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Coupled synthesis and translocation restrains polyphosphate to
acidocalcisome-like vacuoles and prevents its toxicity

Rūta Gerasimaitė`, Shruti Sharma*,`, Yann Desfougères, Andrea Schmidt and Andreas Mayer§

ABSTRACT

Eukaryotes contain inorganic polyphosphate (polyP) and

acidocalcisomes, which sequester polyP and store amino acids

and divalent cations. Why polyP is sequestered in dedicated

organelles is not known. We show that polyP produced in

the cytosol of yeast becomes toxic. Reconstitution of polyP

translocation with purified vacuoles, the acidocalcisomes of yeast,

shows that cytosolic polyP cannot be imported, whereas polyP

produced by the vacuolar transporter chaperone (VTC) complex, an

endogenous vacuolar polyP polymerase, is efficiently imported and

does not interfere with growth. PolyP synthesis and import require

an electrochemical gradient, probably as a driving force for polyP

translocation. VTC exposes its catalytic domain to the cytosol and

carries nine vacuolar transmembrane domains. Mutations in the

VTC transmembrane regions, which are likely to constitute the

translocation channel, block not only polyP translocation but also

synthesis. Given that they are far from the cytosolic catalytic domain

of VTC, this suggests that the VTC complex obligatorily couples

synthesis of polyP to its import in order to avoid toxic intermediates

in the cytosol. Sequestration of otherwise toxic polyP might be one

reason for the existence of acidocalcisomes in eukaryotes.

KEY WORDS: Yeast vacuole, Inorganic polyphosphate, VTC

complex, Acidocalcisome

INTRODUCTION
Inorganic polyphosphate (polyP) is a polymer of orthophosphate
units linked together by high-energy phospho-anhydride bonds. It is

present in all organisms tested so far (Rao et al., 2009). The
hallmark of polyP metabolism in eukaryotic organisms is the
concentration and enclosure of polyP in membrane-bound

compartments, acidocalcisomes. Acidocalcisomes share a number
of highly conserved features. They are acidic compartments that
accumulate polyphosphate, basic amino acids, polyamines, Ca2+,

Zn2+, Mg2+ and Mn2+ ions to high concentrations (Docampo and
Moreno, 2011). In trypanosomatids, acidocalcisomes are important
for osmoregulation and Ca2+ signaling (Docampo et al., 2010;
Huang et al., 2013). Adaptor protein complex-3 and TOR3 kinase

have been implicated in acidocalcisome biogenesis (Besteiro et al.,
2008; de Jesus et al., 2010; Madeira da Silva and Beverley, 2010;

Huang et al., 2011). However, many aspects of the biogenesis and

metabolic roles of acidocalcisomes are still poorly understood.

In prokaryotes, the roles and the enzymes involved in polyP
synthesis and degradation are well characterized. The bacterial

polyphosphate kinase (EcPpk1) mediates a reversible reaction in
which it generates polyP by transferring the c-phosphate of ATP
(Ahn and Kornberg, 1990; Akiyama et al., 1992). The major

polyP-degrading enzyme is an exopolyphosphatase (EcPpx1)
(Bolesch and Keasling, 2000). Many important processes are
influenced by polyP in bacteria, such as virulence, pathogenicity,
stress response (Kim et al., 2002) and biofilm formation (Chen

et al., 2002). PolyP was also shown to form membrane
channels with poly-b hydroxybutyrate and Ca2+ (Reusch, 1989).
Furthermore, polyP interacts with Escherichia coli Lon protease

and promotes ribosomal protein degradation (Kuroda et al.,
2001). Recently, polyP was recognized to act as a molecular
chaperone in bacteria, which might explain the pleiotropic

phenotypes and stress sensitivity that results from polyP
deficiency (Gray et al., 2014).

In mammals, polyP is implicated in blood coagulation (Smith
et al., 2006; Choi et al., 2011), apoptosis of activated plasma cells

(Hernandez-Ruiz et al., 2006), bone mineralization (Hoac et al.,
2013) and apatite formation (Omelon and Grynpas, 2011). PolyP
is enriched in certain cancer cells (Jimenez-Nunez et al., 2012)

and has been linked to the energy metabolism of mitochondria
(Pavlov et al., 2010). PolyP might also modulate neuron
excitability (Holmström et al., 2013; Stotz et al., 2014).

Most knowledge on polyP metabolism in eukaryotes comes
from Saccharomyces cerevisiae, where three enzymes degrading
polyP have been identified – the cytosolic exopolyphosphatase
Ppx1, the cytosolic endopolyphosphatase Ddp1 and the vacuolar

endopolyphosphatase Ppn1 (Wurst and Kornberg, 1994; Wurst
et al., 1995; Sethuraman et al., 2001; Shi and Kornberg, 2005;
Lonetti et al., 2011). The polyP-synthesizing enzyme Vtc4 is a

part of the multi-subunit vacuolar transporter chaperone (VTC)
complex (Hothorn et al., 2009). Vtc4 has homologs in lower
eukaryotes but sequence comparisons have so far failed to

identify homologs in plants or animals. Yeast Vtc4 is one of the
three unrelated eukaryotic polyP-synthesizing enzymes known to
date. The other two were found in Dictyostelium discoideum –

PPK1 of bacterial origin (Zhang et al., 2007) and PPK2, similar to
actin-related proteins (Gómez-Garcı́a and Kornberg, 2004). VTC
homologs are readily identifiable in parasitic protozoa (Rooney
et al., 2011), where they are essentially localized in

acidocalcisomes (Docampo et al., 2005). The ablation of VTC
impairs growth (Fang et al., 2007), virulence and infectivity of
Trypanosoma brucei (Lander et al., 2013), suggesting that VTC

could be explored as a drug target. The VTC complex of yeast
affects vacuole fusion (Müller et al., 2002), microautophagy
(Uttenweiler et al., 2007) and trafficking of other proteins

towards or through the Golgi (Müller et al., 2003), suggesting that
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polyP synthesis in yeast might be integrated with other cellular
functions.

The yeast VTC complex is membrane anchored (Müller et al.,
2002). Vtc4 contains three transmembrane helices at its C-
terminus. It localizes to the vacuole and the endoplasmic
reticulum membranes (Hothorn et al., 2009). The large soluble

part of Vtc4 faces the cytoplasm (Müller et al., 2003). It consists
of a catalytic tunnel domain and an N-terminal SPX domain of
unknown function. Owing to its topology, Vtc4 has access to the

cytosolic nucleotide triphosphate pools and synthesizes polyP
by transferring the c-phosphate of nucleotide triphosphates onto
growing polyP chains. The VTC complex contains two other

subunits – Vtc2 (or, alternatively, its homolog Vtc3) and Vtc1.
The VTC complex exists in two isoforms, Vtc1/3/4, which mainly
localizes to vacuoles, and Vtc1/2/4, which is also very abundant

in the endoplasmic reticulum (Hothorn et al., 2009). Vtc2 and
Vtc3 are highly homologous to Vtc4 but their tunnel domains
lack functional active sites. Vtc1 contains no cytoplasmic domain
and consists of three transmembrane regions that are homologous

to those of Vtc2, Vtc3 and Vtc4. A VTC complex thus contains at
least nine transmembrane domains.

Most polyP in yeast is stored in vacuoles (Indge, 1968; Urech

et al., 1978). Only a minor fraction (,10%) is associated with
other organelles, such as mitochondria or the nucleus (Urech
et al., 1978; Saito et al., 2005). Vacuoles show all the crucial

characteristics of acidocalcisomes. They can be easily purified
and therefore represent a model of choice for studies of
acidocalcisome biogenesis and function and for investigating

polyP metabolism.
Here, we posed the question of why polyP is generally

sequestered within acidocalcisomes. We studied the effects of
polyP mislocalization into the cytoplasm and established in vitro

conditions permitting polyP synthesis by isolated yeast vacuoles.
We used this system to explore how polyP is synthesized and
transferred into the vacuole lumen.

RESULTS
Cytosolic polyP is toxic to yeast cells
Why is polyP sequestered in intracellular organelles? To
determine whether cytosolic polyP could be deleterious to the
cells, we sought to establish a cytosolic pool of polyP by
expressing the heterologous polyphosphate kinase gene Ppk1

from E. coli (EcPpk1). This protein lacks signal sequences and
thus was localized in the cytosol of yeast cells. Expression of
EcPpk1 increased the polyP content of wild-type cells by ,20%

(Fig. 1A). In vtc1D cells, which lack a functional VTC complex
and have barely detectable levels of polyP, EcPpk1 expression
established a pool of polyP yielding a clearly detectable signal.

The magnitude of this signal corresponded to the absolute
increase in signal that the same EcPpk1 construct produced in a
wild-type cell. Because yeast cells are known to contain

,200 mM polyP (Auesukaree et al., 2004), we can estimate
that polyP synthesized by EcPpk1 might reach up to ,40 mM.
EcPpk1-expressing cells showed a growth defect as compared
with the wild-type cells (Fig. 1B), as well as an aberrant

morphology (Fig. 1C). 10–15% of the population showed
abnormal protrusions or were cone-shaped. However, these
cells were still alive, as demonstrated by FUN-1H staining

(Fig. 1D). Their survival might be due to the presence of the
extremely potent cytosolic polyphosphatase Ppx1 (Wurst and
Kornberg, 1994). In order to test this hypothesis, we took wild-

type cells, replaced the endogenous promoter for PPX1 with the

glucose-repressible GAL1 promoter and introduced the plasmid
expressing EcPpk1. These cells grew on galactose, which

provided high expression of PPX1, but not on glucose, which
repressed PPX1 (Fig. 1E,F). This suggests that polyP production
in the cytosol is toxic to the cells in a Ppx1-dependent fashion.

PolyP synthesized by VTC does not accumulate in the cytosol
Given that the catalytic domain of the VTC complex is exposed to
the cytoplasm (Müller et al., 2003), the polyP synthesized by it

should be similarly deleterious for the cells as the polyP produced
by expression of EcPpk1 in the cytosol. The cells might
circumvent this problem by directly translocating nascent polyP

into the vacuolar lumen and avoiding diffusible intermediates in
the cytosol.

This hypothesis can be tested in vivo by artificially

overexpressing a polyphosphatase in yeast cells. If the polyP
synthesized by VTC does not accumulate in the cytosol but is
immediately transferred into vacuoles, overexpression of a
cytosolic polyphosphatase should have little effect. Conversely,

artificial targeting of a polyphosphatase into the vacuoles might
reduce cellular polyP content significantly. In order to target the
polyphosphatase Ppx1 into the vacuole lumen, the 59 end of the

PPX1 gene was fused to an N-terminal pre-pro-sequence of the
vacuolar carboxypeptidase Y and expressed from the strong
glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter.

The localization of the targeted protein in the vacuole was
confirmed using a GFP tag (Fig. 2A). The levels of the polyP
polymerase subunit Vtc4 were not affected by vacuole-targeted

Ppx1 (Fig. 2B). Overexpressing vacuole-targeted Ppx1 reduced
polyP content by 90% as compared with that of the wild-type
strain (Fig. 2C). By contrast, if a cytosolic version of Ppx1 was
overexpressed, polyP levels did not change at all. These results

are consistent with the idea that polyP is rapidly translocated
across the vacuolar membrane in vivo and that a significant
intermediate pool in the cytosol might not exist.

Isolated yeast vacuoles synthesize polyP in vitro
We reasoned that purified vacuoles could serve as a model system

to study polyP metabolism in vitro. We measured polyP
production by the characteristic fluorescence emission of
DAPI–polyP complexes at 550 nm (Kapuscinski, 1990; Aschar-
Sobbi et al., 2008). Because the DAPI–polyP interaction is

sensitive to sample composition (Diaz and Ingall, 2010; Martin
and Van Mooy, 2013), we assessed the effects of lipids and other
vacuole contents. Calibration curves of synthetic polyP with an

average chain length of 60 (polyP-60) were measured in the
presence or in the absence of vacuoles in which the enzymes had
been inactivated by heating. Vacuolar compounds did not

significantly influence the DAPI–polyP signal (Fig. 3A).
We tested whether isolated vacuoles can synthesize polyP by

incubating them with an ATP-regenerating system (ATP-RS) at

27 C̊. MnCl2 was included in the reaction because the Vtc4
catalytic domain binds Mn2+ in its active center. At different time
points, the reaction was stopped by adding EDTA to sequester
divalent cations, Triton X-100 to dissolve vacuole membranes

and DAPI to detect polyP. DAPI–polyP fluorescence was assayed
in a 96-well spectrofluorometer (Fig. 3B). The in vitro reaction
showed an initial lag phase of ,5 min, followed by a nearly

linear increase in signal for the next 30 min. Vacuoles from a
vtc1D strain did not increase their DAPI signal. The signal
generated in wild-type samples depended on the presence of

vacuoles. Its emission spectrum was identical to the spectrum of
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the synthetic DAPI–polyP-60 complexes recorded under the same
buffer conditions (Fig. 3C). PolyP did not accumulate if EDTA
was included from the beginning or if only ATP but no ATP-

regenerating system was present (Fig. 3B). The latter is likely
because of the competition with V-ATPase for substrate ATP.
Alternatively, this might point to a high sensitivity of the VTC

complex to inhibition with the reaction product ADP, which is
formed by VTC itself, V-ATPase or other ATPases on the
vacuolar membrane.

PolyP synthesis was further confirmed by PAGE and negative
staining of the gel with DAPI. A characteristic polyP ladder
was observed for wild-type vacuoles incubated with an ATP-

regenerating system (Fig. 3D). No polyP was detected in the
gel if wild-type vacuoles had been incubated without ATP-
regenerating system, in the presence of EDTA or if vtc1D

vacuoles were used. Thus, isolated vacuoles synthesize polyP in

vitro.

Synthesized polyP is translocated into the vacuolar lumen
Next, we determined whether the polyP synthesized by isolated
vacuoles is translocated into their lumens. We based the

translocation assay on the fact that the vacuolar membrane
represents a barrier to DAPI. DAPI added to intact vacuoles
should hence not stain polyP in their lumen. In order to test this,

we allowed vacuoles to synthesize polyP, stopped the reaction
with an EDTA-DAPI mixture and split the samples. One aliquot
was left intact, the other one was immediately supplemented with

Triton X-100, so as to dissolve the membranes and render all
polyP accessible to DAPI. Aliquots with detergent showed 80%
higher fluorescence than those with intact vacuoles (Fig. 4A).

Fig. 1. Effects of cytosolic expression of
a bacterial polyphosphate kinase
(EcPpk1). (A–D) BJ3505 (wild-type; wt) or
vtc1D cells carrying an empty vector or
overexpressing a plasmid-encoded EcPpk1
were grown in HC2URA medium and
analyzed. (A) Accumulation of polyP in vivo.
(B) Growth in liquid medium. Pre-cultures in
5 ml of medium (30˚C, 48 h) were diluted to
an OD600 of 0.1, and OD600 was monitored
over time. Experiments were performed at
least in duplicates with at least two different
transformants. (C) Cell morphology as
determined by differential interference
contrast (DIC) microscopy. Scale bars:
5 mm. (D) Quantification of viable cells by
FUN-1 staining. (E) Growth arrest in the
absence of Ppx1. BY4741 PGAL 36HA-Ppx1
cells were complemented with plasmid-
encoded EcPpk1 or an empty vector and
grown overnight in HC2URA+GAL. Cells were
harvested at an OD600 of 1, washed twice in
HC2URA+GAL or HC2URA+GLC, resuspended
in the same medium at an OD600 of 0.05,
incubated (30˚C, 24 h), diluted to an OD600

of 0.1 in the same medium and OD600 was
monitored over time. Quantitative data show
the mean6s.d. (F) Levels of 3HA–Ppx1 in
extracts of cells used in E. Gal, galactose;
glc, glucose.
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This increase in signal was not a side-effect of detergent addition

because the detection of synthetic polyP-60 was not influenced by
Triton X-100 (Fig. 4A). Furthermore, the detergent-dependent
signal was not observed if the preceding incubation had been
performed in the presence of EDTA or with vtc1D vacuoles,

suggesting that it is not due to compounds other than the
synthesized polyP. Thus, most of the synthesized polyP is
inaccessible to DAPI because of the vacuolar membrane,

suggesting that it is located in the vacuole lumen.
As a second criterion for translocation we tested whether the

synthesized polyP is protected from degradation by externally added

recombinant polyphosphatase Ppx1. Purified vacuoles were allowed
to synthesize polyP in vitro, chilled and diluted in order to slow
down polyP synthesis. Then, they were incubated in the presence or
in the absence of purified Ppx1 on ice. Degradation was stopped

by adding EDTA, Triton X-100 and DAPI, and DAPI–polyP
fluorescence was measured (Fig. 4B). The large majority of polyP
survived this treatment. Disrupting the integrity of the vacuoles by

boiling rendered this polyP accessible for degradation. Furthermore,
when similar amounts of synthetic polyP-60 were added to mutant
vacuoles that are unable to synthesize polyP (vtc1D), the added

polyP-60 was completely degraded by Ppx1. This confirms that the
recombinant Ppx1 is sufficiently active to completely degrade the
observed quantities of polyP if they are accessible.

As a third approach, we isolated vacuoles from the strain
overexpressing Ppx1 with a vacuolar-targeting sequence. If polyP
became translocated into the lumen of vacuoles, the presence of
lumenal Ppx1 should reduce the apparent rate of polyP

accumulation in vitro. Indeed, the apparent polyP synthesis in

vitro was reduced by 90% (Fig. 4C), although these vacuoles had
similar levels of Vtc4 to the wild-type controls (Fig. 2B). Taken

together, these results suggest that polyP is not only synthesized
by purified vacuoles but is also efficiently translocated into the
vacuolar lumen.

PolyP synthesis by purified vacuoles requires an
electrochemical potential
The translocation of polymers across a membrane requires a

driving force. In addition, polyP is negatively charged. Its
transport should be electrogenic and might require charge

compensation by uptake or release of cations or anions,

respectively. We tested the possibility that the electrochemical
potential across the vacuolar membrane, which is maintained by
the V-type H+-ATPase, could provide a driving force for polyP
translocation. We tested the effects of the V-ATPase inhibitor

concanamycin A and of the protonophore FCCP, both of which
interfere with the proton gradient across the vacuolar membrane.
Both agents strongly inhibited polyP synthesis by intact vacuoles

(Fig. 5A). As a complementary approach, we assayed polyP
synthesis by vacuoles lacking subunit a of the V-ATPase, Vph1,
in which vacuolar acidification is strongly reduced (Perzov et al.,

2002). vph1D vacuoles contained the same amount of Vtc4 as
wild-type vacuoles (Fig. 5B), but their polyP synthesis capacity
was reduced to ,20% of the wild-type value (Fig. 5C). These
results underscore the importance of the proton gradient for polyP

synthesis and are in line with information from high-throughput
screens for polyP-deficient mutants, which have identified .250
candidate genes and among them several V-ATPase subunits

(Freimoser et al., 2006).

Full catalytic activity of the VTC complex requires an intact
membrane environment
Because the vacuolar proton gradient energizes many vacuolar
ion transporters, it could facilitate the import of necessary

counter-ions and prevent the buildup of an inverse electrical
potential that would impede further polyP import. In this case,
disruption of vacuolar integrity might render polyP synthesis
independent of V-ATPase activity or even stimulate it. We

therefore measured the effects of solubilization of the vacuolar
membrane on the activity of the VTC complex. From a range of
detergents tested, CHAPS allowed efficient solubilization of the

VTC complex. Around 60% of VTC proteins were recovered in
the solubilisate. When immunoprecipitated from the solubilisate,
the subunits of the VTC complex were present in similar ratios to

those observed in the intact vacuoles (Fig. 6A), suggesting that
the complex remained intact. The amount of Vtc4 in the reaction
was determined by western blotting using a pure recombinant
Vtc4 catalytic domain (Vtc4189–480) as a standard and an affinity-

purified anti-Vtc4 rabbit polyclonal antibody. According to this
comparison, vacuoles contain 1 pmol of Vtc4 per 1 mg of protein.

Fig. 2. The effects of Ppx1 overexpression on polyP accumulation in vivo. BJ3505 wt or vtc1D cells, carrying an empty vector or plasmids expressing the
indicated proteins, were analyzed. (A) Vacuole-targeted (vt)-Ppx1 localizes to the vacuole. Wild-type (wt) cells expressing a GFP fusion of vacuole-targeted
Ppx1 (vtGFP–Ppx1) were stained with FM-64 and analyzed by fluorescence and differential interference contrast (DIC) microscopy. Scale bar: 5 mm.
(B) Expression of vt-Ppx1 does not change the abundance of Vtc4 on the vacuole membrane. Vacuoles were isolated from wild-type cells carrying an empty
vector or a plasmid overexpressing vt-Ppx1. Proteins were analyzed by SDS-PAGE and western blotting; vacuolar proteins Vam3 and Pho8 were used as
loading controls. (C) PolyP accumulation in vivo. The polyP content of wild-type cells was set to 100%. Data show the mean6s.d.
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Solubilized and non-solubilized samples that contained equivalent
amounts of Vtc4 were used in synthesis assays. The linear phase of
polyP synthesis allowed us to estimate the apparent turnover rate of

the VTC complex in intact vacuoles, using a calibration curve
measured with synthetic polyP-60 (Fig. 3A). PolyP accumulated
at a rate of 0.2160.02 nmol?mg21?min21 (mean6s.e.m.), resulting

in an apparent turnover rate of the VTC complex of kcat
app5

220 min21 (Fig. 6B).
Solubilization of vacuoles in CHAPS did not increase the

turnover rate of the VTC complex but decreased it by a factor of
,20 (kcat

app51061 min21). The remaining activity was not

affected by concanamycin A or by FCCP (Fig. 6C), suggesting
that these agents do not inhibit the catalytic activity of the
VTC complex per se. These observations provide no indications

that vacuolar proton pumping might support polyP synthesis
through the import of counter-ions to compensate for possible
charge transfer by polyP. The data are compatible with the

view that the electrochemical gradient across the membrane is
needed to actively support synthesis and translocation of the
polyP chain and suggest that the VTC complex requires an intact

and energized membrane environment in order to function
efficiently.

Fig. 3. Isolated yeast vacuoles synthesize polyP in vitro. (A) Fluorescence of increasing concentrations of polyP-60 was measured in the reaction mixture
without or with 2 mg of heat-inactivated BJ3505 vacuoles. a.u., arbitrary units. (B) Purified vacuoles were incubated with ATP-RS, the reactions were stopped at
the indicated time-points and DAPI–polyP fluorescence was measured as described in Materials and Methods. The linear phase of polyP synthesis allows
estimating the apparent turnover rate of the vacuoles (dashed line, 0.05 nmol?mg21?min21). wt, vacuoles isolated from wild-type cells. Data show the mean6s.d.
(C) Fluorescence emission spectra of DAPI–polyP under reaction conditions. The samples were prepared in the synthesis reaction mixture, incubated for 30 min
at 27˚C and stopped. In the ‘0 min’ samples, vacuoles were added after the stop solution. (D) PAGE of polyP synthesized in vitro and in vivo. PolyP was
extracted from whole cells (lanes 1), from vacuoles incubated with ATP-RS (lanes 2), from vacuoles without incubation (lane 3) or from vacuoles incubated with
ATP-RS and 8 mM EDTA (lane 4). PolyP was purified from whole cells by glass beads and phenol extraction, and was ethanol-precipitated as described
previously (Lonetti et al., 2011); before fractionation, the samples were sequentially treated with RNase A and proteinase K. PolyP was synthesized in a 600-ml
reaction mixture containing 24 mg vacuoles for 1 h at 27˚C. The samples were extracted with phenol:chloroform:isoamyl alcohol followed by chloroform and
precipitated with ethanol. 7–20 pmol of polyP was fractionated in a 20% polyacrylamide gel, and polyP was visualized by negative DAPI staining (Smith and
Morrissey, 2007; Lonetti et al., 2011).
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PolyP synthesis and translocation occur concomitantly
In such a scenario, translocation of the nascent chain might be

necessary to permit continued synthesis by the catalytic domain.
We tested this hypothesis further by substituting residues far
away from the catalytic center, in the transmembrane domains
that form a predicted transmembrane channel. If synthesis were

obligatorily coupled to translocation, such mutations should
interfere with synthesis. If synthesis and translocation were
not coupled, synthesized but non-translocated polyP should

accumulate outside the vacuoles. Substitution of basic residues
in the transmembrane domains of the VTC complex, for example

by the vtc1K24E, vtc1K24S and vtc1R31E alleles, abolishes polyP
accumulation in vivo, whereas vtc1R98E has little influence

(Hothorn et al., 2009). However, the in vivo approach could not
differentiate whether synthesis and translocation were impaired
or whether synthesis continued and only translocation was
blocked. In the latter case, the potent cytosolic polyphosphatase

Ppx1 of yeast cells might degrade the non-translocated material
and prevent its accumulation despite continuous synthesis. The in

vitro synthesis reaction now allows us to detect non-translocated

pools, as shown above. Therefore, we analyzed synthesis and
translocation in Vtc1 point mutants. Vacuoles from vtc1K24E,

Fig. 4. Synthesized polyP is translocated into the vacuole lumen. (A,B) Vacuoles were isolated from BJ3505 wild-type (wt) or vtc1D cells, incubated with
ATP-RS (30 min, 27˚C) and analyzed. (A) Accessibility of the synthesized polyP to DAPI. The reactions were stopped by adding EDTA and DAPI, and were split
into two aliquots. One received Triton X-100, the other received control buffer. The polyP-60 sample contained 10 mM polyP-60 and no vacuoles. a.u., arbitrary
units. (B) Accessibility of synthesized polyP to recombinant Ppx1. After incubation, the samples were split into two aliquots. One was diluted, chilled on ice
and supplemented with 10 mM synthetic polyP-60 where indicated. The other was diluted, boiled for 5 min and supplemented with 10 mM synthetic polyP-60
where indicated. Half of each sample received Ppx1, the other half was left untreated. After 30 min on ice, digestion was stopped by adding EDTA, Triton X-100
and DAPI, and fluorescence was measured. The polyP-60 sample contained no vacuoles. (C) The effect of vacuole-targeted (vt)-Ppx1 on polyP synthesis.
PolyP synthesis activity (60 min, 27˚C) was measured with vacuoles from wild-type cells (BJ3505) expressing vt-Ppx1 or an empty plasmid. Values of the
sample without vt-Ppx1 were set to 100%. Data show the mean6s.d.

Fig. 5. Requirement of the vacuolar proton
gradient for polyP synthesis by isolated
vacuoles. (A) 1 mg of vacuoles from BY4742 ppx1D

ppn1D cells was incubated for 10 min in the absence
or presence of concanamycin A (1 mM) or FCCP
(0.1 mM), and the amount of synthesized polyP was
measured. (B,C) Vacuoles from wild-type (wt,
BJ3505) and vph1D cells were isolated and
(B) blotted for Vtc4, Pho8 and Vam3 or (C) assayed
for in vitro polyP synthesis for 30 min at 27˚C. The
amount of the synthesized polyP was determined by
measuring DAPI–polyP fluorescence in the presence
of Triton X-100. Data in A,C show the mean6s.d.
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vtc1K24S and vtc1R31E cells did not accumulate polyP in vitro

(Fig. 7A). vtc1R98E supported polyP synthesis, albeit at a highly
reduced rate. However, also in this mutant all the synthesized

polyP was transferred into the vacuole lumen (Fig. 7B).
We also tested the capacity of isolated vacuoles to import

synthetic polyP-60. This experiment addresses the question
whether a potential free pool of polyP – if it existed – could be

translocated or whether translocation might require a direct
feeding of the nascent polyP chain from the catalytic domain
into the translocation channel. During 10 min of the in vitro

synthesis reaction, 2 mg of vacuoles translocated §1 nmol
polyP into the lumen of the vacuole (Fig. 7C). If the VTC
complex produced a soluble intermediate that was then

imported, we would expect that soluble synthetic polyP-60
should also be importable at similar rates. We tested this
hypothesis using vacuoles from strains lacking the vacuolar

polyphosphatase Ppn1, which minimized the possibility that,
whenever translocated, polyP-60 would be degraded in the
lumen. We analyzed vacuoles from three strains – ppn1D
vacuoles, providing the complete system with its ability to

synthesize and translocate; vtc4R264A ppn1D, containing a
substitution of an active-site residue that renders the VTC
complex catalytically inactive yet correctly assembled on the

vacuole membrane (Hothorn et al., 2009); and vtc4D ppn1D,
lacking the VTC complex. Vacuoles from these strains were
incubated with 3 nmol polyP-60 in the presence of an ATP-

regenerating system. After the incubation, the reactions were
stopped by adding EDTA and DAPI, and the fractions of
translocated and non-translocated polyP-60 were determined as
established above (Fig. 7D). In all three cases no import of

synthetic polyP-60 could be observed. Taken together, our
observations suggest that efficient polyP synthesis requires
concomitant translocation of the nascent chain into the vacuole

and that polyP can only be efficiently imported as it emanates
from the catalytic center of the VTC complex.

DISCUSSION
Given the toxicity of freely diffusible polyP and its exposure to
the cytosolic polyphosphatase Ppx1, it appears plausible that

synthesis of polyP should be coupled to its immediate
translocation into the vacuole. Both in vivo and in vitro data
support this hypothesis. In vivo, overexpression of Ppx1 in the
cytosol does not affect polyP accumulation, whereas targeting

Ppx1 into the vacuole lumen reduces polyP content dramatically.
This argues that the cells do not accumulate a significant polyP
pool in the cytosol. A further argument can be deduced from the

similar toxicity of EcPpk1 expression in wild-type and vtc1D
cells. Assuming a polyP translocase that transports freely
diffusible polyP, we could explain the toxicity of EcPpk1

expression only if this translocase were saturated. Then,
however, we could not explain why EcPpk1 induces similar
polyP toxicity in vtc1D as in wild-type cells. vtc1D cells produce

virtually no endogenous polyP and EcPpk1 establishes a polyP
pool equivalent to only 20% of that seen in wild-type cells. In
vtc1D cells, an independent translocase should thus have more
than enough transport capacity to avoid toxicity and accumulation

of cytosolic polyP. But this is not observed, suggesting that freely
diffusible polyP might not be a substrate for translocation. This
conclusion is strongly supported by the in vitro observation that

isolated vacuoles efficiently import polyP produced by the VTC
complex but not chemically synthesized polyP. Furthermore,
inhibition of V-ATPase did not simply lead to accumulation of

the synthesized polyP outside the vacuole, but blocked the entire
reaction. We hence favor the interpretation that VTC acts as a
coupled polyP polymerase and translocase. This could also
explain the high number of transmembrane domains that are

present in the VTC complex. VTC transmembrane domains
contain conserved positively charged residues that are predicted
to lie within the bilayer. These residues are far from the catalytic

center and cannot even be expected to interact with the catalytic
domain, but their substitution impairs polyP synthesis. This effect

Fig. 6. PolyP synthesis by vacuole detergent extract. (A) Intactness of the VTC complex in detergent. Vacuoles (vac.) were isolated from BJ3505 Vtc3-3HA
cells, solubilized in 15 mM CHAPS and immunoadsorbed to an anti-HA matrix. Adsorbed proteins were analyzed by SDS-PAGE and western blotting
against the indicated proteins. IP, immunoprecipitated. (B) Catalytic activity after solubilization. Vacuoles from BY4742 ppx1D ppn1D were prepared and either
left intact or solubilized in CHAPS. In vitro polyP synthesis activity was determined and the apparent catalytic turnover number was calculated. (C) Residual
polyP synthesis activity in the detergent extract is insensitive to concanamycin A (con A) and FCCP. The vacuole detergent extracts were incubated with
ATP-RS for 90 min without inhibitors, or with 1 mM concanamycin A or 0.1 mM FCCP, and the amount of synthesized polyP was measured. Data show the
mean6s.d.
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is consistent with a coupling of synthesis and translocation.
Structurally, such coupling is also plausible because the catalytic
domain of the VTC complex forms a tunnel in which the catalytic

reaction takes place. The polyP chain is held in the tunnel by
interaction with numerous positively charged residues (Hothorn
et al., 2009). It can be expected that the polyP chain must

continuously slide forward in order to discharge the catalytic
center and permit the addition of new phosphate residues, which
could be facilitated by the concomitant translocation of the chain

across the membrane. A remaining caveat is that polyP
translocation into the vacuole lumen could be performed by a
hypothetical independent polyP translocase, which might be
downregulated in cells lacking functional VTC (vtc1D, vtc4D and

vtc4R264A).
How could polyP translocation be driven? PolyP synthesis

itself could drive translocation. This is unlikely because the

transfer of the c-phosphate of a nucleotide triphosphate onto a
polyP chain should be energetically almost neutral. But
translocation and synthesis of polyP depend on the vacuolar

electrochemical potential. A direct effect of the electrochemical
potential on catalysis cannot be excluded, but we consider this to
be equally unlikely, because the catalytic site is located in a

separate cytosolic domain, i.e. outside the membrane. Several
(not mutually exclusive) ways can be envisioned in which the
electrochemical potential could support polyP translocation.

Translocation might operate by a molecular ratchet (Feld et al.,
2012), which exploits the spontaneous bidirectional Brownian
motion of the polymer in the translocation channel. Selective

binding of polyP at the lumenal face of the vacuolar membrane
could impair back-sliding of the chain and make the process
unidirectional. Suitable ligands that are known to bind to polyP

are abundant in all acidocalcisomes, such as lysine, arginine,
polyamines, Ca2+ and Mg2+ (Docampo and Moreno, 2011).
Because the accumulation of these compounds inside vacuoles
mostly depends on proton antiporters (Russnak et al., 2001;

Tomitori et al., 2001; Shimazu et al., 2005; Brohée et al., 2010),
the electrochemical potential could support polyP translocation
by the import of these ligands into vacuoles. Protonation of polyP

is unlikely to play a major role here, because the pH of vacuole
lumen is 5.5 (Brett et al., 2011), whereas the sole hydroxyl group
on each phosphate residue of polyP is strongly acidic (pKa ,1–2)

(Lee and Whitesides, 2010). A further hypothesis, which we
favor, is that translocation is directly driven by the electrical
potential across the vacuolar membrane. As a consequence of the

Fig. 7. PolyP synthesis and translocation are coupled. (A,B) In vitro synthesis reactions were run with 8 mg of vacuoles from BY4727 vtc1D cells
reconstituted with the indicated mutant versions of VTC1. (A) Timecourse of polyP synthesis. (B) Translocation of the synthesized polyP by vtc1R98E vacuoles,
as measured by using the DAPI-accessibility assay. (C) Timecourse of polyP synthesis and translocation by 2 mg of vacuoles from BY4742 ppn1D vtc4D

VTC4wt, as measured by using the DAPI accessibility assay. (D) Translocation of synthetic polyP-60 by vacuoles. Vacuoles were isolated from BY4742 ppn1D

vtc4D cells, reconstituted with the indicated versions of VTC4, and incubated with or without 3 nmol polyP-60 for 10 min under conditions used for the in vitro

synthesis reaction. The amounts of polyP accessible to DAPI in the presence or absence of Triton X-100 were determined. Fluorescence of samples without
polyP-60 was subtracted from the respective values with polyP-60. The fluorescence of 30 mM polyP-60 without vacuoles and without detergent was set to 1.
The experiment was performed twice with two independent vacuole preparations, each in duplicates. Data show the mean6s.d. wt, vacuoles from wild-type
cells.
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permanent pumping of protons into the vacuolar lumen, vacuoles
show a membrane potential of 75 mV, positive inside (Kakinuma

et al., 1981). PolyP, with its high density of negative charges,
could be driven into vacuoles by this membrane potential.
Interestingly, the polyP synthesis in Dictyostelium discoideum

vacuoles, possibly acidocalcisomes, is inhibited by carbonyl

cyanide m-chlorophenyl hydrazone (CCCP), suggesting that it
might also depend on the proton gradient (Gómez-Garcı́a and
Kornberg, 2004). However, an opposite example also exists:

polyP synthesis by the organelle fraction from arbuscular fungi
was reported to be insensitive to CCCP (Tani et al., 2009).
Therefore, it remains to be determined how universal is the

requirement for the energized membrane environment for polyP
synthesis in eukaryotes.

We found that the cytosolic production of polyP impairs the

growth of yeast cells even if this production augmented polyP by
only 10–20% of the amount normally found inside a wild-type
cell. PolyP is probably sequestered in a specialized compartment
and its synthesis coupled to translocation in order to avoid such

cytosolic intermediates. This model can also rationalize the
existence of the highly active cytosolic polyphosphatase Ppx1
(Wurst and Kornberg, 1994), which should cleave non-

translocated polyP and protect cells against its adverse effects.
In contrast to the toxic effects we found in yeast, a recent study in
bacteria provided evidence for a protective, chaperone-like

function of polyphosphates (Gray et al., 2014), which was
proposed to augment bacterial stress resistance (Rao et al., 2009).
Such a protective effect does not necessarily contradict the

toxicity of polyP that we observed. PolyP showed beneficial
effects on model proteins over a broad concentration range (from
low micromolar to tens of millimolar). The presence of polyP
in the cytosol might be regulated, restricting it to low

concentrations. Here, it might be important that the major
fraction of polyP is compartmentalized in volutin granules or
acidocalcisome-like organelles even in bacteria (Seufferheld

et al., 2003). PolyP might be released from these compartments
into the cytosol if needed to survive stress conditions. It is
conceivable that there could be a trade-off between the negative

effects of transiently released higher concentrations of polyP on
growth rate and its benefits for survival of the existing cells. This
raises the interesting question of whether and how the production,
translocation, turnover and potential release of polyP could be

regulated in response to stress conditions.
Given that the sequestration of polyP in compartments is a

universal feature, we expect that the protective as well as the

toxic aspects of polyP metabolism will be of broad relevance for
eukaryotic as well as prokaryotic organisms. Therefore, the
biogenesis and metabolism of acidocalcisomes and of the

polyphosphates stored in them should be further explored.

MATERIALS AND METHODS
Materials
Creatine kinase, creatine phosphate and ATP were from Roche,

concanamycin A was from Alexis. PolyP-60 and polyP-300 were kind

gifts from Toshikazu Shiba (Regenetiss Inc., Japan). The concentration of

polyP was verified by an enzymatic assay (Hothorn et al., 2009) and is

reported as the concentration of phosphate monomers. Anti-HA

monoclonal mouse antibody HA.11 was from Covance. Polyclonal

antibodies were raised in rabbits using proteins expressed in E. coli.

Yeast strains and plasmids
Strains are listed in supplementary material Table S1. Genes were deleted

by replacing a complete open reading frame with a marker cassette

(Janke et al., 2004; see supplementary material Table S2 for PCR

primers). BY4742 ppx1D ppn1D was constructed from BY4742

ppn1D::kanMX (Euroscarf; accession number Y14286). BY4742 vtc4D
ppn1D and BY4742 vtc4D ppn1D VTCR264X were constructed from

BY4742 vtc4D (Euroscarf; accession number Y16780) and BY4742

vtc4D VTC4R264X (Hothorn et al., 2009), respectively. BJ3505 Vtc3-6gly-

3HA was generated by genomic integration of a PCR fragment coding for

the tag and the auxotrophic marker using the pUG6 plasmid (Güldener

et al., 1996). BY4741 PGAL-3HA-PPX1 was produced by PCR-based

tagging (Janke et al., 2004). The tag was amplified from the plasmid

pYMN-24, the PCR product was integrated into BY4741 and clones were

selected on nourseothricin-containing plates. Two positive clones were

selected and transformed either with p416GPD or p416GPDPPK1. Clones

were selected on plates containing 2% galactose in place of glucose

(HC2URA+GAL). Genomic manipulations were verified by colony PCR.

Genomic DNA from S. cerevisiae BY4741 and E. coli TOP10 was

extracted using the Gentra Puregen Yeast/Bacteria Kit (Qiagen). The

coding sequences of yeast Ppx1, EcPpk1 and the pre-pro-sequence of

yeast CPY (PPCPY), consisting of sequence encoding 111 N-terminal

amino acids, were amplified by PCR from genomic DNA using primers

described in supplementary material Table S2. For the expression of

vacuole-targeted Ppx1, PPCPY was digested by using BamHI and EcoRI

and cloned into the p416GPD plasmid (ATCC number 87360), giving

plasmid p416GPDPPCPY. The PPX1 ORF was digested by using EcoRI

and XhoI and cloned into pYD010, giving plasmid p416GPDPPCPY-

Ppx1. To construct the plasmid encoding Ppx1–GFP, we first amplified

the PPX1 ORF lacking the stop codon from genomic yeast DNA and

digested the product using EcoRI and XhoI. The insert was ligated with

p416GPDPPCPY, giving p416GPDPPCPY-Ppx1minusSTOP. GFP was

then amplified from plasmid pKT127 and the PCR product was

digested using XhoI and MluI before ligation with p416GPDPPCPY-

Ppx1minusSTOP to give p416GPDPPCPY-Ppx1-GFP. For cytosolic

expression of Ppx1, the coding sequence of PPX1 was PCR-amplified,

digested with EcoRI and HindIII and cloned into p416GPD, giving

plasmid p416GPDPpx1. For the cytosolic expression of EcPpk1, the

coding sequence of PPK1 was amplified, digested by using HindIII and

XhoI and the product was inserted into p416GPD, giving plasmid

p416GPDPPK1. Plasmids were sequenced (Fasteris).

Purification of recombinant ScPPX1
E.coli BL21 cells were transformed with the plasmid pKM263ScPPX1

(Werner et al., 2005), grown in 2 l of NZ-medium (10 g/l yeast extract,

2 g/l glucose, 5 g/l NaCl, 16 g/l NZ-amine, 100 g/l ampicillin) at 30 C̊ to

an OD600 of 1, shifted to 20 C̊ and incubated overnight. Cells were

harvested and resuspended in 30 ml of cold lysis buffer (50 mM Tris-

HCl pH 7.5, 300 mM NaCl, 20 mM imidazole) and 1 mg/ml lysozyme

was added for 30 min at 4 C̊, followed by six sonication steps of 15 s.

10 mg/ml RNase (Applichem) and 5 mg/ml DNase (Roche) were added,

and the incubation was continued for 30 min at 0 C̊. The lysate was

centrifuged (30 min, 66,000 g, 4 C̊) and supernatant (35 ml) was loaded

onto a column containing 2.2 ml of ProtinoRNi-Ted resin (Macherey-

Nagel) pre-equilibrated in lysis buffer. Beads were washed with 40 ml of

cold lysis buffer and eluted with 9 ml of cold elution buffer 1 (50 mM

Tris-HCl pH 7.5, 300 mM NaCl, 200 mM imidazole). Elution fractions

were loaded on a column containing 2 ml of glutathione SepharoseTM

(GE Healthcare) pre-equilibrated in cold elution buffer 1. After washing

with 30 ml of cold elution buffer 1, proteins were eluted with 6 ml of

cold elution buffer 2 (50 mM Tris-HCl pH 7.5, 10% sucrose, 10 mM

glutathione) and dialysed against 4 l of 50 mM Tris-HCl pH 7.5, 10%

sucrose overnight at 4 C̊. Protein concentration was determined by the

Bradford assay (BioRad) using bovine serum albumin (BSA) as the

standard.

Media and growth of cells
Precultures were prepared in YPD or, for the strains carrying p416GPD-

derived plasmids, in Hartwell’s complete medium without uracil

(HC2URA) (Burke et al., 2000) and grown at 30 C̊ for 24–48 h. An

appropriate amount of cells were inoculated into the fresh medium,
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grown overnight at 30 C̊ until an OD600 of 1–2 was reached and used for

further experiments. In HC2URA+GAL medium 2% glucose was replaced

with 2% galactose.

Isolation and solubilization of vacuoles
The cells were grown in 1 litre of YPD medium at 30 C̊ overnight and

harvested at an OD600 of 0.6–1.3. A total of 600 ml of culture was

centrifuged (2 min, 3900 g), cells were resuspended in 50 ml of 0.1 M

Tris-HCl pH 8.9, 10 mM DTT, incubated for 7 min at 30 C̊ in a water

bath and collected by centrifugation. Cells were resuspended in 15 ml of

spheroplasting buffer (50 mM potassium phosphate pH 7.5, 600 mM

sorbitol in YPD with 0.2% glucose), 3000–4500 units of lyticase

(Cabrera and Ungermann, 2008) were added and cells were incubated for

26 min at 30 C̊ in a water bath. Spheroplasts were collected by

centrifugation (3 min, 3400 g, 4 C̊) and gently resuspended in 15 ml of

15% Ficoll 400 in PS buffer (10 mM PIPES/KOH pH 6.8, 200 mM

sorbitol). Spheroplasts were lysed by adding DEAE-dextran to a

concentration of 7 mg/l and incubated (2 min, 0 C̊, then 2 min, 30 C̊).

Samples were chilled, transferred into SW41 tubes and overlaid with

2.5 ml of 8% Ficoll 400, 3.5 ml of 4% Ficoll 400, and 1.5 ml of 0%

Ficoll 400 (all in PS buffer). After centrifugation (150,000 g, 90 min,

4 C̊), vacuoles were harvested from the 0–4% interface. When isolating

vacuoles from proteolytically competent strains, 1 mM PMSF and 16
protease inhibitor cocktail (16 PIC – 100 mM pefabloc SC, 100 ng/ml

leupeptin, 50 mM O-phenanthroline and 500 ng/ml pepstatin A) were

included in all buffers, starting from the spheroplasting step. Vacuole

amounts were determined by protein content, using the Bradford assay

with fatty-acid-free BSA as standard. Individual proteins on isolated

vacuoles were analyzed by SDS-PAGE and western blotting. Secondary

antibodies were coupled to IR dyes and the bands of interest were

quantified using the Odyssey software (V1.1) (LI-COR).

Detergent extracts of vacuoles were prepared as follows: vacuoles in

PS buffer were supplemented with 2% DMSO, frozen in liquid nitrogen

and stored at 220 C̊. Before use, they were thawed on ice, pelleted

(7000 g, 5 min, 4 C̊) and resuspended in 20 mM potassium phosphate

buffer pH 7.5, 150 mM KCl, 0.5 mM MnCl2, 16PIC, 1 mM PMSF and

15 mM CHAPS and incubated on ice for 20–45 min with occasional

mixing. Insoluble material was removed by centrifugation (20,000 g,

15 min, 4 C̊).

PolyP synthesis by isolated vacuoles
PolyP synthesis was assayed in 100-ml samples consisting of reaction

buffer (10 mM PIPES/KOH pH 6.8, 150 mM KCl, 0.5 mM MnCl2,

200 mM sorbitol) and ATP-regenerating system (ATP-RS – 1 mM

ATP-MgCl2, 40 mM creatine phosphate and 0.25 mg/ml creatine

kinase). The reactions were started by adding 2 mg of purified

vacuoles, the samples were incubated at 27 C̊, followed by addition of

200 ml of stop solution (12 mM EDTA, 0.15% Triton X-100 and 15 mM

DAPI) in dilution buffer (10 mM PIPES/KOH pH 6.8, 150 mM KCl,

200 mM sorbitol). This threefold dilution with EDTA-containing buffer

did not only stop nucleotide hydrolysis but also resulted in faster

development of DAPI–polyP fluorescence. Given that DAPI is

membrane impermeable, dissolving the membranes with detergent was

required in order to detect the entire polyP pool. A total of 240 ml of

the sample was transferred into a black 96-well plate and fluorescence

was measured with a SPECTRAmax GEMINI XS fluorescence

plate reader (Molecular Devices) using lex5415 nm, lem5550 nm

(cutoff5530 nm) at 27 C̊. Fluorescence was read every 1–2 min until

the signal was stable. Experiments were repeated with at least three

independent vacuole preparations. Values are presented as the

mean6s.d. In case of vacuole detergent extracts, polyP synthesis was

performed in the same buffer as solubilisation, in the presence of

CHAPS.

Accessibility of the synthesized polyP to DAPI staining
4 mg of BJ3505 vacuoles were incubated in 200 ml of reaction buffer with

ATP-RS for 30 min at 27 C̊. Then, 400 ml of ice-cold stop solution

without Triton X-100 was added, the samples were vortexed briefly and a

250-ml aliquot was transferred into a black clear-bottomed 96-well plate

(‘no detergent’ sample). The rest of the sample was immediately

supplemented with 0.1% Triton X-100 (final concentration), vortexed

vigorously and a second 250-ml aliquot was withdrawn (‘+ detergent’

sample). DAPI–polyP fluorescence was measured with a SPECTRAmax

GEMINI EM fluorescence plate reader in a bottom-reading mode in order

to avoid detergent artifacts related to meniscus curvature (Cottingham

et al., 2004; Lifeng and Gochin, 2007).

Accessibility of the synthesized polyP to recombinant Ppx1
16 mg of BJ3505 vacuoles were incubated in 800 ml of reaction buffer

with ATP-RS for 30 min at 27 C̊. A control sample was incubated in the

presence of 8 mM EDTA. After chilling on ice, 10 mM polyP-60

standard (final concentration) was added to vtc1D and ‘no vacuole’

samples. Two 100-ml aliquots were withdrawn, mixed with 200 ml of

dilution buffer and incubated on ice with or without 0.2 mg of

recombinant Ppx1 for 30 min. 8 mM EDTA, 0.1% Triton X-100 and

10 mM DAPI were added and DAPI–polyP fluorescence was measured.

400 ml of the remaining reaction mixtures were mixed with 800 ml of

dilution buffer that had been pre-heated to 99 C̊, boiled for 5 min and

placed on ice. Two 300-ml aliquots were incubated with or without

recombinant Ppx1 as described above for the untreated samples. 250 ml

was transferred into a 96-well plate and DAPI–polyP fluorescence was

measured (see above). To correct for polyP-unrelated fluorescence,

background values were subtracted. For BJ3505 vacuoles, the sample

incubated with EDTA was used for background correction; in case of

BJ3505 vtc1D vacuoles and ‘no vacuoles’ samples, reactions without

added polyP-60 served as background values.

Quantification of polyP accumulated in vivo
PolyP was extracted, purified on Qiagen PCR purification columns and

digested with recombinant Ppx1, and the released orthophosphate was

quantified by using a colorimetric assay with Malachite Green as

described previously (Hothorn et al., 2009). Experiments were performed

at least in duplicates for at least two different transformants. The results

are presented as the mean6s.d.

Microscopy
For observation of cell morphology and localization of vtGFP–Ppx1,

the cells were grown in HC2URA to an OD600 of 1.0, collected by

centrifugation and mounted on a microscopy slide. For the quantification of

viable cells, the cells were resuspended in 10 mM HEPES pH 7.5

containing 2% glucose, 20 mM of FUN1 was added and samples were

incubated for 30 min at 30 C̊ in the dark. Aliquots were observed using a

LEICA DMI6000 B microscope with a 1006 1.4 NA lens, a Hamamatsu

ORCA-R2 camera and an X-CiteH series 120Q UV lamp. Pictures were

collected using Volocity software (Perkin Elmer) and treated with ImageJ

software. Living cells were counted in cultures of at least two transformants.
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Zhang, H., Gómez-Garcı́a, M. R., Shi, X., Rao, N. N. and Kornberg, A. (2007).
Polyphosphate kinase 1, a conserved bacterial enzyme, in a eukaryote,
Dictyostelium discoideum, with a role in cytokinesis. Proc. Natl. Acad. Sci. USA
104, 16486-16491.

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 5093–5104 doi:10.1242/jcs.159772

5104

http://dx.doi.org/10.1128/AEM.71.10.5692-5701.2005
http://dx.doi.org/10.1128/AEM.71.10.5692-5701.2005
http://dx.doi.org/10.1128/AEM.71.10.5692-5701.2005
http://dx.doi.org/10.1128/AEM.71.10.5692-5701.2005
http://dx.doi.org/10.1073/pnas.151269398
http://dx.doi.org/10.1073/pnas.151269398
http://dx.doi.org/10.1073/pnas.151269398
http://dx.doi.org/10.1074/jbc.M304548200
http://dx.doi.org/10.1074/jbc.M304548200
http://dx.doi.org/10.1074/jbc.M304548200
http://dx.doi.org/10.1016/j.febslet.2005.02.032
http://dx.doi.org/10.1016/j.febslet.2005.02.032
http://dx.doi.org/10.1016/j.febslet.2005.02.032
http://dx.doi.org/10.1074/jbc.M412617200
http://dx.doi.org/10.1074/jbc.M412617200
http://dx.doi.org/10.1074/jbc.M412617200
http://dx.doi.org/10.1002/elps.200700041
http://dx.doi.org/10.1002/elps.200700041
http://dx.doi.org/10.1002/elps.200700041
http://dx.doi.org/10.1073/pnas.0507195103
http://dx.doi.org/10.1073/pnas.0507195103
http://dx.doi.org/10.1073/pnas.0507195103
http://dx.doi.org/10.1186/1756-6606-7-42
http://dx.doi.org/10.1186/1756-6606-7-42
http://dx.doi.org/10.1186/1756-6606-7-42
http://dx.doi.org/10.1186/1756-6606-7-42
http://dx.doi.org/10.1128/AEM.01519-09
http://dx.doi.org/10.1128/AEM.01519-09
http://dx.doi.org/10.1128/AEM.01519-09
http://dx.doi.org/10.1128/AEM.01519-09
http://dx.doi.org/10.1042/0264-6021:3530681
http://dx.doi.org/10.1042/0264-6021:3530681
http://dx.doi.org/10.1042/0264-6021:3530681
http://dx.doi.org/10.1007/BF00417851
http://dx.doi.org/10.1007/BF00417851
http://dx.doi.org/10.1007/BF00417851
http://dx.doi.org/10.1091/mbc.E06-08-0664
http://dx.doi.org/10.1091/mbc.E06-08-0664
http://dx.doi.org/10.1091/mbc.E06-08-0664
http://dx.doi.org/10.1007/s00203-005-0031-2
http://dx.doi.org/10.1007/s00203-005-0031-2
http://dx.doi.org/10.1007/s00203-005-0031-2
http://dx.doi.org/10.1007/s00203-005-0031-2
http://dx.doi.org/10.1073/pnas.0706847104
http://dx.doi.org/10.1073/pnas.0706847104
http://dx.doi.org/10.1073/pnas.0706847104
http://dx.doi.org/10.1073/pnas.0706847104


Table S1. Yeast strains used in this study 
 
Strain Genotype Source / Reference 
BJ3505 MATa pep4::HIS3 prb1- Δ1.6R lys2-208 

trp-Δ101 ura3-52 gal2 can 
(Jones et al., 1982) 

BJ3505 vtc1Δ BJ3505, vtc1::kanMX this study 
BJ3505 EcPpk1 BJ3505, p416GPD-EcPpk1 this study 
BJ3505 vtc1Δ EcPpk1 BJ3505, vtc1::kanMX, p416GPD-EcPPK1 this study 
BJ3505 Ppx1 BJ3505, p416GPD-Ppx1 this study 
BJ3505 vt-Ppx1 BJ3505, p416GPDPPCPY-Ppx1 this study 
BJ3505 vtGFP-Ppx1 BJ3505, p416GPDPPCPY-Ppx1-GFP this study 
BJ3505 vph1Δ BJ3505, vph1::kanMX (Bayer et al., 2003) 
BJ3505 Vtc3-3HA BJ3505, Vtc3-6gly-3HA-G418 this study  
BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 (Brachmann et al., 

1998) 
BY4742 ppx1Δ 
ppn1Δ 

BY4742, ppn1::kanMX ppx1::natNT2 this study 

BY4742 vtc4Δ ppn1Δ BY4742, vtc4::kanMX ppn1::natNT2 this study 
BY4742 vtc4Δ ppn1Δ 
VTC4R264X 

BY4742, vtc4::kanMX ppn1::natNT2 
pRS303-PVtc4-Vtc4R264X ; X= R, A 

this study 

BY4727 vtc1Δ 
VTC1X 

BY4727, vtc1::His1 pRS304-PVtc1-Vtc1Y 

; Y= WT, K24E, K24S, R31E, R98E 
(Hothorn et al., 2009) 

BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 Euroscarf 
BY4741 PGAL 3HA-
Ppx1 

MATa his3∆1 leu2∆0 met15∆0 ura3∆0 
PGAL 3HA-Ppx1(NAT) 

this study 
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Table S2. Primers used in this study 
Name Sequence  Targeted gene 
Primers for producing gene knock-outs 
Fwd  YD010 CTA CAT TAT CGA ATA CGA TTA AAC ACT ACG 

CCA GAT TTC CAC AAT ATG CAG CTG AAG CTT 
CGT ACG C 

VTC1 

Rev YD011 AGT TTG TGC GTA ACC CAC GCT TAC GAT ATT 
GGA ATT ACA ATT TCA GCA TAG GCC ACT AGT 
GGA TCT G 

VTC1 

AS286 CTA TTG TTT TCA TTG AGT AGG GGT AGA GCT 
AGT TAG CTG CTT TTC GAT GCG TAC GCT GCA 
GGT CGA C 

PPN1 

AS287 AAA CTG TAA TTG AAG AAT GAT ATG CAT TTC 
TAT GTG TAT ATT AAC TTA ATC GAT GAA TTC 
GAG CTC G 

PPN1 

AS171 CAA ATA ATC AAA AAG TTC AAA ACA CCG ATT 
GTT AAG AAA GAT GCG TAC GCT GCA GGT CGA C  

PPX1 

AS172 GGG TCA TAT ATA AAC CAA ATA AAG CAT 
ATATAA CAT CTC CCT TCA ATC GAT GAA TTC 
GAG CTC G 

PPX1 

Ctrl fwd YD012 TAT CGC TTG TTA CGG TCG GT  
Ctrl rev AS12 GCC CAT TTA TAC CCA TAT  
PCR primers 
Fwd YD047 CGG GAT CCA TGA AAG CAT TCA CCA GTT TAC PPCPY 
Rev YD037 CGG AAT TCG TTG ACA CGA AGC TGA TAG TTT TC PPCPY 
Fwd YD033 CGG AAT TCT CGC CTT TGA GAA AGA CGG TT PPX1 
Rev YD044 CCG CTC GAG TCA CTC TTC CAG GTT TGA GTA PPX1 
Fwd YD070 CCC AAG CTT ATG GGT CAG GAA AAG CTA TAC EcPPK1 
Rev YD039 CCG CTC GAG TTA TTC AGG TTG TTC GAG TG EcPPK1 
Fwd YD069 CGG AAT TCA TGT CGC CTT TGA GAA AGA CGG TT PPX1 
Rev YD034 CCC AAG CTT TCA CTC TTC CAG GTT TGA GTA PPX1 
Fwd YD065 CGG AAT TCT CGC CTT TGA GAA AGA CGG TT PPX1 
Rev YD066 CCG CTC GAG CTC TTC CAG GTT TGA GTA CG PPX1 
Fwd YD067 CCG CTC GAG TCT AAA GGT GAA GAA TTA TTC GFP 
Rev YD068 CGA CGC GTT TAT TTG TAC AAT TCA TCC AT GFP 
Fwd YD196 CCA CTT GAA ACA AAT AAT CAA AAA GTT CAA 

AAC ACC GAT TGT TAA GAA AGA TGC GTA CGC 
TGC AGG TCG AC 

PGAL 3HA 

Rev YD197 TTT TAA GTG TGC CAA AAA TTC AGG AAC CGT 
CTT TCT CAA AGG CGA CAT CGA TGA ATT CTC 
TGT CG 

PGAL 3HA 

Fwd Ctrl T776 CCT CTA TAC TTT AAC GTC AAG GAG PGAL 3HA 
Rev Ctrl YD035 TGC TGA CTC GTT ACC AAC ACA PGAL 3HA 
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