		
1	0.4029	0.7764	0.38	0.7913		
2	0.4320	0.7836	0.46	0.8094		
3	0.4202	0.7805	0.48	0.8142		
0	-11.4120	0.0800	-2.40	0.1449	3.14	0.2798
1	-6.9170	0.2622	-1.95	0.3075	2.44	0.4564

Type	Augmented Dickey-Fuller Unit Root Tests					F	$\mathrm{Pr}>\mathrm{F}$
	Lags	Rho	Pr < Rho	Tau	Pr < Tau		
Zero Mean	0	-75.5019	<. 0001	-10.54	<.0001		
	1	-90.6174	<. 0001	-6.57	<.0001		
	2	-113.219	0.0001	-5.08	<.0001		
	3	-200.656	0.0001	-4.34	<.0001		
Single Mean	0	-75.8928	0.0005	-10.58	0.0001	56.07	0.0010
	1	-94.6124	0.0005	-6.62	0.0001	21.94	0.0010
	2	-126.193	0.0001	-5.13	0.0002	13.18	0.0010
	3	-272.666	0.0001	-4.40	0.0009	9.70	0.0010
Trend	0	-75.9887	<.0001	-10.48	<.0001	54.99	0.0010
	1	-94.5592	<.0001	-6.55	<.0001	21.51	0.0010
	2	-125.227	0.0001	-5.07	0.0007	12.96	0.0010
	3	-252.877	0.0001	-4.33	0.0060	9.60	0.0010

Name of Variable = cap
Mean of Working Series 0.191778
Standard Deviation 0.061666
Number of Observations 56
Autocorrelations

Lag	Covariance
0	0.0038027
1	0.0034478
2	0.0032167
3	0.0030128
4	0.0028898
5	0.0027524
6	0.0024779
7	0.0022060
8	0.0019120
9	0.0016974
10	0.0015100
11	0.0013140
12	0.0011055
13	0.00094833
14	0.00077848

Inverse Autocorrelations				
Lag	Correlation	-19876543210	$\begin{array}{llllllllll}1 & 3 & 4 & 6 & 7 & 9 & \end{array}$	
1	-0.40302	********\|	.	
2	-0.07368	\| . *		.
3	0.07962	\| .	**	**
4	-0.02360	\|	.	
5	-0.17478	\| . ***		.
6	0.08423	\| .	**	**
7	-0.07981	\| . **		.
8	0.08526	\| .	**	**
9	0.03090	*	*	
10	-0.02128	\| .		.
11	-0.02318	\|	.	
12	0.08148	\| .	*	**
13	-0.08823	. **\|	.	
14	0.02878	\| .	*	*
Partial Autocorrelations				
Lag	Correlation	-19876543210		
1	0.90665	*	*******************	
2	0.13413	*	***	
3	0.03773	*	*	
4	0.11100	\| .	*	**
5	0.00765	\| .	.	
6	-0.21306	. ${ }^{* * * * \mid}$.	
7	-0.09660	\| . **		.
8	-0.11733	. **\|	.	
9	0.00055	\|	.	
10	0.02731	*	*	
11	0.01388	,	.	
12	-0.00774	,	.	

0.07620	\mid
-0.04847	\cdot
$\left.\right\|^{* *}$.

Autocorrelation Check for White Noise

To	Chi-
Lag	Square
6	227.06
12	306.24

Type
Zero Mean
Lags
Augmented Dickey-Fuller Unit Root Tests

Zero Mean	0
	1
	2
Single Mean	3
	0
	1
Trend	2
	3
	0
	1
	2
	3

Pr >
ChiSq
$<.0001$

0.907	0.846	0.792	0.760	0.724	0.652
0.580	0.503	0.446	0.397	0.346	0.2

Rho	$\mathrm{Pr}<$ Rho	Tau	$\mathrm{Pr}<$ Tau	F	$\mathrm{Pr}>\mathrm{F}$
-1.4471	0.3993	-3.52	0.0007		
-0.9356	0.4804	-2.03	0.0416		
-0.9193	0.4832	-1.92	0.0534		
-0.8687	0.4923	-2.55	0.0116		
-4.6742	0.4525	-3.68	0.0069	10.47	0.0010
-2.6664	0.6891	-1.82	0.3674	2.87	0.3476
-2.7207	0.6820	-1.80	0.3779	2.66	0.4007
-2.1399	0.7550	-1.99	0.2917	4.08	0.0870
-6.3891	0.6939	-2.34	0.4036	6.96	0.0377
-3.3169	0.9176	-1.08	0.9229	1.65	0.8466
-3.4383	0.9113	-1.06	0.9259	1.61	0.8546
-0.6222	0.9907	-0.29	0.9888	2.23	0.7347

Name of Variable $=$ cap

Period(s) of Differencing	1
Mean of Working Series	-0.0039
Standard Deviation	0.011674
Number of Observations	55
Observation(s) eliminated by differencing	1

Autocorrelations

Lag	Covariance
0	0.00013628
1	0.00003156
2	$9.28911 \mathrm{E}-6$
3	-0.0000259
4	-0.0000330
5	0.00001357
6	0.00001060
7	0.00001387
8	$7.77656 \mathrm{E}-6$
9	$2.22065 \mathrm{E}-6$
10	$4.57472 \mathrm{E}-6$
11	0.00002246
12	$9.51935 \mathrm{E}-6$
13	$9.77856 \mathrm{E}-6$

Correlation	-19876543210	01234567891	Std Error	
1.00000		$\|* * * * * * * * * * * * * * * * * * * *\|$	0	
0.23155	\| .		\|*****	0.134840
0.06816	\| .	\|*	0.141885	
-. 19037	. ****\|	\| .	0.142479	
-. 24240	. ${ }^{* * * * * ~}$	\| .	0.147031	
0.09955	\| .		\|**	0.154126
0.07781	\| .	\|**	0.155291	
0.10176	\| .	\|**	0.155998	
0.05706	\| .	\|*	0.157200	
0.01629	\| .	. \|	0.157576	
0.03357	\| .		\|*	0.157607
0.16478	\| .	\|***	0.157737	
0.06985	\| .	\|*	0.160836	
0.07175	\| .		\|*	0.161387

Lag
1
2
3
4
5
6
7
8
9
10
11
12
13

Inverse Autocorrelations			
Correlation	-19876543210	1234567891	
-0.18879	.****\|	. \|	
-0.18924	. ${ }^{* * * * \mid}$.	
0.19259	\|	****.	
0.23489	*	*****	
-0.25171	*****	.	
0.04172		*	
0.01788	\| .		.
-0.06580	. *\|	-	
-0.06419	. *	.	
0.05110	\| .	*	*
-0.13171	. ***\|	.	
-0.00169	\| .		.
-0.02421	\| .		-
Partial Autocorrelations			
Correlation	-19876543210	1234567891	
0.23155		*****	
0.01537	\| .		. \|
-0.22139	.****\|	.	

The command for the cross-correlation function is:

proc arima;

identify var=war(1) crosscor=(cap(1));
run;

The log window reads:
NOTE: PROCEDURE ARIMA used (Total process time):

real time	$1: 03: 27.54$
cpu time	1.14 seconds

290 proc arima
291 identify var=war(1) crosscor=(cap(1));
292 run;
I gathered this output:

Variable cap has been differenced. Correlation of war and cap
Period(s) of Differencing Variance of input = Number of Observations 1
0.000136 55
1 Observation(s) eliminated by differencing Crosscorrelations

Lag	Covariance	Correlation	-19876543210	12	345567891	
-13	-0.0072749	-. 06746	- *\|		.	
-12	-0.0051275	-. 04755	\| . *			.
-11	0.0031552	0.02926	-	*		
-10	-0.0026967	-. 02501	\| . *			-
-9	-0.0057553	-. 05337	. * ${ }^{\text {l }}$		-	
-8	-0.0055020	-. 05102	\| . *		-	
-7	-0.0044435	-. 04121	\| . *		-	
-6	0.0016754	0.01554	\| .		-	
-5	-0.0045185	-. 04190	. * ${ }^{\prime}$		-	
-4	-0.013816	-. 12813	\| . ***			-
-3	0.011691	0.10842	,	**	-	
-2	0.021196	0.19656	\|	****.		
-1	0.0057528	0.05335	\|	* .		
0	0.0079291	0.07353	\| .		*	-
1	-0.016972	-. 15739	. ***		-	
2	0.0062852	0.05829	\|	*	-	
3	-0.023124	-. 21444	. $* * * *$			
4	-0.0080739	-. 07487	\| . *		-	
5	0.0081079	0.07519	1	**		

-———————

 . marks two standard errorsHere are the commands for the MINIC procedure for war:

```
proc arima;
```

```
identify var=war(1) minic p=(0:4) q=(0:4);
```

identify var=war(1) minic p=(0:4) q=(0:4);
run;

```

SAS generates this \(\log\) window:
NOTE: PROCEDURE ARIMA used (Total process time):
real time
14:02.95
cpu time 1.18 seconds

293 proc arima;
294 identify var=war(1) minic \(p=(0: 4) q=(0: 4)\);
295 run;
I gather the following output:
Name of Variable = war
\(\begin{array}{lr}\text { Period(s) of Differencing } & 1 \\ \text { Mean of Working Series } & 0.854545 \\ \text { Standard Deviation } & 9.237115 \\ \text { Number of Observations } & 55 \\ \text { Observation(s) eliminated by differencing } & 1\end{array}\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Autocorrelations} \\
\hline Correlation & -1987654 210 & 0 1234567891 & Std Error \\
\hline 1.00000 & & \(|* * * * * * * * * * * * * * * * * * * *|\) & 0 \\
\hline -. 37034 & ******* & | . | & 0.134840 \\
\hline 0.00817 & - & . & 0.152214 \\
\hline 0.00018 & | . & - & 0.152222 \\
\hline -. 02101 & | . & - & 0.152222 \\
\hline 0.04876 & | . & * & 0.152275 \\
\hline -. 13101 & . ***| & . & 0.152558 \\
\hline -. 15417 & *** & . & 0.154590 \\
\hline 0.33412 & | . | & |******* & 0.157361 \\
\hline -. 26823 & . ***** & | . & 0.169770 \\
\hline 0.06250 & | . | & * & 0.177308 \\
\hline -. 15670 & *** & | . & 0.177708 \\
\hline 0.16122 & | . | & |*** & 0.180203 \\
\hline -. 06395 & * & | . | & 0.182807 \\
\hline
\end{tabular}


Autocorrelation Check for White Noise
\begin{tabular}{rr} 
To & Chi- \\
Lag & Square \\
6 & 9.24 \\
12 & 27.06
\end{tabular}
Minimum Information Criterion
\begin{tabular}{lrrrrr} 
Lags & MA 0 & MA 1 & MA 2 & MA 3 & MA 4 \\
AR 0 & 4.28561 & 4.160572 & 4.231941 & 4.302681 & 4.359798 \\
AR 1 & 4.132086 & 4.198996 & 4.23183 & 4.302676 & 4.347672 \\
AR 2 & 4.17198 & 4.241038 & 4.30231 & 4.367242 & 4.416883 \\
AR 3 & 4.233321 & 4.293858 & 4.36578 & 4.438208 & 4.400625 \\
AR 4 & 4.296039 & 4.351859 & 4.424705 & 4.490416 & 4.470538 \\
& Error series model: & AR \((8)\) \\
& Minimum Table Value: \(\operatorname{BIC}(1,0)=4.132086\)
\end{tabular}
The command for estimating the models are:
```

proc arima;
identify var=war(1) crosscorr=(cap(1));
estimate p=1 method=ML;
estimate p=1 input=(1\$ cap) method=ML;
run;

```

The log window reads:
\begin{tabular}{|c|c|}
\hline NOTE: & \begin{tabular}{ll} 
PROCEDURE ARIMA used (Total process time) \\
real time & \(8: 51.10\) \\
cpu time & 0.60 seconds
\end{tabular} \\
\hline 305 & proc arima; \\
\hline 306 & identify var=war(1) crosscorr=(cap(1)); \\
\hline 307 & estimate \(\mathrm{p}=1\) method=ML; \\
\hline 308 & estimate \(\mathrm{p}=1\) input=(1\$ cap) method=ML; \\
\hline 309 & run; \\
\hline
\end{tabular}

I get this output:





\section*{Correlations of Parameter}

\section*{Estimates}
\begin{tabular}{lrr} 
Parameter & MU & AR1,1 \\
MU & 1.000 & 0.030 \\
AR1,1 & 0.030 & 1.000
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Chi- Pr >} \\
\hline Square & DF & ChiSq & & & Autoc & tions & & \\
\hline 4.77 & 5 & 0.4441 & -0.047 & -0.128 & -0.048 & -0.017 & -0.007 & -0.234 \\
\hline 14.92 & 11 & 0.1860 & -0.097 & 0.268 & -0.148 & -0.081 & -0.163 & 0.111 \\
\hline 16.76 & 17 & 0.4707 & 0.007 & -0.035 & -0.038 & 0.121 & 0.027 & 0.067 \\
\hline 19.14 & 23 & 0.6930 & -0.024 & -0.012 & 0.068 & 0.027 & -0.117 & 0.06 \\
\hline
\end{tabular}

Model for variable war
Estimated Mean 0.789634
Period(s) of Differencing

\section*{Autoregressive Factors \\ Factor 1: \(1+0.40334 B^{* *}(1)\)}

Maximum Likelihood Estimation
\begin{tabular}{lr} 
Parameter & Estimate \\
MU & 0.48336
\end{tabular}
\begin{tabular}{rrr} 
Standard & & \multicolumn{1}{r}{ Approx } \\
Error & t Value & \(\operatorname{Pr}>|\mathrm{t}|\) \\
0.92335 & 0.52 & 0.6006
\end{tabular}
Variable Shift


I use the following commands to run the models without an intercept and to forecast the output: proc arima;
```

identify var=war(1) crosscorr=(cap(1));
estimate p=1 method=ML noint;
forecast lead=3;
estimate p=1 input=(1\$ cap) method=ML noint;
forecast lead=3;
run;

```
SAS shows the following log window:
9 proc arima;
10 identify var=war(1) crosscorr=(cap(1));
11 estimate \(\mathrm{p}=1\) method=ML noint;
12 forecast lead=3;
13 estimate \(p=1\) input=(1\$ cap) method=ML noint;
14 forecast lead=3;
15 run;

I get this output:
\begin{tabular}{lr}
\multicolumn{2}{c}{ Name of Variable = war } \\
Period(s) of Differencing & 1 \\
Mean of Working Series & 0.854545 \\
Standard Deviation & 9.237115 \\
Number of Observations & 55 \\
Observation(s) eliminated by differencing & 1
\end{tabular}

-31.598732
0.697412
0.015705
-1.792944
4.160060
-11.178176
-13.154759
28.508328
-22.886437
5.332352
-13.370512
13.756376
-5.456571
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Partial Autocorrelations} \\
\hline Lag & & relation & -1987 & 543 & 012 & & & \\
\hline 1 & & -0.37034 & & & | . & & & \\
\hline 2 & & -0.14948 & & & | & & | & \\
\hline 3 & & -0.06128 & & & | & & | & \\
\hline 4 & & -0.05020 & & & | & & | & \\
\hline 5 & & 0.02586 & , & & * & & | & \\
\hline 6 & & -0.12372 & & & & & | & \\
\hline 7 & & -0.30217 & & *** & | & & | & \\
\hline 8 & & 0.17270 & & & |*** & & | & \\
\hline 9 & & -0.13175 & & & | & & | & \\
\hline 10 & & -0.08898 & & & * & & | & \\
\hline 11 & & -0.25537 & & & * & & | & \\
\hline 12 & & -0.00456 & & & & & | & \\
\hline 13 & & -0.15190 & & & | & & | & \\
\hline \multicolumn{9}{|c|}{Autocorrelation Check for White Noise} \\
\hline Square & DF & ChiSq & & ---- & Autocor & ations & & \\
\hline 9.24 & 6 & 0.1605 & -0.370 & 0.008 & 0.000 & -0.021 & 0.049 & -0.131 \\
\hline 27.06 & 12 & 0.0076 & -0.154 & 0.334 & -0.268 & 0.062 & -0.157 & 0.161 \\
\hline \multicolumn{9}{|c|}{Correlation of war and cap} \\
\hline \multicolumn{9}{|c|}{Variance of input = 0.000136} \\
\hline \multicolumn{9}{|c|}{Number of Observations 55} \\
\hline \multicolumn{9}{|c|}{Observation(s) eliminated by differencing} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Partial Autocorrelations} \\
\hline Lag & & relation & -1987 & 543 & 012 & & & \\
\hline 1 & & -0.37034 & & & | . & & & \\
\hline 2 & & -0.14948 & & & | & & | & \\
\hline 3 & & -0.06128 & & & | & & | & \\
\hline 4 & & -0.05020 & & & | & & | & \\
\hline 5 & & 0.02586 & , & & * & & | & \\
\hline 6 & & -0.12372 & & & & & | & \\
\hline 7 & & -0.30217 & & *** & | & & | & \\
\hline 8 & & 0.17270 & & & |*** & & | & \\
\hline 9 & & -0.13175 & & & | & & | & \\
\hline 10 & & -0.08898 & & & * & & | & \\
\hline 11 & & -0.25537 & & & * & & | & \\
\hline 12 & & -0.00456 & & & & & | & \\
\hline 13 & & -0.15190 & & & | & & | & \\
\hline \multicolumn{9}{|c|}{Autocorrelation Check for White Noise} \\
\hline Square & DF & ChiSq & & ---- & Autocor & ations & & \\
\hline 9.24 & 6 & 0.1605 & -0.370 & 0.008 & 0.000 & -0.021 & 0.049 & -0.131 \\
\hline 27.06 & 12 & 0.0076 & -0.154 & 0.334 & -0.268 & 0.062 & -0.157 & 0.161 \\
\hline \multicolumn{9}{|c|}{Correlation of war and cap} \\
\hline \multicolumn{9}{|c|}{Variance of input = 0.000136} \\
\hline \multicolumn{9}{|c|}{Number of Observations 55} \\
\hline \multicolumn{9}{|c|}{Observation(s) eliminated by differencing} \\
\hline
\end{tabular}
Partial Autocorrelations
Crosscorrelations
\begin{tabular}{|c|c|c|c|c|}
\hline Lag & Covariance & Correlation -198 & 76432101234 & 789 \\
\hline -13 & -0.0072749 & -. 06746 & . \({ }^{1}\) & \\
\hline -12 & -0.0051275 & -. 04755 & . *| & \\
\hline -11 & 0.0031552 & 0.02926 | & |* & \\
\hline -10 & -0.0026967 & -. 02501 & . *| & \\
\hline -9 & -0.0057553 & -. 05337 & . *| & \\
\hline -8 & -0.0055020 & -. 05102 & . *| & \\
\hline -7 & -0.0044435 & -. 04121 & - *| & \\
\hline -6 & 0.0016754 & 0.01554 & . | . & \\
\hline -5 & -0.0045185 & -. 04190 & . *| & \\
\hline -4 & -0.013816 & -. 12813 & . *** & \\
\hline -3 & 0.011691 & 0.10842 & |** & \\
\hline -2 & 0.021196 & 0.19656 & |****. & \\
\hline -1 & 0.0057528 & 0.05335 & |* & \\
\hline 0 & 0.0079291 & 0.07353 & |* & \\
\hline 1 & -0.016972 & -. 15739 & . ***| & \\
\hline 2 & 0.0062852 & 0.05829 & |* & \\
\hline 3 & -0.023124 & -. 21444 & . \({ }^{* * * * \mid}\) & \\
\hline 4 & -0.0080739 & -. 07487 & . *| & \\
\hline 5 & 0.0081079 & 0.07519 & |** & \\
\hline 6 & 0.011253 & 0.10436 & |** & \\
\hline 7 & 0.0097008 & 0.08996 & . |** & \\
\hline 8 & -0.012533 & -. 11623 & . **| & \\
\hline 9 & -0.0067542 & -. 06263 & . *| & \\
\hline 10 & 0.016511 & 0.15311 & |*** & \\
\hline 11 & -0.015547 & -. 14417 & . ***| & \\
\hline 12 & 0.011536 & 0.10698 & \(\left.\right|^{* *}\) & \\
\hline 13 & 0.0021428 & 0.01987 & . | . & \\
\hline & & Maximum Likelihood Standard & Estimation Approx & \\
\hline & Parameter & Estimate Error & \(t\) Value Pr > \(|\mathrm{t}|\) & Lag \\
\hline & AR1, 1 & -0.39469 0.13177 & -3.00 0.0027 & 1 \\
\hline & & Variance Estimate & 74.90602 & \\
\hline & & Std Error Estimate & 8.654827 & \\
\hline & & AIC & 394.6363 & \\
\hline & & SBC & 396.6436 & \\
\hline & & Number of Residuals & 55 & \\
\hline
\end{tabular}

Autocorrelation Check of Residuals


Model for variable war Period(s) of Differencing 1 No mean term in this model.

Autoregressive Factors
Factor 1: \(1+0.39469 B^{* *}(1)\)
Forecasts for variable war
\begin{tabular}{rrrcr} 
Obs & Forecast & Std Error & \multicolumn{2}{c}{ 95\% Confidence } \\
57 & 59.7116 & 8.6548 & 42.7485 & 76.6748 \\
58 & 62.9829 & 10.1169 & 43.1541 & 82.8117 \\
59 & 61.6918 & 12.0724 & 38.0304 & 85.3532
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & Maximum Standard & elihood & imation Approx & & & \\
\hline Parameter & Estimate & Error & t Value & \(\mathrm{Pr}>\mid \mathrm{t\mid}\) & Lag & Variable & Shift \\
\hline AR1, 1 & -0.38414 & 0.13533 & -2.84 & 0.0045 & 1 & war & 0 \\
\hline \multirow[t]{6}{*}{NUM1} & \multirow[t]{6}{*}{-105.30265} & 82.94862 & -1.27 & 0.2043 & 0 & cap & 1 \\
\hline & & \multicolumn{2}{|l|}{Variance Estimate} & \multicolumn{4}{|l|}{75.47026} \\
\hline & & Std Error & timate & 8.687362 & & & \\
\hline & & AIC & & 388.8489 & & & \\
\hline & & SBC & & 392.8269 & & & \\
\hline & & Number of & siduals & 54 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
\multicolumn{3}{c}{ Correlations of Parameter Estimates } \\
Variable & & war & cap \\
Parameter & & AR1,1 & NUM1 \\
war & AR1,1 & 1.000 & -0.038 \\
cap & NUM1 & -0.038 & 1.000
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{Autocorrelation Check of Residuals} \\
\hline To & Chi- & & \(\mathrm{Pr}>\) & & & & & & \\
\hline Lag & Square & DF & Chisq & & & Autoco & ati & & \\
\hline 6 & 4.59 & 5 & 0.4677 & -0.041 & -0.126 & -0.028 & 0.017 & 0.013 & -0.236 \\
\hline 12 & 14.57 & 11 & 0.2029 & -0.156 & 0.235 & -0.146 & -0.083 & -0.162 & 0.120 \\
\hline 18 & 16.61 & 17 & 0.4813 & 0.021 & -0.025 & -0.027 & 0.115 & 0.037 & 0.093 \\
\hline 24 & 19.15 & 23 & 0.6926 & 0.000 & 0.018 & 0.078 & 0.030 & -0.124 & 0.061 \\
\hline
\end{tabular}

Model for variable war
Period(s) of Differencing 1
No mean term in this model.
Autoregressive Factors
Factor 1: \(1+0.38414 \mathrm{~B}^{* *}(1)\)
Input Number 1
Input Variable
Shift
cap
1
1
-105.303

WARNING: More values of input variable cap are needed. The value for option LEAD= has been reduced to 1 .
\begin{tabular}{rcccc}
\multicolumn{5}{c}{ Forecasts for variable war } \\
Obs & Forecast & Std Error & \(95 \%\) Confidence & Limits \\
57 & 59.9421 & 8.6874 & 42.9152 & 76.9690
\end{tabular}```

