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ABSTRACT
Background  The WHO’s Research and Development 
Blueprint priority list designates emerging diseases with 
the potential to generate public health emergencies for 
which insufficient preventive solutions exist. The list aims 
to reduce the time to the availability of resources that 
can avert public health crises. The current SARS-CoV-2 
pandemic illustrates that an effective method of mitigating 
such crises is the pre-emptive prediction of outbreaks. 
This scoping review thus aimed to map and identify the 
evidence available to predict future outbreaks of the 
Blueprint diseases.
Methods  We conducted a scoping review of PubMed, 
Embase and Web of Science related to the evidence 
predicting future outbreaks of Ebola and Marburg virus, 
Zika virus, Lassa fever, Nipah and Henipaviral disease, Rift 
Valley fever, Crimean-Congo haemorrhagic fever, Severe 
acute respiratory syndrome, Middle East respiratory 
syndrome and Disease X. Prediction methods, outbreak 
features predicted and implementation of predictions were 
evaluated. We conducted a narrative and quantitative 
evidence synthesis to highlight prediction methods that 
could be further investigated for the prevention of Blueprint 
diseases and COVID-19 outbreaks.
Results  Out of 3959 articles identified, we included 58 
articles based on inclusion criteria. 5 major prediction 
methods emerged; the most frequent being spatio-
temporal risk maps predicting outbreak risk periods and 
locations through vector and climate data. Stochastic 
models were predominant. Rift Valley fever was the most 
predicted disease. Diseases with complex sociocultural 
factors such as Ebola were often predicted through 
multifactorial risk-based estimations. 10% of models were 
implemented by health authorities. No article predicted 
Disease X outbreaks.
Conclusions  Spatiotemporal models for diseases with 
strong climatic and vectorial components, as in River Valley 
fever prediction, may currently best reduce the time to 
the availability of resources. A wide literature gap exists 
in the prediction of zoonoses with complex sociocultural 
and ecological dynamics such as Ebola, COVID-19 and 
especially Disease X.

INTRODUCTION
In 2015, the member states of the WHO 
produced a Research and Development 
Blueprint list of priority diseases, diseases 

for which, ‘given their potential to cause a 
public health emergency and the absence of 
efficacious drugs and/or vaccines, there is 
an urgent need for accelerated research and 

Key questions

What is already known?
►► The Blueprint list denotes diseases with the potential 
to cause severe public health emergencies for which 
there is an urgent need for accelerated research and 
development.

►► Outbreak prediction has previously been applied 
with success to diseases such as Rift Valley fever 
and influenza, for prevention and the pre-emptive 
implementation of health measures.

►► A systematic review of the outbreak prediction 
methods of the Blueprint diseases does not exist.

What are the new findings?
►► Explicit predictions of timing and locations of future 
outbreaks are most often carried out for diseases 
with strong climatic components such as Rift Valley 
fever.

►► The current literature in outbreak prediction of 
Blueprint diseases can be categorised into five do-
mains: spatiotemporal modelling and risk mapping, 
time series forecasting and regression analysis, 
internet-based computing and phone-based predic-
tions, narrative and qualitative models, and quanti-
tative probabilistic models.

►► No articles in this review predicted an outbreak of 
a novel Disease X in 2019, including coronaviruses.

What do the new findings imply?
►► Prediction models of diseases with strong climatic 
components such as for Rift Valley fever may cur-
rently be most appropriate for policymakers in mak-
ing explicit prediction statements.

►► Predictions based on outbreak receptivity and 
risk maps for diseases such as Ebola, Lassa and 
Crimean-Congo haemorrhagic fever identify out-
break risk factors targetable by policymakers.

►► A pressing need exists for research investment 
in outbreak prediction of Blueprint zoonoses and 
especially unknown future pathogens such as 
Disease X in order to tackle new pathogens such as 
SARS-CoV-2.

 on S
eptem

ber 16, 2021 by guest. P
rotected by copyright.

http://gh.bm
j.com

/
B

M
J G

lob H
ealth: first published as 10.1136/bm

jgh-2021-006623 on 16 S
eptem

ber 2021. D
ow

nloaded from
 

http://gh.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjgh-2021-006623&domain=pdf&date_stamp=2021-09-16
http://dx.doi.org/10.1136/bmjgh-2021-006623
http://dx.doi.org/10.1136/bmjgh-2021-006623
http://gh.bmj.com/


2 Jonkmans N, et al. BMJ Global Health 2021;6:e006623. doi:10.1136/bmjgh-2021-006623

BMJ Global Health

development’.1 The list, updated in 2018, includes eight 
emerging pathogens (box  1). These diseases are RNA 
viruses with moderate to severe case fatality rates and the 
potential for outbreaks of severe economic and health 
consequences.2–8 The BP diseases are zoonotic patho-
gens, which constitute about 60% of emerging infections 
in humans.9 Emerging infectious disease outbreaks are 
incited by an acceleration of urban development, socio-
economic disparities and an encroachment of the natural 
reservoir, and the number of such outbreaks is predicted 
to increase.10

While the Blueprint (BP) list ‘does not aim to predict 
the next epidemic’,11 its aim is to further the ability 
‘to reduce the time lag between the identification of a 
nascent outbreak and approval of the most advanced 
products that can be used to save lives and stop larger 
crises’.1 The most effective method to reduce the time 

lag between an outbreak and implementation of public 
health measures may be to anticipate future outbreaks. 
Analysis of viral outbreaks is complex, frequently relying 
on a mixture of ground-level epidemiological data, 
advanced mathematical and statistical analysis and the 
inherent stochasticity of disease processes.12 While 
the complexity and randomness in epidemics render 
prediction challenging, the inherent entropy barrier to 
prediction is ‘beyond the timescale of single outbreaks, 
implying [outbreak] prediction is likely to succeed’.13 
Furthermore, challenges intrinsic to outbreak predic-
tion should not discourage us from attempting to pre-
empt outbreaks. Preventative efforts would involve public 
health measures such as vaccination, pesticide use and 
awareness sensitisation.14 COVID-19, similar in certain 
respects to Middle East respiratory syndrome (MERS) and 
Severe acute respiratory syndrome (SARS), has brought 
with it the consequences of a severe global pandemic and 
demonstrates the need for establishing a research and 
development pipeline to predict the next Disease X.15 16 
As the BP diseases lack a dedicated research pipeline, we 
are ill-equipped to deal with outbreaks of these priority 
pathogens.17 The COVID-19 pandemic underlines that 
pre-emptive implementation of preventive public health 
measures in areas at risk of future outbreak is of social, 
health and economic importance. Influenza also demon-
strates this point with a successful history of surveillance, 
forecasting and epidemic modelling enabling prediction 
of future epidemics, which has guided pre-emptive vacci-
nation efforts and other preparedness measures.18 19

We therefore undertook a scoping review to identify 
and characterise studies attempting to predict future 
outbreaks of the BP diseases. A scoping review was 
selected as the preferred method, as it enables a broader 
search strategy and research question, which is useful in 
an ill-defined field of research.20 Furthermore, it allows 
integration of new findings and research developments 
during the review process. A frequent goal of scoping 
reviews is also to map the existing literature, without 
drawing far-reaching conclusions. Our objective was 
thus twofold. First, to map the literature concerning 
outbreak prediction: what aspects of future outbreaks 
were predicted and what methods and data sources were 
used to make these predictions. Second, we attempted to 
synthesise the data in a manner that would be useful for 
policymakers, in order to inform and highlight predic-
tion methods that may warrant future exploration and 
implementation.

Aims and research question
The aim of this scoping review was to evaluate and 
map the scientific literature and identify research gaps 
concerning outbreak prediction methods of the BP 
diseases. The question this scoping review will attempt 
to answer is: what methodologies, model types and data 
are used to predict future outbreaks? Furthermore, what 
scholarly consensus exists on predictive models for future 
outbreaks and how can these be leveraged by current 

Box 1  2018 WHO Blueprint list of priority diseases

➢Ebola virus disease: the Ebola virus outbreak in West Africa in 
2014–2016 primarily affected Sierra Leone, Guinea and Liberia. 
This outbreak caused 28 639 deaths, a loss of 2.2 billion dollars, 
a substantial loss in private and public sector growth, agriculture 
production, food security concerns and restrictions of movement, 
goods and services.70 71

➢Zika virus disease: Zika virus has infected millions in the 
Americas since 2014 and has caused an increase in medical sequelae 
in some populations (congenital disease, Guillain-Barré) as well as 
socioeconomic disparities.72 73

➢River Valley fever (RVF): RVF outbreaks in South and Eastern 
Africa impacted the economy and public health of multiple countries, 
leaving behind long-term societal consequences.74

➢Lassa fever: Lassa fever, a severe haemorrhagic fever 
transmitted through rats, is estimated to infect millions in West 
Africa each year, with 20% of those patients experiencing severe 
multisystemic disease.75

➢Nipah and henipaviral disease: Nipah virus, discovered in 1998, 
is isolated to Malaysia, Singapore, Bangladesh and India. However, 
Nipah continues to pose a significant threat as a bat-based zoonosis 
with yearly spillover events, significant morbidity and case fatality 
rates of up to 100%.76

➢Crimean-Congo haemorrhagic fever: CCHF, a widely distributed 
tick-borne zoonosis, infects domestic and wild vertebrates as hosts, 
resulting in severe human disease and high mortality, and poses a 
continued threat to central Africa, South-Western Russia and central 
Asia.77

➢Severe acute respiratory syndrome (SARS) due to SARS-
CoV-1: a coronavirus causing SARS emerged in 2003 and rapidly 
spread from Southeast Asia to Canada. SARS causes severe atypical 
pneumonia, leading to high morbidity, mortality and major economic 
consequences.78

➢Middle East respiratory syndrome (MERS): another coronavirus, 
MERS-CoV, emerged in the Arabian Peninsula in 2012 and has been 
found in Europe, North America and Asian countries with a mortality of 
about 30%.79

➢Disease X: disease X is a term used to ‘enable cross-
cutting R&D preparedness that is relevant for currently unknown 
diseases’.11 Disease X was included to stimulate research into 
emerging pathogens, before their formal discovery.
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health actors in pre-empting BP diseases, including 
COVID-19?

METHODS
The Preferred Reporting Items for Systematic reviews 
and Meta-Analyses extension for Scoping Reviews (PRIS-
MA-ScR) checklist for scoping reviews was adopted.21 A 
scoping review is a form of ‘knowledge synthesis, [that] 
follow[s] a systematic approach to map evidence on 
a topic and identify main concepts, theories, sources, 
and knowledge gaps’.21 The main author developed the 
scoping review protocol, the eligibility criteria and the 
summative data extraction tables.

Literature search strategy
The search strategy was developed by the main author 
with the help of research staff at the Lausanne Univer-
sity Hospital Library in Switzerland and included a broad 
range of terms related to outbreak prediction and the 
blueprint diseases through a combination of free text and 
Medical Subject Headings (MeSH) terms. The search 
terms were designed to identify literature that related the 
prediction of future outbreaks to the blueprint diseases 
while minimising the identification of literature related 
to the modelling of current epidemics. Prediction as we 
define is the attempt to foresee outbreaks of a disease 
in a location or timeframe in the future during a non-
epidemic epidemiological situation. Disease-related 
search terms were also identified using MeSH terms and 
their catalogued synonyms from the National Library of 
Medicine database.22 Disease, forecasting and predic-
tion related search terms were then combined and run 
in advanced search settings in the respective databases. 
The full search strategy is detailed in the supplementary 
material.

Databases
Three databases were used to identify relevant literature: 
PubMed, Web of Science and Embase. Grey literature 
was not searched. No hand searching was performed. No 
date limit was applied. Articles were searched up to and 
including the 4 July 2019. This temporal limitation was 
applied as we sought to focus on the state of research 
imminently preceding COVID-19 and to exclude COVID-
19’s influence on outbreak modelling of the Blueprint 
diseases.

Screening, study selection, and inclusion and exclusion 
criteria
Relevant literature identified through our search strategy 
was extracted from the aformentioned databases, then 
transferred to EndNote X9 (Clarivate Analytics) for 
deduplication. Following deduplication, preliminary 
article selection was carried out through a modified two-
reviewer screening system using Rayyan, an online-based 
literature screening platform. The main author screened 
titles and abstracts of all articles identified according 
to the eligibility criteria below and labelled articles as 

‘included’, ‘excluded’ or ‘maybe’. During screening, full-
text articles were occasionally retrieved and reviewed if 
the title or abstract did not provide enough information 
to decide whether it ought to be included or excluded. A 
second researcher aided with reviewing articles labelled 
as ‘included’ and ‘maybe’ and provided expertise in 
the analysis of statistical/mathematical models. Where 
conflict between article selection existed, both reviewers 
debated the articles according to inclusion/exclusion 
criteria until consensus was reached.

Inclusion criteria
The review considered any studies predicting or fore-
casting future outbreaks through prediction of outbreak 
timing and/or location, outbreak risk maps, qualitative 
or quantitative outbreak risk, other risk assessments and 
other future epidemiological outbreak phenomena. 
Prediction in the chosen articles was defined either as an 
explicit statement by the authors stating ‘we believe at X 
time and/or Y location in the future, an outbreak of Z 
disease will occur’ or models containing either a quanti-
tative (eg, percentage likelihood and numerical scale) or 
qualitative (eg, highly likely vs unlikely) risk of outbreak 
during a timeframe and/or location in the future. We 
required studies to denote some form of outbreak predic-
tion in the abstract and title. We also included studies 
that predicted a future outbreak without mentioning a 
specific date/size of the outbreak/phenomena. We did 
not set a threshold degree of certainty for the predic-
tions included. The review considered original quanti-
tative and qualitative studies. There were no restrictions 
with regard to geographic location, population or study 
design.

Exclusion criteria
Articles that were excluded contained one or more of the 
following criteria:

►► Reviews, editorials, viewpoints and letters, duplicate 
studies and literature with a strong veterinarian focus 
not linked to public health.

►► Studies solely modelling current outbreaks of Blue-
print diseases at the time of publishing, without 
predicting future phenomena.

►► Studies solely predicting outbreak risk factors.
►► In vivo and in vitro basic science models (eg, vaccine 

trials and animal models).
►► Purely descriptive epidemiological and ecological 

publications (eg, serological studies and risk factors) 
without prediction of future epidemiological changes.

►► Models that only examined causality of Blueprint 
diseases, rather than estimating risk or burden.

►► Languages other than English, Spanish, French or 
German.

►► Portable Document Format (PDF) not accessible.

Data extraction, synthesis and abstraction
After initial screening and study selection using Rayyan, 
the selected list of articles (n=123) was transferred to 
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Papers for literature management, full-text retrieval and 
data extraction. A primary readthrough of articles was 
conducted, and data were extracted into a descriptive 
summative table synthesising study information (online 
supplemental material 1). Study information included 
purpose of study, prediction method and key findings 
answering to scoping question, among other variables 
(online supplemental material 1). During this full-text 
analysis, a further 65 articles were removed according to 
the exclusion criteria. The final list consisted of 58 arti-
cles (figure 1). A second round of article readthroughs 
was then undertaken in order to synthesise and cate-
gorise data quantitatively into a numeric table (online 
supplemental material 1). Definitions of the various vari-
ables extracted and the complete quantitative and narra-
tive analyses for each article are presented in the supple-
mentary material.

A summative table was created highlighting the prin-
cipal findings (table 1).

RESULTS
The database search identified 7042 articles. A total 
of 3083 articles were excluded as duplicate studies. 
Titles and abstracts of the remaining 3959 articles 
were screened for inclusion. One hundred and twenty-
three abstracts met the inclusion criteria. Sixty-five 
articles were further excluded on full-text analysis. In 
total, 58 articles were retained (figure 1).

Most publications concerned RVF (36%), Zika (22%) 
and CCHF (14%). No publications were produced on 

Disease X. Ninety-six per cent of articles were published 
between 2000 and 2019. The most studied region was 
the African continent (48%). Outbreak prediction 
and forecasting strategies were mapped into five cate-
gories (table 2): (1) spatiotemporal modelling (43%) 
and risk mapping (45%), (2) time series forecasting 
(40%) and regression analysis (36%), (3) internet-
based computing and phone-based systems (10%), (4) 
qualitative models (12%) and (5) other quantitative 
models (16%). Certain articles fell into multiple cate-
gories when prediction strategies were combined. Most 
model types were stochastic (60%) in nature. The most 
common data types used in predictions were case count 
(81%), climate/meteorological (67%), vector (53%) 
and sociodemographic data (41%). Future outbreaks 
were most commonly predicted by evaluating outbreak 
risk (62%), spatial (76%) and/or temporal predictions 
(67%). Future case numbers were predicted in 36% of 
studies, and 64% of articles concomitantly evaluated 
outbreak risk factors. A significant portion of articles 
studied environmental suitability to future outbreaks 
(34%). Of note, few articles evaluated climate change 
effects on outbreaks (5%). A synthetic table of the 
outbreak prediction and forecasting methods high-
lights our principal findings (table 1).

Spatiotemporal modelling and risk mapping
The most common outbreak prediction methods 
were risk mapping (45%) and spatiotemporal model-
ling (43%). Most often, disease–environmental rela-
tionships predicted future outbreak location through 
climatic colayers and vector–host data.23 Many arti-
cles (n=16) applied machine learning algorithms 
(maximum entropy and boosted regression trees) 
integrating climatic, socioeconomic, ecological and 
transportation data into niche models.24 Qualitative 
models such as analytical hierarchy process were also 
applied synthesising scientific literature to create RVF 
risk maps.25 Overall, aspects frequently predicted were 
outbreak timing and location, environmental transmis-
sion risk/susceptibility, outbreak hotspots, predicta-
bility of outbreaks, future outbreak risk and risk factors. 
Data types most often integrated were outbreak and case 
count, climatic, ecological and vector/host data. Risk 
mapping was frequently used for diseases such as RVF 
and Zika. Models of this domain were often proposed 
or even implemented as early warning systems based on 
climatic anomaly surveillance.

Statistical analysis: time series and regression models
Statistical analysis in prediction and forecasting most 
often used time series (40%) and regression analysis 
(36%). Most often, models input past case count and 
risk factors and output a numeric value representing 
prospective case count. Analytical tools such as ARIMA, 
Generalized Additive Mixed and Markov switching 
models were used in predictions relating seasonality 
to incidence. For example, one approach coupled 12 

Figure 1  PRISMA flow diagram of search strategy. 
PRISMA, Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses.
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Table 1  Principal findings of outbreak prediction articles, by disease

All diseases
Rift Valley 
fever

Zika 
disease CCHF

Ebola and 
Marburg 
disease

Lassa 
fever MERS

Nipah 
and 
Henipa 
virus SARS

Number of articles (%) 58 (100) 21 (36) 13 (22) 8 (14) 6 (10) 5 (9) 4 (7) 2 (3) 2 (3)

Date range

 � 2010–2019 47 (81) 15 13 6 5 4 4 2

 � 2000–2009 9 (16) 4 2 1 1 2

 � 1990–1999 2 (3) 2

Region of study

 � African continent 28 (48) 18 1 6 5

 � Asia-Pacific 4 (7) 3 1

 � Europe 3 (5) 1 1 1 1

 � Middle East 9 (16) 2 6 1

 � North America 2 (3) 1 1

 � Latin America and 
Caribbean*

5 (9) 5

 � Global 8 (14) 1 3 2 2

Prediction methodology

 � Risk mapping 26 (45) 14 6 1 3 2 1 1

 � Regression model 21 (36) 7 5 4 3 1 1

 � Time series 
forecasting

23 (40) 9 5 4 2 1 2

 � Qualitative 7 (12) 4 2 2 1 1

 � Other quantitative 9 (16) 1 2 1 1 2 1 1 2

 � Species niche model 15 (26) 3 4 1 5 3 1

 � Machine learning 16 (28) 3 6 2 2 2 1

 � Spatiotemporal 
model

25 (43) 13 4 4 2 2

 � Internet/phone/
computer†

6 (10) 5 1

 � Early warning 
system**

17 (29) 7 5 3 1 1

 � Incidence modelling 11 (19) 5 5 1

Model type

 � Deterministic 6 (10) 2 1 1 1 1

 � Stochastic 35 (60) 11 9 6 3 3 2 1

 � Mixed 6 (10) 1 1 1 2 1 2

 � Not applicable/not 
stated

11 (19) 7 2 1 1 1

Data sources

 � Case data 47 (81) 12 12 7 6 5 3 2 2

 � Other patient health 
data

13 (22)

 � Meteorological/
climate

39 (67) 19 7 5 4 3 1

 � Vector/host 31 (53) 13 7 4 5 3 1

 � Sociodemographic 24 (41) 7 7 3 3 2 2 1 1

 � Behaviour (way of 
infection)

8 (14) 2 1 1 1 2 1

Continued
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years of dengue census data as Zika case surrogate 
data onto climate and demographic colayers in order 
to estimate future Zika incidence.26 CCHF and Zika 
predictions often applied the aforementioned method-
ologies. Time series of climatic risk factors, coupled to 

incidence, were also used to forecast future outbreak 
location and timing, case count and epidemic dynamics. 
For example, a distributed lag non-linear model was 
used to associate meteorological factors to outbreaks 
and predict outbreaks with a time lag of 20 weeks.27

All diseases
Rift Valley 
fever

Zika 
disease CCHF

Ebola and 
Marburg 
disease

Lassa 
fever MERS

Nipah 
and 
Henipa 
virus SARS

 � Healthcare 5 (9) 1 2 1 1 1 1

 � Transportation 12 (21) 2 4 1 2 2 1 2

 � Internet† 7 (12) 1 5 1

 � Geographical 32 (55) 15 13 6 5 4 4 2

 � Economic 9 (16) 2 4 1 1 2 1

 � Ecological 18 (31) 9 3 2 4 2

 � Expert opinion 5 (9) 4 1 1

 � Other‡ 6 (10) 1 1 1 3 2

Prediction outcome

 � Future cases 21 (36) 1 9 5 1 3 2

 � Outbreak risk factors 37 (64) 19 4 7 6 3 1

 � Immunity 
parameters§

7 (12) 2 1 1 1 2

 � Risk maps 29 (50) 4 2 1 1 2

 � Spatial prediction 44 (76) 19 10 5 4 4 1 1 2

 � Temporal prediction 39 (67) 15 7 6 4 2 3 1 1

 � Outbreak risk 36 (62) 14 9 3 5 3 2 2 1

 � Spillover events 6 (10) 2 2 3 2

 � Bio-Env-Econ 
consequences¶

4 (7) 3 1 1

 � Env transmission 
suitability

20 (34) 10 4 2 4 2 1

 � Population at risk 8 (14) 3 2 2 3

 � Introduction risk 5 (9) 1 2 2 1 1 1

 � Effect of climate 
change

3 (5) 2

 � Epidemic dynamics 17 (29) 3 4 4 2 1 2 1

Implementation of prediction/methods by decision makers

 � Yes 6 (10) 4 1 1

 � Suggested 30 (52) 10 4 6 4 4 3 1 1

 � No 22 (38) 7 8 2 1 1 1 1 1

Predictions validated against future outbreak data

 � Yes 24 (41) 10 3 4 3 1 1 2

 � No 34 (59) 11 10 4 3 4 4 1

For detailed definitions, see online supplementary material.
*Includes South and Middle America.
†Internet and phone-based system/app/computer programme.
‡Non-categorisable data types.
§Reproduction number (R value).
¶Biological, environmental or economic consequences.
**Or proposed Early Warning System.
CCHF, Crimean-Congo haemorrhagic fever; MERS, Middle East respiratory syndrome; SARS, severe acute respiratory syndrome.

Table 1  Continued
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Quantitative outbreak models
Quantitative risk models (16%) were conducted through 
a variety of methodologies. A probabilistic model based 
on worldwide incidence, transportation data, probability 
of arrival of infected travellers and entomological field 
data was used to estimate future outbreak likelihood in 
a large European city.28 A SARS metapopulation model 
assessed worldwide transportation networks to establish a 
global, between-country quantitative outbreak likelihood 
scale.29 Another SARS study coupled transportation data 
onto a Susceptible-Exposed-Infectious-Recovered (SEIR) 
framework to estimate future incidence.30 A Zika model 
applied an ecological study design, using socioeconomic 
data as a surrogate for unprotected sex, to establish loca-
tions of future outbreaks should a Zika introduction 
event occur.31 Quantitative aspects that were predicted 
included risk of outbreak, total population at risk of 
disease and projected epidemic size.

Qualitative outbreak models
A few articles evaluated future disease outbreaks through 
various qualitative model types (12%). One article 
employed a qualitative risk assessment using Delphi tech-
nique to elicit expert opinion as to the EU outbreak risk 
of CCHF and RVF.32 A study in Saudi Arabia analysed 
serological data to assume immunity level, exposure 
risk and descriptively infer RVF outbreak risk.33 Another 
article used field epidemiological methods (carcass 
detection) to set up an ‘Outbreak Alarm Network’ to 
warn of impending outbreaks. Specifically, Ebola posi-
tivity of simian carcasses was communicated to local 
health centres, predicting outbreaks and improving 
preparedness.34 Another article evaluated binary Lassa 
fever risk to populations through a machine learning 
model by weighing different predictor variables.35 In 
this category, a frequent data type employed was expert 
opinion. Furthermore, ground level epidemiological 
data (carcasses and host immunity) was also used to 
understand the environmental susceptibility to outbreaks 
and thus estimate future outbreak risk.

Computing and internet systems
A relatively small number of articles (10%) proposed 
computer or phone-based internet systems designed to 
alert application users to new outbreaks and signal health 
authorities to case build-ups pre outbreak. All models 
were applied to Zika disease except one, which was 
applied to MERS. Data integrated into phone applica-
tions consisted of user autoreported personal health data 
(eg, symptoms), patient data from health institutions 
and internet-based geopositional information (eg, loca-
tion of nearby mosquito breeding sites, infected persons 
or risk factors).36 The system would then communicate 
directly to the user/patient and the healthcare actors the 
outbreak risks or the patient’s own likely infection status. 
Other early warning systems used Google trend search 
term time series as surrogates for epidemiological data 
and coupled this to hospital and public health records in 
order to predict outbreak location and time.37 App-based 
models were based on theoretical exercises and synthetic 
data, while Google trend studies mostly used real data. 
Aspects predicted often included infected user location 
and movement in real time, and case numbers.

Prediction validation and implementation
Forty-one per cent of articles validated their predictions 
against real data. Seventy-four per cent of articles cited 
challenges or limitations to their studies. Only 10% of 
prediction methods or forecasts were implemented in 
real public health or outbreak settings by decision makers 
or policymakers.

DISCUSSION
This scoping review aimed to map the available evidence 
concerning the prediction of future outbreaks of the 
Blueprint diseases. The most frequent prediction 
method identified was spatiotemporal modelling and 
risk mapping. Furthermore, most models predicted 
spatial or temporal aspects of future outbreaks. Most 
frequently, outbreak risk in a specific time or location was 

Table 2  Main outbreak prediction model themes

References

Spatiotemporal modelling: analysis of data collected over space and over time.80

Risk mapping: a visual representation of risk variation of particular disease processes over a set of spatial 
units.

23–27 29 31 38 42–49 51–57 61 81–94

Regression analysis: the effect of one or several explanatory variables (eg, exposures, subject 
characteristics, risk factors) on a response variable such as mortality or cancer.95

Time series analysis: an analysis on the basis of the fact that ‘data points taken over time may have an 
internal structure (autocorrelation, trend or seasonal variation) that should be accounted for’.96Prediction 
of future events by analysing the trends of the past, on the assumption that future trends will hold similar 
to historical trends.97

25–27 31 42–46 48 49 54 57–61 64 65 84 86–89 91–94 98–101

Other probabilistic/quantitative models: modelling relationships between parameters through equations 
and/or numerical data.

28–30 35 45 50 51 62 90

Computing and internet systems: models using computing systems (phone, computer-based) coupled to 
retrieval of internet data.

36 37 56 59 64 65

Other qualitative outbreak prediction: models using descriptive, non-quantitative methods (eg, expert 
opinion) to infer relationships and/or causality between two parameters.

32–34 42 50 51 54 81 91
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predicted, qualitatively or quantitatively. While multiple 
models predicted future outbreak locations (eg, ‘a RVF 
outbreak is predicted in central Sudan’) and expected 
case numbers (eg, ‘12.3 million Zika cases could be 
expected’) with relatively high granularity, few articles 
besides RVF studies made temporally precise predictions 
(eg, ‘we predict an outbreak from June to July of 2021’).26 
Specifically in the case of RVF models, habitat flooding 
and vector niche colayers enabled precise spatiotem-
poral predictions of outbreaks with time lags months in 
advance.38

RVF and Zika were the most studied diseases, presum-
ably in part due to their strong reliance on a set of predict-
able and measurable climatic and vector/host factors.39 
Zika’s recent multicontinental impact may have led to its 
elevated level of research.40 Comparatively fewer articles 
concerning Ebola were published on outbreak predic-
tion. However, during screening a significant number of 
articles were excluded, which modelled current Ebola 
epidemics.

Spatiotemporal modelling and climatic predictions
Risk mapping was the most widely used method of 
predicting and forecasting future outbreaks. Many RVF 
studies used the well-studied relationship between El 
Niño/Southern Oscillation (ENSO) phenomena, rainfall 
and cyclical patterns of outbreaks.39 ENSO phenomena 
refers to the coupling of increased sea surface temper-
ature (SST) and specific wind and rain patterns in the 
central and eastern tropical Pacific.41 In East Africa, 
ENSO results in above average rainfall, in turn flooding 
dambos of the RVF host Aedes mosquito needed for RVF 
outbreaks. SST and satellite-measured vegetation index 
(normalised difference vegetation index) are then used 
as surrogate variables to monitor RVF outbreak condi-
tions.42 Many articles were able to make predictions based 
on this relationship together with historical outbreak and 
entomological niche data. This enabled the production 
of within-country, region-specific risk maps predicting 
outbreaks in East Africa. These maps guided the imple-
mentation of public health measures 2–4 months in 
advance of outbreaks.38 Furthermore, climate-based RVF 
risk maps were either incorporated into or proposed as 
early warning systems.38 43–45 For example, the US armed 
forces established a multidisciplinary early warning 
system that reduced the economic and health conse-
quences of the 2006–2007 Eastern African RVF outbreak, 
compared with the 1997 RVF outbreak.46 We produced a 
case study illustrating the general RVF prediction meth-
odology (figure 2).

Complex risk mapping for the Blueprint diseases
Risk maps were also used to predict diseases with more 
complex and/or poorly understood outbreak risk factors 
such as Ebola and Marburg disease, Lassa and CCHF.24 47–49 
A multistage outbreak assessment of Ebola integrated 
broad data types such as epidemiological, vector, expert 
opinion, demographic, transportation and geopolitical 

data.50 Pandemic potential from the community to 
international level could thus be assessed. Outbreak risk 
was further divided into index case potential, outbreak 
potential and epidemic potential. This multilayered 
analysis produced an outbreak receptivity risk map for 
the entire African continent up to the subregional level, 
permitting a thorough understanding of the potential of 
various factors on future outbreak likelihood.50 This type 
of analysis may be useful in providing actionable infor-
mation on very precise environments for policymakers. 
Predictions were also made for less well-studied diseases 
such as Nipah. Previous models had been limited by a 
paucity of spatial information.51 While an article used 
spatial occurrence data from Bangladesh to overcome 
this issue, limited application of human culture and 
ecological variables reduced aetiological understanding 
of this zoonosis.51 Other risk maps integrated socioeco-
nomic, infrastructural and economic data, identifying 
societal risk factors and vulnerabilities that could theo-
retically be addressed pre-emptively by public health 
actors. Taylor et al.52 identified social vulnerabilities (eg, 
income, disease knowledge and phone access) to RVF 
in East African communities, enabling the production 
of vulnerability maps. However, in such studies, high 
model uncertainty remained regarding the integration 
of social vulnerability parameters in predictions. Lastly, 
models often mixed stochastic and deterministic models 
and frequently used machine learning. Models such as 
random forest algorithms or back propagation neural 

Figure 2  Example case study of Rift Valley fever (RVF) 
outbreak prediction. Illustration adapted from prediction 
strategies devised by Anyamba et al43 : (1) advanced very 
high resolution radiometers (AVHRR) on satellites measure 
observations of various global to subregional variables; (2) 
outgoing longwave radiation (OLR), sea surface temperature 
(SST), normalised difference vegetation index (NDVI) and 
rainfall together with coordinates of previous outbreaks are 
integrated into outbreak risk maps; (3) risk map predictions 
are associated to persistent anomalies in NDVI over specific 
locations, for example, predicting RVF outbreaks during 
future time periods and enabling warnings with time lags 
weeks to months ahead. Warnings are transmitted as part of 
an early warning system to different agencies (4), which lead 
pre-emptive measures: information to private citizens and 
health personnel, vaccination drives, awareness campaigns 
and vector control through pesticides.
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networks were employed due to their ability to engage 
highly complex data sets.23 53–56 For example, a gradient 
tree boosting model integrated transportation, economic, 
demographic, ecological, case and vector data to create a 
Zika risk map estimating precise outbreak probability in 
the Asia Pacific region between 2016 and 2017.57

Regression analysis and time series forecasts for CCHF and 
Lassa fever
The most used statistical outbreak prediction methods 
were regression analysis and time series forecasts, often 
predicting future case count. A time-trend model 
enabled the prediction of Lassa fever cases, a disease with 
a paucity of information, 5 years in advance.48 Solar radia-
tion analyses permitted RVF outbreak predictions 5 years 
in advance.58 Time series predictions employed internet 
analysis (Google trend) in spatially defined regions as 
surrogate case data,59 or directly obtained case data from 
governmental health institutions.60 In the case of CCHF, 
case count may be the most readily accessible and reli-
able data as model input and may explain the application 
of time series analysis. However, a more layered approach 
for predicting spatially defined incidence and outbreaks 
is coupling occurrence time series to risk factors. The 
first prospective CCHF case prediction tool employed 
machine learning, 50 spatiotemporal covariates and 14 
years of occurrence data, thus facilitating prediction of 
resources needed (vaccines, ventilators and Intensive 
Care Unit beds) and enabling preparedness (pesticides 
and reducing livestock import).61

Quantitative and probabilistic SARS and Nipah virus 
predictions
Certain quantitative models enabled multilayered prob-
abilistic approaches to prediction. A mechanistic risk 
assessment framework gauged Nipah risk and predicted 
it to be hundreds of years before the introduction of 
Nipah into the European Union.62 This prediction was 
based on socioeconomic and ecological zoonotic drivers 
including human travel, trade, live animal movements 
and illegal bushmeat importation. While the model 
offered lower spatiotemporal granularity than weather-
based risk mapping, such articles enable an analysis of 
contemporary causes frequently cited as driving zoonotic 
surges (eg, bushmeat trade).63 Throughout the review, 
sociopolitical factors such as political instability and 
social vulnerability were sparsely integrated into models. 
A single model integrated political instability, conflict 
and outbreak receptivity.50 Transportation was another 
important data source in prediction. A probabilistic 
SEIR SARS model evaluated the qualitative and quan-
titative global risk for spread and predicted infection 
cases through global transportation networks.30 Case and 
transportation data enabled authors to predict infected 
countries on an almost one-to-one basis compared with 
future case data, and vaccination threshold on epidemic 
spreading.30

Internet-based predictions of Zika and MERS
Internet-based systems represented a small yet promising 
domain of outbreak prediction. Analysed studies exclu-
sively researched Zika and MERS. Methods included 
early warning systems integrating cloud computing and 
phone application-based risk mapping.36 37 56 Other 
models used Google search term forecasting.59 64 65 Cloud 
computing systems used machine learning to integrate 
demographic, user and geolocalised internet data to 
establish a real-time predictive infection and outbreak 
mapping system. This enabled individualised, context-
specific, real-time feedback to application users warning 
them of imminent outbreak risks such as nearby infected 
users.56 Further forecasting systems coupled Google 
trend search queries to real-time epidemiological data to 
enable adequate predictions of outbreak and epidemic 
onset. Google trend predictions were also easily verifi-
able through outbreak data weeks later. However, Google 
search methodology was often limited by its dependence 
on only two variables, case count and Google trends.64 
Phone and computer systems were limited by their proof 
of concept status, as they used synthetic data sets.

Narrative and qualitative outbreak prediction
Lastly, qualitative prediction models used a wide breadth 
of methodologies. An article predicted RVF outbreak 
dynamics (onset, plateau and seasonality) by assessing 
regional outbreak susceptibility through livestock sero-
positivity and host immunity. Coupled with local climatic 
and agricultural data, the authors produced a narrative 
assessment and prediction of a future RVF outbreak in 
Saudi Arabia, should an introduction event occur.33 
Another qualitative model established a surveillance 
network monitoring animal mortality to detect animal 
Ebola outbreaks and thus predict and prevent human 
outbreaks.34 Specifically, local hunters and epidemiolo-
gists identified Ebola positive gorilla and simian carcasses 
and referred their observations to local healthcare 
actors. On two occasions, this network was able to warn 
the authorities in the Republic of Congo and Gabon of 
an imminent risk for human outbreaks.34 Other authors 
evaluated the RVF-related knowledge level of locals at risk 
of RVF contact, cattle farmers, to inform model risk maps 
and in return produce tailored awareness programmes 
for such persons.45

Stochasticity and determinism in predictions
60% of models reviewed were stochastic in nature. Stochas-
ticity allows for uncertainty in modelling while respecting 
the inherent randomness of inferred underlying disease 
processes. For example, in stochastic models, it is possible 
for outbreaks to die out even if R  >1, which is not the 
case in deterministic modelling.66 However, stochastic 
processes may not always be ideal for future predictions, 
as the underlying disease processes may change in future 
environments. In contrast, deterministic models tend 
to remain accurate in future environments, as changes 
to host–pathogen dynamics or disease processes are 
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more easily adapted into the model. Regardless, deter-
ministic models pose a significant challenge in terms of 
complexity, especially for diseases studied herein that 
lack a well-established body of literature. This, and the 
relative simplicity of stochastic models, may explain part 
of the reliance on stochastic models.

Convergence and divergence in data sources
In general, data tended to diverge rather than converge 
on common sources. Foremost, and inherent to the 
research question, we compared 58 prediction models 
across nine different diseases on a global scale over a 
timeperiod of 20 years. Different diseases and different 
analysed environments resulted in diverging data 
sources. Second, heterogeneous study methods yielded 
different requirements in terms of data needed. Third, 
models often integrated authors’ own assumptions. 
Lastly, multiple data sources were literature based and 
these sources have varied and changed over the 20-year 
time period studied. Convergence in data sources, when 
seen, was most often for climate data through the use of 
NASA and National Oceanic and Atmospheric Adminis-
tration satellites or climate databases such as WorldClim. 
The listed data sources by disease can be found in online 
supplemental material.

Avenues in SARS-CoV-2 outbreak prediction
When taking our results into consideration, this review 
delineates a variety of avenues worthy of exploration in 
the prediction of SARS-CoV-2 outbreaks. Compartmental 
SEIR and time series models may currently be the most 
readily available models to make predictions for new 
COVID-19 outbreaks. However, such models must be 
continuously adapted as fluid governmental measures 
(eg, lockdowns and changing social norms) upend the 
underlying assumptions on which many of these models 
are based. Increasingly, machine learning algorithms such 
as Bayesian inference can help in evaluating large data 
sets with fluctuating underlying assumptions and high 
uncertainties in data value, as is the case with the current 
influx of COVID-19 datasets.17 Certain literature shows 
promise in combining SEIR/SIR models with machine 
learning algorithms.67 Climate-based predictions, while 
rewarding for RVF, may be less applicable in predicting 
SARS-CoV-2. The virus is endemic, and the principal 
vectors are humans. Models would thus be applied on 
evaluating human vectors, possibly through behavioural 
and transportation data. Behavioural studies, such as 
evaluating MERS risk during the Hajj pilgrimage, and 
transportation analyses for SARS, may thus be of interest 
in the context of the current pandemic.29 30 Further-
more, as current predictions are for the most part on 
the regional to national scale and context specific, agent-
based models could be useful in integrating these trans-
portation and behavioural dynamics in the context of a 
confined local, regional or even national scale. No articles 
in this review applied agent-based models in predictions 
(online supplemental material 1). While various model 

types are emerging in the prediction of COVID-19, there 
is no consensus on optimal models for COVID-19 predic-
tion, and further research is needed towards predicting 
COVID-19 outbreaks.

Prediction validation
While 41% of articles validated their predictions 
against real data, there was significant heterogeneity in 
the demonstration of outbreak prediction validation. 
Certain articles graphically illustrated their predictions 
compared with real data, others purely stated their 
data had matched the predicted outbreak. Further-
more, many articles focused on whether their predicted 
outbreaks occurred, rather than outbreaks their models 
had missed. However, certain articles made easily verifi-
able outbreak predictions. For example, multiple arti-
cles predicted the RVF outbreak in 2006–2007.38 43 Of 
note, a single article predicted the Ebola outbreak in 
2014 by predicting a peak of infectious bats in the region 
where the 2014 West African Ebola outbreak occured.49 
Finally, 59% of articles did not validate their predictions 
against future data, often publishing before the time-
line of predicted outbreaks. While certainly an avenue 
for further research, evaluating the accuracy of outbreak 
predictions exceeded the scope of this review.

Limitations in predictions
Limitations in the articles, when discussed, referenced 
the inherent complexity of epidemiological processes 
and the necessary simplification of their models. Another 
challenge was incomplete, unreliable or scarce data and 
patchy surveillance networks. This may have caused 
pseudoabsence scenarios in modelling where locations 
without recorded outbreaks may still have had instances 
of transmission occur. Certain articles only used synthetic 
data to make predictions, hindering validation.

Challenges in reviewing
This review also had methodological challenges and limi-
tations. Separating articles between modelling of current 
epidemics on the one hand and prediction of future 
outbreaks on the other hand was a demanding screening 
challenge requiring thorough full-text assessments. 
Furthermore, a semantic challenge arose when certain 
studies equated transmission risk to outbreak risk, while 
others made a distinction of transmission risk being only 
a part of future outbreak risk. We thus excluded articles 
that merely evaluated for transmission risk or spillover 
risk defined as transmission of disease from one indi-
vidual to another. Lastly, only the term Disease X was 
employed for an as-of-yet undiscovered pathogen in 
order to evaluate the Blueprint list’s impact on research. 
This may have reduced the number of studies identified 
predicting outbreaks of undiscovered pathogens.

CONCLUSIONS
While there is ample research on modelling existing 
epidemics, the current review shows a significant literature 
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gap in prediction and forecasting of future outbreaks of 
the Blueprint priority diseases. Only few articles attempt 
true spatiotemporal prediction. The most common 
scenario, RVF risk mapping through vector, occurence 
and climate data, appears to be precise geographi-
cally and temporally and has a track record of enabling 
prospective interventions that mitigated outbreaks. 
Even so, the warnings were presented when conditions 
were already rife for RVF outbreaks.68 Thus, there may 
be room for improvement of early warning systems by 
including local health actors (eg, farmers, forest rangers 
and hunters) as frontline epidemiological personnel to 
warn of future outbreaks and implement public health 
strategies.34 68 Furthermore, only few articles sought to 
predict outbreaks through common zoonotic drivers 
such as ecological destruction, wildlife trade, conflict 
or political data and measures of social vulnerability. A 
significant research gap also concerned the integration 
of indicators of health system capacity, government effec-
tiveness or health emergency preparedness into models. 
International Health Regulations factors such as State 
Party Self-assessment Annual Reports, Joint External Eval-
uations and Global Health Security Index measures were 
not integrated into the models reviewed. However, these 
indicators are an imperfect assessment of health capaci-
ties, and there is ongoing debate as how to best measure 
pandemic preparedness, which may explain the paucity 
of integration of such data in the analysed models.69

This article attempted to displace the focus from 
outbreak risk factors to prediction, as prediction inte-
grates risk factors into actionable information. While 
fraught with inherent uncertainty and stochasticity, 
prediction may be a pragmatic public health and 
research avenue that warrants support. Prediction of 
spatiotemporal and epidemiological qualities of future 
outbreaks enables public health actors to pre-emptively 
act on explicit spatiotemporal information. As such, a 
major challenge remains in foreseeing novel zoonoses. 
No articles studied Disease X outbreak prediction. Ebola, 
SARS, Zika and COVID-19 were all Disease X, before 
their initial outbreaks. While the Blueprint list includes 
SARS and MERS, no articles in this review predicted an 
outbreak of COVID-19 in 2019. This demonstrates that 
efforts to predict the future Disease X remain a major 
gap in the literature.
Twitter Antoine Flahault @FLAHAULT
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