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During the acute phase of the COVID-19 pandemic, hospitals faced a challenge

to manage patients, especially those with other comorbidities and medical

needs, such as cancer patients. Here, we use Process Mining to analyze real-

world therapeutic pathways in a cohort of 1182 cancer patients of the Lausanne

University Hospital following COVID-19 infection. The algorithm builds trees

representing sequences of coarse-grained events such as Home,

Hospitalization, Intensive Care and Death. The same trees can also show

probability of death or time-to-event statistics in each node. We introduce a

new tool, called Differential Process Mining, which enables comparison of two

patient strata in each node of the tree, in terms of hits and death rate, together

with a statistical significance test. We thus compare management of COVID-19

patients with an active cancer in the first vs. second COVID-19 waves to

quantify hospital adaptation to the pandemic. We also compare patients

having undergone systemic therapy within 1 year to the rest of the cohort to

understand the impact of an active cancer and/or its treatment on COVID-19

outcome. This study demonstrates the value of Process Mining to analyze

complex event-based real-world data and generate hypotheses on hospital

resource management or on clinical patient care.
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Introduction

Since the end of 2019, the coronavirus disease 2019

(COVID-19) pandemic has caused major medical, social and

economic disruption. To date, over 530 million people have been

infected and 6.3 million patients have died of the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) virus

worldwide1. From early on during the pandemic, oncological

patients have been identified as an at-risk population for the

virus (1) with an increased overall risk of death and severe

complications compared to patients without cancer (2–5). The

outbreak challenged delivery care of past or current cancer

patients with delays in screening, diagnosis, follow up, and

treatment therapies. Thus, the management of the medical

system evolved along the different COVID-19 waves to

maintain quality and continuity of cancer care, while

mitigating risk of infection transmission.

Neoplastic patients are considered a frail population. They

have a higher rate of infection and transmission, likely due to the

frequent interaction with the medical environment, and to their

immunocompromised state (5–7). In addition, cancer patients

have also a higher risk of hospitalization and mortality (8–12).

Among this heterogeneous population, multiple risk factors

were identified for the SARS-CoV-2 infection. For example,

patients with hematologic malignancies and lung cancer have

the worse outcomes, which could be explained by the

immunosuppressed state of hematological patients and the

diminished respiratory capacity of lung cancer patients (3, 10,

13–15).

During the pandemic, hospitals faced unprecedented

inpatient admissions as a result of ensuing complications from

SARS-CoV-2, which also resulted in workforce restructuring

and delays in elective care, including for cancer patients.

Therefore, real-time monitoring and retrospective analysis of

cancer patient data were essential to investigate the differences in

management of cancer patients between the first and the second

waves of the pandemic, and to establish whether having recently

undergone a systemic cancer treatment impacted COVID-

19 outcomes.

Many specific COVID-related clinical endpoints or specific

organizational Key Performance Indicators (KPI) have been

analysed in the literature (16, 17) but, mostly, they focus on

few specific points of the clinical pathway or the organizational

workflow (18). More comprehensive approaches able to consider

the entire clinical pathways are emerging thanks to a crossover

between methods coming from Business Process Analysis and

Machine Learning. One of the most representative methods of

this kind is Process Mining (PM), which has recently been

adapted to healthcare data.
1 https://covid19.who.int/ (28th of June 2022)
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PM is a relatively young discipline (19) aimed at

automatically learning which is the most probable process

behind a given set of input data called Event Log (EL). A

minimal EL is a set of triplets such as {id, date, event}, where

id is the patient identifier, event is an event that occurred in the

patient clinical pathway and date is the date corresponding to

the event. For each patient, a set of such triplets composes the

trace, which is the set of events that occurred in their clinical

trajectory with the associated timestamps. The most common

family of algorithms in PM are meant to perform the so called

Process Discovery (PD) approach: given an EL as input, the

algorithm returns the process, usually in the form of a graph

with nodes representing the events and edges the transitions

between them. PD is a very generic approach that is commonly

applied in many domains, such as manufacturing, services,

finance and banking. In the case of healthcare, the specific

requirements related to this application domain required the

definition of a new perimeter of the discipline called Process

Mining for Healthcare (PM4HC) (20). PM4HC adopts the

original standpoint of the healthcare domain by taking into

account, for example, clinical guidelines (21), or the

heterogeneity and the complexity of the data stored in

Electronic Health Records (EHR) (22), even if a minimum of

data standardisation and quality is needed to warrant the validity

of the analysis. Of note, PM/PM4HC are not limited to PD: in

the so called Conformance Checking (CC) approach, a reference

process, such as clinical guidelines, is given together with the

empirical patient EL. The algorithm returns a measure of

adherence of the process to the data (to measure how the

process can represent such data) or of the data to the process

(how the patient pathways correctly flow through the reference

process; e.g. to measure the adherence to a given clinical

guideline). A third approach is called Process Enhancement

(PE): here a given reference process and empirical EL are

analysed together to provide an updated process fitting the

input EL better.

PM4HC has been widely used to measure the compliance

with clinical guidelines and to discover processes exploiting the

data collected in the daily clinical practice, either for clinical or

management aims (23, 24). The aforementioned PM modes of

action, PD, CC and PE, can be applied towards several goals in

healthcare, such as (i) revealing differences in organisation or

way to treat among different hospitals; (ii) developing predictive

models able to predict the evolution of subsets of patients on the

basis of their position in the institutional processes; (iii)

developing simulators to estimate the resources required for

future steps predicted over a period of time for one or more

patients; (iv) identifying bottlenecks in the institutional process

with the aim of optimizing value of care.

In particular in oncology, the available literature addresses

many of the mentioned endpoints: Binder et al. Huang et al. (25)

analyzed skin cancer treatment processes and their compliance

with relevant guidelines (26), proposed an original approach to
frontiersin.org
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summarize clinical pathways from EL, testing the method on

lung, colon and gastric cancers. Lenkowicz et al. (27) measured

compliance with clinical guidelines in the treatment of rectal

cancer and Tavazzi, Gerard, et al. (28, 29) exploited PD/CC

algorithms for representing the clinical pathways of melanoma

patients treated with immunotherapy and targeted therapy.

Placidi et al. (30) tried to optimize the palliative patient flow

in a Radiation Oncology Unit, balancing patient needs and

available resources. A practical overview of the most relevant

contributions of PM in oncology can be found in Ref (31). PM

has also been applied to COVID-19 to show the processes

underlying the Intensive Care Unit (ICU) procedures (32), to

measure differences in offering the healthcare service in a

network of hospitals (33), and to measure the difficulties and

the effects of the vaccination strategies in Australia (34).

In this paper, we present a PM analysis aimed at

investigating the entire clinical pathways of the cancer patients

affected by COVID-19 in our institution. We exploited an

approach based on a PD algorithm enriched with tools to

support statistical inference in order to highlight remarkable

insights in our data. In particular, we present a new method

called differential process mining (DPM) to assess differences

between two patient strata in the cohort. With this, we first

analysed the differences between the first and the second

COVID-19 waves in terms of clinical outcome and

institutional assessment. Second, we analyzed the differences in

terms of care and mortality between patients who received a

systemic treatment for their cancer within the last year versus

oncological patients who did not. In the next sections, we

introduce the dataset, the tools and the analytical pipeline, and

then we present the results for the two PD and DPM experiments

(first wave vs second wave and recent systemic treatment vs the

rest) in terms of descriptive process statistics and of inferential

models. Finally, we discuss the results and recapitulate the

potential and limitations of this approach.
Methods

Data

This study includes all oncological patients followed at the

Lausanne University Hospital (CHUV) with a recorded COVID-

19 positive test between March 2020 and August 2021. When

transforming data from the EHR to an EL amenable to PM, we

first aggregated fine-grained information about many

consecutive hospitalization events into coarse-grained

information with one event per hospital stay. We separated

hospitalization events in three categories: regular ward,

continuous care, and intensive care, and we discarded

outpatient stays. We collected dates of positive COVID-19

tests and subsequent negative tests, as well as death dates. We

then discarded events ending more than one day before the first
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positive COVID-19 test. We also discarded hospitalization

events occurring more than 14 days after a positive test or any

other contiguous event, the rationale being that if a patient

needed to be re-admitted to the hospital for COVID-19 reasons,

they would get re-tested. Similarly, we included death events

collected from the Swiss Federal Registry of the Persons

provided that they occurred within 30 days of a positive

COVID-19 test or a contiguous hospitalization event.
Analysis pipeline

The computational pipeline followed the iterative paradigm

shown in Figure 1. Because the processes represent a set of

complex time-dependent interactions (e.g. between patients and

procedures), the analytical pipeline needs a high level of iteration

and interaction with the domain experts to share results,

formulate new investigative hypotheses, and loop-back to

reprocess the data or fine-tune the analysis (35). This means

that with respect to the classical statistical analysis, where the

identification of the goal and the methods can be in some way

planned at the beginning and pursued with a waterfall approach,

the PM pipeline requires a more prototypical approach. The

aforementioned pipeline was applied to investigate the two

different stratifications within our COVID-19 cohort: (i) the

difference between the first and the second COVID-19 waves

and (ii) the difference between patients recently under systemic

treatment and others, in terms of hits, timing and probabilities.
Tools

The data were analyzed using Careflow Miner (CFM) (36), a

PM algorithm that constructs a tree of the possible clinical

pathways. The basic idea of CFM is the following: starting from

the root node (here the first positive COVID test), it splits into n

subsequent nodes representing all possible first events in all traces.

Each resulting node contains the number of patients passing

through that node and their characteristics. The algorithm is

repeated recursively for each new node until we reach the final

nodes, when all corresponding traces in the EL are exhausted. Let’s

consider, for example, the graph in Figure 5. The node on the top

means that all the 1182 traces (clinical pathways) begin with a

Start event. For all traces, the second event is Covid Test. Here, the

traces admit three possible events as 3rd event: Home (67% of

traces), Hospitalisation (27%) or Intensive Care (4%). The sub-

cohort passing through Home can be split again according to the

4th event present in the corresponding traces, which can be Death

(21%), Hospitalisation (59%) or Intensive Care (19%). Here, the

missing 1% is due to the traces that stop in this node. To reduce

the Spaghetti Effect – excessive complexity due to the presence of

too many nodes and edges in the graph – the tree can be pruned

based either on a threshold on patient number, or on the depth or
frontiersin.org
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the tree. The CFM algorithm enables users to build descriptive and

inferential trees with different statistics reported in each node: the

number of patients passing through the node (hits), the median

time needed to reach the node from root, and the probability to

evolve to a given final outcome such as death or intensive care

from that node (prediction).

The adopted software tool was pMineR (37), an R library built

for PM4HC. This represents a comfortable development

environment for data analysis because it is suitable for

statisticians, physicists and physician and therefore increases the

amount of potential users. The pMineR library is open-source and

is publicly available together with documentation in a GitHub

repository2. The choice of pMineR was also based on the kind of

PD algorithm it proposes: due to the nature of the analysis we

focused our attention on CFM because of the simplicity and

readability of the produced tree representations. We note that the

trees resulting from CFM differ in nature from decision trees,

which are supervised machine learning algorithms designed to

classify examples (patients) into pre-defined classes based on a

number of attributes that can be selected as split criteria at any

level of the tree. Instead, CFM trees represent sequences of events

whose order strictly follows the data in the input event log.

Nonetheless, CFM trees can have a useful predictive value, at

least in some nodes, if the final outcome probabilities calculated

turn out to show significant variations.

Here, we enriched the CFM algorithm implemented in

pMineR with a novel feature that we call differential process

mining (DPM). The aim of DPM is to assess the differences

between the way two stratified sub-cohorts with N1 and N2

patients flow through the same process tree. The tree itself is
2 https://github.com/PMLiquidLab/pMineR.v046

Frontiers in Oncology 04
constructed as in standard CFM using the full cohort. Then, for a

given node, assume we have n1 hits from sub-cohort 1 and n2
hits from sub-cohort 2. As detailed in Figure 2, the DPM node

will indicate the proportion of hits, ni/Ni , in each sub-cohort i ,

together with the ratio of hits, n1/n2 , and the relative change of

this ratio compared to the root node, n1=n2−N1=N2
N1=N2

. Behind the

scene in each node, the following 2x2 contingency table is

created, with columns indicating the sub-cohort, and lines

whether or not patients passed through the node:
From this table, the equality of the proportions of hits from each

sub-cohort can be tested with a Fisher’s exact test. The related p-

value indicates the level of statistical significance of the reported

proportion difference. Similar measures can be displayed for other

node features such as time to reach the node or probability to reach

a given event in the future including death rate. Our

implementation of DPM is available in the current release of the

pMineR library3. From a well-formatted event log, pMineR

functions will automatically generate representations such as

Figures 5–9. An example of generic code to generate a D PM tree

is given in Supplementary Figure S1.
FIGURE 1

The computational pipeline exploited for the analysis: (i) Preprocessing: data quality is assessed, data with excessive detail are grouped, missing
data are removed or imputed and data are shaped in form of an Event Log, the usual input format for Process Mining analysis; (ii) Descriptive
Statistics: several indicators are computed on the cohort at hand to suggest some possible hypotheses; (iii) Statistical Inference: statistical
significance tests, future event risk predictions, and rationalization of results by domain experts. Here, other hypotheses can be added and the
analysis can be enriched, looping back to one of the previous steps.
3 https://github.com/PMLiquidLab/pMineR.v046
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Results

Cohort assembly

For this study, we selected patients followed at the CHUV

Oncology Department for a malignant tumor and who presented

a positive COVID-19 PCR test. The time distribution of these

patients’ first positive COVID-19 tests is shown in Figure 3A

with label “Onco CHUV”. Two distinct waves are clearly

apparent. We assigned patients to the first wave if their first

positive test happened in the period between 01.03.2020 and

31.05.2020, and to the second wave between 01.08.2020 and

31.07.2021. After this period there was a third wave, but we

decided not to include it in this study as the number of

oncological COVID-19 cases had drastically decreased

compared to the general population and amounted to <100

patients in total (data not shown). We collected 254 patients in

the first wave and 920 patients in the second wave. Adding 8

patients that fell sparsely between waves 1 and 2 and were not

assigned to any wave, our cohort is composed of 1182 patients in

total, henceforth referred to as the “onco-COVID” patients.

Sub-cohort details are shown on Table 1. Among our onco-

COVID patients, we identified 524 patients with an active cancer

as those who had a medical visit related to their cancer in the last

2 years preceding their first positive COVID-19 test. We will use

this population to compare clinical journeys between first wave

(118 patients) and second wave (401 patients). Further, among

our onco-COVID patients, we are going to compare those who

have been under systemic treatment (chemotherapy,

immunotherapy, hormonotherapy, or targeted therapy) in the

last year preceding the COVID-19 test (198 patients) to the rest

of the onco-COVID patients (984 patients).

Figure 3B shows the age distribution of the onco-COVID

patients, compared to the general COVID-19-positive

population of the Canton of Vaud (Switzerland) in the same
Frontiers in Oncology 05
period. We observe a strong skew toward older age, due to the

concomitant occurrence of cancer in these patients. To compare

occurrence of COVID-19 between the onco population and the

general population, we re-weighted age groups in the Vaud

population so that the age distribution agrees with that of the

onco population. We then plotted the re-weighted Vaud weekly

occurrences alongside the onco-COVID ones in Figure 3A. First,

we observe that the first wave hits the onco population more

severely than the Vaud population, relative to the second wave.

This can be attributed to epidemiological differences between

different virus strains, or to more efficient protective measures

enacted for sensitive populations during the second wave.

Another observation from Figure 3A is that the relative

proportion of onco patients among COVID-19 infections

starts to shrink after March 2021, shortly after the COVID-19

vaccine was introduced in Switzerland. This apparent decrease

probably reflects the fact that populations at risk, in particular

onco patients, were vaccinated first.

The proportions of cancer types among COVID-19 patients is

depicted in Figure 3C. The most frequent types are hematological

(17%), breast (16%), lung (10%), colo-rectal and anal cancers

(9%). Compared to the proportion of hematological cancers in the

general population of oncological patients at CHUV (12%), we see

an over-representation of COVID-19 occurrence (Chi-square

p<10−5 ), which is consistent with reported trends (3, 10, 13–15)

linked to the immunosuppressed state of many patients with

hematological malignencies.
Event log representation

After data pre-processing as described in the Methods

Section, we ended up with an EL of 4006 events for our 1182

onco-COVID patients, including COVID-19 tests, regular ward

or intensive care hospitalizations, and deaths. Graphical
FIGURE 2

Node contents for a DPM analysis of a stratified dataset. An example is shown on the left and the corresponding definitions on the right. The
initial dataset is split in two strata with cardinalities N1 and N2 . Each node shows the number of hits from both strata, noted n1 , n2 , plus the
ratio of hits, n1/n2 , and the relative change of this ratio compared to the ratio of initial cardinalities, N1/N2 . At the bottom, a Fisher’s exact test
measures if there is a significant difference between the hit ratio and the original cardinality ratio.
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representations are always key to understand a data set and

perform essential quality assurance steps. To these ends, we built

a timeline representation of curated events on a common time

scale for selected groups of patients. An example is shown in

Figure 4 for a specific subset of patients of the second wave that

all went through ICU. Patients were sorted by the first test date,

so that the apparent slope of event onset reflects the height of the
Frontiers in Oncology 06
occurrence distribution of Figure 3A. We note that in some cases

hospitalization extends well beyond the last positive test. In these

cases, it cannot be ascertained automatically whether the cause

of the hospitalization is COVID-19 or cancer itself or any other

cause, thus evidencing an approximation of our study. Of note,

over all 1182 onco-COVID patients, only a single one presented

a positive COVID-19 test in both the first and the second waves.
Process analysis

The first useful application of the CFM algorithm is for

descriptive analysis of the processes mined. For example,

Figure 5 shows the general workflow for the entire population

of the onco-COVID cohort, limited to the sixth level of depth in

the discovered tree. After the initial event COVID-19 test, four

types of events can occur to the patients, corresponding to

staying at home (event Home), hospitalization in the general
B C

A

FIGURE 3

(A) Occurrence of COVID-19 cases among CHUV oncological patients, compared to occurrences in the Vaud region re-weighted according
to age group. (B) Age distribution in oncological COVID-19 patients at CHUV, compared to the general population in the Vaud region.
(C) Cancer type in COVID-19 patients at CHUV.
TABLE 1 Patient counts in our onco-COVID cohort.

Total Wave 1 Wave 2

All 1182 254 920

Active cancer 524 118 401

Systemic treatment in last year 198 44 101
Red numbers represent the groups used to compare Wave 1 to Wave 2 in active cancer
patients. Blue numbers are those used to compare patients recently under systemic
treatment (treatment-active) to the other oncological patients (1182−198=984 other
patients).
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FIGURE 4

Timeline of patient journeys for active patients of the second wave going through ICU. Each line represents a patient with a coded ID number.
FIGURE 5

Workflow describing the evolution of COVID-19 patients with a cancer treated at CHUV after the initial COVID-19 Test. In each node, the
number in parentheses shows the absolute count of patients passing through the node. On each edge, the upper percentage shows the the
proportion of patients following that edge relative to the total number of patients exiting the node above (not the number of patients entering
that node). The lower percentage shows the proportion of patients following that edge relative to the total number of patients in the root node.
Frontiers in Oncology frontiersin.org07
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ward (event Hospitalization), admission to the ICU or

continuous care (event Intensive care), or event Death. Each

node shows the number of hits in parentheses. On each edge the

two numbers are the percentages of patients flowing through the

edge with respect the number of hits in the node above (top), or

with respect the entire population (bottom).

The basic descriptive PM analysis in Figure 5 already allows

us to see interesting trends. For example, although about two

thirds of the patients remain at home after their initial positive

COVID-19 test, 24% of these ((42+114+37)/801) face

complications down the line, such as hospitalizations or death.

We note that death events directly following a Home node

include people who may have died at a retirement institution

or a palliative care center. Interestingly, regardless of the first

choice (Home, Hospitalization, Intensive care), we see similar

numbers of patients having to go through intensive care further

down the path (around 60 patients in each case).

A first enrichment of the basic CFM analysis is the

possibility to build a simple but communicative predictor

showing in each node the empirical probability to reach a

given final endpoint. This tool can be used to estimate how a

patient will evolve based on their current position in the tree. We

note that the accuracy of this prediction strongly depends on the

number of patients involved in the node. Even if one should

refrain from using these numbers to predict the fate of single

patients, the tool gives an idea about the future clinical evolution

of patient groups and about the workload or resource needs for

the hospital.

As a first example of predictive CFM analysis, we focus on

death. Using the same graph topology as in Figure 5, we can

indicate in each node the ratio of patients passing there who are

going to die over the total number of hits. We show an example

of this approach in Figure 6A, which is limited for clarity to the
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left branch after the COVID-19 test event in the whole graph of

Figure 5. The full tree is available in Supplementary Figure S2.

Another interesting variable to observe is the time spent to

reach each node. In Figure 6B each node displays the number of

hits in parentheses and a triplet of numbers indicating the

minimum, the median and the maximum time, respectively,

needed to reach the node. The full tree is available in

Supplementary Figure S3.
Comparison between first and second
waves

Here, we applied the DPM capability of the CFM

implementation in pMineR to compare how two groups of

patients flow through the paths and to quantify the significance

of the observed differences using statistical tests, as detailed in the

Methods section. In the following, we applied DPM to two

separate comparisons relevant in the context of COVID-19 in

onco patients: the difference between first and second COVID-19

waves, and the difference between patients recently under

oncological treatment or not. See the Methods Section and

Table 1 for details.

Figure 7 shows the DPM analysis comparing the first and the

second COVID-19 waves, in terms of hits (a) and probability to

die (b) for the most representative part of the tree. See the

Methods Section and Figure 2 for details of each node’s contents.

The last line contains the p-value of the Fisher’s exact test to

check if the difference of hits in waves 1 and 2 is statistically

significant. Nodes with a p-value lower than 0.05 are coloured in

yellow. In Figure 7B each node contains similar information,

except that ni indicates the number of patients who passed

through that node in wave i that are going to die of COVID-19,
BA

FIGURE 6

(A) represents the left branch of the tree of Figure 5 and shows how the nodes can display information about the probability to die of the
patients passing there. (B) is built on the same piece of graph and each node contains the time, in days, spent to reach it from the root node.
The triplet of numbers represent the minimum, the median and the maximum number of days needed to reach that node.
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and Ni is the total number of hits in the wave i . The line below

contains the two death rates and the p-value is the Fisher’s exact

test to measure if the death rates are statistically different

between the two waves.

The most remarkable difference between the two waves

concerns the different use of the ICU. The use of this service

has more than doubled in the second wave, with respect of the

first. Figure 7A effectively shows that in the second wave 69%

more patients were directed to the ICU right after the initial test.
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We note that hospitalizations were also on the rise by 39% while

a lower proportion of active onco patients could stay at home

(-24%). Further, the PM analysis shows an even greater increase

(76%) in ICU attendance after the first hospitalization. These

trends are also apparent in the time evolution of the different

states (see below).

We also observe in Figure 7B that the probability to die in

the second wave in patients who remained at home after the test

(12%) is significantly lower than in patients hospitalized (31%)
B

A

FIGURE 7

(A) differences of hits between the two waves. The percentage value can be interpreted as a higher ratio of wave 1 vs wave 2 relative to the
initial ratio at the root of the tree. (B) the differences in terms of probability to die between waves. NA, not available.
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B

A

FIGURE 8

Time evolution of patient number percentages with respect to the total number of patients. (A) the solid lines represent the patients in the first
wave, and the dotted line the evolution of the patient in the second wave. (B) the solid lines show the evolution of patients without recent
oncological treatment vs treatment-active patients.
BA

FIGURE 9

Both (A, B) refer to the comparison of the treatment-active patients to the other oncopatients; (A) show the differences in terms of hits (B) the
different probability to die. NA, not available.
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or sent to ICU (55%). The fact that this difference was not as

marked in the first wave (13%, 23%, 50%, respectively), could

indicate both a better availability of ICU beds and a more

effective patient stratification in the second wave.
Comparison between patients under
systemic treatment or not

Figure 8 shows the different paths followed by treatment-

active patients (those having received a systemic treatment in the

year preceding the COVID-19 test) compared to the patients not

under active treatment, in terms of hits (a) and probability to die

(b). As expected we see in Figure 8A that onco patients recently

under systemic treatment are around 40% more likely to end up

in ICU, 35% more likely to be hospitalized, and 30% less likely to

remain at home. Treatment-active patients are even more likely

to go to ICU (59% risk increase) after the first hospitalization.

This general trend could be due to two factors: either the patients

were more impacted by the COVID-19 infection, or the

physicians decided to minimize risk considering cancer as a

comorbidity and prescribed preventive hospitalizations, or both.

We note that many nodes below the first Hospitalization node

show the same trend of increased risk for treatment-active

patients. This is expected as imbalances propagate downstream

of the node where they first originated.

Differences are also evident for the death rates. Figure 8B

shows a higher overall probability to die in the treatment-active

patients compared to the rest of the cohort (25% vs 13%).

Despite a higher intensity of care for these patients as noted

above, we still see a higher death rate among patients remaining

at home after the test (Figure 8B, 17% vs 8%). The difference is

even more pronounced for patients who get re-hospitalized

(32% vs 13%). Note that COVID-related death rates might be

slightly overestimated in the active onco patients, due to some

deaths related to cancer being more likely to happen in the

relevant time interval.

From a clinical monitoring perspective, it is useful to have a

synthetic vision of howmany patients are in each specific state as

a function time. This allows, for example, monitoring the

pressure on the ICU at different phases of the pandemic.

Figure 9 shows how the percentages of patients among the

different possible states (Home, Hospitalization, Intensive care,

Death) evolve over time, comparing the first vs second wave, and

patients who recently received systemic treatments vs those who

did not.
Discussion

In this study, we used the innovative PM approach to gain

interesting insights on the pathways of our onco patients at

CHUV after a positive COVID-19 test, through the categorized
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steps of Home, Hospitalization, Intensive care, and Death. In

particular, we introduced a new analysis modality that we called

DPM, which allows researchers to quantify differences between

two patient strata in terms of hits, or in terms of occurrence of a

final outcome such as death. We used the DPM approach to

compare the first and second COVID-19 waves in onco-active

patients, and to compare patients recently under systemic

treatment to the rest of the onco-COVID cohort. The results

we presented are interesting from three different points of view.

First, this analysis suggested some hypotheses on COVID-19

management in onco patients, which deserve to be investigated

further in more specific studies. The second perspective on our

PM analysis regards the organizational response to the epidemic

emergency, between the first and the second wave, for example

in measuring the dramatic changes in the patient’s pathways.

Third, innovative methodology to analyse the data, such as DPM,

is of interest for Data Analysts who will be able to readily apply it

to their own datasets using the public ly-avai lable

pMineR implementation.

We note that drawing definitive conclusions about the

clinical and organizational aspects is hindered by many

confounding factors. For example, the clinical knowledge

acquired between the waves, the adaptation of patient

behaviours, the difference in epidemiological exposure between

the first and the second waves, and the differences in virus strains

make a direct comparison difficult. While the first wave was an

unplanned response to a particularly stressful and unknown

challenge, the second wave raised when the hospital had had

time to organize their resources and services for an appropriate

response. Similarly, in the second wave, COVID-19 patient care

benefited from a better synergy among the hospitals in the area,

planning different levels of care depending on the available

infrastructure. This led to a better selection of patients

admitted in the second wave. Nevertheless, looking at the

results taken together, some general trends could be clearly

identified and some hypotheses could be formulated.

From the institutional perspective, the expectation of

hospitalisation, intensive care, home assistance, and death, are

shown in Figure 9: according to the aforementioned discussion,

the institutional behaviour, in the second wave, was more

oriented toward hospitalization, even if this did not mean a

significant reduction of mortality. This point is counter-intuitive

but might be explained by different reasons. For example a

general strategy was put in place in the State of Vaud to send

more serious patients to CHUV in the second wave (as opposed

to treating them at home or in regional centers). Or this trend

may reflect an unsuccessful attempt to reduce the mortality, or

just the greater availability of hospital beds in the second wave,

when the hospital was prepared. Interestingly, Figure 9A shows

that the difference in institutional approach between the first and

second waves was most pronounced in the first days after the

positive COVID-19 test, and tended to vanish later on. Notably,

the mortality almost overlapped during all the 0-150 days of
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observation. In Figure 9B, the treatment-active patients show a

constant higher need of clinical assistance and a higher

probability to die in comparison of the other patients. This

point is quite expected, due to the higher frailty of patients

recently under systemic treatment that could be explained by the

activity of their cancer and the stress of therapies.
Conclusion

In this paper we analysed a set of oncological patients affected

by COVID-19 to address two different goals: to investigate the

differences between the first and the second wave, and to analyse

the difference in mortality and hospital care between patients

under active systemic treatment and others. To do that, we

exploited a modern discipline called Process Mining, which

analyzes the data considering the different clinical pathways of

the observed patients and displays the results in few,

communicative graphs. All observations of the Results Section

were made possible by this process-oriented approach to data

analysis. The CFM algorithms, in particular, provide a useful way

to quickly obtain a comprehensive but intuitive data

representation. We further enriched the standard PM

algorithms with our new DPM tools that combine the benefits

of the Process Discovery approach with the more usual statistical

tools in order to analyse stratified cohorts and assess differences in

terms of hits, time to node, or mortality. The implementation of

inferential statistical tests enriches the readability and makes this

tool suitable to suggest further hypotheses. While similar

considerations can be made with more common statistical tools

once a specific question is posed, the possibility to observe all

branches of the tree simultaneously allows us to explore and direct

downstream analysis where the data seems to have the most

to reveal.

This work confirmed that PM is an effective tool to tackle

complex event-based datasets containing a large number of

realizations of an underlying process. By laying bare the data

in its full temporal complexity, This approach can reveal specific

insights which can remain hidden with a more general statistical

analysis. We think that this is probably the most remarkable

point: while PM is often used to test hypotheses, in our case we

found that mining the data with PM tools turned out to be an

efficient way of generating new hypotheses. Indeed, PM brought

about new questions more than new answers. This might seem a

limitation but we think otherwise: in our case, for example, the

similar mortality between the two waves is suggesting that

something happened in terms of protocols or recruitment or

quality of cares (or, maybe, all of them). Some more details of the

admitted patients or more bio-metric measures could allow us to

understand in which part of the clinical pathways the

performances dropped. However, the limited number of
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patients and the limited set of covariates available

automatically in the EHR are clear limitations of this analysis.

More in general, looking back to this COVID-19 epidemics, it

was a challenge for real-world data analysis due to several reasons:

(i) the medical knowledge evolved quickly, with often unclear and

shifting standards of care, and this should be taken into account

when comparing cohorts acquired at different periods of time. (ii) in

addition, hospital policies changed from one wave to the next, for

example on resource management, which might have impacts at

many levels. Last but not least, (iii) COVID-19 was not an equal

challenge for all hospitals, as it was a challenge for the entire

healthcare system. For example, patients were admitted depending

on the available regional resources (for example, at a certain point

the healthcare authorities tried to keep some hospitals COVID-free,

to be able to offer services to the non-COVID patients). Even with

the many limitations outlined above, this study demonstrated the

usefulness of PM to quickly analyse data and improve our

capabilities to cope with the future expected or unexpected

clinical challenges.
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