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Abstract

The present paper studies the probability of ruin of an insurer, if excess of loss
reinsurance with reinstatements is applied. In the setting of the classical Cramer-
Lundberg risk model, piecewise deterministic Markov processes are used to describe
the free surplus process in this more general situation. It is shown that the finite-time
ruin probability is both the solution of a partial integro-differential equation and the
fixed point of a contractive integral operator. We exploit the latter representation
to develop and implement a recursive algorithm for numerical approximation of the
ruin probability that involves high-dimensional integration. Furthermore we study
the behavior of the finite-time ruin probability under various levels of initial surplus
and security loadings and compare the efficiency of the numerical algorithm with
the computational alternative of stochastic simulation of the risk process.

Keywords: reinsurance, piecewise deterministic Markov process, integral operator, finite-
time ruin probability, high-dimensional integration

1 Introduction

Excess of loss (XL) reinsurance contracts are widely used in insurance practice and many
results on optimal reinsurance schemes under different premium principles and objective
functions can be found in the literature (for a survey, see for instance [2]). In practice, the
reinsurer rarely offers a pure excess of loss contract, but adds clauses, such as limiting his
aggregate liability or adding reinstatements. Clauses limiting the aggregate claims of the
reinsurer and its effects are well understood from a theoretical perspective. On the other
hand, although reinstatements are quite common in practice (in particular for casualty
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insurance), literature dealing with a rigorous and quantitative approach to the subject is
scarce. The main focus of the existing literature is on the calculation of premiums for these
contracts under different premium principles, see e.g. Sundt [11] for an early reference.
Mata [8] studied the joint distribution for consecutive layers with reinstatements and
applied the PH transform to calculate the premiums for free and paid reinstatements.
For the discrete case, Walhin and Paris [13] derived a multivariate Panjer-type algorithm
in order to approximate the resulting compound claim distribution for the cedent. A
distribution-free approximation in a market with incomplete information was given by
Hürlimann [7]. Hess and Schmidt [6] determine an optimal premium plan for reinsurance
contracts with reinstatements by minimizing the expected squared difference between the
loss and the premium income of the reinsurer. Walhin et al. [12] discussed practical
pricing of excess of loss treaties and introduced reinstatements as clauses that make the
premiums random.
In terms of effects of reinstatements on the solvency of the cedent, Walhin and Paris [13]
calculated the probability of ruin in a discrete-time risk model using recursive methods.
The goal of this paper is to determine the probability of ruin in a continuous-time risk
model. In a first step we show that the concept of piecewise deterministic Markov pro-
cesses (PDMP) allows a suitable Markovian description of the surplus process of the
cedent by adding the reinsurance cover as another dimension. PDMP’s in an insurance
framework were first studied by Dassios and Embrechts [4], see Rolski et al. [9] for an
overview.
Since one cannot expect analytical solutions for the resulting complicated dynamics, nu-
merical techniques have to be applied. We formulate a contractive integral operator
whose fixed point is the required finite-time ruin probability. Iterative application of this
integral operator will lead to a high-dimensional integration problem to approximate the
exact solutions. We investigate the feasibility of such an approach and illustrate the pro-
cedure with numerical results for exponentially distributed claim sizes and an expected
value principle for the calculation of the premiums. Finally, we compare the results with
approximations obtained from simulation of the underlying risk process.

2 XL reinsurance with reinstatements

Let the independent and identically distributed random variables Xi (i = 1, . . . , Nt) de-
note individual claim sizes in an insurance portfolio, where the random variable Nt is the
number of claims up to time t. Nt is assumed to be Poisson distributed with parameter
λ, and Xi and Nt are independent.
The surplus process of the insurance portfolio at time t in the classical risk model is
defined by

R(t) = u0 + βt−
Nt∑
i=1

Xi,
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where u0 is the initial surplus of the cedent and β is the gross premium income per time
unit.
Let Tu = inf{t : R(t) < 0} denote the time of ruin and ψ(u) = P(Tu <∞) the infinite-time
ruin probability. The finite-time ruin probability is denoted by ψ(u, T ) = P(Tu < T ).
In a plain XL contract with retention l, the reinsurer covers the part of each claim that
exceeds l. In practice the reinsurer usually limits the covered part by an upper bound
l +m, such that the reinsurer’s part Zi and the cedent’s part Ci, respectively, are

Zi =





0, Xi ≤ l

Xi − l, l ≤ Xi ≤ l +m

m, Xi ≥ l +m

and Ci =





Xi, Xi ≤ l

l, l ≤ Xi ≤ l +m

Xi −m, Xi ≥ l +m

.

The aggregate cover of the reinsurer up to time t is then Z = Z(t) =
∑Nt

i=1 Zi.

In addition, the reinsurer often limits this aggregate liability to an amount M , which
usually is an integer multiple of the individual maximum cover, i.e. M = (k + 1)m. In
this case the reinsurer is said to offer k reinstatements.
Under this setting, the reinsurer’s part becomes Rk = min(Z, (k + 1)m) and the cover of
the j-th reinstatement is therefore rj = min(max(Z − jm, 0),m).
In this paper we assume a pro-rata-capita concept: At the beginning of the XL reinsurance
contract the cedent pays an initial premium p0 for the reinsurance cover r0 = min(Z,m).
If a claim Xi occurs which uses up part of the cover, the cover is reinstated and the cedent
pays at this moment an additional premium Pj to reinstate the used up part of the layer.
This premium is a multiple of the fraction of the cover used up of the last reinstatement
rj−1:

Pj =
c p0

m
min(max(Z − (j − 1)m, 0),m),

where c > 0 is a percentage of the initial premium p0 (in some contracts, c may depend
on j as well).
Therefore it can happen that multiple claims use up one reinstated layer, but also that
one claim uses two reinstatements (rj′−1 and rj′) partly. In this case the charged premium
for the reinstatement of the cover is the sum of Pj′ and Pj′+1.
The advantage of such reinstatement clauses for the reinsurer is obviously the limitation
of the total reinsurance cover. The advantage for the cedent is that there is less financial
burden at the beginning of the contract (as only p0 is paid) and in addition, the total
reinsurance premium is reduced, as premiums for the further reinstatements are only paid
for the actually needed covers.
In the following we give an illustration of an XL contract with reinstatements.

Example 2.1: Assume an XL reinsurance contract with a layer of [100, 200] with two
additional reinstatements, at c = 0.5. In the concrete situation assume now that the
cedent faces four claims, namely X1 = 150, X2 = 300, X3 = 175 and X4 = 450.
The figures below show the reinsurer’s part of each claim (light grey column) and the
provided cover before (black column) and after the occurred claims (dark grey column).

3



Additionally the mottled and white columns refer to the amount used from the first and
second reinstatement, respectively. The premiums are paid pro-rata-capita:

(a) First claim - reduction of available cover

(b) First reinstatement - full cover (c) Second claim - no cover left

(d) First and second reinstatement - full cover (e) Third claim - reduction of available cover

(f) Second reinstatement - no full cover (g) Fourth claim - no cover left

Figure 1: Example of an XL reinsurance with two reinstatements
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At the beginning of the contract the cedent pays an initial premium p0 for the first cover
(see Figure 1(a), black column). After the first claim the cover is reduced to 50 (dark
grey column) and therefore the cedent refills the cover again to 100 by using 50 of the
first reinstatement (see Figure 1(b), mottled column). For this reinstatement the cedent
has to pay 50

100
0.5p0 = 0.25p0. The second claim used up the cover completely and hence

the cedent reinstates the cover with 50 from the first reinstatement (mottled column) and
50 of the second one (white column), see Figures 1(c) and 1(d). The cedent’s payment is
50
100

0.5p0 for the first and 50
100

0.5p0 for the second reinstatement.
In Figure 1(g) we see that after the third claim the cover was reinstated to 75, since only
50 of the second reinstatement were left. The reinsurer’s part of the last claim is therefore
75, the cover and the two reinstatements are used up completely, so the contract closes.
The total premium income of the reinsurer is therefore 2p0. ¤

The surplus process of the cedent under such a reinsurance contract is given by

RXL(t) = u0 − p0 + βt−
Nt∑
j=1

Cj − PXL(t),

where PXL(t) is the amount of reinstatement premiums paid up to time t. The total
amount of charged reinstatement premiums at the end of the period of cover is therefore
p0

(
1 + c

m

∑k
j=1 min(max(Z − (j − 1)m, 0),m)

)
.

The resulting ruin probability is denoted by ψXL(u, T ). In the following, the initial surplus
u0 is assumed to be already reduced by the initial premium p0, so we define u := u0− p0.

3 A reinstatement model with PDMP’s

Since our focus is on the determination of the finite-time ruin probability of the cedent
under an XL reinsurance contract with reinstatement clauses, it is useful to markovize
this a priori non-Markovian process. This can be achieved by extending the model de-
scription as a two-dimensional process, with the current amount of used reinsurance cover
as a second dimension. We use piecewise deterministic Markov processes to describe the
resulting process.
The state space of the process X(t) is denoted by E = R× [0, (k + 1)m], where the first
component, say ut, denotes the surplus of the cedent at time t and the second component,
say rt, the reinsurance cover used up to time t. The construction of the PDMP can be
split up into the deterministic part and the jumps of the process. The dynamics of the
process between jumps can be described by the integral curve φ((u, r), t) = (u + βt, r).
Thus the deterministic part of the Markov process is determined by

φ((uTk−1
, rTk−1

), t) = (uTk−1
+ β(t− Tk−1), rTk−1

),

for Tk−1 ≤ t < Tk, where Tk is the arrival time of the k-th claim. (Clearly the reinsurance
cover remains constant between jumps.)
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Define

layer = min (max (x− l, 0) ,m) ,

l(x, r)k = min (layer, (k + 1)m− r)

and x∗(u, r, t) as the solution (w.r.t. x) of

u+ βt− x+ l(x, r)k − c p0

m
l(x, r)k−1 = 0, (1)

where x denotes the occurred claim size and r the reinsurance cover already used up.

From the general form of the generator of a PDMP as given in Theorem 5.5 in Davis [3],
the generator of the PDMP describing the surplus process RXL(t) of the cedent under XL
reinsurance with reinstatements is given by

A g((u, r), t) =
∂

∂t
g((u, r), t) + β

∂

∂u
g((u, r), t)

+ λ

∫ x∗(u,r,t)

0

g

( (
u+ βt− x+ l(x, r)k − c p0

m
l(x, r)k−1, r + l(x, r)k

)
, t

)
dF (x)

− λg((u, r), t) + λ

∫ ∞

x∗(u,r,t)

dF (x),

(2)
where F (x) denotes the claim size distribution of the claims Xi of the process and g is
some function in the domain D(A ) of A .

Theorem 3.1: Let T be fixed. If g((u, r), t) ∈ D(A ) is a solution of A g = 0 on (R ×
[0, (k + 1)m])× [0, T ] with boundary condition g((u, r), T ) = 1u<0, then

ψXL(u, T ) = P (τ(u) < T ) = g((u, r), 0).

Proof: In analogy to the proof of Theorem 11.3.3 in Rolski et al. [9], where it is shown
that the survival probability can be expressed via PDMP’s, we use results from martingale
theory. We know that {g(X(t), t), t ≥ 0} is a martingale, and so is {g(X(τ(u)∧t), t), t ≥ 0}
and consequently also {g(X(τ ∧ t ∧ T ), t ∧ T )t ≥ 0}. Therefore we get

g((u, r), 0) = E [g(X(t), t)] = E [g(X(τ(u) ∧ T ), T )] = P (τ(u) < T ) ,

since g(X(τ(u)), T ) = 0 whenever τ(u) ≥ T .

Note that ψXL(u, T ) is indeed in the domain of the generator A , since the respective
conditions of Theorem 5.5 in Davis [3] are fulfilled (for a more detailed discussion of this
point see also Section 11.3.4 in Rolski et al. [9]).

Altogether, one first has to solve the partial integro-differential equation A g = 0 for
g((u, r), t) with (2) and then g((u, r), 0) is the required expression for the finite-time ruin
probability ψXL(u, T ).
An analytic solution of this problem is in general not possible. One can instead numer-
ically solve the partial integro-differential equation A g = 0, but we shall follow another
approach in the following section, which leads to a more effective numerical technique.
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4 An integral equation for the ruin probability

Alternatively to the approach of the previous section, one can condition on the time and
size of the first claim to obtain the following integral operator (here x∗(u, r, t) denotes the
solution w.r.t. x of equation (1)):

Ag((u, r), T ) =

∫ T

0

λ exp(−λt)
∫ x∗(u,r,t)

0

g

( (
u+ βt− x+ l(x, r)k − c p0

m
l(x, r)k−1 ,

r + l(x, r)k

)
, T − t

)
dF (x)dt+

∫ T

0

λ exp(−λt)
∫ ∞

x∗(u,r,t)

dF (x)dt.

(3)
Obviously ψXL(u, T ) is a fixed point of this integral operator. Furthermore, it is shown
in the appendix , that the solution of (2) and the fixed point of (3) coincide. A is a
contraction in the Banach space of all bounded functions, because

‖Ag1((u, r), t)−Ag2((u, r), t)‖∞ =

= ‖
∫ T

0

λ exp(−λt)
∫ x∗(u,r,t)

0

(
g1(k((u, r), t))− g2(k((u, r), t))

)
dF (x)dt‖∞

≤ ‖g1 − g2‖∞
∫ T

0

λ exp(−λt)dt = ‖g1 − g2‖∞ · (1− exp(−λT )),

where k((u, r), t) =
((
u+ βt− x+ l(x, r)k − c p0

m
l(x, r)k−1, r + l(x, r)k

)
, T − t

)
.

For computational purposes the fixed point approach is more suitable. By iterating the
operator A d times on some starting function g(0)((u, r), t), i.e.

g(d)((u, r), t) = Adg(0)((u, r), t)

and evaluating the resulting 2d-dimensional integral by Monte Carlo techniques, one ob-
tains an approximation for ψXL(u, T ). This approach is further discussed in Section 5.
The appropriate choice of the starting function is discussed in Section 6.

5 A recursive algorithm for the numerical solution

In the following, we consider exponentially distributed claim sizes (parameter γ). Then
the operator A can be written as

Ag((u, r), T ) =

∫ T

0

λ exp(−λt)
∫ x∗(u,r,t)

0

g

( (
u+ βt− x+ l(x, r)k − c p0

m
l(x, r)k−1,

r + l(x, r)k) , T − t

)
γ exp(−γx)dxdt

+

∫ T

0

λ exp(−λt)
∫ ∞

x∗(u,r,t)

γ exp(−γx)dxdt.
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To apply Monte Carlo methods in an effective way, we first transform the integration
domain of the operator to the unit cube by applying the techniques of Albrecher et al.
[1] to the present setup. This results in

Ag((u, r), T ) = (1− exp(−λT ))

∫ 1

0

∫ 1

0

(1− exp(−γx∗(u, r, t)))

g
((
u+ βt− x+ l(x, r)k − c p0

m
l(x, r)k−1, r + l(x, r)k

)
, T − t

)
dvdw

+ (1− exp(−λT ))

∫ 1

0

∫ 1

0

exp(−γx∗(u, r, t))dvdw.

Here t and x are defined by

t = − log(1−w(1−exp(−λT )))
λ

x = − log(1−v(1−exp(−γx∗(u,r,t))))
γ

(4)

and x∗(u, r, t) is the solution of equation (1) and can be calculated in every iteration step.
The integral operator is now applied d times onto g(0)((u, r), t) and the resulting multi-
dimensional integral g(d)((u, r), t) is approximated by the Monte Carlo estimate

g(d)((u, r), t) ≈ 1

N

N∑
n=1

g(d)
n ((u, r), t), (5)

where each g(d)
n ((u, r), t) is based on a uniformly distributed point xn ∈ [0, 1]2d (note that

d will usually be quite large) and calculated by the recursion

g
(0)
n ((u, r), t) = g(0)((u, r), t)

g
(i)
n ((u, r), t) = (1− exp(−λt))(1− exp(−γx∗(u, r, tin)))

· g
(i−1)
n

((
u+ βtin − xi

n + l(xi
n, r)k − c p0

m
l(xi

n, r)k−1, r + l(xi
n, r)k

)
, t− tin

)

+ (1− exp(−λt)) exp(−γx∗(u, r, tin)).
(6)

Here tin and xi
n are determined according to equation (4) for two components v and w of

the unit interval [0, 1]2d.
The recursive algorithm in formula (6) is implemented in Mathematica. It is essential
that cp0

m
l(xi

n, y)k−1 is always larger or equal to 0, in order to avoid negative premiums.
Therefore in the implementation c p0

m
l(xi

n, y)k−1 is replaced by c p0

m
max (l(xi

n, y)k−1, 0).

6 Numerical illustrations

We now illustrate the performance of the resulting algorithm and analyze the effect of XL
reinsurance with reinstatements on the ruin probability of the cedent.
Throughout this section we fix the parameter values as summarized in Table 1.
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Parameter of the Poisson process λ=10

Parameter of the exponentially distributed claim sizes γ=1
5

Covered layer within each reinstatement [l, l +m]=[6, 6 + 15]

Duration of the reinsurance contract T=1

Simulation runs for MC estimates N=75000

Level of confidence interval 95%

Table 1: Parameter values

Furthermore we assume that both the cedent’s premium and the reinsurance premium
are determined by the expected value principle.
The random numbers are generated using the algorithm ExtendedCA in Mathematica
6.0, which uses cellular automata based on a particular five-neighbor rule to generate
high-quality pseudo-random numbers.

6.1 Accuracy of results under various starting functions

In a first step we evaluate the influence of the recursion depth d and the starting function
g(0)((u, r), t) on the accuracy of the results.
Fix the security loading of the cedent with αced = 0.2 and of the reinsurer with αre = 0.3.
Additionally, the initial surplus of the cedent is assumed to be u = 40 and for the recursion
depth we use three different choices (d = 20, d = 35 and d = 70) to assess the effect of
the recursion depth on the performance. Consequently we generate up to 140-dimensional
random numbers xn.
We first choose the trivial starting function g(0) = g(0)((u, r), t) = 0, if u ≥ 0. For
u < 0 we set g(0) = g(0)((u, r), t) = 1. The following table shows the effect of excess
of loss reinsurance (without reinstatements, but an upper coverage limit of 15) on the
probability of ruin for d = 70.

Ruin Probability without reinsurance
ψ(40, 1) using formula (7): 0.052907

Ruin Probability with reinsurance
ψXL(40, 1): 0.045820 Confidence interval: [0.044790, 0.046851]

Table 2: Effects of the excess of loss reinsurance on the probability of ruin

So in this case the classical excess of loss reinsurance layer [6, 21] (i.e. no additional
reinstatements are available after the consumption of the reinsurance cover) improves the
probability of ruin by 13%.
Tables 3 and 4 summarize the probabilities of ruin of the cedent and the corresponding
confidence intervals for different combinations of offered reinstatements k and charged
premium percentages c. Here one sees that ψXL(40, 1) is monotonically increasing in c,
but that it is not monotone in k, i.e. an increase of the number of reinstatements does not
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automatically decrease ψ(u). This comes from the balance between reduced risk due to
higher reinsurance cover, but at the same time higher costs for the reinsurance premiums.

ψXL(40, 1) with c = 0.: 0.024310 Confidence interval: [0.023542, 0.025078]
ψXL(40, 1) with c = 0.5: 0.029833 Confidence interval: [0.028979, 0.030686]
ψXL(40, 1) with c = 1.: 0.033785 Confidence interval: [0.032877, 0.034694]
ψXL(40, 1) with c = 1.5: 0.036809 Confidence interval: [0.035860, 0.037758]

Table 3: Effects of k = 1 reinstatements on the probability of ruin

ψXL(40, 1) with c = 0.: 0.014954 Confidence interval: [0.014319, 0.015589]
ψXL(40, 1) with c = 0.5: 0.032902 Confidence interval: [0.031982, 0.033821]
ψXL(40, 1) with c = 1.: 0.046573 Confidence interval: [0.045498, 0.047648]
ψXL(40, 1) with c = 1.5: 0.055864 Confidence interval: [0.054701, 0.057027]

Table 4: Effects of k = 3 reinstatements on the probability of ruin

In a straight-forward implementation of the recursion algorithm, each value given above
needs approximately 1 hour computation time on a standard PC (this can certainly be
improved by a more efficient vector implementation, but note also that the reinstatement
clauses entail a lot of algebraic operations in each integration run). It is natural to ask
whether a reduction of the recursion depth d (which will decrease the computation time
proportionally) can be afforded in this method in terms of accuracy. Table 5 shows indeed
that for d = 35 the obtained results are very similar to those calculated with recursion
depth d = 70 (and the computation time is approximately halved). One observes that for
an increasing number of reinstatements k and fixed c, the difference between the results
using d = 70 and d = 35 becomes smaller.

k = 1 confidence interval k = 3 confidence interval
c = 0. 0.023953 [0.023192, 0.024715] 0.014829 [0.014203, 0.015455]
c = 0.5 0.029335 [0.028491, 0.030179] 0.032423 [0.031506, 0.033340]
c = 1 0.033265 [0.032365, 0.034165] 0.045881 [0.044811, 0.046951]
c = 1.5 0.036260 [0.035320, 0.037200] 0.055094 [0.053936, 0.056252]

Table 5: ψXL(40, 1) using a recursion depth of d = 35

k = 1 confidence interval k = 3 confidence interval
c = 0. 0.023648 [0.022898, 0.024397] 0.014474 [0.013848, 0.015099]
c = 0.5 0.029160 [0.028323, 0.029997] 0.032555 [0.031638, 0.033472]
c = 1 0.033178 [0.032283, 0.034073] 0.046310 [0.045235, 0.047384]
c = 1.5 0.036142 [0.035206, 0.037078] 0.055580 [0.054418, 0.056743]

Table 6: ψXL(40, 1) using a recursion depth of d = 20
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As Table 6 shows, a further decrease of recursion depth to d = 20 still leads to compa-
rable results, but the third digit now is not accurate and it will depend on the concrete
application whether this reduced accuracy is still acceptable.
In absence of analytical solutions, we compare these results with simulated ruin probabil-
ities using stochastic simulation of surplus paths of the underlying risk process according
to the compound Poisson dynamics. Table 7 depicts the ruin probabilities for several
combinations of k and c (in each case, the estimate is based on 500,000 simulation runs).

k = 1 confidence interval k = 3 confidence interval
c = 0. 0.024016 [0.023587, 0.024446] 0.015116 [0.014775, 0.015457]
c = 0.5 0.029784 [0.029306, 0.030262] 0.032588 [0.032088, 0.033088]
c = 1 0.033296 [0.032790, 0.033802] 0.045988 [0.045394, 0.046582]
c = 1.5 0.036634 [0.036104, 0.037165] 0.055636 [0.054982, 0.056290]

Table 7: ψXL(40, 1) using the simulation of the risk process

The ruin probabilities obtained by the recursive numerical method above nicely match
the values obtained by simulation (as long as d is chosen sufficiently high).
In the following we investigate whether a more sophisticated starting function g(0)((u, r), t)

leads to significantly improved results. A natural choice for a better starting function are
the infinite-time and finite-time ruin probabilities without reinsurance, ψ(u) and ψ(u, t).
Since the claim size distribution is exponential (parameter γ), there exist closed-form
expressions for the latter, namely ψ(u) = λ

γβ
exp

(
−u

(
γ − λ

β

))
and

ψ(u, t) = 1− exp(−γu− (1 + τ)λt)ω(γu+ τλt, λt), (7)

where τ = γβ/λ and

ω(z, θ) = J(θz) + θJ (1)(θz) +

∫ z

0

exp(z − v)J(θv)dv

− 1

τ

∫ τθ

0

exp(τθ − v)J(zτ−1v)dv.

Here J(x) = I0(2
√
x) and I0(x) denotes the modified Bessel function (see e.g. Rolski et

al. [9]).
Table 8 gives the resulting ruin probabilities for c = 100% and recursion depths d = 35

and d = 20.
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d = 35 g(0)((u, r), t) = ψ(u) g(0)((u, r), t) = ψ(u, t)

probability confidence interval probability confidence interval
k = 1 0.033501 [0.032595, 0.034407] 0.033382 [0.032487, 0.034277]
k = 3 0.046526 [0.045451, 0.047601] 0.046144 [0.045074, 0.047214]
d = 20 g(0)((u, r), t) = ψ(u) g(0)((u, r), t) = ψ(u, t)

probability confidence interval probability confidence interval
k = 1 0.034601 [0.033696, 0.035506] 0.033683 [0.032777, 0.034590]
k = 3 0.047735 [0.046652, 0.048818] 0.046294 [0.045224, 0.047363]

Table 8: ψXL(40, 1) using different starting functions g(0)

One observes that for the starting function g(0)((u, r), t) = ψ(u) a recursion depth of
d = 20 leads to slightly over-estimated values for the ruin probability. Increasing d

and using the finite-time ruin probability ψ(u, t) as the starting function significantly
improves these results. Note that the resulting ruin probabilities for this starting function
and d = 20 are closer to the results of the simulation of the risk process than the ruin
probabilities calculated with the simple starting function and d = 70.

6.2 Analysis of different levels of initial surplus u

In this section we analyze the effect of XL reinsurance with reinstatements for various
levels of initial surplus u. We keep the security loadings of cedent and reinsurer fixed with
αced = 0.2 and αre = 0.3 and study the ruin probability of the cedent with k = 1 and
k = 3 reinstatements. The recursion depth is set to d = 20 and to d = 35 to evaluate the
stability of the results. As starting function we use ψ(u, t).
The following tables give the ruin probabilities for u ∈ {20, 40, 60, 80} (here c = 100%).
Table 9 shows that an increasing number of reinstatements reduces the probability of
ruin. At the same time it is preferable not to have any reinsurance, because the premium
payment close to ruin is more risky than covering the potential claims.

d = 20 ψXL(20, 1) confidence interval
k = 1 0.314771 [0.312447, 0.317094]
k = 3 0.300447 [0.298144, 0.302749]
d = 35 ψXL(20, 1) confidence interval
k = 1 0.312863 [0.310549, 0.315178]
k = 3 0.298747 [0.296454, 0.301041]
Without reinsurance: ψ(20, 1) = 0.221820

Table 9: The probability of ruin with initial surplus u = 20

With increasing initial surplus u the situation changes and the cedent can reduce the ruin
probability by agreeing to a reinsurance. The following tables show that on from some
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threshold level u, the ruin probability is always decreased by reinsurance irrespectively of
the number of reinstatements. One can observe from the tables that for medium sizes of u
a larger number of reinstatements does not automatically lead to more safety. If u is high
enough, the ruin probability again decreases for an increasing number of reinstatements
(see Figure 2).

d = 20 ψXL(40, 1) confidence interval
k = 1 0.033683 [0.032777, 0.034590]
k = 3 0.046294 [0.045224, 0.047363]
d = 35 ψXL(40, 1) confidence interval
k = 1 0.033382 [0.032487, 0.034277]
k = 3 0.046144 [0.045074, 0.047214]
Without reinsurance: ψ(40, 1) = 0.052907

Table 10: The probability of ruin with initial surplus u = 40

d = 20 ψXL(60, 1) confidence interval
k = 1 0.005115 [0.004784, 0.005446]
k = 3 0.004907 [0.004568, 0.005245]
d = 35 ψXL(60, 1) confidence interval
k = 1 0.004777 [0.004466, 0.005089]
k = 3 0.004779 [0.004452, 0.005106]
Without reinsurance ψ(60, 1) = 0.010523

Table 11: The probability of ruin with initial surplus u = 60

d = 20 ψXL(80, 1) confidence interval
k = 1 0.000791 [0.000667, 0.000915]
k = 3 0.000390 [0.000306, 0.000475]
d = 35 ψXL(80, 1) confidence interval
k = 1 0.000742 [0.000628, 0.000855]
k = 3 0.000345 [0.000268, 0.000422]
Without reinsurance ψ(80, 1) = 0.001799

Table 12: The probability of ruin with initial surplus u = 80

Table 13 shows that the numerical results are in agreement with the simulation results
(where each estimate is based on 500,000 simulation runs).
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k = 1 confidence interval k = 3 confidence interval
u = 20 0.313524 [0.311972, 0.315076] 0.299342 [0.297825, 0.300859]
u = 40 0.033296 [0.032790, 0.033802] 0.045988 [0.045394, 0.046582]
u = 60 0.004934 [0.004739, 0.005129] 0.004962 [0.004767, 0.005157]
u = 80 0.000746 [0.000670, 0.000822] 0.000364 [0.000311, 0.000417]

Table 13: ψXL(u, 1) using simulation of the risk process

Figure 2: Logarithmic plot of ruin probabilities w.r.t. u, for k ∈ {1, 3}

6.3 Analysis of different combinations of security loadings

Let us finally consider the effect of the security loading on the ruin probability of the
cedent (we fix u = 40 and d = 35). As in the previous section we use the finite-time ruin
probability ψ(u, t) as starting function for the algorithm and evaluate the ruin probability
of the cedent under XL reinsurance with k = 1 and k = 3 reinstatements. The charged
premium for each reinstatement is assumed to be 100% of the initial premium p0.
For the security loading of the cedent we analyze the levels αced = 0.2 and αced = 0.3

and combine these values with different security loadings of the reinsurer αre, where we
assume as restriction that αced < αre.
For αced = 0.2 we investigate the effects of reinstatements, if the reinsurer charges a
security loading of αre = 0.3, αre = 0.4 and αre = 0.5, respectively.
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αre = 0.3 ψXL(40, 1) confidence interval
k = 1 0.033382 [0.032487, 0.034277]
k = 3 0.046144 [0.045074, 0.047214]
αre = 0.4 ψXL(40, 1) confidence interval
k = 1 0.040185 [0.039192, 0.041178]
k = 3 0.057548 [0.056361, 0.058735]
αre = 0.5 ψXL(40, 1) confidence interval
k = 1 0.047978 [0.046891, 0.049066]
k = 3 0.069778 [0.068482, 0.071075]
Without reinsurance: ψ(40, 1) = 0.052907

Table 14: The probability of ruin with αced = 0.2

Table 14 summarizes the ruin probabilities and the confidence intervals for αced = 0.2:
First one notes that here reinsurance with k = 1 reinstatements improves the cedent’s
situation in each case (this was not always the case for small values of u in Table 9 in
Section 6.2) and again an increase in the number of reinstatements can make the cedent’s
situation more risky than without reinsurance.
Hence depending on u and the difference between the cedent’s and the reinsurer’s security
loading, it may be preferable to have no reinsurance. Table 15 shows a similar behavior
of the ruin probability for increasing security loadings αre (with αre ∈ {0.35, 0.4, 0.5}), if
the cedent charges αced = 0.3.

αre = 0.35 ψXL(40, 1) confidence interval
k = 1 0.027308 [0.026506, 0.028109]
k = 3 0.038735 [0.037769, 0.039701]
αre = 0.4 ψXL(40, 1) confidence interval
k = 1 0.030061 [0.029222, 0.030900]
k = 3 0.043536 [0.042513, 0.044559]
αre = 0.5 ψXL(40, 1) confidence interval
k = 1 0.035367 [0.034455, 0.036278]
k = 3 0.052425 [0.051315, 0.053535]
Without reinsurance: ψ(40, 1) = 0.041291

Table 15: The probability of ruin with αced = 0.3

In addition one notices that the higher security loading of the cedent obviously leads to
a decreased ruin probability in the case without reinsurance. Therefore the difference
between the security loadings αced = 0.3 and αre has to be smaller than in the case with
αced = 0.2 to achieve an improvement for the cedent’s situation for k > 1 reinstatements.
We now compare these results with the estimated ruin probabilities evaluated by simu-
lating the cedent’s surplus process, see Table 16 and Table 17.
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αre = 0.3 ψXL(40, 1) confidence interval
k = 1 0.033296 [0.032790, 0.033802]
k = 3 0.045988 [0.045394, 0.046582]
αre = 0.4 ψXL(40, 1) confidence interval
k = 1 0.040398 [0.039841, 0.040955]
k = 3 0.057084 [0.056422, 0.057746]
αre = 0.5 ψXL(40, 1) confidence interval
k = 1 0.047704 [0.047099, 0.048309]
k = 3 0.069266 [0.068537, 0.069996]

Table 16: The probability of ruin using simulation of the risk process with αced = 0.2

αre = 0.35 ψXL(40, 1) confidence interval
k = 1 0.027418 [0.026959, 0.027877]
k = 3 0.038832 [0.038286, 0.039378]
αre = 0.4 ψXL(40, 1) confidence interval
k = 1 0.030022 [0.029542, 0.030502]
k = 3 0.042984 [0.042409, 0.043559]
αre = 0.5 ψXL(40, 1) confidence interval
k = 1 0.035310 [0.034789, 0.035831]
k = 3 0.052630 [0.051994, 0.053266]

Table 17: The probability of ruin using simulation of the risk process with αced = 0.3

Altogether, XL reinsurance with reinstatements improves the ruin probability for fixed
initial surplus u, if the cedent’s and the reinsurer’s security loading are similar. If the
reinsurer charges a much higher security loading, the cedent has to decrease the number
of reinstatements in order to reduce the probability of ruin. This means also that more
reinstatements do not necessarily improve the cedent’s situation in terms of safety.

7 Conclusion

Excess of loss reinsurance contracts with reinstatements are widely used in practice. In
the present paper we obtained both a partial integro-differential equation and an integral
equation for the finite-time ruin probability. We showed that the latter can be used to
express the ruin probability as the fixed point of a contractive integral operator.
This representation was then used to develop a recursive algorithm for a numerical proce-
dure to obtain ψXL(u, T ). This numerical method is a valuable alternative to stochastic
simulation of the risk process which allows to obtain an independent estimate of the ruin
probability in this risk model. In terms of comparing computation times of the recursive
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numerical method and simulation of the risk process, it seems that (unlike in the con-
text of dividend models, cf. Albrecher et al. [1]) the simulation method is much faster.
However, as shown above, an appropriate choice of the starting function can considerably
decrease the dimension of the resulting integration and this may be an advantage in cer-
tain applications (for instance when using Quasi-Monte Carlo methods to try to speed up
the simulation efficiency). In the above example, a 40-dimensional integral was sufficient
for the recursive method, whereas simulation of the risk process usually needs dimensions
beyond 100 (as each interclaim time and claim size variable needed for the simulation of
one sample path represents one dimension).
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A Derivation of the partial integro-differential equation

To prove that the solutions of A g = 0, with A as defined in (2) and Ag = g, with A

given in (3) in Section 4 coincide, we differentiate the integral equation (3) w.r.t. t leading
to a partial integro-differential equation. We introduce the following variables:

x̃ = x− l(x, r)k +
c p0

m
l(x, r)k−1,

r̃ = r + l(x, r)k,

x∗ = x∗(u, r, t).

The partial derivative of g((u, r), t) w.r.t. t can be written as

∂

∂t
g((u, r), t) = lim

h↓0
g((u, r), t+ h)− g((u, r), t)

h

= lim
h↓0

1

h

(∫ t+h

0

λ exp(−λs)
∫ x∗

0

g((u+ βs− x̃, r̃), t+ h− s)dF (x)ds

+

∫ t+h

0

λ exp(−λs)
∫ ∞

x∗
dF (x)ds

−
∫ t

0

λ exp(−λs)
∫ x∗

0

g((u+ βs− x̃, r̃), t− s)dF (x)ds

−
∫ t

0

λ exp(−λs)
∫ ∞

x∗
dF (x)ds

)
.
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Rewrite the first and second line of the above formula using the substitution v = s − h.
This leads to the following expression for the first line:

∫ t+h

0

λ exp(−λs)
∫ x∗

0

g((u+ βs− x̃, r̃), t+ h− s)dF (x)ds =

=

∫ t

0

λ exp(−λ(v + h))

∫ x∗

0

g((u+ β(v + h)− x̃, r̃), t− v)dF (x)dv

+

∫ 0

−h

λ exp(−λ(v + h))

∫ x∗

0

g((u+ β(v + h)− x̃, r̃), t− v)dF (x)dv.

For the second line one gets with similar considerations
∫ t+h

0

λ exp(−λs)
∫ ∞

x∗
dF (x)ds = exp(−λh)

∫ t

0

λ exp(−λs)
∫ ∞

x∗
dF (x)ds

+ exp(−λh)
∫ 0

−h

λ exp(−λs)
∫ ∞

x∗
dF (x)ds.

The partial derivation of g((u, r), t) w.r.t. u can be written as:

∂

∂u
g((u, r), t) = lim

h↓0
g((u+ βh, r), t)− g((u, r), t)

βh
,

thus limh↓0 1
h

(g((u+ βh, r), t)− g((u, r), t)) = β ∂
∂u
g((u, r), t).

Putting together all the terms from above, one can now write the derivative of g((u, r), t)
w.r.t. t in the following way:

∂

∂t
g((u, r), t) = lim

h↓0
g((u, r), t+ h)− g((u, r), t)

h

= lim
h↓0

1

h

(∫ t

0

λ exp(−λs)
∫ x∗

0

(g((u+ β(s+ h)− x̃, r̃), t− s)

− g((u+ βs− x̃, r̃), t− s)) dF (x)ds

− (1− exp(−λh))
(∫ t

0

λ exp(−λs)
∫ x∗

0

g((u+ β(s+ h)− x̃, r̃), t− s)

+

∫ t

0

λ exp(−λs)
∫ ∞

x∗
dF (x)ds

)

+

∫ 0

−h

λ exp(−λ(s+ h))

∫ x∗

0

g((u+ β(s+ h)− x̃, r̃), t− s)dF (x)ds

+ exp(−λh)
∫ 0

−h

λ exp(−λs)
∫ ∞

x∗
dF (x)ds

)
.
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It is easy to see, that the following equations are fulfilled:

β
∂

∂u
g((u, r), t) = lim

h↓0
1

h

(∫ t

0

λ exp(−λs)
∫ x∗

0

g((u+ β(s+ h)− x̃, r̃), t− s)

− g((u+ βs− x̃, r̃), t− s)dF (x)ds) ,

λg((u, r), t) = lim
h↓0

1

h

(∫ t

0

λ exp(−λs)
∫ x∗

0

g((u+ β(s+ h)− x̃, r̃), t− s)

+

∫ t

0

λ exp(−λs)
∫ ∞

x∗
dF (x)ds

)
(1− exp(−λh)),

λ

∫ ∞

x∗
dF (x) = lim

h↓0
1

h
exp(−λh)

∫ 0

−h

λ exp(−λs)
∫ ∞

x∗
dF (x)ds

and

lim
h↓0

1

h

∫ 0

−h

λ exp(−λ(s+ h))

∫ x∗

0

g((u+ β(s+ h)− x̃, r̃), t− s)dF (x)ds

leads to

λ

∫ x∗

0

g((u− x̃, r̃), t)dF (x).

Therefore one can determine the differential quotient of g((u, r), t) w.r.t. t as

∂

∂t
g((u, r), t) = β

∂

∂u
g((u, r), t)+λ

(∫ x∗

0

g((u− x̃, r̃), t)dF (x)− g((u, r), t) +

∫ ∞

x∗
dF (x)

)
.

(8)
The time variable in the first approach is the time until the next claim, whereas in the
second approach it is the time since the last claim. Considering this fact, the solutions
represented by equations (2) and (8) indeed coincide.
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