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Abstract 23 

The discovery that human brain connectivity data can be used as a “fingerprint” to identify a 24 

given individual from a population, has become a burgeoning research area in the 25 

neuroscience field. Recent studies have identified the possibility to extract these brain 26 

signatures from the temporal rich dynamics of resting-state magnetoencephalography (MEG) 27 

recordings. However, to what extent MEG signatures constitute a marker of human 28 

identifiability when engaged in task-related behavior remains an open question. Here, using 29 

MEG data from naturalistic and neurophysiological tasks, we show that identification improves 30 

in tasks relative to resting-state, providing compelling evidence for a task dependent axis of 31 

MEG signatures. Notably, improvements in identifiability were more prominent in strictly 32 

controlled tasks. Lastly, the brain regions contributing most towards individual identification 33 

were also modified when engaged in task activities. We hope that this investigation advances 34 

our understanding of the driving factors behind brain identification from MEG signals. 35 

  36 
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Introduction  37 

The patterns of the human fingertip ridges have been established as being a “signature” that 38 

uniquely identifies each individual in the human species. Recently, the quest for identifying 39 

reliable markers of human identity has expanded into the field of neuroscience. A seminal 40 

work1 in this research area has highlighted that the expression of an individual’s brain 41 

connectome2 can act as a “fingerprint“ that uniquely identifies a given individual among a large 42 

population of individuals solely on the basis of its brain connectome profile. This work1, along 43 

with others3,4, laid the foundation for a new field that has taken the name of “brain 44 

fingerprinting“ and, since then, its scope has rapidly expanded thanks to the fact that brain 45 

fingerprints can now be derived from structural magnetic resonance imaging (MRI)5–7, 46 

functional MRI (fMRI)1,3,4,8, electroencephalogram (EEG)9–11, or functional near-infrared 47 

spectroscopy (fNIRS)12, and they can also be related to behavioral and demographic scores 48 

13–17. Methodologically, most of these works are based on extracting fingerprints from inter-49 

individual functional connectivity profiles, also known as functional connectomes (FCs), that 50 

are understood as being the statistical dependence between spatially distinct regions18. 51 

 52 

Only very recently has the fingerprinting field started to capitalize on the spatiotemporal 53 

complexity of fast neurophysiological signals recorded from magnetoencephalography (MEG) 54 

in order to investigate neural features of individual differentiation16,19–22. There are several 55 

reasons for doing so, since recorded MEG signals contain extremely rich information23,24. First, 56 

MEG signals measure direct cortical activity with a high temporal resolution as opposed to 57 

fMRI that only provides information about slow hemodynamic fluctuations. Second, the 58 

measured signals oscillate at multiple frequencies that allow for band-specific interpretations; 59 

and third, oscillations that resonate at different frequencies have a biological meaning that is 60 

related to cognitive functioning. Indeed, recent studies taking advantage of spontaneous 61 

electrophysiological recordings have provided new insights into the neurophysiological nature 62 

of brain fingerprints in healthy16,19 and clinical populations20–22.  63 
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So far, these studies have only focused on characterizing individual MEG signatures from 64 

task-free conditions, under which individuals are not engaged in any particular task25,26. 65 

However, resting-state activity does not capture the full range of interindividual differences in 66 

the functional organization of the brain27,28, nor can it fully predict brain-behavior relationships 67 

17,28–31. Specifically, spontaneous brain activity fails to capture the functional reconfiguration of 68 

the brain that takes place as individuals engage in various activities32,33. Task-paradigms 69 

reliably perturb the ongoing dynamics of the core functional organization of the human brain, 70 

by modulating its connectivity patterns according to task demands and individualized 71 

responses32–39. 72 

 73 

Hence, the next step is to explore whether individual signatures of identifiability from fast 74 

neurophysiological brain dynamics are modulated due to the task-dependent properties of the 75 

functional connectome. Since this is uncharted territory, there are several interesting aspects 76 

to be explored. How is individual identifiability affected by task-induced modulations? Are 77 

certain brain rhythms more specific for differentiation? How does the spatial organization of 78 

brain fingerprints－in terms of brain regions and systems－change with varying brain states? 79 

Finding an answer to these questions will enhance our knowledge of what the driving factors 80 

behind MEG connectome identification are. In this work, we addressed several of these 81 

questions by deriving brain connectivity fingerprints of MEG data from a cohort of individuals 82 

collected during several brain states. We started by estimating the functional connectomes of 83 

each individual in resting-state conditions, and three task-induced conditions. We found 84 

compelling evidence from whole-brain functional connectivity patterns that individuals were 85 

identified better when engaged in task conditions that were under the strict control of the 86 

experimenter (i.e, well-constrained), indicating that MEG connectome identifiability changes 87 

as a function of the task and its level of constraint. Notably, the contributions of brain regions 88 

and functional systems to individual identifiability were modified when engaged in task-induced 89 

brain states. In summary, the findings in this work indicate that the connectome fingerprint is 90 
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not static, but is something that fluctuates and becomes more prominent while engaged in 91 

certain task-driven states. More importantly, we can track this fluctuating feature of 92 

connectome identifiability across several frequency components using direct 93 

neurophysiological signals captured by MEG. We hope that the findings reported in this work 94 

will provide new insights into the link between individual brain signatures and behavior. 95 

 96 

 97 

 98 

Results 99 

 100 

We aimed to formally investigate three aspects of MEG signatures: i) How identification of 101 

individuals based on connectome features is affected by the brain state (as manipulated by 102 

environmental conditions); ii) To what extent the connectivity patterns needed for brain 103 

identification change as a function of the experimental design; iii) How task differentiability 104 

relates to individual brain fingerprints. A general scheme to investigate these aspects is 105 

illustrated in Figure 1. We explored MEG signatures of twenty individuals across a set of four 106 

different experimental conditions: resting-state (REST), narrative listening (PROSE), 107 

mismatch negativity (MMN), and Auditory Steady State Responses (ASSR) (Fig. 1a). The 108 

fingerprinting approach was applied to these MEG recordings, and started with estimating 109 

functional connectomes for each individual from test/retest MEG segments after source 110 

reconstruction (cf. Fig. 1a-b and see Methods for details). Next, the degree of differentiability 111 

for each condition was estimated using differential identifiability (Idiff) and success-rate (SR) 112 

metrics, computed from a mathematical object called identifiability matrix4 (Fig. 1c; see 113 

Methods for details). This identifiability matrix encodes the similarity of each individual with 114 

themselves (Iself; diagonal elements) as opposed to others (Iothers; off-diagonal elements), 115 

and Idiff conceptualizes the extent to which individuals were more similar to themselves than 116 

others4 (i.e., the difference between the average Iself and Iothers values). In addition, SR1 was 117 
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used as a complementary score that provides the proportion of correctly identified individuals. 118 

Finally, we explored the spatial specificity of MEG fingerprints by estimating the degree of 119 

distinctiveness of each FC-edge for individual and task differentiability using intraclass 120 

correlation (ICC; Fig. 1d and see Methods for details). Given that MEG recordings are rich 121 

multi-spectral signals, the fingerprinting analysis was repeated for five typical frequency 122 

bands, as a means to identify which brain rhythms were most specific for individual 123 

differentiability across varying tasks. 124 

125 

126 
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Figure 1 Exploring MEG signatures in naturalistic and neurophysiological states. (a) MEG 127 
signatures were explored in a set of recorded naturalistic and neurophysiological brain states (left): 128 
Resting-state (REST; two sessions), Narrative Listening (PROSE), Auditory Steady State Responses 129 
(ASSR) and Mismatch Negativity (MMN). The recordings for each individual were preprocessed and 130 
source reconstructed to obtain a cleaned time series from each region of the Destrieux Atlas40 (right). 131 
(b) Individual FCs from test/retest segments were obtained by using the functional connectivity measure132 
of Amplitude Envelope Correlation (AEC) between all pairwise orthogonalized time series of the 148 133 
regions of the Destrieux Atlas40. (c) The degree of differentiability in each environmental condition was 134 
derived from a mathematical object called identifiability matrix, which summarizes the degree of 135 
similarity between test FCs vs. retest FCs. (d) The spatial specificity of MEG signatures was assessed 136 
using edgewise intraclass correlation (ICC)41. This method was used to estimate the distinctiveness of 137 
each FC-edge for differentiating between individuals (individual identifiability), and differentiating 138 
between the set of environmental conditions (task identifiability). (e) The workflow from (a-d) allowed 139 
us to explore several aspects of MEG signatures derived from functional connectomes. First, to what 140 
extent identifiability changes as a function of task-induced brain states, by evaluating the degree of 141 
differentiability computed in (c). Second, to what extent the spatial specificity of fingerprints at the 142 
individual level changes across brain states as measured by the edgewise-ICC metric in (d). And third, 143 
whether we can identify a spatial signature that differentiates between the set of brain states (task 144 
identifiability) using edgewise ICC (d). 145 

146 

147 

Individual identification from MEG functional connectomes shows task-dependent aspects 148 

We found that identifying individuals based on their functional MEG connectomes was better 149 

when they were engaged in explicit tasks (Fig. 2). Figure 2a reports the exemplary 150 

identifiability matrices for the alpha and beta frequency bands, whereas the matrices for the 151 

other frequency bands are reported in Supplementary Fig. 1. On average across all frequency 152 

bands, differentiation scores were lower for REST (SR 60.0%, Idiff 17.8%) compared to 153 

PROSE (SR: 74.5%, Idiff: 26.2%), ASSR (SR: 99.5%, Idiff: 37.2%) and MMN (SR: 100%; Idiff: 154 

36.2%). This observation was confirmed using Non-parametric Wilcoxon rank tests between 155 

the individual Idiff scores of the rest and task states that were all statistically significant (P-156 

values < 0.001, after Bonferroni correction for multiple comparisons). Notably, there was a 157 

drop in identifiability for combinations between “task-rest” states, where performances across 158 

frequency bands varied between 25.0%- 63.0% for SR, and between 8.3%-18.5% for Idiff. 159 

These findings together indicate that individuals tend to be more differentiable during tasks 160 
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than during rest. The results were robust to evoked fields’ effects as differentiation scores 161 

were computed from residualized task FCs (i.e., after regressing out the average signal across 162 

trials), and differentiability scores were not substantially altered when running the same 163 

procedure using non-residualized task FCs (Supplementary Fig. 2). 164 

165 

An interesting observation is that in the PROSE state the delta and beta rhythms were most 166 

specific for individual connectome identification, whereas in the MMN/ASSR states no 167 

particular frequency range was specific, i.e., identification scores were consistent across 168 

frequency bands (Fig. 2 and Supplementary Fig. 1). Notably, the differentiation scores for the 169 

cross-state setting of REST x PROSE were similar to those of REST, which was not the case 170 

for the cross-state settings of REST x MMN and REST x ASSR (Fig. 2b). These observations 171 

might in large part be related to the degree of constrainedness of the task. In traditional task 172 

paradigms (MMN/ASSR) that are considered as overly constrained states, overall variability 173 

in connectivity is constrained (i.e., reduced noise). Conversely, REST is a totally 174 

unconstrained state and narrative listening (PROSE) is a more naturalistic paradigm that is 175 

less constrained than traditional task paradigms. In addition, the Iother and Iself elements of 176 

the identifiability matrices further suggest that the nature of brain state influences identifiability 177 

at the individual level, as their values increase and their distributions become narrower as a 178 

function of how constrained the brain state is (Fig. 3). In other words, the more constrained an 179 

experimental condition is, the more the within- and between-individual variabilities are reduced 180 

across test-retest sessions, which leads to increased fingerprinting levels by preserving or 181 

enhancing important individual signatures of connectivity. 182 

183 
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184 

Figure 2 Task matters: identifiability scores across brain states. The figure illustrates the 185 
differential identifiability (Idiff) and success-rate (SR) scores across the brain states of resting-state 186 
(REST), task-based states (PROSE, ASSR, MMN), and combinations of rest and task brain-states 187 
(REST x PROSE, REST x ASSR, REST x MMN). (a) Identifiability matrices for each of the brain states 188 
for the alpha (8-13 Hz) and beta frequency bands (13-30 Hz) (results on the other bands are reported 189 
in Supplementary Fig. 1). (b) Bar plots summarizing the identification scores across the different brain 190 
states and frequency bands. The asterisks on top of the bar plots denote a significant identification 191 
score after permutation testing (see Methods for details on the null model employed). 192 

193 
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194 

Figure 3 Connectome identification is dependent on the constrained nature of the brain state. 195 
Distributions of the Iself and Iothers values in the alpha and beta frequency bands for all brain states. 196 
The distributions indicate that within connectome similarity (Iself), and between connectome similarity 197 
(Iothers) change as a function of the constrained nature of the brain state. The Iself/Iothers distributions 198 
shift rightward and become narrower from unconstrained (REST) to well-constrained states 199 
(MMN/ASSR). 200 

201 

Spatial MEG signatures of individual differentiation change according to brain state 202 

Given that the identification rates computed at the whole-brain level do not provide information 203 

on the functional edges that contribute most towards individual identification, we used the 204 

edgewise Intraclass correlation metric (ICC; see Methods) to assess the spatial specificity of 205 

individual MEG signatures. We found that the spatial signatures of the most identifiable edges 206 
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for individual differentiation were modified across brain states (Fig. 4-5a for alpha (8-13 Hz) 207 

and beta frequencies (13-30 Hz), other frequency bands reported in Supplementary Fig. 3-5). 208 

Specifically, for all frequency ranges we observed changes in the amount of reliable FC-edges 209 

for task-based states compared to the resting-state (Fig. 4-5a and Supplementary Fig. 3-5a). 210 

Similar results were obtained when refining the spatial exploration and looking at the regional 211 

counterpart of the ICC profiles across well-defined functional systems42 (Fig. 4-5b and 212 

Supplementary Fig. 3-5b), or at their nodal strength (i.e., taking the column-wise mean of the 213 

ICC matrices; Fig. 4-5c and Supplementary Fig. 3-5c). 214 

215 

In addition, and in line with our previous analysis (Fig. 2), we found that the spatial signatures 216 

of individual differentiation varied as a function of the constrained nature of the task (Fig. 4-5; 217 

Supplemental Fig. 3-5). For the well-constrained states (MMN/ASSR), we observed a rigid 218 

spatial profile for all frequency ranges, whereas for the un/less constrained REST/PROSE 219 

states, we observed variability in the spatial profiles across frequency bands. Specifically, for 220 

alpha connectivity in REST the visual functional subsystem was the most specific hub for 221 

individual identification, whereas for PROSE the visual and somatomor subsystems were the 222 

most distinctive among individuals. For the beta-band connectivity, posterior regions 223 

belonging to the default mode and ventral attention systems were hubs of individual 224 

differentiation in the REST state, whereas in the PROSE state discrimination was mainly 225 

driven by visual and limbic regions. In contrast, for the MMN/ASSR states, a spatial profile 226 

consisting of regions belonging to higher-order systems (i.e., default mode, ventral attention, 227 

limbic) that span both posterior and frontal brain regions was most specific for all frequency 228 

ranges. Taken together, these findings show that spatial profiles of individual MEG signatures 229 

contain task-dependent aspects and that the nature of the task influences the spatial pattern 230 

across oscillatory rhythms. 231 

232 
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233 

Figure 4 Spatial signatures of individual differentiability in the alpha frequency band. (a) 234 
Edgewise individual differentiability as measured by intraclass correlation (ICC) for each brain state for 235 
the alpha frequency band. The ICC values for each of the functional connections per brain state are 236 
shown. The higher the value, the more the connection is able to separate an individual from others in 237 
the cohort. The brain regions are ordered according to the seven intrinsic functional system organization 238 
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proposed by Yeo and colleagues42. (b) The edgewise ICC scores are averaged within (axis) and 239 
between (color) all seven functional systems to better visualize fingerprint patterns within and between 240 
functional systems across brain states. (c) Nodal representations of the brain regions involved in 241 
individual differentiability during a specific brain state, represented at the 5-95th percentile threshold. 242 
The nodal strength of the ICC matrix (i.e., taking the column-wise mean) was used to characterize how 243 
central each brain region is for individual differentiation. Abbreviations of Yeo’s functional systems VIS 244 
= visual; SM = sensorimotor; DA=dorsal attention; VA=ventral attention; L= limbic; FP= frontoparietal; 245 
DMN= default mode network.246 
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247 
Figure 5 Spatial signatures of individual differentiability in the beta frequency band. (a) Edgewise 248 
individual differentiability as measured by intraclass correlation (ICC) for each brain state for the beta 249 
frequency band. The ICC values for each of the functional connections per brain state are shown. The 250 
higher the value, the more the connection is able to separate an individual from others in the cohort. 251 
The brain regions are ordered according to the seven intrinsic functional system organization proposed 252 
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by Yeo and colleagues42. (b) The edgewise ICC scores are averaged within (axis) and between (color) 253 
all seven functional systems to better visualize fingerprint patterns within and between functional 254 
systems across brain states. (c) Nodal representations of the brain regions involved in individual 255 
differentiability during a specific brain state, represented at the 5-95th percentile threshold. The nodal 256 
strength of the ICC matrix (i.e., taking the column-wise mean) was used to characterize how central 257 
each brain region is for individual differentiation. Abbreviations of Yeo’s functional systems VIS = visual; 258 
SM = sensorimotor; DA=dorsal attention; VA=ventral attention; L= limbic; FP= frontoparietal; DMN= 259 
default mode network. 260 

261 

262 

A spatial MEG signature differentiating brain states 263 

After identifying the spatial MEG signatures that distinguish individuals, we explored whether 264 

there was a spatial pattern of connectivity edges that was able to differentiate among the set 265 

of brain states (i.e., task differentiability). The analysis of task differentiability was inspired by 266 

a previous fingerprint study4 and is also based on the edgewise ICC (see Methods). However, 267 

the ICC values should be interpreted in a different manner compared to individual 268 

differentiability. In this case, the higher the ICC value of an edge, the more distinctive it is for 269 

differentiating between the set of brain states across individuals. Results showed a specific 270 

spatial signature of functional subsystems that differentiates among brain states (Fig. 6). In 271 

particular, the edges within the limbic, somatomotor and default mode functional systems were 272 

most involved in the spatial signature of task differentiability, whereas inter-system 273 

connectivity was less involved. At the nodal level, regions with the highest ICC strengths 274 

mainly spanned the temporal and frontal lobes, including the somatomotor regions. 275 
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276 
Figure 6 Spatial signature of task differentiability. (a) Edgewise task differentiability as measured 277 
by intraclass correlation (ICC) for the alpha and beta frequency bands. The higher the ICC value, the 278 
more the connection is able to differentiate between the set of brain states. The brain regions are 279 
ordered according to the seven intrinsic functional system organization proposed by Yeo and 280 
colleagues42. (b) The edgewise ICC scores are averaged within (axis) and between (color) functional 281 
systems to better visualize fingerprint patterns. (c) Nodal representations of the brain regions involved 282 
in differentiating between brain states, represented at the 5-95th percentile threshold. The nodal 283 
strength of the ICC matrix (i.e., taking the column-wise mean) was used to characterize how central 284 
each brain region is for task differentiation. The analysis shows that the connections of the limbic, 285 
somatomotor and anterior default mode functional systems contributed most to the fingerprint profile of 286 
task differentiability. 287 
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Discussion 288 

Connectivity patterns from neural signals captured with MEG can differentiate individuals 289 

within a cohort, similarly to fingerprints. Brain fingerprints characterized from resting-state 290 

neurophysiological activity are predictive of phenotypic measures (e.g., age)16,19, and improve 291 

our understanding of brain dysfunction20,22. While individuals can be reliably identified from 292 

resting-state MEG dynamics, it is not known to what extent we can differentiate individuals 293 

from a range of fast brain signals when they are explicitly engaged in task-related behavior. 294 

This relates to the key question: does the identifiability of the MEG functional connectome 295 

change as a function of tasks? 296 

Here, we explored several aspects of MEG signatures in three directions i.e., to ascertain: i) 297 

Whether the individual identifiability of functional connectomes changes with task-induced 298 

manipulations, ii) whether spatial MEG signatures demonstrate spatial variability along with a 299 

change in brain state, and iii) whether task-induced brain states can be identified from 300 

functional connectomes. Using the connectome fingerprinting procedure, we found that 301 

identifiability scores improved when individuals were engaged in task-states relative to the 302 

resting-state (Fig. 2), providing compelling evidence for a task-dependent axis of MEG 303 

fingerprints. These findings suggest that even though task-induced changes in functional 304 

connectivity are small perturbations of a stable intrinsic network architecture32,34,35, they 305 

enhance individual differences in neural circuitry43,44, which in turn increases the identifiability 306 

of individuals’ connectomes. Indeed, the presence of an intrinsic spatial organization of 307 

ongoing oscillatory signals has been recently reported45, and accordingly our observations 308 

show for the first time that state-dependent modulations of this intrinsic organization are 309 

functionally relevant for individual connectome identification. 310 

Using a design with data acquired both during task execution and rest ensures that the 311 

improvements in individual differentiability from task- relative to resting-state derives from task-312 

induced changes in FCs and individual differences in these modulations. In addition, the 313 
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fingerprinting scores for the MMN/ASSR states cannot be explained by basic features of the 314 

tasks such as the sensory modality, rate and timing of stimulus presentation, since we 315 

regressed out task-activity, and the individual differentiability was similar when performed with 316 

a more conservative connectome fingerprint analysis on the raw time courses (Supplementary 317 

Fig. 2). This suggests that those basic features that differ among the neurophysiological task 318 

paradigms did not hinder, nor improve the fingerprinting performances, and therefore were not 319 

a contributing factor to the high identification scores. 320 

What other factors influence individual identifiability? According to the findings reported, 321 

individual identifiability is also determined by the constrained nature of the task (Fig. 2-3, 322 

Supplementary Fig. 1). We found that in well-constrained tasks identifiability scores are high 323 

and coherent across frequency bands. This can be attributed to the fact that well-constrained 324 

tasks offer a strict controlled manipulation of the brain state that taps into relevant neural 325 

circuitry46, and amplifies any individual differences occurring above the common task-326 

circuity43,44. In contrast, in less-constrained tasks identifiability is lower and shows specificity 327 

for certain frequency ranges. On the one hand, in the case of the resting-state this can largely 328 

be explained due to its totally unconstrained nature25, whose connectivity patterns in this state 329 

are associated with reduced within-individual test-retest stability over multiple recordings, due 330 

to the influences of a mixture of processes that are not easy to quantify, such as arousal, 331 

attention and mind wandering44. On the other hand, the narrative listening condition is a 332 

compromise between unconstrained and well-constrained states, since it introduces some 333 

boundaries to mental activity through an ecological valid stimulus (audio fragment) that is 334 

similar to real life situations47. Yet, the PROSE state is influenced by a mixture of processes 335 

that reduces the stability of connectome similarity both within and across individuals. In other 336 

words, the choice of the task paradigm is important for identifying individuals from their 337 

functional connectomes. This might have implications for precision medicine, as choosing the 338 

appropriate environmental setting could improve the link between features of connectivity and 339 

individual phenotype scores (e.g., clinical outcomes, fluid intelligence, etc.). 340 
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The individual specificity of FCs in the delta and beta frequency ranges during narrative 341 

listening is conceptually in agreement with previous investigations of MEG activity recorded 342 

during this task. Both delta and beta activities emerge in the literature as subserving processes 343 

in language comprehension, and one could therefore speculate that these MEG signatures 344 

capture representations of language comprehension48 that are specific to each individual. 345 

Conversely, for well-constrained tasks there is no direct relationship of identifiability being 346 

salient in a particular frequency range, in contrast with previous studies which report 347 

modulations in theta49,50 (MMN), and gamma51 (ASSR) frequencies.  348 

Similar to individual identifiability computed at the whole-brain level, individual spatial MEG 349 

signatures are modified according to the constrained nature of the task (Fig. 4-5 and 350 

Supplementary Fig. 3-5). For well-constrained tasks, the higher-order and limbic functional 351 

subsystems acted as a core signature for identification across all frequency bands. In the less-352 

constrained tasks of rest and narrative listening, the spatial signatures of individual 353 

differentiation varied across frequency ranges. For instance, in the alpha and beta bands, the 354 

functional connections within the visual and limbic systems contributed the most to 355 

identifiability (Fig 4-5), while connections of other subsystems were most prominent for the 356 

delta, theta and gamma frequency bands (Supplementary Fig. 3-5). These observations show 357 

some correspondence to fMRI results, in which the main drivers of functional connectome 358 

identifiability reside in areas related to higher-order cognitive functions, such as the 359 

frontoparietal and default mode functional subsystems1,4. Notably, we find some spatial 360 

divergence in the fingerprint patterns relative to fMRI literature. This is not surprising since the 361 

nature of brain signals measured by both modalities is quite different, and the relationship 362 

between hemodynamic and electrophysiological connectivity in response to task-demands is 363 

largely unknown52. Note that our work does not directly address the cross-modality difference 364 

of connectome fingerprints. Future works that compare identical brain states in both modalities 365 

will be better suited to find out whether fingerprinting patterns induced by distinct tasks are 366 

shared across neuroimaging modalities. 367 
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Based on previous work, we wondered if MEG specific connections could differentiate 368 

between brain states regardless of the individual. Our results indicate that this is the case, and 369 

that a spatial task-differentiability signature mainly consists of connections within the limbic, 370 

default mode, and somatomotor functional subsystems (Fig. 6). These subsystems are the 371 

ones in which we observed the greatest variation when transitioning across the different tasks 372 

employed, in line with the notion of the brain’s “functional reconfiguration” across tasks37. This 373 

technique could be used to select and extract the connectivity features that mostly differentiate 374 

between brain states, in health and disease. Future work should further explore and exploit 375 

this possibility.  376 

This work comes with some considerations and limitations. First, on the basis of previous 377 

findings it is known that the choice of connectivity measures to derive the FCs is a factor that 378 

influences fingerprinting in MEG19. In addition, identifiability could be susceptible to the choice 379 

of brain atlas and the latter’s role should be further identified. However, other factors such as 380 

typical recording artifacts (head motion, heartbeats, eye movements, etc.), that might be 381 

representative of individuals do not seem to confound individual identification from MEG 382 

recordings16. Furthermore, signatures derived from MEG are robust to the information of 383 

participants’ anatomical head-position that is embedded in the MEG source imaging kernels, 384 

as it has been shown that this information is not sufficient to uniquely drive identification of 385 

individuals16. Comprehensive future studies will be needed to clarify the impact of several 386 

factors on MEG fingerprints during task-induced manipulations such as connectivity 387 

measures, choice of MEG source modeling, and parcellation schemes. We look forward to 388 

future work in electrophysiological fingerprinting that confirms and expands the present 389 

findings. Second, electrophysiological recordings from limbic regions are known to be affected 390 

by artifacts, and the accuracy of MEG in detecting signals in deeper cortical regions is still 391 

being debated53. As such, the findings reported on the involvement of the limbic subsystem in 392 

spatial signatures of task and individual differentiability should be interpreted with care.  393 

Finally, the unique design of the employed dataset limited the sample size of the current work. 394 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.25.505232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505232
http://creativecommons.org/licenses/by-nc-nd/4.0/


Therefore, the prediction of brain-behavior relationships from MEG fingerprints was not 395 

investigated, as recent studies have demonstrated that these predictions are not reliable with 396 

small sample sizes54,55. However, previous works have proven that fingerprints derived from 397 

functional connectomes of resting-state dynamics are predictive of individual differences in 398 

behavioral phenotypes16,19. Since our findings indicate task-dependent aspects of MEG 399 

signatures, we could speculate that individual differences that are amplified by tasks will 400 

improve the prediction of underlying related phenotypes that are not detectable by solely 401 

investigating the resting-state. Therefore, connectome fingerprinting from MEG signals during 402 

task conditions could help to improve the resolution and characterization of robust brain-403 

behavior relationships.  404 

To conclude, our work shows a task-dependent axis of brain fingerprints derived from fast 405 

electrophysiological signals, highlighting that task-induced brain states amplify meaningful 406 

interindividual differences in functional connectivity. In particular, individual identifiability 407 

increases when the brain state is driven by a well-constrained task compared to resting-state.  408 

 409 

Methods  410 

Participants and data acquisition 411 
 412 

All data collection was performed at the MEG Laboratory of IRCCS San Camillo Hospital, 413 

Venice, Italy. Participants were recruited on a voluntary basis, upon signing a written consent. 414 

Participants had a mean age of 29.1 (SD = 5.82) years and on average 17.05 (SD = 2.50) 415 

years of education. Fifteen out of 20 participants were female. All participants reported no 416 

auditory issues. Before entering the magnetically shielded room, participants underwent initial 417 

preparation, which consisted of the placement of three head coils, to monitor head position 418 

during MEG recording, and six additional electrodes. These electrodes were used to record 419 

VEOG, HEOG, and ECG with bipolar montage. After the coils were positioned, coil positions 420 
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and head shape were digitized using a Polhemus Isotrak system. Continuous MEG signals 421 

were acquired using a whole head 275-channel system (CTF-MEG). MEG data were collected 422 

with a sampling rate of 1200 Hz, with a hardware anti-aliasing low pass filter at 600 Hz. During 423 

the recordings participants remained in a seated position. The MEG session consisted of a 424 

series of recordings, all in a fixed order:  425 

1) Eyes open resting-state - session 1 (REST; 5 min) 426 

2) Narrative Listening (PROSE; 5 min) 427 

3) Eyes open resting-state - session 2 (REST; 5 min) 428 

4) Mismatch negativity (MMN; 3 min). 429 

5) Auditory Steady State Responses at 40 Hz (ASSR; 6 min). 430 

Details on each session are reported below. 431 

 432 

Resting-state eyes open  433 

During the two sessions of resting-state participants were instructed to maintain visual fixation 434 

on a central crosshair, while avoiding excessive eye movements. 435 

 436 

Narrative Listening 437 

During the narrative listening session, participants were asked to listen to 5 min audio 438 

recordings (a fragment from an audiobook “20’000 leagues under the sea”, by Jules Verne, 439 

read by a professional actor). All participants listened to the same fragment. To ensure people 440 

paid attention to the audio, they were initially informed that afterwards they would be asked 441 

some questions on the content of the recordings. These yes/no questions pertained to the 442 

content of the audiobook (e.g., was the story settled in the south pole), and were designed to 443 

check whether participants were paying attention during the recording. 444 

 445 

Mismatch Negativity 446 

In this task participants were exposed to a series of tones, consisting of standard tones 447 

interleaved with deviant ones. Standard and deviant tones were generated as two tones of 448 
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500 Hz and 550 Hz (with 6 harmonics having 2,4,6,8,10, and 12 times the original frequency) 449 

lasting 200 ms. The sounds that acted as deviant and standard tones were counterbalanced 450 

across participants. To avoid that the deviant tones could be too close to each other during 451 

the task, we opted for a pseudorandom presentation of stimuli. The pseudorandom sequence 452 

was generated as follows. We first created a series of blocks of stimuli composed of several 453 

sounds: blocks consisting of three to eight standard stimuli, and blocks consisting of three to 454 

eight standard tones followed by a deviant one. In total, all blocks consisted of 300 stimuli, 455 

with 240 standard and 60 deviant sounds (hence, 25% of the stimuli were deviant). Afterwards, 456 

for each participant all blocks were shuffled to generate a unique sequence of sounds. 457 

Importantly, as deviant tones appeared only at the end of a block that started with three to 458 

eight standard tones, in the final (pseudo-random) sequence, deviant stimuli were always 459 

interspersed by at least three standard tones. Participants were not aware of the division in 460 

blocks and when performing the MMN task, sounds were presented as a stream of stimuli. In 461 

the original recording session two counterbalanced versions of the MMN were administered, 462 

one with an Inter Stimulus Interval (ISI) of 500 ms and one with an ISI of 3000 ms. For the aim 463 

of the present study, only the blocks with 3000 ms ISI were used, to ensure having epochs 464 

long enough to calculate the required connectivity matrices. 465 

 466 

ASSR 467 

In this paradigm participants were exposed to a 1000 Hz tone, whose amplitude was 468 

modulated with a 40 Hz envelope. The same stimulus was used in previous publications by 469 

the research group56–58 and was proven to be able to elicit a 40 Hz entrainment, widespread 470 

in the brain, but mostly localized in the right auditory areas. The session consisted of 180 471 

stimuli, each lasting 1 second, and with a fixed ISI of 1 second. Code used to generate the 472 

ASSR sounds can be found at:  473 

https://github.com/giorgioarcara/MEG-Lab-SC-code/tree/master/tDCS-ASSR. 474 

 475 

 476 
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MEG data preprocessing  477 

MEG data preprocessing was performed using Brainstorm59 (version November 2018) in 478 

MATLAB 2016b (Mathworks, Inc., Massachusetts, USA), which is documented and freely 479 

available for download online under the GNU general public license 480 

(http://neuroimage.usc.edu/brainstorm). Continuous data were initially resampled at 600 Hz 481 

filtered with a notch (50 Hz and harmonics at 100, 150, 200 and 250 Hz) and a high pass filter 482 

at 0.1 Hz. Then the Signal-Space Projection algorithm (SSP) was used to identify and remove 483 

cardiac and eye movement artifacts from the recordings. For sessions with event-related 484 

responses (i.e., MMN and ASSR), triggers associated with stimulus presentation were used 485 

to segment continuous data into epochs. Digital triggers were adjusted off-line according to 486 

the actual acoustic stimulus presentation to improve accuracy of trigger timing. 487 

 488 

For the source analysis, Individual T1 MRI scans were segmented by means of the recon-all 489 

routine of FreeSurfer60 image analysis suite, which is documented and freely available for 490 

download online (http://surfer.nmr.mgh.harvard.edu/). MRI and MEG data were registered 491 

according to the head-coil positions, identified with neuronavigation procedure. From the 492 

segmented MRI data, the MEG forward model was calculated with the Boundary Element 493 

Method (BEM). Source reconstruction was calculated on the cortex surface with the wMNE 494 

(weighted Minimum Norm) algorithm, using the Brainstorm default settings (with fixed source 495 

orientation, constraining the dipoles to be normal to cortex, using depth weighting with 496 

Order[0,1] = 0.5 and Maximal amount = 10; noise covariance regularization = 0.1, and 497 

specifying regularization parameter 1/λ by setting Signal-To-Noise Ratio = 3). The noise 498 

covariance was calculated from 3 minutes of empty room recording, made at the end of the 499 

recording session for each participant. Source time series were reconstructed into 148 cortical 500 

regions of interest (ROIs) according to the Destrieux atlas40 and dimension-reduced through 501 

the first principal component of all signals within each ROI using Principal Component Analysis 502 

(only the first component was retained). In addition, following a majority voting procedure each 503 

cortical region from the Destrieux atlas was assigned to one of the seven-resting state 504 
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networks defined by Yeo and colleagues42. In order to make sure identifiability scores were 505 

not influenced by basic features of the task in MMN/ASSR conditions, task-activity in these 506 

conditions (i.e., mean across the epochs) was regressed out from the ROI time series in every 507 

epoch. Then, ROI source time series were divided into epochs of 8s duration and band-pass 508 

filtered into five commonly used frequency ranges (delta 1-4 Hz, Theta 4-8 Hz, alpha 8-13 Hz, 509 

beta 13-30 Hz and gamma 30-48 Hz). This length of epoch was chosen based on previously 510 

reported work that investigated the effect of epoch length on functional connectivity61. 511 

 512 

Functional connectome generation 513 

Functional connectomes were derived using the orthogonalized amplitude envelope 514 

correlation with spatial leakage correction (AEC)62. ROI time-series were first orthogonalized 515 

in the time domain with a pairwise leakage correction, before amplitude envelopes were 516 

determined by means of Hilbert transform to compute the corresponding Pearson correlations 517 

coefficients from all possible pairs, yielding 148 x 148 symmetric functional connectomes as 518 

a result. Two FCs (per frequency band, and individual) named test and retest FCs, were 519 

generated using test/retest MEG segments from each environmental condition. For the 520 

resting-state condition, the two separate acquired recordings were tagged as test and retest 521 

segments. For the task-conditions, the epochs in the first half of the session were tagged as 522 

test, and the epochs in the second half of the session as retest. 523 

 524 

Fingerprinting and individual identifiability 525 

Identifiability measures were obtained from the sets of test-retest FCs for each frequency band 526 

of interest. The identifiability metrics were computed within each condition (REST, PROSE, 527 

ASSR, MMN), and for 3 cross-conditions (REST x PROSE, REST x ASSR, REST x MMN). 528 

The methodology for the identifiability measures is inspired by recent work on maximization of 529 

connectivity fingerprints in human functional connectomes4. In this work, the authors proposed 530 

the ‘differential identifiability’ measure, which provides a robust continuous score of the 531 

fingerprinting level of a specific dataset. This measure is based on a mathematical object 532 
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known as the ‘identifiability matrix’, which is a square and non-symmetric similarity matrix that 533 

encodes the information about the self-similarity of each individual with itself (Iself, main 534 

diagonal elements), and the similarity of each individual with the others (Iothers, off-diagonal 535 

elements) across the test-retest FCs. The similarity between the test-retest FCs was quantified 536 

as the Pearson’s correlation coefficient. The difference between the average Iself and Iothers 537 

values expressed in percentages is defined as the differential identifiability, and provides a 538 

robust group level-estimate of identifiability at the individual level from a specific dataset. The 539 

higher the Idiff score, the higher the individual differentiation in the cohort; the smaller the Idiff 540 

score, the more difficult it is to identify individuals from the cohort. Finally, we measured the 541 

Success-rate1 of the differentiation procedure as the percentage of individuals correctly 542 

identified out of the total number of individuals in the cohort. In other words, it expresses the 543 

percentage of cases with higher within- (Iself) vs. between-individuals (Iothers) FCs similarity. 544 

It is worth noting that in the present work average differentiation scores were reported for the 545 

cross-fingerprint setting of rest and tasks (across four possible combinations). Namely: 1) task-546 

test FC vs. rest-test FC; 2) task-retest FC vs. rest-test FC; 3) task-test FC vs. rest-retest FC 547 

and; 4) task-retest FC vs. rest-retest FC. 548 

 549 

In order to define the statistical significance of the obtained differential identifiability and 550 

success-rate scores, we performed a permutation testing analysis (1000 permutations)19. 551 

Specifically, for each iteration the identifiability matrices were randomly shuffled, before the 552 

measures of differential identifiability and success-rate were computed from the resulting 553 

surrogate identifiability matrix. A nonparametric ‘null’ distribution for success-rate and 554 

differential identifiability was then generated from all iterations. The P-values were computed 555 

as the proportion of times the permuted values of success-rate and differential identifiability 556 

exceeded those of the original scores. 557 

  558 
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Spatial specificity of individual and task MEG signatures 559 

We derived the spatial specificity of the MEG signatures for each experimental condition and 560 

frequency band using edgewise intraclass correlation (ICC)41. Borrowing from previous work 561 

on identifiability4, we used ICC to quantify the edgewise reliability of individual connectomes. 562 

ICC is a widely used statistical measure that assesses the agreement between units 563 

(rating/scores) of different groups (raters/judges). The higher the ICC coefficient, the stronger 564 

the agreement between two observations63. Here, we used ICC to determine the edgewise 565 

individual identifiability, that quantifies the similarity between test and retest for each edge (i.e., 566 

functional connectivity value between two regions). In other words, the higher the ICC value 567 

on edge, the more consistent that edge’s value is within individuals between test and retest, 568 

and in turn, the higher the “individual fingerprint” of that edge. In addition, following the 569 

rationale of the ICC, we can also quantify the edgewise task identifiability, which quantifies the 570 

contribution of each edge towards separating the different environmental conditions across 571 

individuals. In this case, the tasks are considered as “raters”, and “scores” are given by 572 

individuals. Here, the higher the ICC, the more an edge can separate between the different 573 

tasks across individuals, and in turn, the higher the “task fingerprint” value of that edge. The 574 

resulting ICC matrices for both the individual and task edgewise identifiability were not 575 

thresholded and the ICC scores were interpreted according to the latest guidelines64; below 576 

0.50: poor; between 0.50-0.75: moderate; between 0.75 and 0.90: good; and above 0.90: 577 

excellent. Finally, to explore the spatial organization of the individual-, and task MEG 578 

signatures we computed nodal fingerprinting scores (i.e., mean ICC over columns) from both 579 

the individual and task edgewise ICC matrices. This measure is an indication of the 580 

contribution of each brain region towards individual- or task identification. 581 

  582 
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Data availability 583 

Raw data are available from IRCCS San Camillo Hospital after formal requests and, if 584 

needed, after approval by the local Ethics committee for the intended use. 585 

 586 

Code availability 587 

The code (in MATLAB) used for the analysis will be made available upon acceptance of the 588 

manuscript on EA EPFL webpage and a git repository. Code to generate the sounds of the 589 

ASSR task is available at: https://github.com/giorgioarcara/MEG-Lab-SC-590 

code/tree/master/tDCS-ASSR. 591 
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