PLEKHG5 deficiency leads to an intermediate form of autosomal-recessive Charcot–Marie–Tooth disease

Hamid Azzedine1, Petar Zavadakova1, Violaine Plante-Bordeneuve2, Maria Vaz Pato3, Nuno Pinto3, Luca Bartesaghi1, Jennifer Zenker1, Olivier Poirot1, Nathalie Bernard-Marissal1, Estelle Arnaud Gouttenoire1, Romain Cartoni1, Alexander Titel1, Giulia Venturini1, Jean-Jacques Médard1, Edward Makowski4, Ludger Schöls5, Kristl G. Claey5,7, Claudia Stendel7, Andreas Roos6, Joachim Weis6, Odile Dubourg6, José Leal Loureiro11,12, Giovanni Stevanin9,10, Gérard Said13, Anthony Amato14, Jay Baraban4, Eric LeGuern9, Jan Senderek15,†, Carlo Rivolta1,† and Roman Chrast1,†,*

1Department of Medical Genetics, University of Lausanne, CH-1005 Lausanne, Switzerland 2Service de Neurologie, CHU Henri Mondor, 94000 Créteil, France 3CICS-Health Science Research Centre, Universidade da Beira Interior, 6200-506 Covilhã, Portugal 4Solomon H. Snyder Department of Neuroscience, John Hopkins University, Baltimore, MD 21205, USA 5Department of Neurodegenerative Disease, Hertie-Institute for Clinical Brain Research and Center for Neurology, 72076 Tübingen, Germany 6Institute of Neuropathology and 7Department of Neurology, University Hospital RWTH Aachen, 52074 Aachen, Germany 8Centre de reference des maladies neuromusculaires, Assistance Publique-Hôpitaux de Paris, 9Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière (Inserm/UPMC 975; CNRS 7225) and Departement of Genetics, Assistance Publique-Hôpitaux de Paris and 10Neurogenetics Group, Ecole Pratique des Hautes Etudes, CHU Pitié-Salpêtrière, 75013 Paris, France 11UnIGENe and Centro de GeneÁtica Preditiva e Preventiva, Institute for Molecular and Cellular Biology, 4050 Porto, Portugal 12Servicio de Neurologia, Centro Hospitalar entre Douro e Vouga, 4520-211 Santa Maria da Feira, Portugal 13Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, University Pierre et Marie Curie, 75013 Paris, France 14Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA 15Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilian-University, 81377 Munich, Germany

Received May 6, 2013; Revised and Accepted June 6, 2013

Charcot–Marie–Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CMT, we identified overlapping regions of homozygosity on chromosome 1p36 with a combined maximum LOD score of 5.4. Molecular investigation of the genes from this region allowed identification of two homozygous mutations in PLEKHG5 that produce premature stop codons and are predicted to result in functional null alleles. Analysis of Plekhg5 in the mouse revealed that this gene is expressed in neurons and glial cells of the peripheral nervous system, and that knockout mice display reduced nerve conduction velocities that are comparable with those of affected individuals from both families. Interestingly, a homozygous PLEKHG5 missense mutation was previously reported in a recessive form of severe childhood onset lower motor neuron disease (LMND) leading to loss of the ability to walk and need for respiratory assistance. Together, these observations indicate that different mutations in PLEKHG5 lead to clinically diverse outcomes (intermediate CMT or LMND) affecting the function of neurons and glial cells.
INTRODUCTION

Hereditary motor and sensory neuropathy (HMSN), also known as Charcot–Marie–Tooth disease (CMT), is the most frequent inherited neurological disorder with a prevalence of 1 in 2500 (1). CMT affects both sensory and motor peripheral nerves and is clinically characterized by distal and symmetric muscle atrophy in lower limbs and hands, foot deformities, distal sensory loss and decreased or absent tendon reflexes (2,3). Two major types have been distinguished on the basis of electrophysiological criteria: a demyelinating form (HMSN type I or CMT1) with motor nerve conduction velocities (MNCVs) of the median nerve lower than 38 m/s and an axonal form (HMSN type II or CMT2) in which MNCVs are normal or only slightly reduced (>40 m/s), while amplitudes of motor and sensory action potentials are significantly decreased (4–6). Histological features reflect these findings: in CMT1, peripheral nerve pathology shows defects of myelinating Schwann cells (SC), responsible for decreased nerve conduction, whereas in CMT2 the number of large caliber axons is reduced, leading to decreased motor and sensory action potentials. A third group of CMTs with MNCVs between 25 and 45 m/s is considered as intermediate (5,7,8). In this group of CMTs, histology shows the coexistence of glial (demyelination, onion bulb formation) and axonal (degeneration of large caliber axons and regenerative sprouting) defects (9,10).

While recent progress has allowed identification of more than 40 genes in various forms of CMT, there is still a relatively large fraction of cases for which molecular diagnosis cannot be established (11). As part of the effort to identify additional CMT-causing genes, we analyzed two consanguineous multiplex families presenting with an autosomal-recessive form of intermediate CMT and identified two homozygous mutations in PLEKHG5. These genetic data together with the characterization of the mice with disrupted Plekhg5 clearly indicate that in addition to previously reported lower motor neuron disease (LMND) (12), mutations in PLEKHG5 are also causing an intermediate CMT.

RESULTS

Identification of mutations in PLEKHG5 in two families affected with an intermediate CMT

Two consanguineous multiplex families affected by an autosomal-recessive form of intermediate CMT were studied. The first family (221) originated from Portugal and comprised two affected and four unaffected siblings born to healthy parents who were first cousins. In the second family (NP72) of Moroccan origin, four out of eight siblings born to healthy parents with first-degree consanguinity were affected. Affected individuals had limb muscle weakness and atrophy, foot deformities, moderately decreased nerve conduction velocities, loss of large myelinated fibers and thin myelination seen on nerve biopsy (Fig. 1, Table 1). No signs of brain involvement were observed. In four of the five characterized affected individuals, the age of onset was between the second and fifth decade and one patient had earlier disease onset at the age of 7 years.

To identify the gene responsible for this characteristic form of recessive CMT, we performed genome-wide homozygosity mapping in both families. In family 221, microsatellite genotyping was performed with a set of ~400 markers from the ABI-Prism linkage mapping set v2 revealing a few regions of homozygosity in the affected individuals, including an ~10 Mb region at the 1p-telomere (Fig. 1 and Supplementary Material, Fig. S1). For family NP72, we used a set of ~600 000 SNPs from the Illumina Human 660W-Quad array and mapping identified only one homozygous region genome-wide. This was a 1.52 Mb stretch on chromosome 1, which was common to all affected individuals and absent in the healthy members of the pedigree. Haplotype reconstruction revealed that two ancestral recombination events delimited the autosome region in this latter family (Fig. 1). The 1.52 Mb autosome region identified in family NP72 completely overlapped with the chromosome 1p-telomere of interest found in family 221. Combined parametric multipoint linkage analysis in both families [Merlin software (13), autosomal-recessive inheritance] confirmed these findings and assigned a max LOD score of 5.4 (LODmax = 1.9 and 3.5 for families 221 and NP72, respectively) to the shared region of homozygosity (Supplementary Material, Fig. S1). The critical interval contained 25 annotated genes (Fig. 2). Further analysis revealed that, according to data that we had generated previously (14), only two of them, PLEKHG5 (MIM 611101) and GPR153 (MIM 614269), had an expression profile compatible with genes playing a role in peripheral nerve development and function. Their Sanger sequencing (including coding exons and flanking intronic regions) in affected subjects revealed a homozygous 1 bp deletion in exon 3 of PLEKHG5 (NM_198681.3:c.269delC) in family 221 leading to a frameshift and premature termination codon (NP_941374.2:p.Pro90Hisfs’45) and a homozygous 7 bp duplication (NM_198681.3:c.1143_1149dup [tgaagac]) in exon 10 of PLEKHG5 directly introducing a stop codon (NP_941374.2:p.Glu384*) in family NP72 (Fig. 2). Parents for whom the DNA was available were heterozygotes for the mutations, and unaffected siblings were either heterozygotes or presented no mutations (Fig. 1). Neither c.269delC nor c.1143_1149dup were detected in controls (79 North African and 339 European, and 100 North African and 49 European subjects, respectively). Moreover, these mutations were absent from the dbSNP and the Exome Sequencing Project databases.

Pattern of expression of Plekhg5 suggests its role in neurons and glial cells

PLEKHG5 was previously shown to be expressed in human spinal cord, brain and peripheral nerves (12), while the expression of its mouse and rat orthologue, Plekhg5, was detected in the brain (15,16). We have confirmed and extended these findings using samples from various regions of adult (2-month-old) mouse nervous system. Quantitative PCR data revealed the highest level of expression of Plekhg5 in the brain and in the sciatic nerve endoneurium (Fig. 3A). Interestingly, the endoneurial expression of Plekhg5 was dynamically regulated during development with the highest level at postnatal days 10–14 (Fig. 3B). This expression profile suggested its role in PNS myelination (14,17). We therefore evaluated the expression of Plekhg5 in SC and found that both primary purified mouse SC and the mouse SC line MSC80 expressed Plekhg5 (Fig. 3C). The
temporal and spatial expression pattern of Plekhg5 in neurons and glial cells is in agreement with its possible role in the pathophysiology of an intermediate CMT subtype affecting both neurons and SC.

In order to gain insight into the consequences of disrupted PLEKHG5 function, we decided to use recently generated Plekhg5ΔEx11-Ex17/ΔEx11-Ex17 mice develop mild neuropathy.
Plekhg5^{ΔEx11-Ex17} mice (18). These animals were produced by a cross between animals with loxP sites flanking exons 11–17, which contain the RhoGEF catalytic domain considered as a main functional domain of Plekhg5, and a small portion of the PH domain [Fig. 4A, Supplementary Material, Fig. S2 (15,16)] with mice expressing Cre recombinase in their germline [CAG-Cre transgenic mice (19)], thus leading to excision of the targeted region in all mouse tissues, as verified by genomic PCR and RT-PCR (Supplementary Material, Fig. S2). Plekhg5^{ΔEx11-Ex17} mice developed normally, without any major phenotype up to adulthood (including the absence of clear neurological symptoms such as tremor, gait instability or changes in open field activity).

We therefore used a combination of electrophysiological and behavioral tests in order to evaluate possible changes in PNS function in Plekhg5 knockout mice. Electrophysiological evaluation revealed that the MNCV was reduced in 6- and 12-month-old Plekhg5^{ΔEx11-Ex17} mice (Fig. 4B) and both proximal and distal compound action potentials (CAPs) were delayed in affected animals at the age of 12 months, while only proximal CAPs were affected at the age of 6 months (Fig. 4C). The reduced velocity (∼6 m/s) was compatible with the relatively mild decrease in MNCVs observed in CMT subjects. Plekhg5^{ΔEx11-Ex17} mice were then assessed with the rotarod to test their motor performances. While the affected animals performed slightly less well than control

Table 1. Summary of clinical findings in families NP72 and 221

<table>
<thead>
<tr>
<th>Family</th>
<th>NP72</th>
<th>NP72.4</th>
<th>NP72.5</th>
<th>NP72.9</th>
<th>221</th>
<th>221.13</th>
<th>221.17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>M</td>
<td>F</td>
<td></td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Age at onset (years)</td>
<td>28</td>
<td>44</td>
<td>30</td>
<td>7</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at last examination (years)</td>
<td>43</td>
<td>47</td>
<td>51</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distal weakness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL<sup>a</sup></td>
<td>++</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL<sup>b</sup></td>
<td>++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distal muscle atrophy<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL</td>
<td>++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involvement of proximal muscles<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL</td>
<td>–</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot deformity<sup>e</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General stage of disability<sup>f</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spine deformity<sup>g</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep tendon reflexes<sup>h</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor nerves<sup>i</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (≥48/≥8)</td>
<td>39/4.2</td>
<td>ND</td>
<td>35/3.7</td>
<td>36/8.8</td>
<td>39/8.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulnar (≥48/≥8)</td>
<td>ND</td>
<td>ND</td>
<td>35/6.5</td>
<td>34/5.3</td>
<td>33/7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peroneal (≥42/≥5)</td>
<td>29/0.8</td>
<td>ND</td>
<td>27/2.1</td>
<td>NR</td>
<td>29/3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibial (≥40/≥8)</td>
<td>26/6.3</td>
<td>ND</td>
<td>31/1.0</td>
<td>26/8.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensory nerves<sup>j</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (≥45/≥12)</td>
<td>ND</td>
<td>ND</td>
<td>36/21</td>
<td>40/6</td>
<td>42/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulnar (≥50/≥15)</td>
<td>35/14.3</td>
<td>ND</td>
<td>30/13</td>
<td>37/19</td>
<td>37/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peroneal (≥40/≥10)</td>
<td>30/0.7</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sural (≥42/≥10)</td>
<td>32/2</td>
<td>ND</td>
<td>NR</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sural nerve biopsy</td>
<td>ND</td>
<td>Demyelinating and axonal changes</td>
<td>NA<sup>l</sup></td>
<td>NA</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle biopsy</td>
<td>ND</td>
<td>ND</td>
<td>Neurogenic muscle atrophy</td>
<td>ND</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UL, upper limbs; LL, lower limbs; NA, no data available; ND, not done.

^aWrist extension: – = no weakness; + = 4/5 on MRC scale; ++ = <4/5 on MRC scale; +++ = complete paralysis.

^bAnkle dorsiflexion: – = no weakness; + = 4/5 on MRC scale; ++ = <4/5 on MRC scale; +++ = complete paralysis.

^c– = not affected; + = mild atrophy; ++ = moderate atrophy; +++ = severe atrophy.

^d– = no deformity; + = pes cavus; ++ = clubfoot deformity; +++ = surgery required, ht = hammer toes.

^e0 = normal, 1 = normal walking and running but fatigability and cramps, 2 = normal walking, running and jumping impossible, 3 = abnormal walking without help, 4 = abnormal walking only with simple canes, 5 = abnormal walking only with crutches, 6 = abnormal walking only with a walker, 7 = wheelchair-bound, 8 = bedridden.

^f– = normal sensibility; + = decreased sensibility; + = absent sensibility.

^g– = none; + = mild; ++ = severe; +++ = surgery required.

^hUpper/lower extremities; – = normal; (+) = decreased; − = areflexia.

ⁱMotor nerve conduction velocities (in m/s)/amplitudes of compound motor action potentials (in mV); normal values are given in brackets following the nerve’s name; NR, not recordable.

^jSensory nerve conduction velocities (in m/s)/sensory nerve action potentials (in μV); normal values are given in brackets following the nerve’s name; NR, not recordable.

^lThe biopsy specimens could not be evaluated due to severe traction/fixation artifacts.
Plekhg5\Delta Ex11-Ex17/\Delta Ex11-Ex17 mice do not develop lower motor neuron disease

Although clinical characterization of families 221 and NP72 corresponded to an intermediate CMT phenotype, previous data indicated that a missense mutation in PLEKHG5 leads to a severe form of LMND (12). Thus, we characterized more detail α-motoneurons and neuromuscular junctions (NMJs) in Plekhg5\Delta Ex11-Ex17/\Delta Ex11-Ex17 animals (Fig. 5, Supplementary Material, Fig. S3). Characterization of ventral horn α-motoneurons of the lumbar spinal cord of 6- and 12-month-old Plekhg5\Delta Ex11-Ex17/\Delta Ex11-Ex17 mice failed to reveal any differences in their number or morphological characteristics (Fig. 5A–C, Supplementary Material, Fig. S3). In addition, we did not observe any significant change in the pattern of innervation, change in the NMJ shape or any denervation in the soleus or extensor digitorum longus (EDL) muscles of Plekhg5\Delta Ex11-Ex17/\Delta Ex11-Ex17 mice (Fig. 5D, Supplementary Material, Fig. S3). The absence of changes in α-motoneurons and in NMJ indicated that during the analyzed period (up to 1 year of age), the Plekhg5\Delta Ex11-Ex17/\Delta Ex11-Ex17 mice did not develop detectable signs of LMND.

DISCUSSION

It is presently unknown why some PLEKHG5 mutations lead to an intermediate CMT neuropathy in humans and mice while others cause severe LMND in affected individuals. The homozygous missense mutation identified in the African family affected by LMND results in an amino acid substitution (p.Phe647Ser) in the pleckstrin homology domain (PH domain, Fig. 4) of PLEKHG5, which affects its subcellular localization and function (12). On the other hand, mutations in CMT families 221 and NP72 most likely result in critically truncated or no protein at all (due to nonsense-mediated decay). The in-frame deletion in the mouse model is also likely to represent a non-functional null allele as it removes the entire Rho guanine nucleotide exchange factor (GEF) catalytic domain that is essential for Plekhg5 to regulate RhoGTPase signaling (15, 16).

Importantly, it was previously observed that defects in other GEFs affect the PNS function. Mutations in FGD4 (MIM 611104) lead to demyelinating Charcot–Marie–Tooth disease CMT4H (MIM 609311) (20–22), while a missense mutation in ARHGEF10 (Rho guanine nucleotide exchange factor 10; MIM 608136) results in an autosomal-dominant trait with slowed NCV without clinical manifestation (23).

Recent data also indicate that PLEKHG5 may interact with a variety of partners including multiple PDZ domain protein 1...
in particular through its PDZ-binding motif that is lost in families 221 and NP72. MUPP1 is one of the proteins involved in epithelial-like polarization of SC (26,27), which is critical for both radial and longitudinal extension of their myelin sheaths (26,28). It is therefore possible that disturbed interactions between PLEKHG5 and

Figure 3. Plekhg5 expression in mouse nervous system. (A) The relative level of Plekhg5 expression was evaluated by quantitative PCR (qPCR) in dorsal root ganglia (DRG), brain, optic nerve, spinal cord and sciatic nerve endoneurium. mRNA levels are presented as fold change over the mRNA level in the DRG. The data represent the mean ± SD of triplicate measurements. (B) Relative mRNA levels of Plekhg5 were determined by qPCR and microarrays (E17, P0, P2, P4 and P10: whole mouse sciatic nerve; P14, P28 and P56: sciatic nerve endoneurium). For each time point, the mRNA levels are presented as fold increase over the mRNA level at E17.5 (for qPCR measurements) or at P0 (for microarray experiments). The qPCR data represent the mean ± SD of triplicate measurements. (C) Relative mRNA levels of Plekhg5 were determined by qPCR in purified mouse Schwann cells (mSCs) and in the mouse SC line (MSC80). The data are represented as fold change over the mRNA levels in mSCs. The presented qPCR results were normalized using Ube2l3 as the reference gene.

Figure 4. Disruption of Plekhg5 function in mice leads to mild neuropathy. (A) Schematic diagram showing the targeted Plekhg5 allele (based on Ensembl transcript ENSMUST00000118648). Homologous recombination between two loxP sites (black arrowheads positioned between exons 10–11 and 17–18) led to the deletion of exons 11–17 which contain the complete Rho-GEF domain and a small portion of the pleckstrin homology (PH) domain. The deletion of exons 11–17 (816 nucleotides) does not disrupt the reading frame of the truncated mRNA. The position of the previously described missense mutation (12) is indicated as well as the positions of mutations identified in this study. RBD: Ras binding domain; PDZ: Pd95-Dlg1-Zo1 domain. (B) Electrophysiological characterization of 6- and 12-month-old wild-type (WT, Plekhg5^{+⁺;}⁺) and knockout (KO, Plekhg5^{Δex11-Δex17}Δex11-Δex17) animals revealed reduced motor nerve conduction velocity (MNCV) in affected mice (n = 4–5). (C) Both proximal CAP and distal CAP were delayed in affected animals. (D) Knockout mice exhibit deficits in rotarod performance test; however, the observed difference does not reach statistical significance. Error bars: SEM, statistically significant differences are indicated by * (P < 0.05).

MUPP1 or MPDZ; MIM 603785 (24,25), in particular through its PDZ-binding motif that is lost in families 221 and NP72. MUPP1 is one of the proteins involved in epithelial-like
its partners could contribute to some of the CMT phenotypes present in families 221 and NP72.

Finally, it was also previously shown that PLEKHG5 is able to activate the nuclear factor κB (NF-κB) signaling pathway (12). Activation of NF-κB signaling pathway was previously shown to play critical roles in both neurons/axons (29) and in SC biology (30). It is therefore possible that disturbed NF-κB signaling contributes to neuronal and/or glial phenotypes caused by mutations in PLEKHG5.

To conclude, our results reveal that in addition to severe LMNDs, PLEKHG5 mutations can also lead to intermediate CMT. While further data are needed, the above-mentioned observations indicate that PLEKHG5 is involved in both glial and neuronal function. Therefore, this gene should be considered in genetic diagnosis in families with clinical pictures compatible with CMT or LMNDs.

MATERIAL AND METHODS

Web resources

Online Mendelian Inheritance in Man (OMIM), http://www.omim.org/.

Genotyping and linkage analyses

After informed consent was given, blood samples from selected members of the Moroccan and the Portuguese families were obtained. Genomic DNA was extracted using standard procedures. To identify the disease locus in family 221, we perform a genome-wide mapping using 400 microsatellites, spaced 10 cM apart on all chromosomes (ABI-Prism linkage mapping set v2; Applied Biosystems). Several additional microsatellite markers were used to further delimitate the critical interval of segregation of the disease locus. Polymerase chain reaction (PCR) fragments were resolved on an ABI-3730 sequencer (Applied Biosystems) and genotypes were determined with GeneMapper-3.5 (Applied Biosystems). In family NP72, a genome-wide SNP genotyping was carried out using Illumina 660W-Quad microarrays (Illumina). Linkage analyses in family 221 were performed with ALLELE.RO 1.2c (31) and in addition we used Merlin 1.1.2 (13) for linkage in both families, with the following parameters: the disease was considered to be a fully penetrant autosomal-recessive trait, with a disease allele frequency of 0.001 in the population and equal
recombination fractions for male and female individuals. We assigned equal frequencies to the alleles observed in both families. For microsatellite markers, genetic distances were taken from the Marshfield Center (http://research.marshfieldclinic.org/genetics) according to the human genome map [available from National Center of Biological Investigation (http://www.ncbi.nlm.nih.gov), Ensembl (http://www.ensembl.org) and UCSC (http://genome.ucsc.edu)]. Homozygosity mapping for family NP72 was performed using HomozygosityMapper [http://www.homozygositymapper.org; (32)]. In order to combine both microsatellite and SNP markers to calculate a joined LOD score under Merlin software, we used the Rutgers Map V3 (GRCh37 patch 4: a third-generation combined linkage-physical map of the human genome) as well as DeCode Map and UniSTS data banks.

DNA sequencing

Primers were designed using Oligo6 (MBI; Molecular Biology Insights, Inc.) to amplify all coding exons of the candidate genes, including exon–intron boundaries. Both strands of the PCR products were subjected to Sanger sequencing with BigDye Terminator chemistry V3.1 (Applied Biosystems) on an ABI 3730 sequencer. Sequence chromatograms were analyzed using SeqScape software version 2.5 (Applied Biosystems).

Plekhg5^Ex11-Ex17/Ex11-Ex17 mice genotyping

Plekhg5^Ex11-Ex17/Ex11-Ex17 and control (Plekhg5^+/−) mice were genotyped by two separate PCRs amplifying the WT allele and the knockout allele. Primer combinations conKO2/ApaIRA were used for amplifying the WT allele and the knockout allele. Primer combinations conKO2/ApaIRA were used for amplifying the WT and null alleles, respectively. Primer sequences are available upon request.

Quantitative PCR

Total RNA was isolated from adult (2-months-old) wild-type mice dorsal root ganglia, brain, optic nerve and spinal cord, from sciatic nerves isolated at various developmental time points (E17-P56), from purified mouse SC and MSC80 cells as well as from sciatic nerves isolated at various developmental time points (E17-P56), from purified mouse SC and MSC80 cells as well as from sciatic nerves isolated at various developmental time points (E17-P56), from purified mouse SC and MSC80 cells. Total RNA was isolated from adult (2-months-old) wild-type WT and null alleles, respectively. Primer sequences are available upon request.

Rota-rod characterization of Plekhg5^Ex11-Ex17/Ex11-Ex17 mice

All animals were tested during the light phase of the light-dark cycle. At least eight control and eight Plekhg5^Ex11-Ex17/Ex11-Ex17 mice were tested three times at each time point. Mice were placed on a rod rotating at a speed of 5 rpm (Rotamex-5; Columbus Instruments). Then, the speed was increased by 0.5 rpm every 5 s. The speed at which mice fell off the rod was recorded for each trial.

Electrophysiological characterization of Plekhg5^Ex11-Ex17/Ex11-Ex17 mice

Electrophysiological characterization of 6- and 12-month-old control and Plekhg5^Ex11-Ex11-Ex17/Ex11-Ex17 mice was performed as previously described (34). All animals were anesthetized with a mixture of 10 ml/g ketanarkon (1 mg/ml; Streuli) and 0.1% Rompun (Bayer) in PBS. The left and right sciatic nerves were stimulated at the sciatic notch and distally at the ankle via bipolar electrodes with supramaximal square-wave pulses (5 V) of 0.05 ms and the latencies of the compound muscle action potentials were recorded.

Motoneuron analysis

Animals were deeply anesthetized with isoflurane and decapitated. The entire lumbar region of the spinal cord was dissected out and post-fixed in 4% PFA PBS (0.1 M, pH 7.4) solution overnight at 4°C. Tissues were cryoprotected by immersion for 48 h in a 20% sucrose PBS solution at 4°C. Tissues were embedded in O.C.T (VWR) on dry ice. We then performed experiment as previously described with few minor modifications (35). Serial sections (thickness: 16 μm) of the spinal cord were collected and motoneurons were stained with hematoxylin/eosin. Motoneurons (with a diameter over 25 μm; α-motoneurons) in the ventrolateral quarter of both sides were counted every fifth sections for a total of 20 sections per spinal cord.

Whole mount immunohistochemistry of soleus and EDL NMJs

Animals were deeply anesthetized with isoflurane and decapitated. The slow-twitch muscle soleus and the fast-twitch muscle EDL were collected on both sides, pinned on a Sylgard-coated dish, fixed 30 min in 4% PFA PBS solution and then incubated in a sucrose 20% PBS solution before OCT embedding. Fifteen micrometer sections were prepared and permeabilized 2 h in a 5% BSA 0.5% Triton PBS solution. Presynaptic component of the NMJ and SC morphology was revealed by S100 immunostainings (1:200; Dako) and α-neurofilament stainings (1:200 NF145; Millipore) overnight and followed by 2 h incubation with goat anti-rabbit Alexa 488 secondary antibody (1:200; Invitrogen). To label the post-synaptic endplates, tissues were then exposed to α-bungarotoxin CF594 (Biotium) for 1 h. To finish, muscles sections were washed with PBS and mounted in Mowiol (Calbiochem). Sections were imaged with a Zeiss Axiovision. Inverted or denervated endplates were counted on 15 μm Z-stacks with a ×20 magnification.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
ACKNOWLEDGEMENTS
The authors are grateful to Emeline Mundwiller (Institut du Cerveau et de la Moelle épi numérique, Genotyping and Sequencing facility) and the DNA and Cell bank of CRICM for technical assistance. We especially thank all individuals and family members who participated in this research.

Conflict of Interest statement. None declared.

FUNDING
This work was supported by the University of Lausanne, the Gebert Rüf Foundation GRS-046/09 (to C.R., R.C. and J.S.), the GUS-Rare Diseases Institute (to G.S.), the Association française contre les myopathies (AFM; to H.A.) and the Swiss National Science Foundation (grant 31003A_135735/1 to R.C., and grants 320030-121929 and 310030_138346 to C.R.).

REFERENCES