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The immunometabolic roots of aging 
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Aging is one of the greatest risk factors for several chronic 
diseases and is accompanied by a progressive decline of cellular 
and organ function. Recent studies have highlighted the changes 
in metabolism as one of the main drivers of organism dysfunctions 
during aging and how that strongly deteriorate immune cell 
performance and function. Indeed, a dysfunctional immune 
system has been shown to have a pleiotropic impact on the 
organism, accelerating the overall aging process of an individual. 

Intrinsic and extrinsic factors are responsible for such metabolic 
alterations. Understanding the contribution, regulation, and 
connection of these different factors is fundamental to 
comprehend the process of aging and develop approaches to 
mitigate age-related immune decline. Here, we describe metabolic 
perturbations occurring at cellular and systemic levels. 
Particularly, we emphasize the interplay between metabolism and 
immunosenescence and describe novel interventions to protect 
immune function and promote health span. 
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Introduction 
Several chronic diseases are direct consequences of the 
natural process of aging. In this context, 12 age-asso-
ciated hallmarks and their complex interconnections 

have been identified and suggested as the main drivers 
of the aging process [1]. Within those, an important 
factor contributing to systemic aging is the metabolic 
dysfunction occurring in immune cells, which has been 
shown to profoundly impact the aging process at or-
ganism level [2,3]. Metabolic defects drive the acquisi-
tion of senescence phenotype in immune cells, which in 
turn promote premature senescence and consequent 
multi-organs morbidity and accelerated aging. 

In this review, we will explore the intrinsic metabolic 
changes occurring within aged immune cells, including 
alterations in mitochondrial function, autophagy, and redox 
homeostasis, which collectively impair immune cell func-
tionality. In addition, we will examine environmental and 
systemic modifications, hereafter referred as extrinsic fac-
tors, such as inflammaging and the senescence-associated 
secretory phenotype (SASP), which contribute to meta-
bolic dysfunction in immune cells. Finally, we will in-
tegrate human data and clinical insights to address how a 
healthy lifestyle, including exercise and nutrition, can po-
sitively impact the aging immune system. 

Overall, we intend to provide an overview of the meta-
bolic roots of immune aging, highlighting the interplay 
between metabolism and immunosenescence and sug-
gesting potential therapeutic strategies for mitigating 
age-related immune decline. 

Intrinsic factors 
Immune cells rapidly switch their metabolic programs in 
response to activating stimuli and to support fate com-
mitment. Increasing evidence has demonstrated the pi-
votal role of cellular metabolism as a central regulator of 
immune function and how factors such as aging can alter 
metabolism of immune cells and thus their overall 
functionality. In fact, aging impairs both the innate and 
the adaptive immune cells, making older adults more 
susceptible to infections, autoimmune diseases, cancer, 
as well as less responsive to vaccines. 

Age-associated changes in metabolism have been de-
scribed especially in innate immune cells (Figure 1). 
Indeed, macrophages are considered as sentinel of the 
body, dedicated both to fighting infection and healing 
wound. Macrophages derived from aged mice are char-
acterized by dysfunctional nicotinamide adenine dinu-
cleotide (NAD) metabolism and cellular quality control 
processes such as mitophagy and autophagy. Old 
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macrophages have reduced NAD levels due to the 
downregulation of the expression of genes encoding for 
enzymes of the de novo synthesis pathway [4], which 
actuates NAD synthesis from dietary tryptophan 
through the kynurenine pathway. Low NAD level trig-
gers mitochondrial dysfunction and increases in-
flammatory phenotype. These phenomena are 
exacerbated in old macrophages, where the lack of an 
efficient mitophagy machinery leads to the accumulation 
of damaged mitochondria and decline of metabolic ca-
pacity. In fact, old macrophages fail to promote mi-
tochondria ubiquitination [5] and downregulate the 
expression of autophagy proteins, such as autophagy- 
related 5 (ATG5) and microtubule-associated proteins 
1A/1B light chain 3 B [6,7]. These metabolic alterations 
lead to defective maturation and functionality, and 

together with an increased release of pro-inflammatory 
cytokines, contribute to the systemic chronic sterile in-
flammation found in older individuals. 

Similarly, monocytes contribute to chronic inflammation 
in older individuals [6,8] by downregulating two key 
genes, PLA2G4B and ALOX15B, encoding for enzymes 
involved in the conversion of phosphatidylcholine to 
anti-inflammatory lipoxins [9]. These features are ac-
companied by increased oxidative stress and higher 
abundance of reactive oxygen species (ROS) [10] trig-
gered by nicotinamide adenine dinucleotide phosphate 
oxidase hyperactivation [11]. 

Neutrophils are the most abundant immune cells in 
human blood and act as first-line defense against micro- 

Figure 1  
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Immunometabolic reprogramming during aging and age-associated pathologies. During aging, both adaptive and innate immune cells acquire 
metabolic deficiencies that lead to impaired functionality. T and B lymphocytes engage a basal glycolytic metabolism and present defective 
mitochondria, leading to an inflammatory phenotype and decreased Ab production, respectively. On the other hand, DCs, macrophages, and 
neutrophils accumulate oxidative stress, low NAD levels, or impaired FAO, which leads to poor antigen presentation and phagocytic properties. 
Moreover, due to several stress stimuli, such as DNA damage or metabolic stress, aged cells can enter a state of senescence, which is linked to a pro- 
inflammatory phenotype known as SASP. This pro-inflammatory phenotype can also be acquired by a chronic activation of innate cells due to chronic 
infections, visceral adipose tissue, microbiota changes, or intrinsic immune defects per se. Altogether, this drives a chronic and systemic inflammation 
that, together with the intrinsic immune defects, accelerate aging processes and promote the appearance of age-associated pathologies.   
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organisms. In healthy aged blood donors, neutrophils 
also bear metabolic and cellular dysfunctions character-
ized by decreased fatty acid oxidation capacity and al-
tered calcium homeostasis, which lead to reduced 
phagocytic and antimicrobial activities [12,13]. 

Aging impacts also professional antigen-presenting cells, 
such as dendritic cells (DCs), thus profoundly perturbing 
adaptive immune response. In fact, aging impairs meta-
bolic pathways, such as PI3K-Akt, which governs key 
functions of DCs, including antigen uptake, antigen pre-
sentation, and release of antiviral cytokines [14]. Together 
with an increased oxidative stress due to the defective 
activity of nicotinamide adenine dinucleotide phosphate 
oxidase and ROS scavenger enzymes, old DCs carry major 
mitochondrial dysfunction due to an abnormal mitochon-
drial depolarization and impaired proteostasis [11,15,16]. 
Altogether, aging perturbs DCs metabolism at several le-
vels, which in turn reduces their capacity to efficiently 
present antigens and secrete antiviral cytokines, hindering 
a proper activation of adaptive immunity [17]. 

How aging influences the metabolism of less re-
presented innate cells, such as basophils and eosinophils, 
is poorly investigated. Few studies have evidenced an 
expansion of these cells in old mice but with reduced 
degranulation and cytokines production capacity [18,19]. 

Metabolism is an important regulator of survival, differ-
entiation, and function of adaptive immune cells (Figure 
1). Therefore, age-related metabolic changes are often re-
sponsible for defective proliferative response, activation, 
and survival of T cells. During aging, mitochondrial mass 
has been shown to increase in both CD4 and CD8 T cells 
derived from human subjects [20–22]. However, the higher 
mitochondrial mass does not result in improved mi-
tochondrial activity. Instead, the accumulation of dys-
functional mitochondria leads to an overall increase in 
mitochondrial content with much lower metabolic capacity 
and higher production of ROS [22]. Importantly, this ac-
cumulation of damaged mitochondria derives from in-
efficient cellular quality control processes, such as 
autophagy and mitophagy [23–25], which are deeply im-
paired during aging. Indeed, few recent studies have sug-
gested that reduced level of spermidine and FOXO1 
activity in old animals impair mitophagy and autophagy 
processes and lysosome activity [26,27], describing a novel 
molecular mechanism orchestrating metabolic dysfunction 
in old T cells. Moreover, the elevated ROS and mi-
tochondrial dysfunction reprogram T cells’ fate toward an 
effector/pro-inflammatory phenotype [28]. Interestingly, 
old T cells display an increased basal glycolytic rate due to 
higher activation of the mammalian target of rapamycin 
(mTOR) and mitogen activated protein kinase signaling  
[29,30]. However, old murine T cells fail to engage a 
proper and efficient glycolysis upon stimulation [31], re-
ducing their capacity to fully mount an appropriate 

adaptive immune response. Interestingly, the deletion of 
the transcription factor TFAM, master regulator of mi-
tochondrial function and biogenesis, in young T cells ac-
celerates T cell aging by recapitulating the metabolic 
defects observed in old T cells and contributing to in-
flammaging and organism-wide premature aging [2]. 

On the contrary of T cells, to date, few studies have de-
scribed the impact of aging on B cell metabolism and 
function. Similar to old T cells, old B cells have higher basal 
rate of glycolysis and higher expression of glucose trans-
porters, such as GLUT-1 [32,33]. Moreover, old B cells have 
also higher mitochondrial mass; however, the limited de-
toxification machineries lead to increased ROS generation 
and reduces mitochondrial energy production [34]. 

In conclusion, aging drastically affects the metabolic effi-
ciency of both innate and adaptive immune cells, impairing 
their fate commitment and function. A deeper analysis of 
the metabolic processes governing the age-driven immune 
dysfunction will help in the future to develop intervention 
to rejuvenate immune cell function and, consequently, 
mitigate the ravages of aging in the older population. 

Extrinsic factors 
Besides the cell-intrinsic defects described above, a low- 
grade, chronic, and sterile systemic inflammation emerges 
in aged individuals [35,36]. This phenomenon, known as 
‘inflammaging’, is the consequence of two main phe-
nomena: the accumulation of senescent cells and the 
chronic activation of the innate immune system (Figure 1). 

Cellular senescence is a state of irreversible cell cycle arrest 
triggered by stress stimuli to prevent cellular damage. 
Among these stress stimuli, DNA damage and metabolic 
burden are the main drivers of this process, particularly 
during aging, where, together with a reduced clearance 
capacity of the immune system, they lead to an aberrant 
accumulation of senescent cells. In addition to the cell 
cycle arrest induced by p53-p21 and p16-pRb pathways, 
senescent cells become moderately resistant to cell death 
and acquire a peculiar SASP characterized by the increased 
production of pro-inflammatory cytokines (e.g. interleukin 
[IL]-1β, IL-6, or IL-8), chemokines (e.g. CCL2, CCL5), 
growth factors (e.g. tumor growth factor beta, TGFβ) or 
bioactive lipids (prostaglandins and leukotrienes), which 
sustain ‘inflammaging’ [37]. 

In this context, mitochondria play a central role in the 
regulation of senescence and age-associated diseases. 
Mitochondrial dysfunction can be driven during aging by 
mitochondrial DNA mutations, loss of sirtuin activity, 
disruptions of the electron transport chain, mitophagy 
defects, or production of ROS, overall leading to the 
so-called mitochondrial dysfunction–associated senescence 
(MiDAS) phenotype [38]. Mechanistically, cells presenting 
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mitochondrial dysfunction release damage-associated mo-
lecular patterns that trigger the NLRP3 inflammasome and 
the production of pro-inflammatory cytokines. 

Another factor bridging mitochondrial dysfunction and 
senescence is NAD+ metabolism. Indeed, MiDAS is 
characterized by a lowered NAD/NADH ratio that restricts 
glycolytic activity and ATP production, promoting 5’ ade-
nosine monophosphate-activated protein kinase (AMPK) 
activation and cell cycle arrest [38]. NAD decline has been 
observed across multiple tissues during aging, such as liver, 
white adipose tissue, or skeletal muscle [39]. However, 
whether NAD depletion is a driver or a consequence of 
senescence is still unclear. Some investigations have re-
ported that NAD decline with age is caused by the upre-
gulation of the NAD-cyclase degrading enzyme CD38  
[39]. CD38 is upregulated via nuclear factor kappa-light- 
chain-enhancer of activated B cells (NF-kB) in response to 
SASP-associated factors and is part of the biosynthetic 
pathway of the immunomodulatory molecule adenosine, 
suggesting NAD decline as a downstream effect of CD38 
activity [40]. Similarly, Poly (ADP-ribose) polymerase ac-
tivation in response to DNA damage has been shown to 
rapidly deplete NAD cellular levels [41,42]. Moreover, low 
NAD levels further disrupt mitochondrial fitness, gen-
erating a positive feedback loop that accelerates cellular 
senescence. Restoration of NAD levels through nutritional 
supplementation with NAD precursors or CD38 depletion 
has been shown to maintain mitochondrial fitness and 
prevent age-related pathologies in murine models, high-
lighting the key role of NAD homeostasis in the regulation 
of senescence and aging [39]. 

Senescent cells also undergo a metabolic reprogramming 
that copes with lack of proliferation while actively syn-
thesizing SASP factors. Specifically, senescent cells sig-
nificantly alter their lipid metabolism. They increase the 
expression of enzymes involved in β-oxidation or fatty acid 
synthesis (e.g. fatty acid synthase), which are required for 
energy production [43,44]. Moreover, senescent cells acti-
vate phospholipase A2 and produce high levels of free 
polyunsaturated fatty acids (PUFAs), such as arachidonic 
acid or docosahexaenoic acid, which are incorporated into 
triglycerides and stored as lipid droplets. Alternatively, free 
PUFAs are converted in oxylipin via cyclooxygenase-2, 
which can be secreted and imported by neighboring cells 
or in an autocrine manner, leading to the activation of RAS- 
p53 and promoting cell cycle arrest [45,46]. In addition, cell 
cycle is further hindered in senescent cells by a decreased 
levels of deoxynucleotides triphosphates required for DNA 
biosynthesis and deterioration of autophagy and lysosomal 
function [47,48]. 

Together with the accumulation of senescent cells, the 
age-driven chronic activation of the innate immune cells 
strongly contributes to ‘inflammaging’. The triggering 
causes of innate immune system activation are varied, 

including the accumulation of visceral adipose tissue, mi-
crobiota dysbiosis, chronic infections, and intrinsic immune 
defects, are the most studied. In this context, the hema-
topoietic stem cell myeloid bias and the restricted naïve T 
cell pool imposed by aging together with the presence of 
chronic viral infections, such as cytomegalovirus or HIV, 
lead to a pro-inflammatory phenotype in both myeloid and 
lymphoid compartments, contributing to ‘inflammaging’. 

Altogether, ‘inflammaging’ is often the main responsible for 
the development of chronic age-associated diseases, in-
cluding metabolic syndrome, osteoarthritis, type 2 diabetes 
mellitus, cardiovascular diseases, autoimmune diseases, or 
cancer. However, the specific cellular and molecular me-
chanisms triggered by ‘inflammaging’ are context depen-
dent. For example, pro-inflammatory cytokines can promote 
bone resorption leading to osteoporosis, while Janus kinase 
(JAK) activation via toll-like receptor 4 can induce the 
phosphorylation of the insulin receptor, contributing to in-
sulin resistance [49]. Overall, ‘inflammaging’ is an important 
risk factor for multimorbidity, accelerating an unhealthy 
aging process, driving frail syndrome, and increasing disease 
susceptibility in older subjects (Figure 1). 

Clinical studies for therapeutic targeting 
immune and metabolic pathways in age- 
related diseases 
Cellular senescence is one of the fundamental biological 
processes driving aging and, as described above, responsible 
for multiple age-related diseases. Hence, over the past years, 
an increased number of studies have been focused on de-
veloping novel therapeutic interventions to counteract the 
aging process, thus increasing health span and preventing 
the social and economic impact of a progressively older 
population. Geroprotector strategies were conceived with 
the aim of targeting immunosenescence and other hallmarks 
of aging, rather than individual age-related diseases, often 
concurrent in multimorbidity and risk of mortality in the 
older population [50]. Senolytics have been developed to 
specifically target and induce apoptosis of senescent cells 
undergoing SASP, both locally and systemically [51]. 

Importantly, as a result of promising preclinical studies 
conducted in 2016, quercetin, a natural senolytic agent, 
was tested in combination with dasatinib, a Src/tyrosine 
kinase inhibitor, (D+Q) in the first-in-human trial in 
2018 for the treatment of a fatal senescence-associated 
disease, idiopathic pulmonary fibrosis. Indeed, quercetin 
together with fisentin were the first discovered senoly-
tics with demonstrated capacity to induce apoptosis of 
senescent cells through inhibition of BCL2/BAX and 
PI3K/AKT pathways [52]. 

This first-in-human, proof-of-concept trial paved the way 
to further development and testing of D+Q, as well as al-
ternative strategies with other senolytics, such as fisetin (F) 
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and luteolin (L), in numerous clinical trials for various age- 
related diseases, including Alzheimer’s disease, chronic 
kidney disease, physical frailty, and, more recently, cor-
onavirus disease 2019 COVID-19 (from severe acute re-
spiratory syndrome coronavirus 2, SARS-CoV-2) in older 
subjects [53]. 

As an alternative, complementary strategies inhibiting 
SASP with specific inhibitors called senomorphics have 
been developed and shown to potently reduce inflamma-
ging. Several senomorphic approaches have been devel-
oped by targeting different intracellular signal transduction 
pathways such as JAK-STAT [54], NF-kB transcription 
factor, mediating cell response to inflammation [55], 
mTOR, via treatment with rapamycin (sirolimus) and its 
analog ‘rapalog’ (everolimus) [56], and AMPk, via treat-
ment with the antidiabetic drug metformin [57]. The first- 
in-human clinical trial testing Torc 1 inhibition (mTOR 
pathway) proved its efficacy in enhancing immune func-
tions and improving vaccine protection against influenza 
viral infection in older subjects [58]. Moreover, AMPk in-
hibition ameliorated Th17 T cell subset performance by 
enhancing autophagy and improving mitochondrial bioe-
nergetics of peripheral blood mononuclear cells derived 
from the older subjects treated with metformin [28]. NAD+ 

precursors as nicotinamide riboside (NR) and nicotinamide 
mononucleotide (NMN) are capable to counteract the age- 
associated NAD decline guided by CD38 NAD-degrading 
enzyme [39]. Many studies on both precursors have been 
conducted on preclinical models showing geroprotective 
effects. Although NR and NMN supplements are easily 
accessible on the market, further clinical studies are 
needed to prove their efficacy, coupled with their already 
tested capacity to increase NAD levels in humans [59], as 
effective geroprotectors. 

Prospectively, larger, randomized, controlled, and rig-
orous trials are required to develop and improve the 
clinical safety and efficacy of senolytics and, more in 
general, geroprotectors. Novel senolytics and ger-
oprotectors might additionally be tested for the pre-
vention of organ dysfunction (heart, muscle, brain, bone, 
for example) and age-related diseases in older in-
dividuals. The proven effectiveness from novel clinical 
studies of these agents on aged immune system and 
dysfunctional metabolism, and their combination with 
disease-specific interventions would possibly lead to a 
more successful translation into the clinic, improving 
health span and delay the onsets of age-related diseases. 

Human data from healthy lifestyles (diet and 
exercise) and centenarians as paradigm of 
successful healthy aging 
Regular training exercise has been demonstrated to have 
a geroprotective effect, with improvement of quality of 

life and increase in lifespan of older population. Among 
the beneficial effects of regular exercise, the most re-
levant are the enhancement of muscle mass and 
strength, improvement of cardiovascular and muscu-
loskeletal functions, as well as a preventive protective 
effect in the younger population by delaying and redu-
cing the risk of physical frailty with aging [60]. Although 
the molecular mechanisms underlying the protective 
effect of exercise against age-related diseases are still not 
fully covered, an increased number of ongoing studies 
are trying to better understand the geroprotective role of 
this healthy habit. The beneficial stress of regular ex-
ercise promotes tissue regeneration in various organs (as 
myogenesis, osteogenesis, neurogenesis, and synaptic 
plasticity) by calcium-mediated mechanotransduction 
signaling, and intracellularly mitochondria biogenesis via 
AMPK /SIRT1 PGC1α-mediated pathway and ROS 
detoxification [61]. 

Proper nutrition has been associated with reduction of the 
risk of all types of chronic disease and increased health 
span and lifespan. Although is difficult to conduct rigorous 
human studies that compare different diets avoiding bias 
and confounding variables (e.g. geographic location, tradi-
tions, and culture), it is widely accepted that diets ex-
cluding or minimizing processed foods, preferentially 
plant-based, avoiding overeating and fat, and low alcohol 
consumption reduce chronic disease risk and favor health 
span and longevity (as Mediterranean diet, Okinawa 
diet) [62,63]. In recent years, the field of nutrition has 
expanded with exciting results on health preventive and 
curative benefits of intermitted fasting [64], fasting-mi-
micking diets [65] and time-restricted eating (TRE) [66], 
limiting the eating window in a 24-hour period. 

Since the early 2000s, centenarians have been studied as a 
model to address the biological basis of successful healthy 
aging and a paradigm of longevity [67]. Despite a globally 
increasing aging population, the ratio of centenarians (CR) 
in economically developed countries is strongly influenced 
by social factors, with approximately 1:5000, 1:10 000, with 
the highest demographic peak registered in Japan [68]. 
Centenarians offer a remarkable paradigm of successful, 
healthy aging, exhibiting resistance to many age-related 
diseases, such as cancer and autoimmune disorders, and 
maintaining robust immune responses well into advanced 
age. Surprisingly, the incidence of autoimmune diseases 
among centenarians is low despite the age-related decline 
in immune function typically observed in the general po-
pulation [69]. Similarly, cancer in centenarians is a rela-
tively uncommon disease, with a decreased incidence and 
mortality, and displaying a less aggressive and more in-
dolent behavior. This paradox may be explained by unique 
immunometabolic profiles that allow centenarians to 
maintain immune homeostasis. For instance, centenarians 
have been shown to mount effective immune responses to 
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viral infections, such as severe acute respiratory syndrome 
cronavirus 2, with favorable outcomes. 

Interesting studies aimed to understand the successful 
aging of centenarians; among these, one showed that 
CD34+ hematopoietic progenitors are still circulating in 
the peripheral blood of centenarians and display a stem 
cell function comparable to the CD34+ cells derived 
from young donors when cultured ex vivo [70]. Being the 
decline of hematopoietic function one of the drivers of 
immunosenescence, the maintenance of functional 
CD34+ progenitor cells in centenarians could in part 
explain their protections against aging. 

Overall, the studies on centenarians have helped iden-
tifying key biological features of healthy aging and 
longevity and their association to specific immune pro-
files [71]. A whole genome sequencing study on cen-
tenarians of extreme longevity (105–110 years/old) 
demonstrated that centenarians display an unique tran-
scriptional profile associated with efficient DNA repair 
mechanisms and reduced clonal hematopoiesis, both 
supporting cellular homeostasis and protecting against 
cardiovascular diseases [72]. In the future, the increasing 
insights derived from human studies on older individuals 
will pave the way for developing immune-targeting 
preventive strategies to limit age-associated pathologies 
toward a successful healthy aging. 

Conclusion 
In conclusion, the intricate relationship between metabolic 
dysfunction and immunosenescence underscores the com-
plexity of the aging process and its effects on health. This 
review highlights the pivotal role of intrinsic metabolic al-
terations in aged immune cells, including mitochondrial 
dysfunction, impaired autophagy, and disrupted redox bal-
ance, which collectively compromise immune function and 
fitness. Additionally, extrinsic factors such as ‘inflammaging’ 
and the SASP further exacerbate metabolic dysfunction in 
immune cells. By integrating human data and clinical in-
sights, we have underscored the importance of a healthy 
lifestyle, particularly exercise and nutrition, in positively 
mitigating immune aging. This capacity to preserve or re-
store immune functions that promote disease resistance and 
control inflammation in infectious diseases as well as other 
inflammatory-related diseases is known as immune resi-
lience [73]. The optimal immunocompetence–inflammation 
balance associated with immune resilience leads to a fa-
vorable immune and overall health outcome, contrasting 
sharply with the concept of immunosenescence, which de-
scribes the gradual deterioration of the immune system with 
age, leading to increased susceptibility to disease. 

Ultimately, understanding the metabolic underpinnings 
of immunosenescence paves the way for developing 
therapeutic strategies aimed at preserving immune 

health and counteracting age-related diseases toward 
improved health and life spans. 
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