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SUMMARY
Analyses of gene-expression dynamics in research on circadian rhythms and sleep homeostasis often
describe these two processes using separate models. Rhythmically expressed genes are, however, likely
to be influenced by both processes. We implemented a driven, damped harmonic oscillator model to esti-
mate the contribution of circadian- and sleep-wake-driven influences on gene expression. Themodel reliably
captured a wide range of dynamics in cortex, liver, and blood transcriptomes taken from mice and humans
under various experimental conditions. Sleep-wake-driven factors outweighed circadian factors in driving
gene expression in the cortex, whereas the opposite was observed in the liver and blood. Because of tissue-
and gene-specific responses, sleep deprivation led to a long-lasting intra- and inter-tissue desynchroniza-
tion. The model showed that recovery sleep contributed to these long-lasting changes. The results demon-
strate that the analyses of the daily rhythms in gene expression must take the complex interactions between
circadian and sleep-wake influences into account. A record of this paper’s transparent peer review process is
included in the supplemental information.
INTRODUCTION

Throughout the brain and body, many transcripts exhibit 24 h

rhythms.1–3 These transcriptome rhythms are thought to emerge

from cell-autonomous oscillations generated by clock genes

engaged in negative transcriptional/translational feedback loops

(TTFLs).4 The circadian TTFL results in rhythmic expression not

only of the clock genes themselves but also that of the numerous

other genes they target, many of which are transcription factors,

thereby setting off daily recurring cascades of transcriptional

events comprising the rhythmic transcriptome. Within and

among tissues, phase coherence is maintained by systemic

cues originating from by the central circadian clock, which in

mammals is located in the suprachiasmatic nuclei (SCN) of the

hypothalamus, thereby acting as an internal zeitgeber entraining

brain and body TTFLs.5,6 Transcriptome data have contributed

to our current understanding of the molecular architecture of

the circadian clock and its tissue-specific functions.7,8

Transcriptome studies have also been used in sleep

research, in particular to uncover genes and gene pathways

implicated in the processes related to the sleep-wake-driven

changes in sleep pressure. Studies in rats and mice showed
610 Cell Systems 15, 610–627, July 17, 2024 ª 2024 The Author(s).
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that sleep-wake states alter the brain transcriptome.9–12 Among

the affected transcripts, changes in many activity-induced

immediately early genes (IEGs) reliably followed the time course

of sleep-wake prevalence both during undisturbed baseline

conditions and during sleep deprivation (SD).13,14 Their sleep-

wake-driven dynamics could be modeled using exponential

saturating functions with time constants similar to those

describing the dynamics of delta power,14 a widely used elec-

troencephalogram (EEG)-derived measure gauging sleep pres-

sure. Examples of such transcripts are Arc and Homer1a,

which both play a role in homeostatic down-scaling of synap-

ses, a process considered as one of sleep’s major func-

tions.15–18 Interestingly, we found that the brain expression of

the core clock-genes Npas2 and Clock followed dynamics

similar to that of the sleep-wake-driven IEGs and that rhythm

amplitudes of all but one of the other clock genes showed a

long-term reduction in rhythm amplitudes following a single,

short SD.14 Combined with other observations, this suggests

a considerable molecular crosstalk between circadian- and

sleep-wake-driven processes in the brain.19,20

Since under undisturbed conditions the sleep-wake distribu-

tion is circadian and because sleep-wake behavior drives the
Published by Elsevier Inc.
eativecommons.org/licenses/by/4.0/).
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expression of numerous transcripts, many of the genes found to

be rhythmic in circadian transcriptome studies might oscillate as

a consequence of the daily changes in the prevalence of sleep-

wake states and not as a direct consequence of the circadian

TTFLs. We and others found that when the time-spent-awake

prior to tissue sampling was controlled, the majority of rhythmi-

cally expressed genes in the cortex (73%–81%) no longer

oscillate.15,21 Similarly, scheduling sleep in anti-phase with the

time it normally occurs in a forced desynchrony (FD) protocol

flattened the rhythm of the blood transcriptome in humans,

including that of several clock genes.22 These observations

show that sleep-wake-driven factors contribute to the rhythmic

changes in gene expression in brain and body tissues peripheral

to the SCN.

Determining which genes and pathways are rhythmic as a

result of changes in sleep-wake behavior or due to circadian

systemic cues, is of importance when, e.g., assessing the fac-

tors underlying the long-term health consequences of circadian

misalignment that have been attributed mainly to circadian fac-

tors.23,24 In an earlier effort, we categorized transcripts as either

sleep-wake driven or circadian driven using the concepts of the

two-process model of sleep regulation,14 a model that stipu-

lates that sleep is regulated by a circadian process (process

C) of sinusoidal shape that interacts with a sleep-wake-driven

process (process S) modeled after the dynamics of EEG delta

power.25 In that study,14 we analyzed cortical samples taken

under baseline conditions and during and after a 6 h SD. The

results confirmed that most (63%) of the cortical transcripts

that were rhythmic under undisturbed baseline conditions

were categorized as sleep-wake driven when considering the

entire time course. It is, however, unlikely that the rhythmic

expression of a given gene is influenced only by either one of

the two processes. Moreover, this approach required model

selection among a set of models with different number of free

parameters, which is not without issues, and only one type

of sleep-wake-driven dynamic (i.e., ‘‘process S’’ type) was

considered. Finally, the marked long-term consequences of

SD on expression dynamics we discovered in that study, espe-

cially that of most clock genes, could not be captured by any of

the models unless circadian amplitude after the SD was altered

in the model.

Here we implement a driven, damped harmonic oscillator

model to estimate the separate contributions of sleep-wake

and circadian processes to the rhythmic transcriptome. In this

model, circadian systemic cues and sleep-wake-driven influ-

ences are considered simultaneously as driving factors that

effectively accelerate or decelerate oscillations in gene expres-

sion. By changing the damping ratio, the model can capture

both the dynamics of intrinsically oscillating transcripts (i.e.,

underdamped in the model) and of overdamped transcripts for

which the sleep-wake response approximate exponential satu-

rating functions of process S. We applied the model to transcrip-

tome data obtained in mouse cortex and liver tissue and in

human blood and successfully captured the wide range of tran-

scription dynamics observed under conditions of SD, FD, and a

constant routine (CR) following 7 days of sleep restriction.14,22,26

The results give new insights into the complex interaction be-

tween circadian- and sleep-wake-driven influences on gene

expression.
RESULTS

Datasets used to disentangle circadian- and sleep-
wake-dependent influences
Under undisturbed, entrained conditions, sleep-wake depen-

dent and circadian contributions to rhythmic gene expression

cannot be separated as both factors fluctuate in synchrony

with stable phase relationships. To quantify their respective

contributions, the timing of sleep (and wakefulness) relative to

circadian phase needs to be altered experimentally. In the first

dataset used for the current analyses, gene expression in cor-

tex and liver was quantified in mice at 18 time points before

(baseline), during, and after (recovery) a 6 h SD (Figure 1A).

Sleep-wake behavior was recorded in a separate cohort of

mice undergoing the same experimental protocol. The SD

kept mice awake at a time-of-day animals are normally mostly

asleep, i.e., the first half of the light period (zeitgeber time [ZT]

0–ZT6). The sleep-wake data and cortical transcriptomes were

taken from our publicly available data,12,14,27 while we acquired

liver RNA sequencing data taken from the same mice to assess

tissue specificity of gene-expression dynamics. A second data-

set, also publicly available, consists of 2 experiments quanti-

fying the blood transcriptome in humans using microarrays.22,26

In the first experiment, participants completed a FD protocol in

which a 28 h sleep-wake cycle was imposed, causing the circa-

dian rhythm to ‘‘free-run’’ at its intrinsic, close-to-24 h period.

Blood was sampled at 4 h intervals during a 28 h day when

sleep was scheduled at the circadian phase at which it normally

occurs during entrained conditions (‘‘in-phase’’) and during a

28 h day when sleep occurred in anti-phase with the circadian

cycle (‘‘anti-phase’’; Figure 1B). In the second experiment, par-

ticipants were given sleep opportunities of either 10 (‘‘control

sleep’’) or 6 h (‘‘restricted sleep’’) during which they obtained

8.5 and 5.7 h of sleep, respectively, for 7 consecutive days pre-

ceding a CR during which participants were kept awake for

�40 h with blood samples taken every 3 h (Figure 1C). During

the CR, light conditions, activity, and food intake were strictly

controlled. Before the FD and CR experiments, sleep was re-

corded at habitual bedtime (‘‘baseline’’; 7.5 h of sleep), which

we used as the sleep-wake distribution under ‘‘steady-state’’

conditions. Although the FD and CR experiments affected the

timing and duration of sleep-wake behavior, circadian phase,

assessed by blood melatonin and cortisol rhythms, remained

remarkably unperturbed.22,28 This is consistent with analyses

of clock-gene rhythms in the mouse SCN, which indicated

that the central circadian pacemaker is not much affected by

changes in the sleep-wake distribution,29–32 although SD has

been shown to reduce neuronal activity within the SCN.33

Furthermore, SD does not alter the phase of circadian activity

patterns in mice.34

Rhythmic gene expression can follow a dynamic that could be

regarded as strictly sleep-wake driven or as strictly circadian

driven, illustrated by Homer1 expression in cortex and Bmal1

expression in liver, respectively. Homer1 expression decreases

during the light phase when mice are mostly asleep, in-

creases during the dark when mice are mostly awake, further in-

creases during SD, and quickly re-assumes baseline dynamics

during recovery (Figure 1D), with little circadian influence.15 By

contrast, liver Bmal1 expression oscillates throughout the
Cell Systems 15, 610–627, July 17, 2024 611



Figure 1. Sleep-wake experiments in mice and humans

(A) Sleep deprivation (SD) in mice. Mean fraction of time-spent-

awake per hour of recording time (blue line/area, n = 12) during

baseline (BSL; days 1 and 2), 6 h SD (pink square starting at t = 48

on day 3) and recovery (days 3–5 and 10). A 2nd batch ofmicewas

used for tissue sampling of cortex (blue) and liver (brown points;

n = 62). Gray background represents the dark periods of the

12:12 h light-dark cycle. Note that the last 2 samples were taken

7 days after the SD.

(B) Forced desynchrony (FD) in humans. Mean wake fraction

(blue area, n = 32) during the 28 h sleep-wake cycles of the FD.

Blood samples (red points) were taken during a 28 h day when

participants slept in-phase and during a 28 h day when sleep

occurred in anti-phasewith their circadianmelatonin profile. Gray

boxes represent scheduled sleep opportunities.

(C) Constant routine (CR) experiments in humans. Mean wake

fraction (blue area, n = 36) after a 7-day control (top: ‘‘10 h sleep’’)

and a restricted (bottom: ‘‘6 h sleep’’) sleep-opportunity

schedule. Blood samples (red points) were taken during the CRs.

(D) Examples of gene expression dynamics in cortex (blue), liver

(brown), and blood (red symbols) with mean gene expression

(95% CI; mice: n = 3–5 per time point; human: 8–24 per time

point). Solid black lines connect time points, and dashed gray

lines replicate baseline in mice (before SD) or in-phase dynamics

in humans. Details as in (A)–(C).
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Figure 2. Modeling gene expression using a damped-driven harmonic oscillator

(A) Schematic of the circadian view of rhythmic gene expression (left) in which the SCN directly or indirectly drive or entrain oscillations of gene expression

generated by local circadian clocks (TTFL) in peripheral cells. The sleep view (middle) separates circadian- and sleep-wake-related genes, each regulated by

(legend continued on next page)
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experiment largely unperturbed by SD (Figure 1D), consistent

with Bmal1 being a core circadian clock gene.35 Rhythmically

expressed genes can, however, show dynamics that do not

follow such simple rules.14 For example, while we find that dur-

ing baseline the time course of cortical and liver expression of

Bmal1 is similar, SD leads to a long-lasting reduction in rhythm

amplitude during recovery in the cortex but not in the liver (Fig-

ure 1D). This amplitude reduction outlasts the effects of SD on

recovery sleep,14 indicating that cortical Bmal1 expression

does not seem to simply follow the sleep-wake distribution.

Another example is Acot11, a gene encoding an enzyme

involved in the homeostatic regulation of free fatty-acids36 and

of non-rapid eye movement (NREM) sleep duration.12 Acot11

expression in the cortex increases with SD, and its baseline

time course seems consistent with that of a sleep-wake-driven

gene as it decreases during the light and increases during the

dark when animals are predominantly asleep and awake,

respectively. Yet, subsequent to SD, this relationship appears

to invert, as sleep during initial recovery (ZT6–ZT12) is now asso-

ciated with a strong increase in Acot11 expression, leading to

sustained high levels during the recovery dark phase (Figure 1D).

A last example is the dynamics of nuclear corepressor 1

(NCOR1) expression, which encodes a protein affecting the

clock-gene circuitry by acting as co-repressor to the clock-

gene REVERBa (NR1D1) and by activating HDAC3.37–39 During

the FD, blood NCOR1 expression appears rhythmic only when

sleep occurs in anti-phase with the circadian rhythm (Figure 1D),

whichmight suggest that under normal, in-phase conditions, the

sleep-dependent decrease inNCOR1 expression is opposed by

a circadian-dependent increase. However, such a scenario

cannot easily explain the downregulation of NCOR1 expression

with extended wakefulness observed during the two CRs in the

second experiment (Figure 1D).

These examples illustrate that rhythmic gene expression re-

sults from an often complex interaction between the responses

to circadian- and sleep-wake-dependent drives that seem

to greatly differ among genes and tissues. Quantifying and

comparing the relative importance of these factors in driving

the rhythmic transcriptome requires a modeling approach that

can integrate sleep-wake- and circadian-dependent influences

on gene expression.

Rhythmic gene expression as a driven, damped
harmonic oscillator
Transcriptome rhythms measured in peripheral organs are

thought to arise from TTFLs made up of the core circadian clock
different dynamics. The integrated view (right) considers each gene to be regul

influences, which act as drives on gene expression in the periphery.

(B) Illustration of the damped-driven harmonic oscillator model. According to a g

when expression is removed from equilibrium and no drive is applied: an underdam

damping ratio z < 1) and an overdamped system (bottom, Gene B, z > 1) whe

exponential decaying function (red dashed lines) with a time-constant t determin

given: 0.35 and 0.13 (rad/h), illustrated in the upper and lower row panels, respecti

entrained and rhythmic (circadian drive in yellow, sleep-wake drive in purple; mid

drive determines the phase-lag (4-lag) between drive and response. Combing th

(right). Pink areas represent sleep deprivation.

(C) Model fit for expression ofClock in liver (left) and cortex (right). Circadian (yello

sleep-wake responses to the drives giving the best fit (middle), fitted expression in

gray lines replicate baseline. SWrc (with 95% CI) is the relative contribution of th

614 Cell Systems 15, 610–627, July 17, 2024
genes.4 According to this scenario, local tissue rhythms are kept

in phase with each other and with the light-dark cycle by signals

generated by the SCN. At the same time, the SCN drive rhythms

in overt behaviors such as sleep and wakefulness (Figure 2A,

left).40,41 Although perturbations of sleep are known to impact

gene expression, most studies only examined the immediate ef-

fects of SD, and only a few considered the influence of the sleep-

wake distribution on the rhythmic transcriptome.9,14,22,26 Simi-

larly, modeling sleep-wake-driven dynamics using exponential

saturating functions, following the example of the dynamics of

EEG delta power,14,42 does not include a circadian component,

and interactions between circadian and sleep-wake-related fac-

tors, beyond simple additive effects, have not been not consid-

ered (Figure 2A, middle). The model we propose allows for

such interaction and provides a framework to quantify the rela-

tive contribution of circadian- and sleep-wake-dependent fac-

tors on rhythmically expressed genes. These genes can be

modeled as intrinsically rhythmic, i.e., because they are closely

associated with the circadian TTFL, or they can appear rhythmic

because they follow circadian- and/or sleep-wake-dependent

drives but, in the absence of such recurring drives, do not oscil-

late (Figure 2A, right). We have used earlier implementations of

this modeling approach to simulate the effects of sleep-wake

state on Per2 mRNA and protein levels.43,44

Themeasured level of the expression of a gene reflects the net

result of mRNA synthesis and degradation. With our data, we

cannot assess whether changes in gene expression resulted

from changes in synthesis, degradation, or both. We neverthe-

less use these terms when referring to a net increase and

decrease in mRNA levels. We propose a framework in which

the level of mRNA of a gene is X(t) where t is time. We suppose

that the rate of synthesis ofX(t)will depend on intra-tissue factors

such as the levels and activity of transcription factors, tempera-

ture, and metabolites affecting mRNA regulation, which we

group together in a single ‘‘tissue environment’’ variable Y(t).

We suppose the rate of degradation depends on the level of

X(t). In the simplest (linear) approximation, the rate of change

of mRNA may be written as

dX

dt
= a Y � gX (Equation 1)

where a describes the effect of the tissue environment on the

synthesis rate of X(t) and g is the degradation rate per unit X(t).

We assume that the tissue environment variable is affected by

external factors FðtÞsuch as the circadian and sleep-wake drives
ated to a varying degree by systemic circadian- and sleep-wake-dependent

ene’s intrinsic properties, two types of expression dynamics can be observed

ped system oscillating with a decaying amplitude (upper, hypotheticalGene A,

re expression returns to equilibrium position without oscillation according to

ing the time it takes to recover. For each gene, examples of two u0 values are

vely. External recurring driving factors are required tomaintain gene expression

dle two panels). The difference between u0 and the frequency of the external

e responses to each drive generates the observed rhythm in gene expression

w) and sleep-wake (purple) drives applied on the model (bottom), circadian and

black with mean gene expression (95%CI, n = 3–5/time point; upper). Dashed

e sleep-wake response (see results).
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and that there is feedback between the gene of interest and the

tissue environment so that

dY

dt
= � b X +FðtÞ (Equation 2)

where b describes the strength of the feedback between the

gene of interest and the tissue environment.

We let XðtÞ = Xb + xðtÞ, YðtÞ = Yb + yðtÞ, and FðtÞ = Fb + fðtÞ,
where Xb, Yb; and Fb are fixed baseline values that satisfy Equa-

tions 1 and 2 when dX
dt = dY

dt = 0. Then substituting for X(t) and

Y(t) in Equations 1 and 2, differentiating (Equation 1) with respect

to time and substituting in for dY
dt from Equation 2) leads to the

equation for a damped harmonic oscillator (Equation 3; see

STAR Methods).

d2x

dt2
+ g

dx

dt
+u2

0x = fðtÞ (Equation 3)

where u2
0 = ab and fðtÞ = afðtÞ. In this equation, xðtÞ represents

the level of mRNA of a gene quantified as normalized counts

from RNA sequencing (in log2 counts per million, or CPM) for the

mouse tissues or from Affymetrixmicroarrays (in log2 probe inten-

sities) for human blood samples. The term u2
0x arises from the

feedback between the gene and its environment and could be

viewed as, e.g., an auto-inhibition through negative feedback,45

as is the case for the expression of clock genes that comprise

the circadian TTFL. A large value of u2
0 translates into a strong

negative feedback controlling gene expression. By contrast, a

weak negative feedbackwill result in gene expression rhythmsbe-

ing driven mostly by changes in external factors. Another intrinsic

factor determining gene expression dynamics is the degradation

constant,g, whichopposes changes ingeneexpressionand intro-

duces a time delay in response to external driving factors.

The model can capture both intrinsically oscillatory and non-

oscillatory genes. Using the standard terminology of simple har-

monic oscillators in the absence of time dependent external

driving factors (fðtÞ = 0), when the damping ratio, z = g=

2u0 < 1, the oscillator is said to be underdamped.When released

from a position away from equilibrium, the expression of the hy-

pothetical gene,Gene A, will oscillate around equilibrium with an

amplitude that decreases on a timescale determined by damp-

ing constant g (Figure 2B, top two rows). However, when z > 1

(i.e., overdamped), gene expression will not oscillate and reverts

to the equilibrium directly (hypothetical Gene B; Figure 2B, bot-

tom two rows). For underdamped genes, the time required for

the expression to return to equilibrium (t) is determined by g,

while for overdamped genes it depends on g and u0 (Equation 4;

Figure 2B, red line).

Time constant ½t� to equilibriumz

8>>><
>>>:

� 1

�g

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g
2

�2

� u2
0

r ; z > 1

2=g; z < 1

(Equation 4)

Recurring external driving factors (fðtÞ in Equation 3) are

needed to assure phase coherence of the daily transcriptome

changes among and within tissues and, if g > 0, to maintain
rhythmicity. Such external factors can either follow continuous

oscillations (Figure 2B, 2nd column) originating, for example,

from the SCN or result from discrete physiological or behavioral

events such as being (kept) awake or asleep (Figure 2B, 3rd col-

umn), which in this schematic includes an SD (pink bars). We

refer to these two types of driving factors as ‘‘circadian-driven

factor’’ (fCðtÞ) and ‘‘sleep-wake-driven factor’’ (fSWðtÞ), respec-
tively. In the model, we base fSW on the fraction of sleep (SðtÞ;
i.e., NREM + rapid eye movement [REM] sleep) and wakefulness

(WðtÞ), measured within a given time interval, t, multiplied by their

respective coefficients,bs and bw (Equation 5; see STAR

Methods). The circadian drive, fCðtÞ, is modeled as a sinewave

with a 24 h period and a free phase and amplitude (4 and A;

Equation 5).

fSWðtÞ = bwWðtÞ+ bsSðtÞ

fcðtÞ = A sin

�
2p

24
t +4

�
(Equation 5)

Together, these two factors affect the rhythmic expression of a

gene by increasing or decreasing its acceleration, i.e., the rate of

change of its synthesis rate.

The combined effect of the two driving factors on the oscillator

can be mathematically decomposed into the responses to either

factor (see STARMethods). Summing the separate contributions

again reconstructs the gene-expression dynamics fitted by the

model (Figure 2B, right column). In the Figure 2B schematic,

the relative contributions of the two driving factors (and their

respective responses) to the expression dynamics of Genes A

and B are similar in magnitude prior to SD, yet because of their

different intrinsic properties, the response to the same sleep-

wake perturbation can differ. Besides z, the response also de-

pends on the phase-lag between the oscillator and the drive,

which is determined by the frequency ratio (r = u=u0) between

the frequency of the drive (u = 2p
24) and the natural frequency (u0)

(Equation 3). If r = 1, the phase-lag is p
2, and the oscillator is said

to be in resonance. If r[1, the phase-lag increases and an

inertia in the response of the oscillator is observed such that

the rate of gene expression will only slowly change after a

change in the external drive. By contrast, when r � 1, the

phase-lag decreases, causing the rate of gene expression to

change already before the external driving factors can exert their

influence because of the feedback generated by the system.

4 � lag =

8>>><
>>>:

arctan

�
2zr

1 � r2

�
+p; r < 1

arctan

�
2zr

1 � r2

�
; r R 1

(Equation 6)

With different contributions from the two external driving fac-

tors and different intrinsic parameters, the model can capture a

large variety of dynamics (Figure 2B, right column).

The parameters g;u0, bw; bs;A, and 4 of the model were esti-

mated by fitting gene expression in mouse cortex, liver, and hu-

man blood (STAR Methods). The parameters, together with their

95% confidence intervals (CIs), were estimated independently

for each gene and tissue (Table S1). Figure 2C illustrates the re-

sponses to the two driving factors the model estimated for the

expression dynamics of Clock with different results in the two
Cell Systems 15, 610–627, July 17, 2024 615
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tissues. As for Bmal1 (Figure 1D), Clock expression in the liver

displays a sinewave oscillation unperturbed by SD. By contrast,

cortical Clock expression decreased when animals were asleep,

increasedwhen awake spontaneously andduringSD (Figure 2C).

Although themodel fitted theClock expression dynamics equally

well in the two tissues (Kendall’s t = 0.56 and 0.73 in cortex and

liver, respectively), the damping ratio greatly differed (z = 0.79

and 0.06, respectively). In liver, fC and its response was much

stronger than that of fSW , while the opposite was observed in

the cortex where Clock dynamics resembled that of a sleep-

wake-driven gene such as Homer1 (Figure 1B).14 We quantified

the relative contribution of the two drives by calculating a sleep-

wake response contribution (SWrc) metric as follows: the peak-

to-trough amplitude of the response to fSW (ASWr ) in baseline was

expressed as a fraction of the peak-to-trough amplitude of the

summed response to the 2 drives (ASWr +ACr ; Equation 7).

SWrc can vary between 0 and 1 with 0 indicating that the

summed response is entirely due to fC, 1 to fSW , and 0.5 indi-

cating equal contributions.

sleep-wake response contribution ðSWrcÞ = ASWr

ASWr+ACr

(Equation 7)

For the expression of Clock, SWrc in liver was 0.20 and in cor-

tex 0.84 (Figure 2C), reflecting well the circadian- and sleep-

wake-driven nature of the dynamics in the two respective tis-

sues, comparable toSWrc values obtained forBmal1 expression

in liver (0.10) and Homer1 in cortex (0.83; Figure 3).

Our model not only reliably captured straightforward gene

expression dynamics but also less predictable scenarios. A

‘‘pure’’ sleep-wake-driven gene will tightly follow the sleep-

wake distribution, independent of circadian phase, and the

gene will be intrinsically strongly damped, together resulting in

dynamics approximating those following exponential functions

such as observed for many IEGs,14 including Homer1 (Figure 3),

and for EEG delta power (Figure S1). On the other hand, the

expression of a pure circadian-driven gene will continue oscil-

lating because it is intrinsically underdamped and responds

only to circadian drives (i.e., a low SWrc) such that amplitude

and phase are unaffected by changes in sleep-wake state as

was observed for Bmal1 and Clock in liver (Figures 2C and 3).

For the 3 remaining genes highlighted in Figure 1 the sleep-

wake and circadian drives contributed approximately equally

to their expression dynamics (SWrc: 0.49–0.69; Figure 3;

Table S2). Yet, because of their different intrinsic properties

(Table S2), expression dynamics responded very differently to

the drives applied. Although wakefulness accelerated cortical

Bmal1 expression, its expression did not increase during SD

because (1) the natural frequency (u0 = 0:2; Table S2) was

close to the baseline sleep-wake frequency (0.26, i.e., 24

h;zresonance), and thus the sleep-wake response was already

close to Bmal1’s maximum amplitude, and (2) the circadian

response decreased during the SD. The prolonged amplitude

reduction of Bmal1’s oscillation after SD resulted from a combi-

nation of a low damping constant (Table S2), which increased the

time to return to equilibrium (t = 20 h;Equation 4), and the

reduction in time-spent-awake during the recovery dark period,

which reduced the normal increase in gene expression rate at
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this time of day.Wakefulness also accelerated the rate of cortical

Acot11 expression (Figure 3). The peculiar, prolonged increase

in Acot11 during recovery sleep was due to a weak negative

feedback (u2
0) and thus a long phase-lag between drive and

response (Table S2). This inertia of the SD-accumulated wake

drive was strong as it would have required 2 h of continuous

sleep to counter it. In addition to this inertia, the interaction be-

tween the circadian and sleep-wake responses kept expression

elevated for 9 h after SD, further delaying a reduction of Acot11

expression. Wakefulness decelerated the rate of NCOR1

expression in human blood, and the continued decrease in

NCOR1 expression during the CRs was modeled by weak nega-

tive feedback. Modeling NCOR1 expression dynamics further

highlighted that the contribution of the sleep-wake response

relative to that of the circadian response depends on the exper-

imental condition: in baseline the two contributions were similar

(SWrc = 0.69; Table S2), but in anti-phase, thereby flattening

NCOR1’s expression, while during the CRs, when subjects are

kept awake for 40 h, the sleep-wake contribution became the

dominant drive (SWrc = 0.90).

These examples underscore that a gene’s expression can

appear rhythmic for a variety of reasons, which can differ accord-

ing to tissue. Moreover, the circadian- and sleep-wake-driven in-

fluences on the expression of some genes can be revealed only

during longer-term sleep disruptions andwould have gone unno-

ticed under undisturbed conditions. Our strategy differs (and

captures other genes) from simply assessing differential expres-

sion immediately after the SD, which has been used to catego-

rize a gene as sleep-wake driven (Figure S2).

Assessing the model’s performance against alternative
models
We evaluated the performance of the model and possible over-

fitting by comparing it to both simpler and more complex

models, considering all datasets. The evaluation was performed

on the subset of genes and probe sets that showed rhythmic

expression during baseline for mice and when sleep occurred

in phase with melatonin production for humans. As mentioned

earlier, pure sleep-wake-driven and pure circadian-driven genes

can display undistinguishable rhythmic patterns in baseline.

Both categories of genes can thus be captured in an unbiased

fashion with a simple sinewave fit and independently of their

response to sleep perturbation. The time courses of the top

1,000 most significant ‘‘sinusoidal’’ genes per tissue (cortex,

liver, and blood) were used to assess the model’s performance,

i.e., a total of 3,000 genes.

Our model has 6 free parameters (k = 6 [g;u0; bs;bw;4;A]; see

Equations 3 and 5), with the equilibrium position (intercept) fixed

to the mean gene expression in baseline in mouse and in-phase

data in human. The model integrated the two human transcrip-

tome experiments as one, and model parameters were simulta-

neously optimized. We did, however, allow different intercepts

between the FD and the CRs after the control- and restricted-

sleep conditions (k = 7).

To evaluate the fit and complexity of our model (hypothesis 1

or H1), we contrasted it to the following 4 alternative models (HA;

for details, see STAR Methods): (1) a linear regression model

based on independent fixed effects for each time point (k = 18

and 35 in mouse and human, respectively) known to over-fit



Figure 3. Model fits for the genes illustrated in Figure 1D

Fitted dynamics (black line) with mean expression and 95% CI of cortical Homer1 expression follows almost exclusively the sleep-wake response (purple line),

while Bmal1 in the liver the circadian response (yellow line). Bmal1 and Acot11 in cortex and NCOR1 in blood follow a combination of a sleep-wake and circadian

response. Details as in Figure 1D.
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the data,14 (2) the oscillator model with a sleep-wake drive only

or, (3) with a circadian drive only (k = 4 and 5), and (4) a simple

additive model in which a fixed circadian effect (sinewave) is

added to a sleep-wake effect without intrinsic dynamics inte-

grating these effects (k = 5 and 6). We compared the Bayesian

information criterion (BIC) statistic of each of the 4 HA models

to that of H1. In general, the DBIC indicated more genes with a

better fit for H1 over both simpler and more complex models

(DBIC > 0: 97%, 61%, 88%, and 68% of all 3,000 genes, for

HA i–iv, respectively), even when using a more stringent cutoff

(DBIC > 2: 97%, 55%, 85%, and 63%, respectively; Figure S3A,

top). In some cases, DBIC favored HA, although a strong support

was found only for aminority of genes or probes (DBIC <�2: 2%,

30%, 7%, and 24%, respectively). It shows that despite having

far fewer parameters than the linear model with independent

time effect, goodness of fit for H1 is still high (�0.1 DKendall’s

t) and is improved compared with simpler models (Figure S3A,

bottom). This analysis supports H1 as it improved the overall

fit, while model complexity did not increase too much over

simpler models.

The cortical transcriptome is mainly sleep-wake driven,
and that of the liver and blood is mainly circadian driven
We then applied the H1 model to the entire transcriptome to

detect, in an unbiased manner, any gene that would be sleep-

wake driven and/or circadian driven by contrasting the results

to a flat model with a single intercept as null hypothesis (H0)

where expression variance represents noise. With a DBIC > 2

as rejection threshold, the model classified a large number of

genes as rhythmically expressed: 7,237 (42% of 17,185) and

5,770 (43% of 13,373) genes in cortex and liver, respectively,

and 18,548 probes (45% of 41,162) in blood (Figure S3B).

Mean goodness of fit for rhythmic genes was high in mouse cor-

tex and liver (Kendall’s t: �0.5; Figure S3B, right) but somewhat

lower for the human blood dataset both for all probes and the

1,000 rhythmic probes (D mean Kendall’s t for all probes: 0.17;

for the 1,000 rhythmic probes: 0.12) but nevertheless still close

to that of the more complex model (Figure S3A).

To assess and visualize the main source of variance for

these rhythmically expressed genes, we performed a principal-

component analysis (PCA; Figures 4 and S4; see STARMethods)

and projected the model fits in PCA space together with the cor-

responding circadian- and sleep-wake-driven responses plotted

alongside the PC axes to show their respective contributions for

the time segments depicted in the PC plots (Figures 4A–D). In

addition, the complete simulated time course of the responses

to fSW and fC for the first two principal components, PC1 and

PC2, is illustrated underneath each panel for each of the

experiments.

In the mouse cortex, PC1 displayed a predominant sleep-

wake-driven response (projected SWrc = 0.80) typical of IEGs.

PC2 was determined by genes responding to both circadian

and sleep-wake drives (SWrc = 0.60) with the latter drive

increasing gene expression during SD, which continued during

the first 6 h of recovery (i.e., until ZT12 of the first recovery

day; ZT12REC in Figure 4A), although mice were mostly asleep

during this period. Such inertia to the sleep-wake response is

similar to that described above for the dynamics of Acot11

expression (Figure 3).
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In the mouse liver, the fitted trajectories for the expression of

genes contributing to PC1 and PC2 followed circular patterns

with a large contribution of the circadian response (SWrc =

0.18 and 0.29, respectively), albeit with different phases

(Figures 4B and S4, liver). SD decreased PC2 (T54ZT6), which

was followed by a reduction in rhythm amplitude 12 h later

(T66ZT18). This highlights, like for PC2 in the cortex, a slower

type of sleep-wake-driven response requiring more time to

change mRNA levels compared with the fast IEG (and EEG

delta-power) -like responses that characterize the genes

contributing to PC1 in cortex.

For the human blood transcriptome, PCA of the FD in-phase

and anti-phase conditions (Figure 4C) shows that PC1’s overall

amplitude reduced during the anti-phase condition as sleep-

wake and circadian responses became opposed to each other

(Figure 4C, bottom). PC2 was mostly sleep-wake driven

(SWrc = 0.78), and because of the longer sleep andwake periods

of the 28 h day (compared with the 24 h day), the amplitudes of

the rhythmic probes contributing to this PC gradually increased

to a new steady state after the initial 4 days of the FD protocol

(Figure 4C, bottom).

PCA for the CR transcriptome experiment showed that the

large effect of the 40 h wakefulness during the two CRs amplified

the sleep-wake response (SWrc) contributing to PC2 (from 0.56

in baseline to 0.70 during the CR), as was already illustrated for

NCOR1 (Figure 3). The preceding 7 days of restricted sleep

changed the initial condition of the CR compared with that of

the control condition (6 vs. 10 h sleep opportunity), again

affecting mostly PC2, the trajectory of which was downshifted

during the CR (Figure 4D, left vs. right upper).

As the PCA reports only on those transcripts contributingmost

to the overall variance, we assessed the SWrc values for the

complete rhythmic transcriptome (Figure 5, on the diagonal).

As already indicated by its PC1, the model found that cortical

gene transcription was more sleep-wake driven than that of liver

and blood, with similar SWrc values obtained in the latter two tis-

sues (mean SWrc: 0.62, 0.37, and 0.40 for cortex, liver, and

blood, respectively). In cortex, 67% of rhythmic genes were

underdamped (z< 1), while 85% and 89% of genes in liver and

blood were underdamped. Of all genes found to be rhythmic

across the datasets (14,435; DBIC10 > 2), only 10% (1,468)

were rhythmic in all 3 tissues. This small overlap of rhythmic

genes was already observed in the pairwise tissue comparisons

(21%, 27%, and 30% in the cortex-liver, cortex-blood, and liver-

blood comparisons, respectively; Figure 5, above the diagonal).

Tissue specificity of rhythmic genes has been noted before in

other species.46 We then compared the SWrc of the shared

rhythmic genes (DBIC10 > 2). Genes rhythmic in the cortex

were found to be predominantly more sleep-wake driven than

in liver (826 out of 840 with non-overlapping 95% CI) and blood

(762/826), and in blood more sleep-wake driven than in liver

(335/436) (Figure 5, below the diagonal; Table S1). Among the

rhythmic genes that were more sleep-wake driven in cortex

than in liver most clock genes could be found (Table S1; see Fig-

ure 6A). We did not find any correlations for SWrc values be-

tween tissues (Pearson correlations; cortex vs. liver: 0.08, cortex

vs. blood: �0.001, liver vs. blood: 0.003), indicating that the

cause of rhythmicity (circadian vs. sleep-wake driven) was not

shared.



Figure 4. PCA of the rhythmic transcriptomes

(A) PCA in themouse cortex (7,237 genes) and (B) liver (5,770 genes) during baseline (BSL), sleep deprivation (SD), and recovery (REC), (C) in human blood (18,548

probes) during the forced desynchrony (FD) when sleeping in-phase (left) and anti-phase (right), and (D) in human blood during the constant routine (CR) after the

10 h sleep (left) and 6 h sleep opportunity (right). Variance explained by each PC in brackets. Projected model fits in PCA space during BSL and habitual bedtime

as dashed lines, fitted expression during SD + REC, FD, and CR conditions as solid lines. Arrowheads point to the progression in time. Ellipses delimit 95% CI of

data acquired at each time point. Corresponding circadian (yellow) and sleep-wake (purple line)-driven responses are plotted alongside the PC axes. Note double

labels at time axes corresponding to the respective times in the experiment for the two conditions (see time courses below). The complete simulated time course

of the circadian- and sleep-wake-driven responses for PC1 and PC2 is illustrated underneath each panel for each of the experiments. Pink and gray boxes

indicate the SD and dark periods, respectively, in mice, gray boxes for human experiments the scheduled sleep episodes.
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SD desynchronizes the tissue transcriptome
Although central and tissue rhythms in gene expression are

generally associated with clock genes implicated in the TTFL,

clock genes did not feature among the top circadian-driven

genes. We therefore took a closer look at the expression dy-

namics of 15 core clock genes (Figure 6A). In the cortex, expres-

sion of 9/15 clock genes showed a significantly higher sleep-
wake-driven response than in the liver, with Clock having the

strongest sleep-wake drive (SWrc = 0.84). The SWrc values for

clock genes in blood were often intermediate between those ob-

tained in cortex and liver. Because the SWrc values for most

clock genes differed between cortex and liver, sleep perturba-

tion may alter inter-tissue synchrony and clock-gene-related

processes like metabolism.47 To assess tissue differences in
Cell Systems 15, 610–627, July 17, 2024 619



Figure 5. Comparison of model parameters between tissues

On the diagonal: relative sleep-wake response contribution (SWrc) vs. damping ratio (z) for all rhythmic genes in cortex (blue, top, n = 7,237), liver (brown, middle;

n = 5,770), and blood (red dots, bottom; n = 18,548). Black lines represent 2D gene density. Above the diagonal: comparison of rhythmic genes between tissue as

DBIC10. Values >2 represent a positive support for H1 (oscillator model) over H0 (no rhythm). Grey scale represents density estimate, scaled to a maximum of 1.

Below the diagonal: SWrc values for genes co-expressed between tissues with non-overlapping 95% CIs. Note that SWrc values are expressed relative to the

midpoint of the values obtained in the two tissues (i.e., 0-centering). See Table S1 for gene names.
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the timing of gene expression, we fitted clock-gene expression in

cortex and liver to a 24 h clock corresponding to the tissue’s ZT

in baseline (Figure 6B, dashed line) using a multivariate regres-

sion model with elastic net regularization.48 We observed that

during the SD and the subsequent 5 h of recovery (correspond-

ing to ZT0–ZT11 in baseline), cortical local time no longer fol-

lowed ZT and that the expression dynamics of clock genes

was halted at a state corresponding to ZT0–ZT2 during baseline

(Figure 6B, solid line). By contrast, in the liver, circadian time pro-

gressed undisturbed, resulting in a desynchronization between

the two tissues with a maximum cortex-to-liver delay of 8 h

reached 5 h after the end of the SD (Figure 6B, bottom).
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As the cortical transcriptome, including most clock genes, is

mostly sleep-wake driven, ZT (or circadian time defined by

phase markers of the central circadian clock) has little signifi-

cance in this tissue. That ZT estimated by the expression of clock

genes was maintained at ZT0–ZT2 for 11 consecutive hours

does therefore not indicate that the circadian clock stopped

but simply results from the SD keeping waking levels high for 6

additional hours following the baseline dark period when animals

were mostly awake spontaneously.

Because genes revealed a wide range of sleep-wake re-

sponses within each tissue (Figure 5), SD might also change

intra-tissue synchronicity, i.e., the SD-induced change in each



Figure 6. SD changes timing of gene expression within and between tissues

(A) Sleep-wake response contribution (SWrc; n = 200 bootstraps per gene per tissue, and boxplots represent 95% bootstrap percentile confidence interval with

2.5%, 25%, 50%, 75%, and 97.5% percentiles) for clock-gene expression in mouse cortex (blue), liver (brown), and blood (red) in humans. In blood, SWrc was

estimated from the top probes of the same clock genes (highest DBIC10).

(B) Fitted and predicted local circadian time in cortex and liver based on clock-gene expression. The tissue’s local time (expressed as zeitgeber time [ZT] in

baseline; ZT0/ZT24, ZT3, ZT6, ZT12, and ZT18) was fitted using baseline clock-gene expression with an elastic net model. Local time is then predicted for gene

expression during SD (T51ZT3 and T54ZT6) and subsequent recovery (REC, i.e., T60ZT12, ZT66ZT18, and T72ZT0). Projected fits based on our oscillator model as

dashed (baseline) and solid (response to SD) lines. Lower graph depicts the cortex-liver tissue differences in predicted ZT.

(C) Estimated relative phase and amplitude of Bmal1 from expression level and expression rate of the model. Baseline points T24/T48ZT0, T30ZT6, T36ZT12, and

T42ZT18 are fitted to a 24 h clock. Time on the horizontal axes is given both in time-of-experiment and ZT (in parentheses).

(D) Relative phase and amplitude of the expression of all rhythmic genes individually fitted to baseline (4 circular plots on upper row; from left-to-right: ZT6, ZT12,

ZT18, and ZT24/ZT0) and their predicted ZT times for SD and recovery days 1 (middle) and 2 (lower rows) in cortex (left, blue dots; n = 91% of 7,237 = 6,626) and

liver (right, brown dots; n = 96% of 5,770 = 5,539). Larger black dots represent the point of gravity of level and rate of expression of all genes.
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transcript’s phase relative to that of all other genes. To examine

this, we performed a similar analysis as above, where the base-

line timing of expression is estimated independently for each

gene based on its expression level and expression rate predicted

by our model. The baseline time points ZT0, ZT6, ZT12, and

ZT18 were mapped onto ZT, and time points after the start of

the SD were plotted according to baseline time considering

expression level and expression rate (Figure 6C; see STAR

Methods). In this representation, the distance from the center re-

flects a relative amplitude change (100% = baseline), and an

angular change between corresponding ZT points before (base-

line) and after SD (ZTSD and ZTREC) can be viewed as a phase

change.

SD caused extensive scattering of gene timing in both tissues,

which lasted for more than 24 h (Figure 6D), indicating that the

phase relationship among genes is largely altered by SD. Despite

this increased scattering, the ‘‘point of gravity’’ of the timing of all

transcripts in liver still closely followed baseline timing. By

contrast, in the cortex, overall timing was impacted to a larger

degree with points of gravity deviating from those observed in

baseline by ca. 8 h at ZT6 and ZT12. It thus appears that the

SD-induced changes in the cortical timing of expression level

and expression change observed of clock genes (Figure 6B)

apply to the entire rhythmic transcriptome in this tissue. On the

second recovery day, scattering of timing remained larger than

in baseline in both tissues, suggesting that the expression of

many genes was still perturbed, although in the cortex, the loca-

tion of the points of gravity suggests that overall, the timing had

reverted to that of baseline (Figure 6D). The effects of SD on gene

timing were not less pronounced for underdamped transcripts

(Figure S5).

Does recovery sleep accelerate transcriptome
recovery?
We previously reported that the expression dynamics of a large

number of genes affected by SD still deviated from baseline long

after the sleep-wake distribution, and EEG activity had reverted

to baseline, i.e., beyond the first 18 h after the SD ended14 (see

Figure 6D). Using our model prediction, we further investigated

the ‘‘recovery’’ dynamics for the rhythmic transcripts affected

by SD, i.e., those transcripts for which differential gene expres-

sion (SD/baseline fold-change) showed an effect size >1

(Z score) at any time point during the 42 h after SD.We first deter-

mined how the fold-change in expression reached at the end of

SD (ZT6SD) related to the time required for expression to again

reach equilibrium, i.e., the time constant, t (Equation 4). Perhaps

counterintuitively, we found that, in general, genes for which the

expression was affected the most at the end of the SD had the

shortest time constants (Figure 7A). More genes displayed

such a strong-and-fast response in cortex than in liver where

the initial responses tended to be smaller but longer lasting

(Figure 7A).

The immediate SD effect and t alone were, however, insuffi-

cient to account for the large variability among genes and tissues

in the time required for gene expression to return to its baseline

rhythmicity (here referred to as recovery). One factor that could

play a role is the extra sleep gained during recovery, which could

be viewed as a second perturbation affecting the time to recover.

To evaluate the effect of recovery sleep on transcriptome recov-
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ery, we simulated gene expression in mice that do not (i.e., ‘‘0 h

recovery sleep’’) or partially compensate for sleep loss by incre-

mentally (hour-by-hour) replacing the subsequent actual sleep-

wake distribution by their ZT-matched baseline sleep (see Fig-

ure S6 for an example of baseline and recovery sleep-wake

behavior in a mouse). Thus, with ‘‘0 h recovery,’’ the entire recov-

ery sleep-wake pattern is replacedwith that of baseline, with ‘‘1 h

recovery’’ only the first hour of the actual recovery sleep-wake

pattern is kept and the remainder replaced with that of baseline,

and so forth, until again the actual 42 h recovery period was

considered. We illustrate this analysis with the simulated expres-

sion ofMfsd4a and Paqr8 with either 0, 6, 12, or 18 h of recovery

sleep (Figures 7B and 7C, middle). We took these two genes

because their cortical response to recovery sleep was opposite,

while both tended to be sleep-wake driven (SWrc = 0.80 and

0.52) and showed a comparable large effect size after SD

(�7.0 and +6.5, respectively at ZT6SD; Figures 7B and 7C, left).

Moreover, Mfsd4a and Paqr8 were under- and overdamped,

respectively (z = 0.76 and 3.17). From the time point in the simu-

lation when the actual recovery sleep was replaced with baseline

sleep, the fold-change of underdamped genes (such asMfsd4a)

can be viewed as an underdamped oscillator relaxing back to

equilibrium with its amplitude decaying exponentially with a

time-constant t (red dashed lines in Figure 7B, middle; compare

to Gene A in Figure 2B, left). For overdamped genes (such as

Paqr8), the reduction in the fold-change follows a simple expo-

nential decay (red dashed lines in Figure 7C, middle; see Gene

B in Figure 2B, left). We then calculated the time required for

the exponential decay part describing the recovery of gene

expression to reach an effect size of <1, at which time point

gene expression was considered to have recovered. We esti-

mated that 50% of all genes affected by SD ‘‘recovered’’ within

12 and 13 h, and an additional 17% and 12% after 18 h of recov-

ery, for cortex and liver, respectively (Figure 7D). This implies that

at the time sleep and EEG phenotypes no longer differed from

baseline, the expression of 32%–37% of genes still had not

recovered. Using the baseline sleep-wake data instead of the

actual sleep-wake recovery data accelerated the recovery of

Mfsd4a expression by approximately 10 h, while it delayed

Paqr8’s recovery by a similar duration (Figures 7B and 7C, mid-

dle). In other words, as more recovery sleep was included, time

of recovery increased forMfsd4a from 62 to 72.5 h when 10 h of

recovery sleep was included and decreased for Paqr8 expres-

sion (from 77.4 to 67.9 h) with 18 h of recovery sleep

(Figures 7B and 7C, right). In general, overdamped (log10 z > 0)

genes, such as Paqr8, seemed to benefit from sleeping more

(Figure 7E, green-black sequence, with green indicating that

including more of recovery sleep accelerated gene recovery),

whereas most genes with an oscillatory component (i.e., under-

damped, likeMfsd4a) delayed their recovery time as more of the

actual recovery sleep was being used for the simulation (Fig-

ure 7E, red-black sequence). We also observed more complex

responses where recovery sleep initially decreases and subse-

quently increases recovery time (Figure 7E, green-red-black

sequence). The opposite sequence could also be observed (Fig-

ure 7E, red-green-black sequence). Clustering the response of

all genes revealed the presence of 6 types of responses (Fig-

ure 7E). In the cortex, recovery sleep delays gene recovery

time for most of the clock genes. By contrast, several IEGs like



Figure 7. Responses to recovery sleep

(A) Effect size of differential gene expression at the end of sleep deprivation (SD; ZT6SD vs. ZT6 in baseline) vs. the model-derived recovery time-constant t in

mouse liver (brown) and cortex (blue) for all rhythmic genes with a sleep-wake-driven contribution (SWrc > 0.25; n = 3,872 and 6,891, respectively). Relative

distributions for t and effect size plotted along their respective axes.

(B) Left: Mfsd4a expression (blue bars, 95% CI; n = 3–5/time point), its model fit (solid black line; dotted line replots baseline fit), and sleep-wake distribution

(purple area; upper graph), with recovery vs. baseline effect size (black line) after SD and hourly values of sleep gain during recovery (purple area; lower graph).

Center: effect size (black lines) when 0, 6, 12, or 18 h of the actual recovery sleep recording (as opposed to baseline sleep) was used for predicting gene

expression after SD. Purple area indicates actual recovery sleep data included in each of the 4 simulations. Dashed red lines are the exponential parts of the

oscillator solution when using only baseline sleep after SD (0 h recovery sleep; see Figure 2B, left). Blue vertical line marks the time point at which the exponential

part reaches an effect size of +1.0 or�1.0, which in subsequent analyses is considered the time at which gene expression has recovered. Right: time point of gene

recovery when including 0–42 h of recovery sleep.

(C) As (B) but for Paqr8.

(legend continued on next page)
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Homer1, Srf, and Egr2 and others like Acot11 take advantage of

the extra sleep after SD to recover faster.

As transcriptome recovery can outlast sleep-wake recovery,

we explored the transcriptome dynamics during the FD protocol

during which subjects recover from transitioning from sleeping

in-phase to anti-phase and back again by calculating the gene

effect size of the predicted differential expression to correspond-

ing baseline ZT time points. For each gene, we calculated the

time point at which the effect size was highest. For example,

for PORCN, a gene with a large effect size (top 2%) and extreme

long time constant of recovery (t = 160 h), the maximum effect

size was reached at time 177 h (Figure 7F). The model predicted

that for most genes, the largest effect sizes occurred around that

time (144–192 h), i.e., during the 28 h day that followed the anti-

phase condition (Figure 7G; days 7–8 of the protocol, Figure 2B).

Such delayed response is reminiscent of the delayed gene-

expression responses observed in mice after SD. The model

also predicted that genes like PORCN, can still deviate from their

baseline dynamics when sleep occurred again in-phase

(Figure 7F).

DISCUSSION

We have presented amathematical framework that can describe

and predict rhythmic gene expression in brain and body tissues

peripheral to the SCN. The model integrates and quantifies the

contributions of circadian and sleep-wake state related factors

and their interaction acting on the daily changes in mRNA levels.

The respective contributions of these factors were represented

as two drives that each alter the acceleration of the ongoing

changes in gene expression within the cells of the tissue. The

model was able to capture the often complex and sometimes

counterintuitive relationships between sleep-wake interventions,

circadian time, and gene expression in cortex and liver in mice

and in blood in humans. One strength of this driven harmonic

oscillator is that it accommodates in a single mathematical

model a variety of expression dynamics. This has the important

advantage that parameter optimization will decide with which

type of dynamics each gene responds to the exerted drives

and which of the two drives is dominant. Moreover, although

expression dynamics of individual genes might be fit better

with simpler models, the use of a single model avoids having

to determine the optimal model for each gene and tissue, which

would render parameter comparison among genes or for the

same genes among tissues impossible.

Although keeping the number of free parameters low, the

model successfully captured changes in gene expression under

a number of experimental conditions that altered sleep-wake

timing relative to circadian timing. Applying the model to mouse
(D) Histogram of gene recovery time points for all rhythmic genes with a SWrc >

covery sleep.

(E) Gain in gene recovery time for all genes in (D) in cortex (left) and liver (right). An

time point to its preceding time point are plotted. Asmore sleep recovery recording

their recovery time. Data were filtered to show only genes with a minimum of 1 h

(F) Effect size for differential PORCN expression (FD vs. baseline) for the expres

sleep-wake patterns under 24 h days after the second in-phase condition. Vertica

177 h).

(G) Time of maximum effect size modeled in the FD protocol for all rhythmic gen
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and human time course transcriptome data yielded several in-

sights that are summarized below. Our work shows that the daily

or circadian changes in in vivo gene expression can only be un-

derstood when both the contribution of sleep-wake history and

circadian time are taken into account. We believe this framework

to be useful not only to describe and predict the changes in gene

expression under various experimental conditions affecting

circadian time or sleep pressure but also that of other physiolog-

ical variables and behaviors.

More than one kind of sleep-wake-driven process
The effects of sleep loss on neurophysiology, performance, and

behavior are often put into the context of the two-process model

of sleep regulation49 in which a sleep-wake-driven process, pro-

cess S, increases and decreases during wakefulness and sleep,

respectively, according to exponential saturating functions. As

we showed here and elsewhere,14,15,43 this type of dynamics

captured well the changes in the cortical mRNA levels of IEGs

characterized as overdamped in the model. Accordingly,

expression of this class of genes responded to SD with a large,

immediate increase, which then quickly decreased during sleep.

Our current analyses showed, however, that the response to

the sleep-wake-driven factor of most predominantly sleep-

wake-driven transcripts did not behave like process S. Instead,

they followed a dynamic characterized with a small response

at the end of SD, a slow recovery (17 h), and a larger variety of

expression patterns, independent of their response to the circa-

dian factor. Among these patterns, a marked inertia in the

response to altered timing of sleep-wake state was observed,

with differences in gene expression becoming evident only after

some delay. This explains why these transcripts have gone un-

noticed in experimental designs that aimed at finding the molec-

ular correlates of process S and therefore only focused on the

immediate effects of sleep loss. In modeling terms, these genes

share the highSWrcwith IEGs but differ in that damping ratio and

natural frequency are low, resulting in large phase lags that

together explain the inertia in the response to extended waking.

The genes following these slower sleep-wake-driven dynamics

might be implicated in the homeostatic regulation of time-

spent-asleep, which differs from that of EEG delta power in

that it has slower dynamics and becomes evident only after pro-

cess S (and EEG delta power) has reverted to baseline.20

Unexpected effects of recovery sleep on transcriptome
recovery
Our analyses showed that deviations from the baseline sleep-

wake state time course altered gene expression patterns.

Perhaps counterintuitively, these deviations included rebound

sleep subsequent to SD, which is generally considered to help
0.25 in cortex (upper, blue) and liver (lower, brown) using the actual (42 h) re-

alyses as in right-hand panels of (B) and (C), but here the differences from one

was included in the simulation, genes either advanced (green) or delayed (red)

advance or delay.

sion simulated during the entire FD protocol and for 10 repetitions of baseline

l blue line indicates the time when themaximum effect size was reached (time =

es.
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restore homeostatic balance. Rebound sleep especially affected

the genes that responded with slower response dynamics and

had an oscillatory component (i.e., underdamped) by delaying

their recovery. The combination of the inertia to respond to en-

forced waking and their sensitivity to rebound sleep resulted in

a flattening of rhythm amplitude that lasted well beyond the

sleep-wake distribution, and EEG activity had reverted to base-

line. The cortical expression pattern of most of the core clock

genes followed this pattern. Please note that we have used the

term gene expression recovery as shorthand for describing the

time it took to again reach the baseline time course without

knowing whether the transcripts indeed play a role in the recov-

ery processes associated with sleep.
Sleep loss leads to intra- and inter-tissue
desynchronization of the transcriptome
Our analyses and model implementation showed that SD in the

mouse caused a long-term change in the phase relationship

among genes within and between tissues. Consistent with

more genes being sleep-wake driven in cortex than in liver, SD

impacted overall timing in cortex to a much larger extent, result-

ing in a large difference in circadian timing between the two tis-

sues. The phase differences were observed at the level of the

whole transcriptome as well as among clock genes. In cortex,

but not in liver, all but one of the clock genes were affected by

sleep-wake state with Clock and Npas2 expression, the two

transcription factors forming the positive arm of the circadian

TTFL, responding, like IEGs, almost exclusively to the sleep-

wake time course over the 4-day experiment. This tissue differ-

ence in the behavior of clock genes might not surprise given

the fact that sleep-wake state is tightly coupled to metabolic ac-

tivity in the cortex and less so in liver. The clock-gene circuitry in

the cortex might thus be used to track and predict time-spent-

awake instead of setting circadian time. Accordingly, clock

genes in the cortex are of little significance as phase markers

of the central circadian clock, as was already suggested by

others for other tissues peripheral to the SCN.50 To further inves-

tigate the relationship between the tissue’s activity and clock-

gene dynamics, one could, e.g., change (metabolic) activity of

the liver specifically without affecting sleep-wake state. We pre-

dict that the expression dynamics of clock genes in the liver

would become less circadian and more ‘‘cortex’’ like.
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This study did not generate new unique reagents.

Data and code availability
d RNA-seq data andmicroarray data have been deposited at GEO and are publicly available as of the date of publication. Mouse

sleep recording and de-identified human summary sleep recording have been deposited at Zenodo and are publicly available

as of the date of publication. Accession numbers are listed in the key resources table.

d Original code and processed data have been deposited at github and zenodo and are publicly available as of the date of pub-

lication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice
62 male mice C57BL/6J were purchased from Charles River, France for RNA-sequencing of cortical and liver tissues. 12 male mice

C57BL/6J were purchased from the University of Tennessee Health Science Center (Memphis, TN, United States of America) for

EEG/EMG recording. Housing conditions for both sets of mice were identical. Mice were acclimated to our facility for 2-4 weeks prior

experimental procedure and kept under 12h light-12h dark conditions. Both experimental procedures were performed at the age of

10-12 weeks and approved by the veterinary authorities of the state of Vaud (SCAV). No additional animal experiments were per-

formed for this publication.

Participants in the Forced Desynchrony (FD)
Transcriptome data was obtained from 22 participants (mean ± SD of age, 26.3 ± 3.4 y; 11males and 11 female). All participants were

white, in good health, without reported sleep problems (Pittsburgh Sleep Quality Index %5), and homozygous for the PER3 VNTR

polymorphism (rs57875989), with equal numbers of 4/4 and 5/5 carriers (11 each).
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Participants in the Constant Routine (CR)
Transcriptome data was obtained from 26 participants (mean ± SD of age, 27.5 ± 4.3 y; 14 males and 12 female). Participants were

predominantly white (19/26), in good health, without reported sleep disorder (Pittsburgh SleepQuality Index%5) and homozygous for

PER3 VNTR polymorphism (rs57875989).

METHOD DETAILS

Mouse sleep deprivation
Sleep deprivation (SD) was performed by gentle handling51 for 6h starting at light onset (zeitgeber time ZT0-6).

Mouse EEG/EMG recordings
Surgery was performed 10 days prior baseline recording as described in Mang and Franken.51 10 days of EEG/EMG signals were

annotated on 4s consecutive epochs based on EEG/EMGpattern. Manual annotation was performed on day 3 of the recordingwhich

includes the SD, other days were annotated using a semiautomated scoring system.12,27

Mouse tissue collection
Mice were anesthetized with isoflurane prior to decapitation. Cortex and liver were rapidly dissected, and flash frozen in liquid nitro-

gen. Time schedule of tissue sampling was described.14

Mouse, RNA-sequencing
Frozen cortex samples were processed as described in Hor et al.14 Liver samples were stored at -140�C and prepared as follows:

total RNAwas extracted usingmiRNeasy kit (Qiagen; Hilden, Germany). Libraries were prepared using 10 ng/ml with Truseq Stranded

RNA. Sequencing was performed on the Illumina HiSeq 4000 SR sequencer with more the 24 million reads per sample.

Human, FD protocol
Participants underwent a first 8h baseline sleep schedule at habitual bedtime followed by a 28h sleep-wake cycle. Dark-dim light (<5

lux) cycle andmeals also followed a 28h cycle. Plasmamelatonin levels weremeasured as described in Hasan et al.52 to assess circa-

dian period in-vivo and to schedule sleep to be in-phase with melatonin levels.53 The protocol received a favorable opinion from the

University of Surrey Ethics Committee and was conducted in accordance with the principles of the Declaration of Helsinki. They all

provided written informed consent.

Human, CR protocol
Participants had to stay awake for 39–41h on their bed, in their individual room in a semi-recumbent position under a low light intensity

<10 lux. Hourly nutritional drinks were provided instead ofmeals. Blood samples were collected hourly to assessmelatonin levels and

every 3h for total RNA extraction. The protocol received a favorable opinion from the University of Surrey Ethics Committee and was

approved by the Institutional Review Board of the Air Force Research Laboratory. The study was conducted in accordance with the

principles of the Declaration of Helsinki. All participants provided written informed consent after receiving a detailed explanation of

the aims and procedures of the study and before any procedures described in the study.

Human, Polysomnography
The EEG, EMG, and EOG (electro-oculogram) were recorded on Siesta 802 devices at a 256Hz sampling rate. After signal filtering,

sleep stages were assessed according to the Rechtschaffen and Kales criteria. Participants’ sleep was aligned using their melatonin

phase and mean sleep amount was calculated using NREM sleep (stages 1–4) + REM sleep and considered baseline sleep onset as

‘ZT0’ in figures.

Human, RNA extraction, microarray hybridization
Whole peripheral blood was collected using PAXgene Blood RNA tubes. cRNA was hybridized on a 4x44K custom oligonucleotide

microarray with additional probes for 20 clock/sleep-related genes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mouse, Gene quantification from RNA-seq
Gene quantificationwas performed as follows for both cortex and liver samples: Illumina readswere filtered using fastp54 to keep high

quality reads and remove adapter sequences. Reads were aligned on the mouse reference genome mm10 (GRCm38) using STAR

v2.7.0e55 with default parameters. Read counts was done by STAR using ‘‘–quantMode GeneCounts’’, taking only reverse strand

mapped reads. Genes with low counts (mean counts overall samples < 10) were filtered and normalization was performed with

edgeR.56 Gene expression from the liver was put on Gene Expression Omnibus (GEO). Batch effects were removed using Combat57

prior fitting using our model.
Cell Systems 15, 610–627.e1–e8, July 17, 2024 e2
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Human, Gene quantification from microarray
Quality control and processing were performed with R package limma.58 Probes intensities were corrected for background and

Quantile normalized. Outliers detected with arrayQualityMetrics function and PCA were removed (3/714 samples). For both proto-

cols, blood samples time-point were aligned using participant melatonin phase (i.e., defined as ‘time point’ in FD dataset metadata,

and ‘circadian phase’ in CR dataset metadata). Probes were corrected for repeated measure on the same participant using a mixed-

model with a random participant intercept and fixed effects of sleep condition (in-phase, anti-phased, 6h sleep + CR, 10h sleep +CR)

and time points.

Derivation of the driven damped oscillator model
Our goal was to develop a simplemodel which had the ability to exhibit both exponential and oscillatory behavior. The driven damped

harmonic oscillator model is one such model. Here we add additional details to further explain how the driven damped harmonic

oscillator equation can result from a simple model of the interaction of a gene with its environment and external driving factors. In

the manuscript we state

dX

dt
= aY � gX;
dY

dt
= � bX +FðtÞ; (Equation 8)

where XðtÞ is the level of mRNA of a gene, YðtÞ is a combination of intra-tissue factors which we term ‘tissue environment’, and FðtÞ
captures external driving factors including sleep and wake and circadian rhythmicity. The constants a;b;g describe the effect of the

environment on the gene, the effect of the gene on the environment and the gene degradation rate respectively.

We let XðtÞ = Xb + xðtÞ, YðtÞ = Yb + yðtÞ, FðtÞ = Fb + fðtÞ, where xðtÞ,yðtÞ,fðtÞ model the deviation from a stationary baseline.

Substituting XðtÞ, YðtÞ, FðtÞ into Equation 8 gives

dx

dt
= ay � gx + ðaYb � gXbÞ;
dy

dt
= � bx + fðtÞ+ ð�bXb + FbÞ: (Equation 9)

Since the stationary baseline values satisfy Equation 8with dX=dt = dY=dt = 0, the terms in the brackets on the right-hand side of

Equation 9 are zero, leaving

dx

dt
= ay -- gx; (Equation 10)
dy

dt
= � bx + fðtÞ: (Equation 11)

We note that while we would expect XðtÞ> 0, xðtÞ may be positive or negative.

Now, differentiating Equation 10 with respect to time gives

d2x

dt2
= a

dy

dt
� g

dx

dt

Substituting for dy=dt from Equation 11 and re-arranging gives

d2x

dt2
+ g

dx

dt
+ab x = afðtÞ

i.e., the equation of a damped oscillator with natural frequency u0 =
ffiffiffiffiffiffi
ab

p
driven by afðtÞ

Solutions of the driven damped oscillator model
Consider the driven damped harmonic oscillator

d2x

dt2
+ g

dx

dt
+u2

0x = C+F1 cos ut +F2 sin ut; (Equation 12)
e3 Cell Systems 15, 610–627.e1–e8, July 17, 2024
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with initial conditions

xð0Þ = a;
dx

dt

����
t = 0

= b;

where we note that the right-hand side of Equation 12 could alternatively be written as

C+A sinðut + 4Þ
where F1hA sin 4, F2hA cos 4. Solutions to Equation 12 may be found using standard methods of calculus and consist of a linear

combination of the ’complementary function’ xCFðtÞ, which is the solution to the homogeneous equation, namely

d2x

dt2
+ g

dx

dt
+u2

0x = 0 (Equation 13)

and the ’particular integral’ which is one solution to the inhomogeneous Equation 12. Here we separate the particular integral into two

parts, xh and xcðtÞ where xh is the consequence of a constant driving term C and xcðtÞ is the consequence of the oscillatory driving

term F1 cos ut +F2 sin ut. Hence the solution to Equation 12 takes the form

xðtÞ = xCFðtÞ+ xh + xcðtÞ: (Equation 14)

The particular solution for the constant driving term is given by

xh =
C

u2
0

; (Equation 15)

and that for the two oscillatory terms as

xc = D cos ut + E sin uthF sinðut + ~4Þ; (Equation 16)

where

D =

�
u2

0 � u2
	
F2 � guF1

g2u2+
�
u2

0 � u2
	2
E =
guF2+

�
u2

0 � u2
	
F1

g2u2+
�
u2

0 � u2
	2 (Equation 17)

and F =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2+E2

p
; tan~4 = D=E.

The solution to the homogeneous equation,xCF , separates into three types depending on the sign of g2 � 4u2
0. Specifically, if g

2 �
4u2

0 > 0, solutions are ’overdamped’ and

xCF = Aoe
a1t +Boe

a1t; (Equation 18)

where

a1;2 =
�g±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 4u2

0

p
2

are real and negative.

If g2 = 4u2
0, solutions are ’critically damped’,

xCF = ðAct + BcÞe�gt=2: (Equation 19)

Finally, if g2 � 4u2
0 < 0, solutions are ’underdamped’,

xCF = ðAu cos u1t + Bu sin u1tÞe�gt=2 (Equation 20)

where u2
1 = u2

0 � g2=4. We note that it is a matter of convention that the solutions for the overdamped and underdamped cases are

written as exponential and trigonometric functions, respectively. Specifically, solutions for the underdamped case may be written in

the formof Equation 19 but with a1;2 complex instead of real. Similarly, the overdamped casemay bewritten in the form of Equation 19

but the frequency u1 will be imaginary instead of real. The fact that the two forms are equivalent is relevant for our separation of circa-

dian and sleep-wake effects described below, as it means that a single formulation covers both cases.

Values for the constants Ao;Bo or Ac;Bc or Au;Bu may be found using the initial conditions. For example:

Au = a � C

u2
0

� D;
Cell Systems 15, 610–627.e1–e8, July 17, 2024 e4
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Bu =

b+
g

2

�
a � C

u2
0

� D

�
� uE

u1

Hence, the solution is completely determined by the seven constants in Equation 12 namely the damping parameters g, the natural

frequency u0, the size of the constant driving term C, the two parameters specifying the sinusoidal driving term, either the amplitude

and phase (A and 4) or equivalently F1 and F2 and the two values specifying the initial conditions a and b. The solution consists of

three parts, where xh is a constant, xcðtÞ is oscillatory with a fixed amplitude and phase. In the underdamped case xCFðtÞ, is a damped

oscillatory term (see Equation 20) so

xðtÞ = xCFðtÞ + xh + xcðtÞ = ðAu cos u1t + Bu sin u1tÞe�gt=2 +
C

u2
0

+ D cos ut +E sin ut (Equation 21)

In the overdamped case xCFðtÞ is non-oscillatory (see Equation 19), and instead the general solution takes the form

xðtÞ = Aoe
a1t +Boe

a1t +
C

u2
0

+D cos ut +E sin ut: (Equation 22)

Finally, in the critically damped case the general solution takes the form

xðtÞ = ðAct + BcÞe�gt=2 +
C

u2
0

+ D cos ut +E sin ut: (Equation 23)

Process-S-like dynamics in the driven damped oscillator
Process-S-like sleep-wake driven processes are usually described as exponential functions of the form

SðtÞ = ~C � ð ~C � S0Þe� kt

where SðtÞ is homeostatic sleep pressure, ~C is the asymptote i.e. SðtÞ/ ~C as t /N, k is the decay rate and SðtÞ = S0 at t = 0. In the

absence of a sinusoidal driving term, the solution for the critically damped driven oscillator, given in Equation 23, reduces to SðtÞ for
the initial conditions xð0Þ = S0 and x0ð0Þ = kð ~C � S0Þ.

Piecewise constant driving
Sleep is assumed to result in a piecewise constant driving term, such that for t˛ ðtn� 1;tnÞ, where n is the interval number n = 1;2. it

takes the valueCn where the magnitude of theCn is directly proportional to the fraction of time asleep. Taking the initial conditions for

the nth interval as

xðtn� 1Þ = an� 1;
dx

dt

����
t = tn� 1

= bn� 1

and using Equation 12, then for the underdamped case the solution for xðtÞ in the nth interval, xnðtÞ, has the general form

xnðtÞ = ðAn cos u1t + Bn sin u1tÞe�gt=2 +
Cn

u2
0

+ D cos ut +E sin ut; (Equation 24)

where D and E are

D =

�
u2

0 � u2
	
F2 � guF1

g2u2+
�
u2

0 � u2
	2 and E =

guF2+
�
u2

0 � u2
	
F1

g2u2+
�
u2

0 � u2
	2 ; (Equation 25)

as in Equation 17 An and Bnsatisfy the linear simultaneous equations

an� 1 = ðAn cos u1tn� 1 +Bn sin u1tn� 1Þe�gtn� 1=2 +
Cn

u2
0

+D cos utn� 1 +E sin utn� 1;

bn� 1 = � g

2
ðAn cos u1tn� 1 +Bn sin u1tn� 1Þe�gtn� 1=2 + ð � u1An sin u1tn� 1 +u1Bn cos u1tn� 1Þe�gtn� 1=2 � uD sin utn� 1 +Eu cos utn� 1

(Equation 26)

Solving Equation 26 gives

An =
egtn� 1=2

u1


�
� g

2
sin u1tn� 1 + u1 cos u1tn� 1

��
an� 1 � Cn

u2
0

�
� sin u1tn� 1 bn� 1 +

�g
2
sin u1tn� 1 � u1 cos u1tn� 1

�

�ðD cos utn� 1 + E sin utn� 1Þ � u sin u1tn� 1ðD sin utn� 1 � E cos utn� 1Þ
�
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Bn =
egtn� 1=2

u1


�g
2
cos u1tn� 1 + u1 sin u1tn� 1

��
an� 1 � Cn

u2
0

�
+ cos u1tn� 1 bn� 1 �

�g
2
cos u1tn� 1 + u1 sin u1tn� 1

�

�ðD cos utn� 1 + E sin utn� 1Þ + u cos u1tn� 1ðD cos utn� 1 � E sin utn� 1Þ
�

(Equation 27)

Hence, given u0, g, a constant Cwhich relates faction of time asleep to the piecewise constant drive i.e., Cn = C3 fraction of time

asleep, the amplitude A, phase 4 and angular frequency u (here, 2p=24 radians / hour) of the oscillatory driving term the solution is

calculated as follows:

d From u0 and g calculate u1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2

0 � g2Þ
q

d From A and 4 calculate the values of F1 and F2 since F1 = A sin 4, F2 = A cos 4

d Calculate D and E from Equation 25.

d Work iteratively through each time interval, starting at t0. For each interval the solution xnðtÞ is derived by evaluatingAn;Bn, using

Equation 27. Once xnðtÞ is found, the starting conditions an and bn for the next interval may be found by evaluating xnðtnÞ and
x0nðtnÞ where x0nðtnÞ is the derivative of xnðtnÞ with respect to time.

To start this iterative process, values for a0 and b0 are required. To ensure that the results were insensitive to the choice of a0 and

b0, the sleep and circadian drives were prepended by 20 replicates of the baseline day.

The five required constants u0, g, C, A and 4 could be found by fitting the analytical solution to the gene expression data. In prac-

tice, these constants were evaluated instead by numerically integrating the oscillator equations using a fourth order Runge-Kutta

methodwith a fixed step size. For a given set of constants, the numerical solution and the analytical solutionmatched to a high degree

of accuracy (typical error less than 10� 7, close to the precision of the variables), suggesting that any numerical errors are negligible.

We note that the fitting was done with a piecewise constant sleep-wake drive, which in the nth interval is given by bWWnðtÞ+ bSSnðtÞ
rather than using a sleep drive, as described in the analytical solution above. However, it is straightforward to transform between the

two alternatives since in each 0.1 h interval the mouse is either asleep or awake, so WnðtÞ+SnðtÞ = 1. Hence the sleep-wake drive

may alternatively be formulated as a constant plus sleep drive, i.e., bW + ðbW � bSÞSnðtÞ.
The numerical solution yields a single fitted time series for each gene. The analytical solution then enables that single time trace to

be separated into components driven by the different driving terms equivalent to the xCFðtÞ, xh and xcðtÞ in Equation 21. Specifically,

the term xcðtÞ is the response to the oscillatory drive. The term xh is a response to the (piecewise) constant drive. The xCFðtÞ is normally

termed as the ’transient’ since xCFðtÞ/0 as t/N. Here, we find that xCFðtÞ responds to the short timescale changes in fraction of

time asleep so is not negligible. Consequently, in decomposing the fitted timeseries into circadian and sleep-wake driven contribu-

tions, we consider that circadian contributions are given by xcðtÞ and sleep-wake state contributions are given by xh + xCFðtÞ.
The method used to calculate u1;D;E;an; bn;An and Bnwas described above for the underdamped case and coded in MATLAB

and R. The same piece of code also worked for the overdamped case since, as discussed above, it is a matter of convention rather

than a fundamental difference in the mathematical formula that distinguishes the two cases.

Numerical solution
To find optimal parameters for the dynamics of each gene expression we (repeatedly) numerically integrated the driven harmonic

oscillator. We first transformed the second order ordinary differential equation (ODE) into two first order ODEs,

x01 = x2
x02 = F � g x2 � u2
0 x1

where x1 x and represents normalized mRNA counts and the prime (‘) indicates differentiation with respect to time. We then imple-

mented a 4th order Runge-Kutta (RK4) numerical method to approximate the solution using a fixed time step of 0.1 hour. With a fixed

step size of 0.1 hour, RK4 requires values every 0.05 hours.

Model initial values and optimization procedure
The equilibrium position of the model was set as follows. For each gene or probe, we fitted a cosine to the baseline gene expression

(Time 24–48 in mice, FD: in-phase in human) and used the intercept of the model as the default equilibrium position. Initial values of

position x1ð0Þ and speed x2ð0Þwere set at the equilibrium position of themodel and at 0, respectively. The baseline sleep-wake cycle

(mean baseline sleep in mice, habitual bedtime in human) was repeated for 20 days prior recordings to let the model reach steady

state. In humans, an extra free parameter was set for the oscillator equilibrium position in the CR experiment to consider mean dif-

ference between FD and CR. This effect could not be corrected in microarray processing directly as no RNA sampling point overlap

between experiments, but can be corrected with our model as habitual bedtime sleep are comparable between FD and CR.

Optimization was performed using the box-constrained PORT routines method (nlminb) implemented in the optimx/R package.

Optimization was done by minimizing the Residual Sum of Square (RSS) between the fit of the model and the expression value of

the gene/probe analyzed. We fixed a lower and upper bound for each parameter: bW and bS bounds were set from 0–10 and
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-10-0 (also tested for opposite effect). u0 bound was set from 2p/72 to 2p/12 (to avoid fitting oscillation frequencies too high with

respect to gene expression sampling rate), g bound was set from 0.01 to 100, A and 4 bounds were set from 0 to 10 and 0 to 2p.

A penalization procedure of the RSS during the optimization was performed to avoid unstable fit in baseline and thus to ensure a

steady state of the oscillator model. The maximal and minimal value (ytmax and ytmin) of the oscillator (i.e., the fitted expression) in

the 24h of baseline prior to the SD, FD, and CR experiments were compared with the level of the oscillator at the same 2 time-points

during replicated baselines, according to RSS = RSS+ l ðytmax � ytmax� 24Þ2 + l ðytmin � ytmin� 24Þ2 with l = 1000. The proced-

ure was performed for up to 5 replicate baseline days prior to the baseline of the SD, FD, and CR experiments. This penalization was

only applied for parameter optimization and not for computing model statistics.

Model Statistics
Goodness of fit was estimated using Kendall’s t ranked correlation betweenmodel fit and expression values. Kendall’s twas used as

R2 is inadequate for nonlinear regression of time series.59,60 Bayesian Information Criterion (BIC) of themodel was calculated from the

Negative log likelihood (NLL), assuming that model residuals were independent and followed a Gaussian distribution.

RSS =
Xn

i = 1

ðyi � byi Þ2;
NLL =
�n
2

�
�
�
logð2pÞ + log

�
RSS

n

�
+ 1

�
;

BIC = � 2ð�NLLÞ+ k logðnÞ:
Where n is the number of samples, yi the gene expression value at time-point i, and k the number of free parameters of the model +

1 (the biased estimator of the error variance cs2e ). For our model (H1): k = 7 for mouse dataset and k = 8 for human dataset. For the flat

model (H0): k=2 for mouse dataset and k=3 for human dataset.

For each gene, we computed a 95% confidence interval (CI) for each estimated parameter using 200 non-parametric bootstraps

with replacement of the samples. In human dataset, we generated new samples using a resampling of the participants within each

experiment (i.e., FD and CR). Inmouse, as each data-point was independent, new samples were generated by resampling each time-

point independently, therefore keeping the same amount of data-point per time-points. With this method, we could ensure that new

samples generated in mouse and human contain the same number of data-points and time-point coverage as the original data.

Dependance between parameters was assessed by computing correlations for each gene using bootstraps results. The param-

etersbW and bS were found to be negatively correlated (mean Spearman’s correlation: r=-0.84), because they were optimized for

opposite sign and bigger differences increases the sleep-wake response amplitude. g and u0 were found to be slightly positively

correlated (r=0.38). This correlation was driven by overdamped genes (r=0.56; see example for cortical transcripts in Figure S7)

and not observed (r=0.003) for strongly underdamped genes (zeta <0.1). Other optimized parameter pairs did not correlate.

Model Comparisons
The full oscillator model (H1) was compared to 4 alternative models (HA) to explain expression dynamics. The first model (‘Indepen-

dent time-point effect’) explains a gene expression (y) as a multiple linear regression with an intercept and a vector of fixed effect (b)

for time-points (j). Time-points are encoded as dummy variablesmatrix (Xj). In mouse, thismodel has 18 parameters and 35 in human.

1 parameter per time-point + intercept; in human an extra effect is considered for the difference between the CR and FD experi-

ments (bCR)

y = b0 + bCR + bjXj + e

The ‘Sleep-wake oscillator’ model considers that sleep and wake are the only drivers of gene expression. The circadian drive is set

to 0:

fC = A sinðut + 4Þ = 0

This model therefore has 4 parameters in mouse: g;u0, bw;bs and 5 in human considering differences between FD and CR (bCRÞ.
The ’Circadian oscillator’ model considers that the circadian drive is the only driver of gene expression. The sleep-wake drive is set

to 0:

fSWðtÞ = bwWðtÞ+ bsSðtÞ = 0

This model therefore has 4 parameters in mouse: g;u0;A, and 4. And 5 in human, considering differences between FD and CR

(bCRÞ. The last model (’Circadian with sleep-wake masking’) is a multiple regression model. Gene expression (yi) is described using

a cosine model with a linear effect of sleep and wake amount at sampling time (t). This model has 5 parameters in the mouse and 6

in human:
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y = b0 + bCR + b1 sinðutÞ+ b2 cosðutÞ+ bwWðtÞ+ bsSðtÞ+ e

The null model (H0) is a simple linear regression with only an intercept:

y = b0 + bCR + e

We compared the BIC statistic of each of the 4 HAmodels and the H0model to that of H1. The BIC considers themodel’s goodness

of fit while penalizing for complexity. A DBIC was calculated for each of the 5 comparisons with positive values indicating support for

H1 and negative values indicating support for HA or H0. A DBIC > 2 is considered as positive (2–6), strong (6–10), or very strong (>10)

evidence.61

PCA analysis
PCA analysis in mouse and human and projection of model fitted values were performed using R package FactoMineR.62 Only tran-

scripts with a DBIC10 > 2 were retained. Data matrix used for PCA analysis are composed of transcripts normalized expression

(scaled log2 CPM and log2 intensities) for each time-points (i.e. 7237 [number of genes] x 62 [number of samples] in mouse cortex,

5770x62 in mouse liver, 18548x218 in human FD, 18548x427 in human CR). In human, 23.9% of transcripts contains at least 1

missing value (e.g. 98.7% of transcripts with < 3/218 missing expression in FD). Missing values were imputed using Rpackage mis-

sMDA. The ellipses were computed using 95%confidence interval of time-points barycentre. In human,missing values were imputed

using R package missMDA.63

Cortex and liver transcriptome timing
To estimate local biological time from clock genes in mouse cortex and liver, we used the R package TimeSignatR (https://github.

com/braunr/TimeSignatR).48 Baseline gene expression was used to train the elastic net, penalty parameter alpha and lambda

were chosen using a leave-one-out cross validation. Predicted values were obtained from gene expression after sleep deprivation

and from model fitted expression.

Using a similar strategy, local biological time was estimated for all rhythmic genes. We used the fitted expression level and fitted

expression rate from our oscillator model as the 2 explanatory variables required to linearize circular time. Expression level and

expression rate at ZT0, -6, -12, and -18 in baseline were fitted to the cartesian coordinate angle of a 24h clock using a bivariate linear

model.48 Genes were filtered for a minimal R2 value of 0.6 because rhythmic genes for which the baseline time course deviated too

much from a sinewave-like dynamic scattered too much precluding reliable mapping to a 24h clock. 9 and 4% of all rhythmic genes

were excluded in cortex and liver, respectively. Based on the fitted expression level and expression rate of our model after sleep

deprivation, we predicted the corresponding time in baseline.
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