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a b s t r a c t 

Aim: There is ongoing debate about the role of cortical and subcortical brain areas in force modulation. In a whole- 

brain approach, we sought to investigate the anatomical basis of grip force whilst acknowledging interindividual 

differences in connectivity patterns. We tested if brain lesion mapping in patients with unilateral motor deficits 

can inform whole-brain structural connectivity analysis in healthy controls to uncover the networks underlying 

grip force. 

Methods: Using magnetic resonance imaging (MRI) and whole-brain voxel-based morphometry in chronic stroke 

patients (n = 55) and healthy controls (n = 67), we identified the brain regions in both grey and white matter 

significantly associated with grip force strength. The resulting statistical parametric maps (SPMs) provided seed 

areas for whole-brain structural covariance analysis in a large-scale community dwelling cohort (n = 977) that 

included beyond volume estimates, parameter maps sensitive to myelin, iron and tissue water content. 

Results: The SPMs showed symmetrical bilateral clusters of correlation between upper limb motor performance, 

basal ganglia, posterior insula and cortico-spinal tract. The covariance analysis with the seed areas derived from 

the SPMs demonstrated a widespread anatomical pattern of brain volume and tissue properties, including both 

cortical, subcortical nodes of motor networks and sensorimotor areas projections. 

Conclusion: We interpret our covariance findings as a biological signature of brain networks implicated in grip 

force. The data-driven definition of seed areas obtained from chronic stroke patients showed overlapping struc- 

tural covariance patterns within cortico-subcortical motor networks across different tissue property estimates. 

This cumulative evidence lends face validity of our findings and their biological plausibility. 
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. Introduction 

There are still major gaps in our understanding of the relation-
hip between brain structure and function that could help reliably
redicting motor outcome after stroke. Historically, modeling of the
tructure-function relationship has relied on univariate methods under
he premises of one-to-one mapping. However, there is broad consen-
us that these traditional mapping approaches are failing to cope with
he overwhelming task complexity of integrating the inherent inter-
ndividual variability in both clinical symptoms and objective measure-
ents of lesion localisation and extent. Resolving these limitations re-

uires novel “out-of-the-box ” strategies that challenge previous assump-
ions about mapping between brain lesions and symptoms ( Kherif and
uller, 2020 ). Most recent analytical approaches allowing to map indi-
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iduals’ symptoms to brain networks rather than specific regions repre-
ent a breakthrough in the domain of clinical neuroscience and offer a
indow of opportunity answering questions about structure - function

elationships ( Fox, 2018 ). 
Grip force - a paradigmatic case of motor control, has been stud-

ed from both behavioural and neuroimaging perspective. Functional
agnetic resonance imaging (fMRI) studies demonstrated a widespread
etwork involved in force control consisting of the primary sensori-
otor cortex, ventral premotor, inferior parietal areas and cerebellum

 Keisker et al., 2009 ; King et al., 2014 ). Neuroimaging brought also an-
ther level of complexity showing the specific contribution of ipsi- and
ontra-lateral motor cortex activity to grip force control ( Ward et al.,
007 ). The role of the basal ganglia in grip force strength remains con-
roversial with results pointing towards the involvement of the internal
V, Université de Lausanne, Mont Paisible 16, 1011 Lausanne, Switzerland. 
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Table 1 

Demographic and behavioural data of study participants in the brain lesion analysis. Abbreviations: TPS – time post stroke, TIV – total intracranial volume, GF - 

grip force, R – right, L – left, Pat – patients, Ctr – healthy controls. 

Total Mean (SD) Age [years] Mean (SD) TPS [months] Mean (SD) GF R [N] Mean (SD) GF L [N] Mean (SD) GF Ratio 

Pat 55 46.7 (13.9) 10.6 (10.8) 27.1 (14.0) 28.5 (15.5) 0.59 (0.41) 

Ctr 67 44.3 (11.3) 0 (0) NA NA 0.95 (0) 

Pat vs. Ctr (t-test) 0.3 6.02E-013 NA NA 4.35E-011 

No paresis pat 7 44.6 (14.3) 10.1 (6.5) 34.0 (14.0) 29.8 (13.9) 0.86 (0.17) 

L paresis pat 19 47.4 (13.5) 10.7 (8.5) 34.3 (8.9) 15.8 (14.1) 0.51 (0.51) 

R paresis pat 29 46.8 (14.4) 10.6 (13) 20.8 (14.1) 36.5 (10.8) 0.57 (0.36) 

L vs. R paresis pat 0.874 0.956 5.89E-003 6.78E-007 0.728 

No paresis pat vs. L & R 

paresis pat (t-test) 

0.667 0.913 0.165 0.82 0.06 
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Table 2 

Demographic data of participants in the structural covariance analysis. 

Total Mean (SD) Age [years] Mean (SD) TIV [l] 

977 52.0 (16.0) 1.573 (0.161) 

Women 487 53.0 (15.6) 1.483 (0.130) 

Men 490 51.0 (16.3) 1.663 (0.137) 

T-test (women vs. men) 0.053 3.68E-81 
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art of globus pallidus (GPi) and the subthalamic nucleus rather than
utamen and caudate ( Spraker et al., 2007 ). Cumulating empirical evi-
ence supports the notion that the cortico-spinal tract also has a unique
ole in grip force modulation ( Ward et al. 2007 ; Pennati et al. 2020 ). 

Lesion network mapping represents a recently introduced analyt-
cal strategy that associates focal lesions with patients’ symptoms
ithin networks derived from MRI-based measures of brain connec-

ivity ( Fox, 2018 ). The proposed strategy offers a theoretical frame-
ork that accommodates the “degeneracy ” hypothesis of “many-to-
any ” mapping to explain the inter-individual differences in recov-

ry of loss of function ( Edelman and Gally, 2001 ; Noppeney et al.,
004 ). Through the combination of conventional lesion studies with
on-invasive brain imaging, lesion network mapping has proved use-
ul in a plethora of conditions including consciousness ( Snider et al.,
020 ), migraine ( Burke et al., 2020 ), to name but a few. Beyond this,
he methodological developments of multi-variate analytical methods –
.g. support-vector machines, applied to anatomical neuroimaging data,
howed additional benefit for predicting the outcome in chronic stroke
atients with upper limb paresis and identifying brain regions critical
or individuals’ performance ( Rondina et al., 2017 ). 

At its current stage, the structural connectivity measures in the pub-
ished lesion network mapping literature stem from diffusion tractogra-
hy estimates, integrated into the so-called brain connectome concept
 Fox, 2018 ). Anatomical covariance was proposed as a complementary
ethod to tractography-based assessment of structural brain networks

for review see Alexander-Bloch, Giedd, et al., 2013 ). The current view
bout the underlying biological mechanism is that anatomical covari-
nce networks result partly from the coordinated development within
ifferent brain areas ( Alexander-Bloch, Raznahan, et al., 2013 ) and con-
ecting white matter pathways as recently demonstrated in the animal
odel ( Yee et al., 2018 ). 

In this study, we leveraged the ’lesion network mapping’ strategy
 Fox, 2018 ) to investigate brain networks underlying grip force strength.
n a fully data-driven approach, we correlated individuals’ grip force
ith brain anatomy using voxel-based morphometry and automated le-

ion detection within the SPM framework ( Seghier et al., 2008 ). We
hen used the derived statistical parametric maps (SPMs) as seed regions
or a whole-brain voxel-based covariance analysis using local volume.
n parallel, we have also built and assessed the covariance based on
ulti-parameter maps sensitive to myelin, iron, and tissue water con-

ent ( Draganski et al., 2011 ). We hypothesised that starting from the
echanistic view of localising the relationship between loss of grip force

nd brain anatomy, we can delineate the full extent of motor networks
nvolved in grip force strength. 

. Materials and methods 

.1. Study participants 

.1.1. Lesion study 

For the brain lesion study we analysed MRI data of 55 chronic stroke
atients seen at the day-care clinic at the Neurology Department, Max-
2 
lanck-Institute for Human Cognition and Behaviour, Leipzig - Germany
20 females, age: mean 46.7 years old(yo), median 50yo, SD 13.9yo) and
7 healthy controls (23 females, age: mean 44.3yo, median 43yo, SD
1.3yo). Patients behaviour was assessed using standard testing batter-
es whilst the clinical details were completed from the medical records.
or a summary of demographic and behavioural data see Table 1 . The
ariable “paresis ” was assessed in a binary way through neurological ex-
mination without rating the severity of motor impairment. Maximum
rip force strength of both hands was assessed only in patients using a
eahan Hydraulic Hand Dynamometer (SH5001). For group-level com-
arisons we used the ratio left to right hand grip force strength. For the
ealthy controls we considered a ratio of 0.95 based on previous find-
ngs ( Günther et al., 2008 ). All participants gave written informed con-
ent prior to study participation. The study was approved by the Ethical
omissision of the Medical Departement of the University of Leipzig,
ermany. 

.1.2. Covariance study 

For the anatomical covariance study, we used brain MRI data from
77 individuals (487 females, age: mean 52yo, median 53.8yo, SD 16yo)
cquired in the context of the CoLaus|PsyColaus community dwelling
ohort ( Firmann et al., 2008 ; Preisig et al., 2009 ). Participants were only
ncluded if the medical history and MRI scan had no signs of brain or
ystemic pathology (see Table 2 ). All participants gave written informed
onsent prior to study participation. The study was approved by the
thical Comissision of the Canton of Vaud, Switzerland. 

.2. MRI data acquisition and pre-processing 

For the brain lesion study we analyse MRI data acquired on a 3T
iemens Trio (Siemens Medical Systems, Germany) scanner using a T1-
eighted (T1w) protocol in sagittal mode using a 3D Magnetization Pre-
ared Rapid Gradient Echo (MPRAGE) sequence (TR = 11.4 ms, TE = 4.4
s, FoV = 269 mm, flip angle = 30°, 176 contiguous slices, voxel size:
 × 1 × 1 mm, matrix size = 256 × 256). 

For the covariance study, the community dwelling cohort data acqui-
ition was performed on a 3T Siemens Magnetom Prisma (Siemens Medi-
al Systems, Germany) using a 64-channel RF receive head coil and body
oil for transmission. The quantitative MRI (qMRI) protocol consisted
f three whole-brain multi-echo 3D fast low angle shot (FLASH) ac-
uisitions with predominantly magnetization transfer-weighted (MTw:
R/ 𝛼 = 24.5ms/6°), proton density-weighted (PDw: TR/ 𝛼 = 24.5ms/6°)
nd T1-weighted (T1w: 24.5ms/21°) contrast with 176 contiguous
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lices, voxel size: 1 × 1 × 1 mm, matrix size = 256 × 256 ( Helms et al.,
008 , 2009 ; Weiskopf et al., 2013 ). 

Visual inspection of study participant data confirmed an absence of
either macroscopic brain abnormalities nor obvious vascular pathol-
gy. The multi-parameter-mapping (MPM) data for all subjects in-
luded in the study underwent an automatic quality assessment pro-
edure based on R2 ∗ signal homogeneity in the white matter (WM)
 Castella et al., 2018 ). T1w data were visually inspected for abnormali-
ies beyond the cerebral lesions. 

.2.1. Voxel-based morphometry (VBM) and automated lesion detection 

For feature extraction from T1w data, we use the “unified seg-
entation ” of Statistical Parametric Mapping and enhanced tissue pri-

rs ( Lorio et al., 2016 ) running under Matlab 7.11 (Mathworks, Sher-
orn, MA, USA). Automated tissue classification resulted in whole-brain
robability maps of grey matter, white matter, cerebrospinal fluid, and
on-brain tissue. The probability maps were embedded in the outlier-
etection framework for automated lesion detection ( Seghier et al.,
008 ). The next step consisted of diffeomorphic registration to Mon-
real Neurological Institute (MNI) space using the DARTEL toolbox
 Ashburner, 2007 ) that provided spatial registration parameters based
n a study-specific template. For VBM analysis the spatial registration
rocedure included scaling the grey and white matter tissue probabil-
ty maps by the Jacobian determinants of the deformation field (i.e.
modulation ”) followed by spatial smoothing with an isotropic Gaus-
ian smoothing kernel of 8 mm full-width-at-half-maximum (FWHM). 

.2.2. Voxel-based quantification (VBQ) 

We used the previously described method ( Draganski et al., 2011 )
mplemented in an in-house software running under SPM12 to calculate
he multi-parameter maps. These included transverse relaxation - R2 ∗ 

aps, magnetization transfer (MT) saturation maps, and proton density
aps (PD). The R2 ∗ maps were calculated from the regression of the

og-signal of the eight PD-weighted echoes. The MT and R1 maps were
omputed as described in ( Helms et al., 2008 ), using the MTw, PDw and
1w images averaged across all echoes. The PD maps were corrected
or local radiofrequency (RF) transmit field inhomogeneities using the
1 + maps computed from the 3D EPI data ( Helms et al., 2008 ) and
or imperfect RF spoiling using the approach described by ( Preibisch &
eichmann, 2009 ). The output of this step provides synthetic parameter
aps indicative for myelin (MT saturation), iron (R2 ∗ ), and tissue water

PD 

∗ ). 

.3. Statistical analysis 

The statistical analysis of the two data sets – T1w data from stroke
atients and controls, and multi-parameter MRI from the large-scale
ommunity dwelling individuals consisted of two separate steps. The
rst step included a voxel-based implementation of a lesion-symptom
apping that correlated hand grip force across either the lesion tissue

lass, grey matter or white matter. In a second step, the 1 st eigenvariates
f voxel values within the resulting statistical parametric maps (SPMs)
ere used as regressors for the covariance analysis across the whole
rain – both within grey and white matter after excluding the seed ar-
as from the search volume (see Fig. 1 ). 

.3.1. Brain lesion-symptom mapping 

We used ANOVA to test at the voxel level for significance and the
irection of the gradient between grey, white matter and lesion maps
nd individual performance in the hand grip task. The corresponding
actorial design has one factor with four levels – STROKE w/o PARESIS,
EFT SIDE PARESIS, RIGHT SIDE PARESIS, NO STROKE. We included
n the final model the individual hand grip force ratio as interaction
erm with the group factor. Age, sex, time-since-stroke (TSS), and total-
ntracranial-volume (TIV) were additional regressors aiming to control
or their global effects on brain anatomy. 
3 
.3.2. Structural covariance analysis 

In the community dwelling cohort, we extracted the principal eigen-
ariate of the volume maps (for VBM) and tissue property parameters
for VBQ) from a sphere of 3mm around the peak T-value SPMs obtained
rom the lesion-based analysis in the first step. The eigenvariates were
hen used as variables in a multiple regression model including all indi-
iduals from the community dwelling cohort. Given the probability of
purious negative correlations in the case of adjustment for global ef-
ects – e.g. total intracranial volume (TIV) ( Carbonell et al., 2014 ), we
stimate only positive correlations between the eigenvariates and the
est of voxels within brains’ grey or white matter ( Fig. 1 ). In all statis-
ical models, we include age, age 2 , gender, TIV, and additionally indi-
iduals’ estimates of tissue class specific volume or the corresponding
issue property parameters assuming a multiplicative global effect (see
aubert et al. 2020 ). For all analyses, we report results at p < 0.05 af-
er family-wise error (FWE) correction for multiple comparisons across
he GM or WM compartment or as trends at p < 0.001 uncorrected for
ultiple comparisons. 

. Results 

.1. Brain lesion-symptom mapping 

In the whole-brain correlation analysis between the ratio of hand
rip force and the lesion probability maps, we found a negative corre-
ation with a homogeneous bilateral cluster comprising basal ganglia
nd the internal capsule. The very same analysis of grey matter volume
aps showed a positive correlation with the caudate and the posterior

nsula bilaterally. In the white matter analysis, we observed a positive
orrelation between the ratio of hand grip force and cortico-spinal tract
olume in the internal capsule (see Table 3 ). 

.2. Covariance analysis 

Using the brain lesion data-driven definition of seeds for the struc-
ural covariance analysis we observed largely overlapping patterns in-
luding cortical and subcortical nodes of the motor networks. This was
he case not only for morphometry patterns in the VBM analysis, but
lso for myelin, iron, and tissue water covarying with the rest of the
rain in the VBQ analysis. 

.2.1. Cortico-spinal tract seeds 

The VBM analysis showed covariance pattern between the seeds’
nd the volume of the entire intracerebral portion of the cortico-spinal
ract bilaterally. For GM, we found covariance with the precentral
yrus, putamen, substantia nigra, and cerebellum volume bilaterally
see Fig. 2 ). 

The analysis of MT maps of the WM demonstrated a pattern accen-
uated along the cortico-spinal tract bilaterally. For the GM, we ob-
erved significant covariance with the precentral gyrus, middle cingu-
ate gyrus, parietal operculum, caudate, thalamus and substantia nigra
ilaterally. The analysis of WM R2 ∗ demonstrated covariance with the
ortico-spinal tract bilaterally and corpus callosum, whilst for GM we
eport a covariance with the middle cingulate gyrus, caudate, posterior
nsula, and bilateral thalamus bilaterally. For PD 

∗ WM we report covari-
nce along the cortico-spinal tract and in GM – with areas including the
ostcentral gyrus, the medial segment of the precentral gyrus, occipital
ole and hippocampus bilaterally, additionally to the left calcarine cor-
ex, right cuneus, left transverse temporal gyrus, right posterior insula,
nd right putamen. 

.2.2. Basal ganglia and insula seeds 

The VBM analysis in the WM showed covariance between the seed
olume and the anterior limb of the internal capsule and the left cortico-
pinal tract, whilst in the GM the covariance was restricted to the basal
anglia and thalamus (see Fig. 3 ). MT of the seeds covaried in the GM
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Fig. 1. Schematic representation of the basic prin- 

ciples of structural covariance analysis. Upper panel : 

graphical representation of signal extracted from a sta- 

tistical parametric map (SPM) of the lesion data anal- 

ysis. Middle panel : localisation of SPM-defined seed re- 

gions. Left : WM seed (blue) within the cortico-spinal 

tract. Right : GM seeds (violet and purple) within the 

basal ganglia. Lower panel : The extracted principal 

eigenvariates of the seeds’ signal are tested for covari- 

ance with the rest of the brain in both white matter 

(WM) and grey matter (GM) . (For interpretation of the 

references to color in the text, the reader is referred to 

the web version of this article.) 

Table 3 

Peak clusters of the brain lesion-symptom mapping in grey and white matter and lesion volume. 

Region labelling was done with the Neuromorphometrics toolbox implemented in SPM12b. The 

statistical threshold is p < 0.05 FWE-corrected. LP stands for “left hemiparesis ”, RP stands for “right 

hemiparesis". CST stands for "cortico-spinal tract". 

Anatomical region MNI-coordinates z-score t-value 

x y z 

VBM, lesion areas 

t-(Ratio_LP_RP) R CST 24 − 12 20 6.55 7.26 

L CST − 23 − 17 23 7.53 8.63 

VBM, grey matter 

t + (Ratio_LP_RP) L caudate − 20 − 17 23 6.91 7.74 

L insula − 35 − 9 − 9 5.87 6.37 

R insula 41 − 2 − 5 5.25 5.61 

R caudate 20 − 6 23 4.89 5.18 

VBM, white matter 

t + (Ratio_LP_RP) L CST − 20 − 15 23 6.84 7.65 

R CST 21 − 9 24 6.51 7.21 

4 
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Fig. 2. Statistical parametric maps (SPMs) of the covariance analysis – seeds in the cortico-spinal tract. Covariance maps of local MT (top left), PD 

∗ (bottom left), 

R2 ∗ (top right), and volume (bottom right) estimates in the seeds (middle) superimposed on an average MT map in standard MNI space. Colour bar with t-scores for 

WM (turquoise) and GM (lilac). Results displayed at the statistical threshold of p < 0.05 FWE-corrected. (For interpretation of the references to color in the text, the 

reader is referred to the web version of this article.) 

Fig. 3. Statistical parametric maps (SPMs) of the covariance analysis – seeds in the basal ganglia and posterior insula. Covariance maps of local MT (top left), PD 

(bottom left), R2 ∗ (top right) and volume (bottom right) estimates in the seeds (middle) superimposed on average MT map in standard MNI space. Colour bar with 

t-scores for WM (turquoise) and GM (lilac). Results at statistical threshold of p < 0.05 FWE-corrected. (For interpretation of the references to color in the text, the 

reader is referred to the web version of this article.) 
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ith the middle cingulate gyrus, substantia nigra, thalamus and parahip-
ocampal gyrus bilaterally, additionally to the right precentral gyrus.
he MT covariance in WM areas was confined to the cortico-spinal tract,
ornix bilaterally and corpus callosum. In the GM R2 ∗ maps analysis we
bserved covariance with putamen, thalamus, substantia nigra, middle
ingulate gyrus, dentate nucleus bilaterally, the right inferior frontal
yrus and the left parietal operculum. 

In WM we show R2 ∗ covariance with cortico-spinal tract bilater-
lly and splenium of the corpus callosum. The PD 

∗ maps covariance
M analysis demonstrated the anterior and middle cingulate gyrus, pre-
uneus and the opercular gyrus rectus bilaterally and the left central
perculum. 

. Discussion 

Our study demonstrates the spatial extent and underlying brain tis-
ue properties of motor networks associated with grip force strength.
ather than making an arbitrary choice between cortical and subcor-

ical seed areas for the structural covariance analysis, we make an in-
ormed decision based on lesion mapping of individuals’ grip force in
hronic stroke patients. We show that the spatial extent of motor net-
orks defined in a covariance analysis largely overlaps between both
5 
rey and white matter seeds. The discovered motor network includes
ortico-spinal tract, basal ganglia, thalamus, sensorimotor cortex and
erebellum. We not only show the feasibility of structural covariance
nalysis to uncover brain networks related to motor control, but we also
rovide information about morphometry and brain tissue properties of
he circuitry constituting nodes. 

The study’s main finding is the discovery of overlapping structural
ovariance networks associated with grey and white matter nodes im-
licated in grip force strength. The observation that basal ganglia and
ortico-spinal tract sections, determined in the lesion analysis, relate to
otor control, corroborate previous findings ( Christopher et al., 2014 ;
rodoehl et al., 2009 ; Sterr et al., 2014 ). The spatial overlap between the
etworks covarying with grey and white matter seeds provides empir-
cal evidence and face validity to our interpretation of unique cortico-
ubcortical network including basal ganglia, sensorimotor cortex and
orresponding white matter tracts. The similarities are not restricted
o single anatomical feature, they show substantial consistency across
aps indicative for myelin, iron, brain tissue water content beyond the

stablished morphometric estimates. This interpretation is supported by
revious findings, showing robust covariance patterns of shared tissue
roperties in basal ganglia ( Accolla et al., 2014 ) and co-localisation of
olume and tissue property effects of ageing ( Taubert et al., 2020 ). 



L. Weitnauer, S. Frisch, L. Melie-Garcia et al. NeuroImage 229 (2021) 117735 

 

n  

t  

s  

t  

c  

b  

f  

g  

i  

1  

t  

s  

d  

t  

t  

t  

g  

g  

o  

o
 

t  

m  

e  

2  

m  

b  

(  

t  

t  

t  

t  

o  

p  

s  

2
 

g  

f  

a  

m  

c  

n  

m  

a
 

v  

s  

s  

a  

s  

m  

m  

s

A

 

p  

p  

a  

f  

8  

g  

o  

3  

a  

a  

t  

G  

L  

L

C

 

 

L

R

A  

 

 

A  

 

A  

 

A  

B  

 

C  

 

C  

 

C  

 

D  

 

 

E  

E  

F  

 

 

 

 

F  

 

F  

G  

 

H  

 

H  

 

 

K  

 

K  

 

K  

 

 

L  

 

Despite the similarities in the spatial extent of structural covariance
etworks determined by white and grey matter seeds, we denote at
he descriptive level some unexpected differences. Whilst basal ganglia
eeds show mainly a subcortical network across anatomical features,
he cortico-spinal tract seeds strongly covary with primary sensorimotor
ortical areas and cerebellum. This observation underscores the contri-
ution of somatosensory information to motor control related to grip
orce strength. Surprisingly, we did not find a similar pattern for basal
anglia networks despite their unique role in converting and integrat-
ng somatosensory information for guiding movements ( Lidsky et al.,
985 ) and the abundant somatosensory cortex projections to the stria-
um ( Flaherty & Graybiel, 1995 ). Along the same lines, we denote both
imilarities and subtle differences in the spatial distribution of networks
efined by specific brain anatomy characteristics – morphometry and
issue properties. Given the co-localisation of myelin and iron related
o oligodendrocyte myelination activity, we observe spatial overlap be-
ween networks defined by MT and R2 ∗ maps. Increasing the spatial
ranularity, the subtle differences in spatial distribution within basal
anglia and thalamus are consistent with the rostro-caudal distribution
f iron in basal ganglia ( Stüber et al., 2014 ) linked to a spatial gradient
f dopamine receptor distribution ( Rouault, 2013 ). 

From a methodological point of view, our study contributes to ex-
ending the concept of structural covariance beyond the established
orphometry features ( Evans, 2013 ) that includes brain tissue prop-

rties ( Accolla et al., 2014 ; Lorio et al., 2016 ; Melie-Garcia et al.,
018 ). The quantitative MRI approach provides complementary infor-
ation to studies analysing functional and anatomical brain networks

ased on functional MRI in resting-state or diffusion-based tractography
 Fox, 2018 ). Most importantly, building on the analytical framework of
issue property quantification rather than only on metrics derived from
issue class probabilities, we go beyond covariance analysis within a
issue class to show covariance of grey matter seeds with white mat-
er areas and vice versa. This evidence lends not only credibility to the
btained findings, but it also represents a true multimodal network ap-
roach going beyond anatomical borders defined by the differential sen-
itivity of existing algorithms to the underlying MR contrast ( Lorio et al.,
016 ). 

We acknowledge several limitations that could potentially limit the
eneralisability of our findings. For the lesion data analysis, given the
act that lesion mapping was performed using a morphometric approach
nd T1-weighted MRI data, we cannot exclude that multi-parameter
apping of lesions could have resulted in a different spatial pattern of

orrelation with grip force, that would also lead to different covariance
etworks between specific tissue properties. Our ongoing studies using
ulti-parameter mapping in patients with stroke lesions will provide

nswers to this open question. 
In summary, lesion network mapping combining structural co-

ariance of volume and brain tissue properties delineates a cortico-
ubcortical circuitry associated with grip force control. Given the fea-
ibility of analysing multiple MR contrasts across tissue boundaries, this
pproach provides complementary information to established network
tudies using diffusion-based tractography and functional connectivity
etrics. A future extension should be the multi-variate analysis of the
ulti-contrast covariance networks, which could provide additional in-

ight into the healthy and diseased brain. 
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