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REVIEW ARTICLE

Dual implication of endothelial adhesion molecules in tumor progression and 
cancer immunity
Louis-Emmanuel Chriquia,b, Sabrina Cavina,b, and Jean Yannis Perentesa,b

aDivision of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland; bAgora Cancer Research 
Center Lausanne, Lausanne, Switzerland

ABSTRACT
Adhesion molecules are proteins expressed at the surface of various cell types. Their main 
contribution to immunity is to allow the infiltration of immune cells in an inflamed site. In cancer, 
adhesion molecules have been shown to promote tumor dissemination favoring the development 
of metastasis. While adhesion molecule inhibition approaches were unsuccessful for cancer 
control, their importance for the generation of an immune response alone or in combination 
with immunotherapies has gained interest over the past years. Currently, the balance of adhesion 
molecules for tumor promotion/inhibition is unclear. Here we review the role of selectins, inter-
cellular adhesion molecules (ICAM) and vascular cell adhesion molecules (VCAM) from the 
perspective of the dual contribution of adhesion molecules in tumor progression and immunity.
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Introduction

Vascular endothelium endorses various functions 
owing to its structural role in separating blood from 
tissues. Endothelial cells (ECs), which cover the inner 
side of vessels, are responsible for vascular homeostasis 
and tone. In addition to vascular homeostasis [1,2], ECs 
are important for the innate immunity through the 
expression of Toll-Like receptors which contribute to 
the recruitment of immune cells to a target organ. 
Additionally, the upregulation of adhesion molecules 
at the surface of ECs supports the inflammatory state 
through leukocyte trafficking [3].

Adhesion molecules are transmembrane glycopro-
teins that contribute to the recruitment of circulating 
leukocytes from the blood to tissue. Immune cell 
ligands bind to the adhesion molecules which is fol-
lowed by a cascade of interactions ultimately causing 
the extravasation of circulating immune cells [4,5].

Given their critical regulatory function between sys-
temic circulation and tissues, EC and their adhesion 
molecules play a central role in cancer. While the 
tumor promoting effect of adhesion molecules through 
dissemination of cancer cells was well described, the 
capacity of these molecules to reprogram the tumor 
microenvironment (TME) and generate an immune 
response directed against tumors has created interest 
over the recent years, particularly with the development 

of immunotherapies [6–8]. Interestingly, the balance 
between tumor promotion (metastasis spread) and 
tumor inhibition (immunity development) is currently 
not established. Here we propose to review the dual 
implication of various endothelial adhesion molecules 
for cancer promotion/inhibition.

Overview of adhesion molecules: selectins, 
ICAM and VCAM

Selectins

Selectins represent a first group of cell adhesion mole-
cules composed of three different glycoproteins, 
expressed either at the surface of endothelial cells 
(E-Selectin), leukocytes (L-Selectin) or platelets 
(P-Selectin) [9–12]. All three mediate the rolling of 
blood cells at the endothelial surface thus initiating 
leukocyte attachment to platelets, endothelial cells, 
and other leukocytes at sites of tissue injury and/or 
inflammation [13–15]. All the three members of the 
selectin family are type I transmembrane protein exhi-
biting an N-terminal lectin-like domain, an epidermal 
growth factor (EGF) domain and a variable short 
consensus repeat (CRP) domain [13]. Ligands binding 
to these molecules are numerous and diverse. Most of 
them carry sialylated, sulfated and/or fucosylated 
sequences [16]. The expression of E-Selectin is 
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triggered by various inflammatory cytokines such as 
IL-1, TNF-α or bacterial endotoxin as a consequence 
of endothelial activation [17,18]. E-Selectin contri-
butes to the recruitment of various immune popula-
tions including neutrophils, monocytes and 
T lymphocytes [9,19–21]. E-Selectin recognizes sialo-
fucosylated lactosaminyl tetrasaccharides, prototypi-
cally sialyl Lewis x (sLex) and its structural isomer 
sialyl Lewis a (sLea) and binds to it in a calcium 
dependent manner [22].

P-Selectin is stored in the α-granules of platelets and 
Weibel-Palade bodies of endothelial cells. Following 
stimulation, notably by thrombin, P-Selectin is rapidly 
translocated at the surface of platelets or endothelial 
cells [23,24]. Ligands of P-Selectin – sLeX and P – 
selectin glycoprotein ligand 1 (PSGL–1) – are expressed 
at the surface of numerous immune cells including 
neutrophils and monocytes, thus supporting their 
adhesion to platelets or endothelial cells [14,15,25].

L-Selectin is constitutively expressed on most of 
immune cells including neutrophils, monocytes and lym-
phocytes. Its function is decreased through a down- 
regulation in its gene transcription, thus precluding its 
expression at the surface of the cells [26,27]. It interacts 
with sialomucin ligands either on vascular or tumoral 
compartment [28]. In addition to the adhesion to endothe-
lium, L-Selectin holds an important role in leukocytes 
homing by allowing migration to lymph nodes [29,30].

Intercellular adhesion molecules

Intercellular adhesion molecules (ICAM) are a second 
group of adhesion molecules expressed at the surface of 
endothelial cells. The family is composed of five struc-
turally related members, ICAM-1 to ICAM-5 charac-
terized by the presence of extracellular 
immunoglobulin domains [31–33]. Preferred ligands 
for ICAM are a subgroup of integrins called 
β2-integrins. This subgroup is composed of four differ-
ent integrins: CD11a/CD18 or LFA-1; CD11b/CD18 or 
Mac-1 or CR3; CD11c/CD18, or p150.95 or CR4; and 
CD11d/CD18. Each exhibits various expression pattern 
and binding capacities. For example, while LFA-1 is 
expressed only on leukocytes and binds only specific 
molecules close to ICAM, Mac-1 is expressed on mye-
loid cells and can bind up to 40 different molecules 
[34–36]. ICAM-1 is expressed at low levels on many 
cell types including epithelial cells, endothelial cells and 
immune cells [37]. In addition to contribution in 
homeostasis and injury repair, ICAM-1 is implicated 
in different steps of leukocytes trans-endothelial migra-
tion from rolling to adhesion to the endothelium 
mainly through the binding of its most reported ligand, 

LFA-1 [38–41]. Moreover, ICAM-1 is also an impor-
tant contributor of the immunological synapse between 
antigen presenting cells and effector T-cells. While its 
role is not clearly understood, the dynamic expression 
of the molecule has been reported to be implicated in 
the priming of T-cells [42,43].

Contrarily to ICAM-1, with an expression closely 
dependent of inflammatory cytokines such as IL-1 or 
TNF-α, ICAM-2 is constitutively expressed at the sur-
face of endothelial cells [44–47]. In addition to the 
leukocyte trafficking regulation role, ICAM-2 has also 
been reported to play a role in angiogenesis and in the 
control of the endothelial cell junction and barrier 
function [48–51]. Identified ligands for ICAM-2 are 
LFA-1 and DC-SIGN [52,53].

ICAM-3 is constitutively expressed at the surface of 
resting T lymphocytes and possesses a co-stimulatory 
activity in T lymphocytes. In addition, ICAM-3 is also 
implicated in cell contacts through its ability to induce 
LFA-1–ICAM-1 adhesion [54–59].

The expression of ICAM-4 is specific for erythrocytes 
[60]. In addition to the interaction with leukocytes and 
myeloid cells through CD11a/CD18 and CD11b/18 respec-
tively, ICAM-4 can bind to αv integrins (αvβ1, αvβ3, and 
αvβ5) on non-hemopoietic cells, α4β1 on hemopoietic cells, 
and αIIbβ3 on platelets [61–64]. It has been reported that 
ICAM-4 could mediate interactions between red blood cells 
and macrophages [65]. Thus, ICAM-4 plays a role in cell 
interaction implicated in blood cells regulation, thrombosis 
and hemostasis.

ICAM-5 is the largest ICAM molecule, exhibiting nine 
extracellular immunoglobulin domains and is confined to 
the central nervous system with a surface expression on 
specific neurons [66]. ICAM-5 is acting at the interface of 
nervous and immune system. These interactions could result 
in microglia morphology shaping, regulation of synapses or 
cytokine release in the central nervous system [67–72].

Vascular cell adhesion molecule I

Vascular cell adhesion molecule I (VCAM-1) is 
a glycoprotein containing an extracellular domain with six 
or seven immunoglobulin (Ig)-like domains, 
a transmembrane domain, and a cytoplasmic domain [73]. 
VCAM-1 is mainly expressed on endothelial cells following 
pro-inflammatory cytokines such as TNF-α or exposition to 
reactive oxygen species (ROS). However, in condition of 
high and sustained inflammation, its expression has been 
reported on additional cell types including tissue macro-
phages, dendritic cells, bone marrow fibroblasts, myoblasts, 
oocytes, Kupffer cells, Sertoli cells, and cancer cells [74–77]. 
By binding to its leukocyte ligand α4β1/VLA-4 integrin, 
VCAM-1 plays a key role in leucocyte recruitment through 
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the adhesion of circulating immune cells to the endothelium 
and the activation of signaling pathways involved in trans- 
endothelial migration [78,79]. A summary of the structures 
of selectins, ICAMs and VCAMs is reported in Figure 1.

Contributions of endothelial adhesion 
molecules to tumor progression

Besides their pro-immune function, adhesion molecules 
have also been implicated in cancer progression through 
the promotion of metastasis.

Selectins

Tumors cells that disseminate from their primary loca-
tion, do so by intravasating into the systemic circula-
tion and extravasating into target metastasis organ sites. 
This process involves a cascade of distinct endothelial 
interaction steps. This is favored by the upregulated 
expression of selectin ligands (such as sLex, sLea, 
CD34 or MAdCAM-1) at the surface of cancer cells 
[80]. Thus, the extravasation of tumor cells at distant 
organs was shown to depend on the interaction of 
endothelial E-Selectin and tumor selectin ligands [81]. 

Figure 1. Structure of selectins, ICAM and VCAM adhesion molecules and their main respective ligands. Pro-tumoral and anti- 
tumoral roles are indicated. sLex: sialyl Lewis x, sLea: sialyl Lewis a, PSGL-1: P–selectin glycoprotein ligand 1, ig: immunoglobulin, 
EGF: epidermal growth factor; CRP: consensus repeat, CTCs: circulating tumor cells, ICI: immune checkpoints inhibitors, TAMs: tumor 
associated macrophages.
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Consistently, high levels of selectin expression in cancer 
was shown to correlate with poor prognosis [82–84]. 
Recently, Tanio et al. [85] showed that the expression 
of E-Selectin ligands at the surface of clear cell renal cell 
carcinoma was a strong prognostic biomarker in 
patients. In hematologic cancers, E-Selectin expression 
at the surface of leukemic blasts was also associated 
with a worse prognosis [86,87]. Given the contribution 
of E-Selectin in metastasis, studies have tried to inhibit 
its expression to limit cancer dissemination. Brodt et al. 
[88] showed in a model of highly metastatic colon 
cancer that endothelial E-Selectin depletion signifi-
cantly decreased the dissemination of colon cancer to 
the liver. Lange et al. [89] showed Bortezomib pre-
cluded the cytokine dependent expression of endothe-
lial E-Selectin, thus impairing spontaneous lung 
metastasis in vivo. Interestingly, while ICAM-1 and 
VCAM-1 were depleted in presence of Bortezomib, 
authors concluded loss of E-Selectin alone was neces-
sary to reduce adhesion of tumor cells. Khan et al. [90] 
observed a decrease in triple negative breast cancer 
metastasis in lungs following depletion of lung E, 
P and L-selectins. In an in vivo model of melanoma, 
Coppo et al. [91] confirmed that high levels of endothe-
lial E-Selectin expression correlated with increased 
adhesion of tumor cells while inhibition with cimeti-
dine was able to diminish tumor cell dissemination. In 
addition to its effect on metastasis, endothelial 
E-selectin is known to induce drug resistance [92]. In 
acute myeloid leukemia engrafted mice, E-selectin 
expressed by cancer cells was associated with 
a chemoresistance promoted through the Wnt pathway 
[93]. It has also been reported that PI3K/AKT/NF-κB 
pathway was an important mediator of chemoresistance 
induced by E-Selectin at the surface of tumor cells [94]. 
In solid cancer, Morita et al [95] showed that inhibition 
of vascular E-Selectin enhanced the anti-tumor effect of 
Doxorubicin and reduced tumor infiltration of pro- 
tumoral macrophage M2.

P-Selectin expression has been reported to promote 
cancer dissemination. By binding P-Selectin, circulating 
tumor cells benefit from the cover of platelets protecting 
them from shear forces and immune cells [96]. This pro- 
tumoral effect of P-Selectin and mucin/non-mucin-type 
glycoprotein have been well described in the past [97– 
101]. Kim et al. [97] investigated the contribution of 
P-Selectin in cancer progression and dissemination. They 
showed P-selectin-deficient mice harbored a slower growth 
of subcutaneous tumors and generated fewer lung metas-
tases compared to control. Borsig et al. first described the 
contribution of P-Selectin to the dissemination of human 
carcinomas in immunodeficient mice [98] and later 
exposed its role in mediating the interactions between 

tumor cells and platelets in a murine adenocarcinoma in 
syngeneic immunocompetent mice [99]. Recent studies 
have also supported the contribution of P-Selectin to 
tumor progression: Cariello et al [102] showed in a colon 
cancer model that ablation of P-selectin in platelets signifi-
cantly reduced tumor growth. Studying T cell lymphoma, 
Pereira et al. [103] found expression of the P-selectin 
ligand, PSGL-1, by the tumor cells was implicated in the 
development and dissemination of the cancer in different 
organs. The role of PSGL-1 was also investigated by Azab 
et al. [104] which drew the same conclusion in multiple 
myeloma. Zhang et al. [105] highlighted the preferred 
aggregation of low differentiated aggressive hepatocarci-
noma cells with platelets through P-selectin. Conversely, 
abrogation of platelet aggregation with Clopidogrel attenu-
ated platelet-tumor cell binding but also promoted hepa-
toma cell differentiation. Recently, the contribution of 
extracellular vesicles (EV) secreted by cancer cells in plate-
let aggregation through P-selectin expression have been 
investigated: Kim et al. [106] found that IL-8 released 
through cancer vesicles increased P-selectin expression at 
the surface of platelets and thus platelet aggregation. In 
addition, the level of platelet adhesion to vessel treated with 
cancer vesicles allowed to discriminate between breast can-
cer patients with and without metastasis. These results were 
supported by Gomes et al. [107] that showed aggressive 
breast cancer-derived EVs may contribute to cancer- 
associated thrombosis through an increase in platelet 
P-selectin exposure and platelet aggregation. This supports 
the implication of P-selectin in cancer-associated throm-
bosis previously described [108,109].

The contribution of L-Selectin to metastasis has been 
investigated in parallel to the contribution of E and/or 
P-selectin with similar implications [90,103,110]. 
Regarding the specific role of L-Selectin in cancer pro-
motion, its expression in lymph node contributes to the 
dissemination of cancer cells in the lymphatic system 
[111]. Additionally, similarly to their interaction with 
platelets, tumor cells interact with circulating leucocytes 
by expressing L-Selectin ligands. These interactions 
favor survival of circulating tumor cells and the estab-
lishment of metastatic foci [112]. More specifically, 
research pointed out the critical role of myeloid cells 
in the dissemination of cancer cells through L-Selectin 
interaction. At the establishment of metastatic foci, an 
enhanced presence of CD11b-positive leukocytes asso-
ciated with tumor cells was concomitantly detected, 
suggesting their involvement in this process [112]. 
Borsig et al. [99] observed a decrease in metastasis 
development in L-Selectin deficient mice. 
Interestingly, mice were deficient in T and 
B lymphocytes suggesting a specific contribution of 
neutrophils, monocytes, or NK cells. Läubli et al. 
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[113] showed interactions between leucocytes and can-
cer cells through L-Selectin increased the production of 
CCL5 by endothelial cells. Inhibition of CCL5- 
dependent monocyte recruitment during the early 
phase of metastasis strongly reduced tumor cell disse-
mination. Evidence implicating lymphocytes in cancer 
cells migration remains poor. Head and neck squamous 
cancer cells has been shown to be able to bind to 
lymphocyte in presence of a shear stress similar to 
lymphatic flow through L-Selectin [114].

ICAM

ICAM-1 contributes to cancer progression in different 
ways. As for other endothelial adhesion molecules, inter-
actions with ICAM-1 on the surface of endothelium and 
its ligands expressed by the tumor cells favor tumor dis-
semination to secondary sites. This phenomenon has 
been highlighted as the suppression of ICAM-1 expres-
sion led to a decrease in cancer cell migration [115–117]. 
Chen et al also found that the expression of ICAM-1 by 
tumor cells was associated with a higher rate of bone 
metastasis and poorer prognosis in triple negative breast 
cancer [118]. This phenotype was partially explained by 
the ability of ICAM interactions to trigger the epithelial-to 
-mesenchymal transition program through TGF-β/ 
SMAD. Taftaf et al investigated extensively the role of 
ICAM-1 at the surface of tumor cells in metastasis and 
found the molecule was involved in trans-endothelial 
migration but also in cluster formation of circulating 
tumor cells [119]. In a model of hepatocellular carcinoma, 
ICAM-1 was associated with increased vascular perme-
ability through the VE-cadherin dependent interaction 
with endothelial cells [120]. In addition to its role in 
cancer dissemination, evidence suggest that ICAM-1 
also plays a role in cancer angiogenesis. In triple negative 
breast cancer, Guo et al. [121] observed a reduction of 
vascular endothelial growth factor (VEGF) secretion in 
tumors of mice exposed to ICAM-1 inhibitors. 
Interestingly ICAM-1 expression levels in blood were 
reported as a reliable predictor of metastatic colorectal 
cancer response to bevacizumab (a VEGF receptor inhi-
bitor) [122]. Similarly, in a clinical trial on non-small cell 
lung cancer (NSCLC), baseline plasma levels of ICAM-1 
were found to be prognostic for survival and predictive of 
response to chemotherapy with or without bevacizumab: 
indeed, low baseline levels of ICAM-1 were associated 
with better survival and better response to bevacizumab 
[123]. More generally, ICAM-1 is reported as a prognostic 
cancer marker in oral cancer but also breast, colorectal 
and gastric cancer [124–127]. Pro-tumoral role of the 
other ICAM molecules are less investigated. ICAM-2 
inhibition in the tumor promoted anti-tumor response 

in colon carcinomas mouse models [128]. A pro-tumoral 
role of ICAM-3 seems to be largely mediated through the 
PI3k/Akt pathway. Kim et al assessed the contribution of 
ICAM-3 in cancer cells for their proliferation through the 
PI3k/Akt pathway [129]. Using the same pathway and 
CREB pathway, ICAM-3 expression favors cancer inva-
siveness by upregulating expression of MMP-2 and 
MMP-9 [130]. In addition to cell proliferation and dis-
semination, activation of this pathway by ICAM-3 also 
promote anti-cancer drug resistance [131]. Finally, 
ICAM-3 expressed by tumor cells is also associated with 
a poor prognosis either favoring radiation resistance [132] 
or immune evasion [133]. ICAM-5 seems to play a role in 
tumorigenesis and perineural invasion through the PI3K/ 
Akt pathway as well. Indeed, Maruya and colleagues [134] 
observed a high incidence of perineural invasion in 
ICAM-5 rich specimen and a decreased ICAM-5 expres-
sion following PI3K inhibition.

VCAM-1

VCAM-1 has been reported to be expressed by 
numerous tumor cell types of pancreatic, breast and 
gastric cancers [135–138]. This expression enables 
the interaction of cancer cells with cancer associated 
macrophages harboring α4-integrins leading to 
tumor growth support [136]. Similar phenomena 
were observed in glioblastoma where exposure to 
IL-1β induced the expression of VCAM-1 and 
ICAM-1 on tumor cells. Their presence allowed the 
adhesion and polarization of tumor-associated 
monocytes [139]. In pancreatic cancer, lactate pro-
duction induced by VCAM-1 from pancreatic cancer 
cells with enhanced aerobic glycolysis activated 
macrophages to a TAM-like phenotype [135]. The 
contribution of VCAM-1 to metastasis is well 
described in literature [77]. CXCL1 and CXCL13 
are able to induce VCAM-1 expression in osteosar-
coma cells through the NF-kB pathway, which in 
turns favors VCAM-1 dependent migration of cells 
[140,141]. In a melanoma model, Klemke et al. [142] 
demonstrated that the migration of cancers cell lines 
was dependent on the VLA-4 and VCAM-1 interac-
tion at the endothelial level. Authors also pointed out 
that the affinity between these two molecules was 
positively correlated to the aggressiveness of the can-
cer cell line. Investigating the specialized environ-
ment of the brain, Sikpa et al. [143] deciphered the 
implication of VCAM-1 in the formation of brain 
metastasis. Upregulation of VCAM-1 in the vessels 
following cerebrovascular inflammation promoted 
the interaction of circulating tumor cells with 
endothelial cells and thus their extravasation. 
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Inflammation also drove lymphatic permeability and 
invasion by cancer cells when VCAM-1 was induced 
in lymphatic endothelial cells [144]. Regarding vas-
cular permeability, M2 macrophages seemed to con-
tribute to vascular permeability via the VCAM1/ 
RAC1/ROS/p-PYK2/p-VE-cadherin cascade initiated 
by interaction between VLA4 and VCAM-1 on 
endothelial cells in ovarian cancer [145]. Not only 
surface VCAM-1, but also secreted VCAM-1 seems 
to promote tumor progression. Indeed, cancer asso-
ciated fibroblasts are able to secrete VCAM-1 which 
in turns increase growth and invasion through the 
AKT and MAPK pathways in lung cancer cells [146]. 
The expression of VCAM-1 is closely related to 
angiogenesis and VEGF secretion by tumor cells 
although their relative influence to each other 
remains complex. Sustained levels of VEGF corre-
lated with low levels of VCAM-1 in the endothelium 
that may consist in a mechanism of defense from 
tumor cells promoting their immune evasion by pre-
cluding immune infiltration [147,148]. On the other 
hand, studies have reported areas of high microvessel 
density that correlated with high VCAM-1 expres-
sion in various cancers [137,149]. Sano et al [150] 
observed a reduction of tumor angiogenesis which 
led to a decreased tumor growth and metastasis in 
presence of endothelial VCAM-1 inhibition. In 
human samples, the use of VCAM-1 as prognostic 
marker has grown in interest. In the plasma of pre-
operative patients of urothelial bladder carcinoma, 
elevated level of VCAM-1 was associated with 
aggressive features such as lymph-node-metastasis 
or ≥pT3 disease while no correlation with overall 
survival (OS) or progression free survival (PFS) 
could be assessed [151]. In the tumor tissue of naso-
pharyngeal carcinomas, VCAM-1 was associated with 
chemotherapy resistance, shorter progression free 
(PFS) and overall survival (OS) [152]. Additionally, 
high levels of soluble VCAM-1 were also associated 
with shorter PFS and OS in advanced breast cancer 
patients [153]. Conversely, in metastatic colorectal 
cancer, soluble VCAM-1 appears to improve OS 
benefit in the context of a regorafenib treat-
ment [154].

Impact of endothelial adhesion molecules on 
anti-tumor immunity in the context of 
immunotherapies

Adhesion molecules also harbor an anti-tumor role by 
re-shaping the tumor immune microenvironment. This 
role could be of increasing importance particularly in 
the context of immunotherapies.

Selectins

While selectins expressed at distant locations from the 
tumor can participate to the invasion of target tissues 
by circulating tumor cells, the expression of E-Selectin 
ligands by the immune cells may have a determinant 
role in preventing tumor progression [155]. Endothelial 
P and L-Selectin inhibition in a model of colon carci-
noma and melanoma was associated to enhanced 
tumor growth, which may be related to the lack of 
monocyte infiltration within tumors [156]. The impor-
tance of selectins in cancer immunity have been further 
confirmed by Stark et al. [157]. In their study, the 
contribution of selectins in E/P/L-selectin deficient 
mice was highlighted: compared to control mice, the 
infiltration of CD8+ T cells into the draining lymph 
nodes and tumors was impaired thus resulting in sig-
nificantly shorter survival. Weishaupt et al [158], sug-
gested that the induction of endothelial E-Selectin and 
ICAM-1 was essential to improve tumor control in 
metastatic melanoma. For treatments involving CAR- 
T-cells, the expression of E-Selectin at the target site 
was shown to be mandatory for CAR T-cells to reach 
the target for effectiveness [159]. While the activation 
status of lymphocytes is critical for tumor control, the 
functional homing of effector lymphocytes promoted 
by selectins is also required. Indeed, Aires et al, showed 
that selectin ligand-deficient mice were not able to limit 
tumor growth when compared to controls [160]. 
Interestingly, these differences were unrelated to anti-
gen recognition or effector T-cell function, pointing out 
an important role for selectins in getting the effector 
cells in the right location.

Among selectins, L-Selectin has been described as 
a major molecule for the development of an immunity 
directed against tumors. Indeed, L-Selectin facilitates lym-
phocyte homing to lymph nodes (LN). L-Selectin blockade 
prevented the homing of lymphocytes in lymph nodes and 
primary tumor sites, thus impairing the development of 
a specific cytotoxic T cell response [161]. Myeloid derived 
suppressor cells (MDSC) were able to target lymphocytes 
homing to lymph nodes by cleaving L-selectin expressed by 
T-cells with surface ADAM17 which resulted in a decreased 
antigen-specific response [162,163]. Consequently, the tar-
geting of MDSC with doxorubicin improved the killing 
efficacy of cytotoxic lymphocytes. The elimination of 
tumors by lymphocytes was antigen-specific and resulted 
from an upregulation of CD3ζ and L-selectin in cytotoxic 
T-cells [164]. L-Selectin has also been investigated in the 
context of immunotherapy. Watson et al. [165] found that 

6 L.-E. CHRIQUI ET AL.



mice deficient for L-Selectin showed faster tumor progres-
sion. Interestingly, mice with persistent L-Selectin expres-
sion at the surface of T cells had a reduced tumor growth. 
Tsui et al [166] focused on exhausted T-cells and restora-
tion of function after PD1 blockade. They identified 
a subpopulation of exhausted T cells specifically expressing 
L-Selectin that exclusively proliferated in response to anti- 
PD-1 therapy. Finally, Kumari et al. [167] confirmed the 
implication of L-Selectin expressed by B-cells and T-cells 
with the positive outcomes in breast cancer samples from 
patients. They found a strong correlation between the SELL 
gene and a pro-inflammatory tumor microenvironment, 
including B- T-cells and M1 macrophages. High SELL 
expression was associated with favorable survival in breast 
cancer as well. These observations were later confirmed in 
colorectal cancer patient samples and in breast when SELL 
was upregulated in tumor tissues [168].

ICAM

The crucial role of ICAM-1 in limiting tumor progres-
sion was reported by several studies. The depletion of 
ICAM-1 in T-cells led to a lack of immune infiltration 
in tumors with poor cancer control [169–171]. It had 
been observed in breast cancer that patients with ele-
vated ICAM-1 tumor levels had a better survival, 
Regev et al found that while ICAM-1 deletion did 
not affect primary breast tumor growth, there was an 
increase in spontaneous metastasis to the lungs in 
ICAM-1 KO models. The control of lung metastasis 
was mediated by neutrophils, binding ICAM-1 
expressed in the lung vasculature [172]. Figenschau 
et al highlighted ICAM-1 expression by cancer cells 
was associated with tertiary lymphoid structure forma-
tion within tumors [173]. In malignant melanoma, the 
primary and metastatic tumor control were affected by 
the loss of L-Selectin and/or ICAM-1 on tumor cells 
[174]. This phenotype was associated with a general 
depletion in the infiltrating populations including nat-
ural killer (NK) cells, CD4+ and CD8+ T cells, but also 
pro-inflammatory cytokines such as IFN-γ or TNF-α. 
The absence of ICAM-1 may also contribute to the 
resistance of cancer cells by precluding specific 
immune cells to interact with the tumor tissue. 
Indeed, Liu et al. [175] reported pancreatic tumor 
cells to be resistant to γδ-T-cells because of the poor 
binding occurring in absence of ICAM-1 or ICAM-2 
at the surface of the cancer cells. The transfection of 
resistant cells with ICAM-1 or ICAM-2 subsequently 

restored the sensitivity of pancreatic tumor cells to γδ- 
T-cells. Interactions between immune cells and cancer 
cells through ICAM-1 are also responsible for intratu-
moral retention of activated CD8+ T-cells. As demon-
strated by Yanguas et al. [176] the blocking of ICAM-1 
in the tumor reduced the clusters of lymphocytes 
inside the tumors by allowing their homing to LN. 
Yang et al. [177] observed that ICAM-1 expression in 
the tumor inversely correlated with macrophage infil-
tration while deficiency in ICAM-1 resulted in the 
specific increase in M2 macrophages population. 
Interestingly, the increase in M2 subpopulation results 
from a polarization of macrophages toward this phe-
notype that appeared to be enhanced by an increase of 
efferocytosis of apoptotic cells through the PI3K/AKT 
pathway.

The impact of ICAM-1 on the response to immu-
notherapy remains a matter of debate. The soluble 
fraction of ICAM-1 in the blood of hepatocellular car-
cinoma patients correlated positively with a better OS 
and a lower recurrence rate but was also predictive of 
a poor response to immune checkpoint inhibition 
[178]. However, Taggart et al observed an increase in 
immune populations following combined CTLA-4/PD- 
1 treatment. An upregulation of ICAM-1 and VCAM-1 
in the tumor following treatment appeared to be 
responsible for this phenotype [179]. This relation was 
also reported by Schneider et al, who observed an 
increase in ICAM-1 binding following anti-CTLA-4 
exposition [180]. In combination with bevacizumab, 
anti-CTLA-4 enhanced tumor infiltration by promot-
ing E-Selectin, ICAM-1 and VCAM-1 at the surface of 
melanoma cells [181]. In relation with the CAR T-cells 
field, ICAM-1 at the surface of tumor cells was reported 
as a good target for CAR T-cells in reason of its wide 
expression across tumors [182]. Interestingly, PD1 
blockade in combination with ICAM-directed CAR 
T-cell enhanced tumor cells eradication compared to 
CAR T-cell alone, suggesting a synergic effect [183]. In 
addition, the expression of ICAM-1 at the surface of 
Ewing’s sarcoma following exposure to pro- 
inflammatory cytokines improved the recognition and 
killing of the tumor cells by specific CAR T-cell [184].

Of note, ICAM-2 is specifically reported as increas-
ing anti-tumor immunity. Transduction of ICAM-2 by 
intratumoral injection significantly inhibited tumor 
growth in subcutaneous gastric tumors. The reduction 
of tumors growth was associated with an increase in 
NK cells infiltration [185]. ICAM-2 also promoted sur-
vival of immune cells. Through the activation of PI3K/ 
AKT pathway, ICAM-2 precluded CD19+ cells from 
apoptosis [186].
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VCAM-1

VCAM-1 endothelial expression, as the previous adhesion 
molecules, exerts its anti-tumoral contribution through the 
recruitment of immune cells directed against cancer. In 
tumors, endothelial cells are known to be anergic and not 
efficiently promote immune infiltration. In an attempt to 
restore immune response inside the tumors, Nakajima et al. 
[187] treated pancreatic tumors cell with Embelin to increase 
levels of VCAM-1 and E-Selectin in endothelial cells within 
tumors. In response to this upregulation, authors noted 
a higher infiltration of anti-tumor immune cells, which 
ultimately led to an improved tumor control. Conversely, 
following inhibition, Sasaki et al highlighted the crucial role 
of VLA-4/VCAM-1 interaction in immune infiltration of 
tumors. More specifically, Th1 T-cell infiltration was 
restricted when VCAM-1 at their surface was abrogated, 
leading to a loss of immune mediated tumor control 
[188,189]. Campisi et al showed that cGAS-STING signaling 
from tumor cells ultimately increased the expression of 
E-Selectin, ICAM-1 and VCAM-1 on tumor endothelium, 
thus enhancing immune cell extravasation [190].

VCAM-1 appears to enhance the response to immu-
notherapy. Riegler et al. [191] showed that endothelial 
VCAM-1 was an interesting in vivo predictor of both 
immune infiltration and response to immunotherapy in 
a preclinical model of MC38 tumors. Endothelial 
VCAM-1 density obtained by noninvasive imaging cor-
related with tumor infiltration and response to PDL-1 
blockade. Moreover, blocking interaction between 
T-cell and VCAM precluded tumor rejection. Studies 
on patients also support the beneficial effect of VCAM- 
1 in checkpoint blockade. In NSCLC, high serum levels 
of VCAM-1 correlated with an improved OS in patients 
treated with second line nivolumab [192]. In the con-
text of cancer vaccination, the combination of sunitinib 
and peptic-pulsed dendritic vaccines displayed the best 
results in tumor regression compared to control 
groups. It appears sunitinib contributed to increase 
the expression of VCAM-1 at the surface of vascular 
cells, allowing an improved recruitment of vaccination- 
induced cytotoxic T-cell [193]. Results are similar to 
Garbi et al. [194] who treated pancreatic islet cell car-
cinomas with antigen-specific vaccination (Tag) and 
vaccination to oligodeoxynucleotides (ODN) with cyto-
sine-guanine-rich (CpG) motifs (CpG-ODN) to 
enhance immunity generated by Tag. Interestingly, 
while Tag successfully primed T-cell, immune cells 
were not able to penetrate into the tumor tissue. CpG- 
ODN concomitant exposition acted as a pro- 
inflammatory agent which upregulated ICAM-1 and 
VCAM-1 at the surface of vascular cells. This systemic 
stimulation ultimately enhanced the extravasation of 

primed T-cells, which translated into an improved 
tumor control. Both pro-tumoral and anti-tumoral 
impacts of adhesion molecules are recapitulated in 
Table 1. The contribution of endothelial adhesion 
molecules for their interaction with tumor and immune 
cells is resumed in Figure 2.

Overall, data from the literature suggests that adhe-
sion molecules such as E-Selectin, ICAM-1 and 
VCAM-1 can either favor (through vascular tumor 
cell intravasation) or limit (through enhanced tumor 
immune infiltration and efficient immune response 
development) tumor growth, Table 2. Changes in the 
expression of ICAM-1 at the surface of newly formed 
vessels can affect T-cell infiltration. Several studies 
reported the emergence of poorly perfused and perme-
able vessels following expression of pro-angiogenic fac-
tors in tumors [195,196]. At the surface of those 
aberrant vessels, clustering defect of ICAM-1 and 
VCAM-1 induced by VEGF-A are partially responsible 
for the hampering of immune cell infiltration [197]. In 
addition, it has been reported that VEGF reduces the 
expression of ICAM-1, E-Selectin and VCAM-1 at the 
surface of endothelial cells [198,199]. Therefore, treat-
ments aiming to relieve the vascular anergy in the 
aberrant tumor vasculature could enhance immune 
cells infiltration through adhesion molecule expression.

Summary: selectins, ICAM-1, VCAM-1: pro or 
anti-tumoral role?

In light of this review, adhesion molecules have a broad 
impact on tumors and their microenvironment. 
Therefore, their study and therapeutic activation/inhi-
bition should be balanced with the perspective that they 
can promote (metastasis development) or inhibit (anti- 
tumor immune microenvironment remodeling) cancer 
progression. Their study should thus take into consid-
eration the location of expression, the cancer type, its 
immune microenvironment and metastatic potential.

Specifically, E-Selectin tumor or distant site 
endothelial expression promotes cancer progression 
via chemoresistance [93,94] and cancer cell extravasa-
tion in distant organs respectively [89,90]. Conversely, 
E-Selectin expression in endothelial cells at the primary 
tumor site promotes better local control because of 
better immune cell infiltration [156,159]. The impact 
of L-Selectin was similar although cancer dissemination 
was mostly promoted via lymphatics [111,114,162,164]. 
Finally, tumor P-Selectin mostly had a tumor dissemi-
nation role by protecting, via platelet aggregation, can-
cer cells from blood stream shear stress [98,99].
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The impact of ICAM-1 expression seems more 
ambivalent. When expressed on tumor cells, ICAM- 
1 harbors a pro-tumoral role and promotes metastasis 
[118,119]. However, this same tumor expression favors 
a local response against the tumor by tertiary lymphoid 
structure formation inside tumors [173,176]. Therefore, 
its inhibition requires a contextualization of the tumor 
type and immune microenvironment. Moreover, 
ICAM-1 is an effective target for tumor inhibition 
following CTLA-4 abrogation or CAR-T cells treatment 
[180,183].

Finally, VCAM-1 expression on tumor cells contri-
butes mostly to cancer progression via the recruitment 
of macrophages and subsequent changes in tumor vas-
culature favoring cancer cell dissemination 
[135,139,145]. However, VCAM-1 expression on 
endothelial cells favors a change in the immune micro-
environment promoting T-cell infiltration of tumors 
and cancer control [187–189].

In conclusion, contribution of adhesion molecules 
to tumor progression depends on the location of 
expression, the cancer type and immune microenvir-
onment and potential associated therapies. Further 

Table 1. Contribution of adhesion molecules in tumor progression and antitumor response establishment.
Adhesion 
molecules Pro-tumor role Anti-tumor role Models used

E-Selectin Metastasis promotion by extravasation 
into tissue [88–90] 
Drug resistance through NF-kB and Wnt 
pathway [92–95]

Anti-tumor immunity 
infiltration [156,157,160]

Pro-tumor role: Murine cancer cell lines: Liver [88], various [92], breast 
[95]; Human cancer cell lines: Liver [88], various [89], breast [90], acute 
myeloide leukemia [93,94] 
Anti-tumor role: Murine cancer cell lines: Melanoma [157], 
plasmacytoma [160]; Human cancer cell line: Colon [156], melanoma 
[156]

P-Selectin Metastasis promotion by extravasation 
into tissue [90,103] 
Covering of circulating tumor cells in 
systemic circulation [98,99] 
Cancer-associated thrombosis [107–109]

Anti-tumor immunity 
infiltration [157,160]

Pro-tumor role: Murine cancer cell lines: leukemia [103], colon 
carcinoma [99]; Human cancer cell lines: Breast [90,107], acute 
lymphoblastic leukemia [103], colon carcinoma [98], various [108,109] 
Anti-tumor role: Murine cancer cell lines: Melanoma [157], 
plasmacytoma [160]

L-Selectin Metastasis promotion by extravasation 
into tissue [90,103,110,112,113] 
Dissemination to tissue and lymphatic 
system [111,114]

Anti-tumor immunity 
infiltration [157,160] 
Homing of lymphocytes to 
lymph nodes [162,163] 
Synergic effect with 
immune checkpoint 
inhibitors [165,166]

Pro-tumor role: Murine cancer cell lines: leukemia [103], insulinoma 
[111], colon carcinoma [112,113]; Human cancer cell lines: Breast 
[90,107], acute lymphoblastic leukemia [103,110], various [113], head 
and neck [114] 
Anti-tumor role: Murine cancer cell lines: Melanoma [157,165], 
plasmacytoma [160], breast [162], various [163], chronic infection 
[166]

ICAM Metastasis promotion by extravasation 
into tissue [115–117] 
Cancer angiogenesis [121–123] 
Drug resistance (ICAM-3) [132] 
Immune evasion (ICAM-3) [133]

Anti-tumor immunity 
infiltration [169–171] 
Formation of tertiary 
lymphoid structure [173] 
Effective target for CAR 
T-cells [182]

Pro-tumor role: Murine cancer cell lines: Melanoma [115]; Human 
cancer cell lines: Melanoma [115,117], breast [116,121], colon 
carcinoma [122], lung [123], various [132], gastric cancer [133] 
Anti-tumor role: Murine cancer cell lines: virus induced tumors [169], 
various [170,182]; Human cancer cell line: colon carcinoma [171], 
breast [173]

VCAM-1 Mediates interaction between cancer 
cells and tumor associated macrophages 
[136,139] 
Metastasis promotion by extravasation 
into tissue [77,142] 
Cancer angiogenesis [137]

Anti-tumor immunity 
infiltration [147,148,187– 
189] 
Synergic effect with 
immune checkpoint 
inhibitors [191,192]

Pro-tumor role: Murine cancer cell lines: Glioblastoma [139]; Human 
cancer cell lines: Breast [136], glioblastoma [139], various [77], 
melanoma [142], gastric cancer [137] 
Anti-tumor role: Murine cancer cell lines: Melanoma [147,188,189], 
breast [148], lung [148], various [191]; Human cancer cell line: Colon 
carcinoma [147], breast [148], pancreatic ductal adenocarcinoma 
[187], lung [192]

Figure 2. Modified Sankey plot depicting the contribution of endothelial adhesion molecules interaction with tumor cells and 
immune cells. Positive contributions are represented in green while negative contributions are colored in red.
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studies in different cancer contexts are required to 
highlight the contribution of adhesion molecules for 
cancer control of progression.

Conclusion

The endothelium plays a critical role in tissue home-
ostasis by regulating their interaction with circulating 
elements. Adhesion molecules at their surface are 
hijacked by tumor cells to enter or exit the circula-
tion during the metastasis process. Conversely, these 
same adhesion molecules are essential for patients to 
develop an anti-tumor immunity through the recruit-
ment and elaboration of a cytotoxic immune 
response. Therefore the therapeutic manipulation of 
adhesion molecules requires attention because of 
their ambivalent role and should be tailored to the 
cancer type and its immune microenvironment. 
Based on this review, a specific focus on expression 
of L-Selectin and VCAM-1 could have a promising 

anti-tumoral effect through their capacity to enhance 
anti-tumor immunity alone or in combination with 
immunotherapy while not being so involved in can-
cer cell dissemination. Further research in this field 
is mandatory.
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Name of first author
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Tanio et al. [85] 117 Renal cancer Membrane expression of functional E-selectin correlated more significantly with poor 
prognosis of patients

Chien et al. [87] 89 AML E-selectin ligand expression in blast correlates with lower survival and higher propagation
Aref et al. (2002) [110] 50 AML Patients with higher soluble E and L selectins levels had shorter event free surviva than 

patients with lower levels.
Papachristos et al. [122] 46 Colorectal cancer The ICAM-1 rs1799969 G/A allele was associated with prolonged OS.
Maeda et al. [125] 96 Colorectal cancer Incidence of lymph node or liver metastasis was significantly lower in patients with ICAM- 

1-positive tumors
Liu et al. [154] 149 Colorectal cancer Soluble VCAM-1 was also potentially predictive of lower OS and of benefit from 

regorafenib
Li et al. [168] 613 Colorectal cancer SELL expression was associated with favorable outcomes in CRC patients
Dowlati et al. [123] 878 NSCLC Patients with low baseline soluble ICAM had a higher response rate better overall survival 

better 1-year survival (65% versus 25%) than those with high ICAM
Carbone et al. [192] 71 NSCLC High baseline serum levels of VCAM-1 are associated with a longer survival in patients 

treated with nivolumab as second line treatment for NSCLC
Jung et al. [126] 157 Gastric cancer Increased expression of intercellular adhesion molecule-1 in gastric cancer could be related 

to the aggressive nature of the tumor, and has a poor prognostic effect on gastric cancer
Liu et al. [133] 504 Gastric cancer ICAM-3 expression in tumor is associated with immune evasion
Ding et a.l [137] 41 Gastric cancer VCAM-1 positive cancers were associated with more lymph node metastases than VCAM- 

1-negative ones
Byrne et al. [149] 93 Breast cancer Women who developed early recurrence had higher preoperative levels of serum VCAM-1 

than those who remained disease free
Schröeder et al. [127] 169 Breast cancer ICAM-1 expression in the tumor was associated with a more aggressive tumor phenotype
Kumari et al. [167] 77 Breast cancer SELL expression is associated with favorable survival outcomes
Bulska-Będkowska et al. [153] 39 Breast cancer Higher levels of soluble ICAM-1 were associated with faster progression of breast cancer
Mori et al. [151] 1036 Urothelial 

carcinoma
Preoperative plasma VCAM-1 was significantly elevated in patients with adverse 
pathologic features. Higher VCAM-1 levels were independently associated with increased 
risk of lymph-node-metastasis, ≥pT3 disease, and non-organ-confined disease and lower 
recurrence-free survival, cancer-specific survival, and overall survival (OS) in pre- and 
postoperative multivariable models

Huang et al. [152] 73 Nasopharyngeal 
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Patients with high VCAM-1 expression were more prone to shorter periods of PFS and OS

Cao et al. [178] 87 Hepatocarcinoma Patients with elevated level of soluble ICAM-1 showed the lowest TFS and OS but higher 
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