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DOMAIN ADAPTATION IN REMOTE SENSING:
INCREASING THE PORTABILITY OF
LAND-COVER CLASSIFIERS

Giona Matasci — Institute of Earth Surface Dynamics

ABSTRACT

Among the types of remote sensing acquisitions, optical images are certainly one
of the most widely relied upon data sources for Earth observation. They provide
detailed measurements of the electromagnetic radiation reflected or emitted by each
pixel in the scene. Through a process termed supervised land-cover classification,
this allows to automatically yet accurately distinguish objects at the surface of our
planet. In this respect, when producing a land-cover map of the surveyed area, the
availability of training examples representative of each thematic class is crucial for
the success of the classification procedure.

However, in real applications, due to several constraints on the sample collection
process, labeled pixels are usually scarce. When analyzing an image for which
those key samples are unavailable, a viable solution consists in resorting to the
ground truth data of other previously acquired images. This option is attractive
but several factors such as atmospheric, ground and acquisition conditions can
cause radiometric differences between the images, hindering therefore the transfer
of knowledge from one image to another.

The goal of this Thesis is to supply remote sensing image analysts with suitable
processing techniques to ensure a robust portability of the classification models
across different images. The ultimate purpose is to map the land-cover classes over
large spatial and temporal extents with minimal ground information. To overcome,
or simply quantify, the observed shifts in the statistical distribution of the spectra of
the materials, we study four approaches issued from the field of machine learning.

First, we propose a strategy to intelligently sample the image of interest to
collect the labels only in correspondence of the most useful pixels. This iterative
routine is based on a constant evaluation of the pertinence to the new image of
the initial training data actually belonging to a different image.

Second, an approach to reduce the radiometric differences among the images by
projecting the respective pixels in a common new data space is presented. We ana-
lyze a kernel-based feature extraction framework suited for such problems, showing
that, after this relative normalization, the cross-image generalization abilities of a
classifier are highly increased.

Third, we test a new data-driven measure of distance between probability distri-
butions to assess the distortions caused by differences in the acquisition geometry
affecting series of multi-angle images. Also, we gauge the portability of classi-
fication models through the sequences. In both exercises, the efficacy of classic
physically- and statistically-based normalization methods is discussed.

Finally, we explore a new family of approaches based on sparse representations
of the samples to reciprocally convert the data space of two images. The projection
function bridging the images allows a synthesis of new pixels with more similar
characteristics ultimately facilitating the land-cover mapping across images.
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RESUME

Parmi les types de mesures par télédétection, les images optiques sont certaine-
ment l'une des sources de données les plus largement utilisées pour l'observation
de la Terre. Elles fournissent des informations détaillées concernant le rayonnement
électromagnétique réfléchi ou émis par chaque pixel de la zone étudiée. A travers
un processus appelé classification supervisée, ces images permettent d'identifier
de facon automatique et précise les objets & la surface de notre planéte. A cet
égard, lors de la production d'une carte de la couverture du sol, la disponibilité
d'exemples d'entrainement représentatifs de chaque classe thématique est cruciale
pour le succes de la procédure de classification.

Cependant, dans des applications concretes, en raison de plusieurs contraintes
dans la collecte des échantillons, les pixels étiquetés sont généralement rares.
Lors de l'analyse d'une image pour laquelle ces exemples clés ne sont pas
disponibles, une solution viable consiste a recourir aux données de terrain ap-
partenant a d'autres images précédemment acquises. Cette option est intéres-
sante, mais plusieurs facteurs tels que les conditions atmosphériques, au sol et
d'acquisition peuvent entratner des différences radiométriques entre les images,
empéchant partiellement le transfert des connaissances d'une image a l'autre.

L'objectif de cette Theése est de fournir aux analystes d'images de télédétection
des techniques de traitement appropriées pour assurer la portabilité des modeles
de classification entre les différentes images. Le but ultime est de cartographier
l'occupation du sol sur de grandes étendues spatiales et temporelles a partir d'un
minimum d'informations au sol. Pour corriger, ou tout simplement quantifier les
changements observés dans la distribution statistique des spectres des matériaux,
nous étudions quatre approches issues du champ d'études de l'apprentissage au-
tomatique.

Premiérement, nous proposons une stratégie pour échantillonner intelligemment
l'image a classifier afin d'acquérir les étiquettes thématiques en correspondance
que des pixels les plus utiles. Cette routine itérative est basée sur une évaluation
constante de la pertinence pour la nouvelle image des données d'entrainement
initiales appartenant a une image différente.

Dans un deuxieme temps, nous présentons une approche pour réduire les dif-
férences radiométriques entre les images en projetant les pixels respectifs dans
un nouvel espace de données commun. Des méthodes a noyaux pour la réduction
de dimensionnalité adaptées pour de tels problemes sont analysées. Il est montré
qu'apres cette normalisation relative, les capacités de généralisation entre images
d'un classificateur sont fortement augmentées.

Ensuite, nous testons une récente mesure non-paramétrique de distance entre
distributions de probabilité pour évaluer les distorsions causées par des différences
dans la géométrie d'acquisition affectant des séries d'images multi-angulaires. En
outre, la portabilité des modeles de classification a travers les séquences est aussi
mesurée. Dans ces deux exercices, nous discutons lefficacité des méthodes clas-
siques de normalisation a base statistique et physique.

Enfin, nous explorons une nouvelle famille d'approches fondées sur les représen-
tations parcimonieuses des échantillons afin de convertir réciproquement l'espace
de données de deux images. La fonction de projection joignant les images per-
met de synthétiser de nouveaux pixels avec des caractéristiques plus proches qui
faciliteront finalement la cartographie de l'occupation du sol entre des images dif-
férentes.

vi



ACKNOWLEDGMENTS

During these four years many people contributed to this work, some directly,
others indirectly, but all of them pushed me a bit forward and made this
achievement possible.

Let's start with my co-advisors, Prof. Mikhail Kanevski and Dr. Devis Tuia.
Mikhail has always been a great supervisor, starting from my Master thesis
back in 2008 all the way through this PhD. | am very grateful to him for
having introduced me to the world of research in general, and specifically
to the fields of machine learning and data analysis.

The person that has played the biggest role in my leaning towards remote
sensing is certainly Devis, as much a friend as an advisor. It all began with
a semester project on the analysis of these “weird” images and who would
have guessed this would ultimately lead to a PhD thesis! Devis, the list
of things you taught me during these years is endless and | cannot find a
proper way to thank you for all this.

Lots of advice for some parts of the thesis was provided by Prof. Lorenzo
Bruzzone. | wish to thank him and his RSLab for hosting me for that in-
ternship and for the nice time | had in Trento (and on the surrounding ski
slopes).

| am equally indebted to Fabio and Nathan at DigitalGlobe for the great
collaboration we had/are having, mostly via remote video conferences, al-
though we also had time to meet and have fun together at real conferences
all around the world.

| owe a lot to Frank, a fellow PhD student at EPFL. He (and Dieqo,
who | thank as well) showed great patience in teaching me the secrets of
dictionaries and sparse representations. Also at EPFL, | am grateful to the
guys of LaSIG for the frequent scientific (read “cross-lab presentations”)
and less scientific (read “Sat”") exchanges.

| would like to acknowledge all the members of the Jury who agreed to
read and evaluate this Manuscript, in particular Prof. Paul Scheunders who
came to Lausanne twice to listen to me.

Furthermore, | express my gratitude to Prof. Francois Bavaud for intro-
ducing me to statistics and to Prof. Gustavo “Gustao” Camps-Valls for the
many things | learned from him about remote sensing.

At UNIL, the colleague that deserves a special thank you is Mitch, the
(lucky?) friend who had to share the office (actually three of them in two
different buildings) with me for almost the entire length of the thesis. Your
humor inside and outside the office will never be forgotten!

Enjoyable moments have been the norm within the GIGAR group and
therefore | would like to deeply thank its past and present members, espe-
clally Loris and Mary.

A big “merci” goes to the wider IGAR family for the countless apéros,
lunches, dinners, ski runs and hockey matches we did together during these

vil



years. Moreover, | cannot overlook the technical and administrative help
provided by Simon, Carole and Sabrina. Thank you!

After moving to Géopolis, | appreciated the great atmosphere we have
been able to build with the other members of IDyST and the corridor-mates,
in particular with those endless baby-foot matches at Zélig.

Of course, a thesis cannot be accomplished without friends from outside
the university. Thus, | would like to say thank you to all my friends from
Ticino and in Lausanne that helped me free my mind in my spare time.

A special place in this long list is reserved for my parents, Franca and
Sandro, and for my brother Nico. The constant support and encouragement
| received from you during my years in Lausanne is invaluable. Also, | want
to warmly thank all the relatives, particularly those in Gordemo. Grazie
davvero a tuttil

Finally, the person to whom | owe the most is Livia. No combination of
words can express my feelings for you. | thank you from the bottom of my
heart for always having been there for me when | needed it and for making
me laugh every day, even the most difficult of these past years.

Giona Matasci, September 2014

vill



CONTENTS

INTRODUCTION

THESIS OVERVIEW

1.1
1.2

1.3

14

Motivation . . . . . ...
Objectives . . . . . .. ..
Contributions of the Thesis . . . . . ... ... ... ... ...
134  Chapter©6 . ... ..
132 Chapter 7 . .. ...
133 Chapter8 . ... ...
134 Chapter 9 . . ...
Organization of the manuscript . . . ... ... ... ... ..

REMOTE SENSING AND EARTH OBSERVATION

2.1
2.2

23

2.4

25

Introduction . . . . ...
Radiative transfer . . . . ... ..o oo
2241  What is measured by the sensor? . .. ... ... ..
222 Components of the at-sensor radiance. . . . . . . ..
Passive remote sensing imaging systems . . . ... ... ..
2341 The hypercube . ... .. .. ... ..
232 Iypesofsensors ... ... ... ... ... .. ... .
Thematic image classification . . ... .. ... .. ... ...
2.41  Interpretation of the scene . . ... ... ... . ...
242  Overview of the classification approaches by learn-

ing paradigm . . .. ...
2.4.3 Extensions of the classic paradigms . . . ... .. ..
Working with multiple images . . . . ... .. ... ... ...
251  Model portability . . . .. ... ... oo
252 Theissues . .. ... ... ... ... ... ...
253 Radiometric normalization. . . . . .. ... ... ...

LEARNING FROM DATA WITH CHANGING DISTRIBUTIONS

MACHINE LEARNING

3.1
3.2

33

34

Introduction . . . . ...
Learning fromdata. . . ... ... ...
321 Supervised learning . . ...
3.2.2  Statistical Learning Theory . . . . .. ... ... ...
323 Model selection and model assessment . . . . . . ..
Support Vector Machines and kernels . . . ... .. .. ...
331 Large margin linear classifier. . . ... ... ... ..
332 Non-linear extension: the kernel trick . . . . . .. ..
333 Kernelfunctions. . . ... ... oL
Linear Discriminant Analysis . . .. ... ... ... ... ..
3.4.1  Maximum Likelihood classifier . . ... ... ... ..
3.42 LDA for Feature Extraction . . ... ... ... . ...

O 0O N NO B~ W Ww —

N N N (U QUL (L (L G LN
O O N 01 01 b W W — — ©

20
21
21
21
22
23

27
29
29
30
30
31
33
34
34
36
37
38
38
39

ix



X

CONTENTS

i

35 Feature Extraction . . . ... ... oL 41
351  Principal Component Analysis . . .. ... ... ... 41
352 Kernel Principal Component Analysis . . . ... . .. 42
3.6 Dictionary Learning . . .. ... ... 43
3.6.1  Learning the dictionary . ... ... ... ... ... 43
3.6.2  Dictionary-based classification . . . . . ... ... .. 44
DOMAIN ADAPTATION 47
41 Introduction . . . ... 47
4.2 Notation and definitions . . . ... ... .. .. ... .. ... 48
4.3 Assessing distances between distributions . . . .. ... ... 49
431 Parametric distance measures . ... ... ... ... 50
4.32  Maximum Mean Discrepancy . . . .. ... ... ... 51
433 Atoyexample . ... ... 52
4.4 Families of adaptation approaches . . ... ... ... .. .. 53
4.4 Instance-transfer . . ... ... ... 54
4.42 Feature-representation-transfer . . ... .. ... .. 55
4.43 Parameter-transfer . . . ... ... ... 0 57

DOMAIN ADAPTATION APPROACHES FOR REMOTE SENSING IM-

AGE CLASSIFICATION 59
REVIEW OF DOMAIN ADAPTATION STUDIES IN REMOTE SENSING 01
51 Thecontext . ... ... ... ... ... 01
52 Literaturereview . . . ... 63

5.24  Signature extension approaches . . . . ... ... .. 63
5.2.2 Instance-transfer approaches in remote sensing . . . 64
5.2.3 Feature-representation-transfer approaches in remote
SENSING . . o v 65
5.2.4 Parameter-transfer approaches in remote sensing . . 67
SVM-BASED ADAPTIVE ACTIVE LEARNING VIA SAMPLE REWEIGHT-
ING 69
6.4 Introduction . . . ... 69
0.2 Adaptive Active Learning . . . . ... 70
6.21  SVM using instance weights . . . . ... .. ... .. 70
6.22 TrAdaBoost and Active Learning . . . . . .. ... .. 71
6.3 Data and experimental setup. . . . . ... ... ... ... .. 74
0.31  VHR QuickBird images of Zurich . . ... ... ... 74
0.3.2  Hyperspectral AVIRIS image of the KSC . . . . . .. 75
6.3.3 Experimentalsetup . . . .. ... .. ... ... .. .. 76
04 Results. .. ... .. 77
0.41 Learningcurves . . . ... ... L 77
0.4.2 Analysis of sample weights . . .. .. ... ... ... 79
0.43 Discussion . . . ... ... 81
65 Conclusions . ... ... 82

KERNEL-BASED FEATURE EXTRACTION FOR RELATIVE NORMAL-
IZATION 85
74 ntroduction . . . ... 85



10

CONTENTS

7.2 Domain Adaptation via Feature Extraction . ... ... ... 86
7.3 Transfer Component Analysis . . ... ... ... ... .. ... 88
731 Unsupervised TCA . . .. .. .. ... .. ... .. 88
7.32  Semisupervised TCA . . . .. ... ... . ... 89
7.4 Data and experimental setup. . . . .. ... ... ... ... 91
7.41  Hyperspectral ROSIS image of Pavia . . . . ... .. 91
7.42  VHR QuickBird images of Zurich . . ... ... ... 91
7.43 Experimental setup . . .. .. ... ... 93
75 Results. ... oo 94
751  Analysis of SSTCA parameters . . . . ... ... ... 94
752  Classification performances . . . . ... .. ... ... 96
753  Classification maps and individual class accuracies . 99
7.5.4  Visual analysis of the extracted features . . . . . .. 103
755 Influence of the origin of the samples . . . . . .. .. 107
7.5.6  Adaptation using exclusively the spectral bands . . . 108
7.6 Conclusions . . . ... ... 109
ANGULAR DATASET SHIFT & MODEL PORTABILITY IN MULTI-
ANGLE SEQUENCES 111
84 Introduction . . . ... 111
8.1.1  Impact of the acquisition angle . . . . .. ... . ... 111

8.1.2  Exploiting and understanding the angular properties 113
8.2 Data: WorldView-2 sequences of Atlanta and Rio de Janeiro 114

8.3 Quantification of the anqular effects . . . ... .. ... ... 115
831  Avisual assessment . . ... 115
8.32 Experimental setup . . . ... ... 115
8.3.3 Results and discussion . . . ... ... 117
8.4 Classification model portability assessment . . . . .. .. .. 119
8.41  Experimentalsetup . . . ... ... ... ... 120
8.42 Results and discussion . . . . .. ... 121
85 Conclusions . . . .. ... 127
CROSS-IMAGE SYNTHESIS WITH DICTIONARIES 129
g1 Introduction . . . ... 129
9.2 Dictionary Learning for cross-image synthesis . . . ... .. 130
9241  Problem formulation . .. ... ... ... 130
922 frainingstep . ... ... .. ... ... .. 131
923 Synthesisstep . ... ... ... 132
0.3 Data and experimental setup. . . .. ... ... 133
931 WorldView-2 images of Atlanta . . . ... ... ... 133
932 Experimentalsetup . . .. ... ... .. ... ... 134
94 Results and discussion . . ... ... 135
05 Conclusions . . ... ... 136
CONCLUSION 137
DISCUSSION 139
101 Fulfillment of the objectives . . . . . ... ... .. ... ... 139

10.2 Comparison of the presented approaches . .. ... ... .. 140

XU



xit CONTENTS

10.3 Further work and challenges . . . . . ... ... ... ... .. 144
V. APPENDIX 147
A CLASSIFICATION QUALITY MEASURES 149
A1 Overall measures . . . . . . ... ... 149
A2 Class-specific measures . . . . . ... ... ... .. 150
B DATASETS USED IN THE THESIS 151
B.1  QuickBird images of Zurich . . ... . ... ... ... ... 152
B.2 AVIRIS images of the Kennedy Space Center . . . . . . . .. 154
8.3 ROSIS image of Pavia . . . ... .. ... .. .. L 156
B.4 WorldView-2 multi-angle sequence of Atlanta . . . . .. .. 158
B.5 WorldView-2 multi-angle sequence of Rio de Janeiro . . . . 101

BIBLIOGRAPHY 165



LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 4.1
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 7.1
Figure 7.2

Figure 7.3
Figure 7.4

Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14

Figure 8.1

Figure 8.2
Figure 8.3

The EM spectrum.. . .. ... ... ... ... .. 13
Physical quantities of the radiative transfer. . ... 14
Hypercubes and spectral signatures. . . . . . . . .. 16
[llustration of the HM procedure. . . . . . . . .. .. 25
Soft margin SVM. . . . ... 35
Dataset shift assessment on a toy dataset. . . . . . 52
Scheme of the adaptive AL procedure. . . . . . . .. 73
Scatterplots for the two KSC images. . . . . . . .. 75
Average AL curves over 10 runs. . . . . ... .. .. 78
KSC dataset: distribution of TrAdaBoost weights

and SVM alphas. . . .. ... . 79
KSC dataset: evolution of the ratio of SVs and mag-

nitude of the alpha coefficients. . . . . . ... .. .. 80
Flowchart of the considered FE approach to DA in

image classification.. . . . ... ... 87
Red vs. NIR scatterplots with raw DN data: Pavia

and Zurich datasets. . . .. ... 92
Sensitivity analysis of the SSTCA parameters. . . . 95
Influence of locality preservation and label depen-

dence in the SSTCA optimization problem. . . . . . 95
Classification performances on the target image on

the Pavia and Zurich datasets. . . . ... ... ... 97

LDA classification maps on the Pavia target image. 100
LDA classification maps on the Zurich target image. 101
LDA individual class accuracies on the Pavia target

image. . . . .. 102
LDA individual class accuracies on the Zurich tar-
getimage. . ... ... ... 102
Scatterplots of the source and target images of the
Zurich dataset after HM and after SSTCA. . . . . . 103
Scatterplots after FE in the extracted components
space for the Pavia dataset. . . ... ... ... ... 105
RGB combinations of the first 18 extracted compo-
nents for the Pavia target image. . . . . . .. .. .. 106
LDA classification performances on the target im-
age to test the sampling settings.. . . . ... .. .. 107
LDA classification performances on the target im-
age using spectral bands only. . . .. ... ... .. 108
Atlanta dataset: blue vs. NIR2 scatterplots in the
different data spaces. . . . ... ... 116
Atlanta dataset: MMD plots in logarithmic scale. . 118
Atlanta dataset: LDA model portability. . . . . . .. 121

Xiit



Figure 8.4
Figure 85
Figure 8.6
Figure 8.7

Figure 8.8
Figure 9.1

Figure 9.2

Figure B.1
Figure B.2
Figure B.3
Figure B4
Figure B5

Figure B.6
Figure B.7

Atlanta dataset: Gaussian SVM model portability. 123

Atlanta dataset: individual class accuracies. . . .. 123
Rio de Janeiro dataset: LDA model portability. . . . 125
Rio de Janeiro dataset: Gaussian SVM model porta-

bility. .. ... 126

Rio de Janeiro dataset: individual class accuracies. 120
Scheme of the approach for cross-image synthesis

with dictionaries. . . . ... ... oL 133
Classification performances on the target image af-

ter cross-image synthesis. . . .. ... ... 136
QuickBird images of Zurich. . . . .. ... ... ... 153
AVIRIS images of the Kennedy Space Center. . . . 155
ROSIS image of Pavia. . . ... ... ... ... ... 157
WorldView-2 images of Atlanta. . . . ... ... .. 159
Atlanta dataset: satellite and sun azimuth-elevation

plot. . ... 160
WorldView-2 images of Rio de Janeiro. . . . . . .. 162
Rio de Janeiro dataset: satellite and sun azimuth-

elevation plot. . . . ... ... 163

LIST OF TABLES

Table 2.1
Table 4.1
Table 7.1

Table 8.1

Table 9.1

Table 10.1

Table 10.2
Table A1

Table B.1

Table B.2
Table B.3
Table B4
Table B5

Xiv

VHR satellites and their sensor characteristics. . . 18
Types of standard and DA learning problems. . . . 49
FE methods and baselines compared in the classi-

fication experiments. . . . ... ... 94
The four factors analyzed during the model porta-

bility experiments. . . . . . ... ... L. 120
Description of the different classification settings

used in the cross-image synthesis experiments. . . 134
Approaches investigated in the Thesis: relation to

DA families and learning problems. . . . . ... .. 140
Comparison of the investigated DA approaches. . . 144
Confusion matrix for a multi-class prediction. . . . . 149
Zurich dataset: land-cover classes. . . . .. ... .. 153
KSC dataset: land-cover classes. . . . .. . ... .. 155
Pavia dataset: land-cover classes. . . ... .. ... 157
Atlanta dataset: land-cover classes. . . . . ... .. 160

Rio de Janeiro dataset: land-cover classes. . . . . . 163



ACRONYMS

AL
APEX
ASTER

AVIRIS
BRDF
BT
CASI
CAVIS
CDF
CHRIS
CIE
DA
DEM
DL
DLR
DN
EM
EO-1
ESA
ETM
FE
FLAASH

GDA
GIS
GRSS
GSD
HM
HSIC
IR-MAD
M
KMM

Active Learning
Airborne Prism EXperiment

Advanced Spaceborne Thermal Emission and Reflection
Radiometer

Airborne Visible and Infrared Imaging Spectrometer
Bidirectional Reflectance Distribution Function
Breaking Ties

Compact Airborne Spectrographic Imager

Cloud, Aerosol, water Vapor, Ice, Snow
cumulative distribution function

Compact High-Resolution Imaging Spectrometer
International Commission on Illumination
Domain Adaptation

Digital Elevation Model

Dictionary Learning

Deutsches Zentrum fir Luft und Raumfahrt
Digital Number

electromagnetic

Earth Observing-1 Mission

European Space Agency

Enhanced Thematic Mapper

Feature Extraction

Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes

Generalized Discriminant Analysis

Geographical Information System

Geoscience and Remote Sensing Society

ground sample distance

Histogram Matching

Hilbert-Schmidt Independence Criterion

Iteratively Reweighted-Multivariate Alteration Detection
Jeffries-Matusita

Kernel Mean Matching

XV



XVi

ACRONYMS

KPCA
KSC
LDA
LiDAR
MAD
MISR
MMD
MODTRAN
MSS
NASA
NIR
NP
OA
OMP
PA
PAN
PCA
PDF
PROBA
RBF
RKHS
ROSIS
SAR
SNR
SPOT
SSTCA
SV
SVD
SVM
SWIR
TCA
™

UA

VC
VHR
VNIR

Kernel Principal Component Analysis
Kennedy Space Center

Linear Discriminant Analysis

Light Detection And Ranging

Multivariate Alteration Detection
Multi-angle Imaging SpectroRadiometer
Maximum Mean Discrepancy

MODerate resolution atmospheric TRANsmission
Multispectral Scanner

National Aeronautics and Space Administration
near-infrared

non-deterministic polynomial time

Overall Accuracy

Orthogonal Matching Pursuit

Producer’s Accuracy

panchromatic

Principal Component Analysis

probability density function

PRoject for On-Board Autonomy

Radial Basis Function

reproducing kernel Hilbert space

Reflective Optics System Imaging Spectrometer
Synthetic Aperture Radar

signal-to-noise ratio

Satellite Pour 'Observation de la Terre
Semisupervised Transfer Component Analysis
Support Vector

Sinqular Value Decomposition

Support Vector Machine

shortwave infrared

Transfer Component Analysis

Thematic Mapper

User's Accuracy

Vapnik-Chervonenkis

Very High Resolution

visible and near-infrared



SYMBOLS AND NOTATION

Throughout this Thesis, scalars will appear in italic font, vectors in lowercase

boldface letters and matrices in uppercase boldface letters. All vectors are

considered to be column vectors.

REMOTE SENSING

A wavelength [nm, ym, m] E, irradiance [W-m~?]
frequency [HZ] transmittance € [0, 1]
0  incident angle [°] surface reflectance € [0, 1]
L, radiance [W-sr—"-m~?]
GENERAL NOTATION
X input vector (sample) number of samples
y output label d number of variables
X variables (dataset) R d-dimensional space of
real numbers
Y labels number of classes
D labeled dataset C set of classes
X input space cl a given class
Yy output space P(:) probability distribution
X n x d data matrix (d x n in p(-)  probability density function
DL problems)
[|-]] & norm z covariance matrix
[l-l[p ¢ norm X sample mean vector
[|-|lF Frobenius norm of a matrix u population mean vector
[ -] determinant of a matrix 1 vector of ones
- transpose operator / identity matrix
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SYMBOLS AND NOTATION

MACHINE LEARNING

STATISTICAL LEARNING THEORY

*

Ny

predicted label

~
.

loss function

() predictive function Re expected risk

F set of functions Re empirical risk

6 set of generic parameters Q confidence interval

(S parameter space h VC dimension

SUPPORT VECTOR MACHINES
w vector of primal variable width of the margin
weights
b bias of a classifier cost or penalty hyper-
parameter
é slack variable vector of dual sample

weights

KERNELS

kernel function

reproducing kernel Hilbert
space

K n x n kernel matrix RKHS mapping function
o Gaussian RBF and Laplace
kernel width parameter
FEATURE EXTRACTION
u primal eigenvector dual eigenvector
U primal eigenvector matrix dual eigenvector matrix
P eigenvalue number of retained compo-
nents
S scatter matrix of class cl within-class scatter matrix
2w pooled within-class covari- between-class scatter ma-
ance matrix trix
H n x n centering matrix
DICTIONARY LEARNING
D d x K dictionary matrix vector of sparse codes
d atom of D sparsity level
K number of atoms reconstruction error
C K x n matrix of sparse

codes
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DOMAIN ADAPTATION

GENERAL NOTATION

D domain L matrix of coefficients for
MMD
‘S subscript  denoting  the 0 binary selection variable
source domain
T subscript denoting the tar-
get domain
ADAPTIVE ACTIVE LEARNING
w sample weights of instance v sample weights during
weighting SVM TrAdaBoost
T joint training set Ts U Tr € weighted training error
U set of unlabeled candidate e labeling error for sample x;
samples
t index of TrAdaBoost itera- B reweighting factor
tions
q number of candidates to
add at each AL iteration
FEATURE EXTRACTION FOR RELATIVE NORMALIZATION
U TCA & SSTCA regulariza- L graph Laplacian matrix
tion parameter
Kyy kernel matrix computed on M affinity matrix
the labels
y SSTCA label dependence D degree matrix
tradeoff parameter
A SSTCA manifold tradeoff k number of neighbors for M
parameter
w projection matrix é() common projection function
* superscript denoting ele-
ments in projected space
CROSS-IMAGE SYNTHESIS WITH DICTIONARY LEARNING
‘x 7y subscripts denoting two n tradeoff parameter
generic domains Dy and D,
X,Y data spaces of two generic ¢ reqularization parameter
images
X,Y data matrices of two a final sparse codes for cross-
generic images image synthesis
x, Yy samples (signals) of two Wy., X to ) projection matrix

generic images

Wy_x Y to X projection matrix
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THESIS OVERVIEW

1.1  MOTIVATION

The field of remote sensing provides key tools for the observation of the
surface of the Earth. Ever since the launch of the Landsat 1 mission in
1972, the images provided on a regular basis by the satellites enable us
to understand the many natural or anthropic phenomena impacting our en-
vironment. Well before this turning point, analogue aerial photographs and,
later on, the development of digital photography have paved the way for
such a rapidly growing and fascinating discipline. Remotely sensed images
constitute one of the most important sources of information to describe the
spatial distribution of the objects and land-covers at the Earth's surface.
The historical archives of images that are continuously complemented with
the new acquisitions allow a constant assessment of the evolution of the
landscape, with several valuable and diverse real-life applications. In fact,
frequently updated, spatially extensive though precise imagery is paramount
in assisting the development of cartographic products, conceiving land man-
agement systems, monitoring different types of natural hazards, to name but
a few examples.

At first, satellites were carrying sensors bearing a low to moderate spa-
tial resolution, capturing synoptic views of large areas of the globe. The
last two decades, instead, have seen the launch of a variety of satellites
with on board high to very high resolution sensors providing images with
an unprecedented spatial detail. Moreover, the amount of sensed data has
grown extraordinarily also because of the increase in the number of spec-
tral channels used by the sensors both in satellite and airborne missions to
finely sample the electromagnetic spectrum.

Nowadays, such an evolution requires the proper tools to efficiently treat
this large quantity of data. In this respect, the latest advances in the fields of
signal and image processing have proven success in answering this demand.
The early approaches to information extraction from remotely sensed images
based on a visual interpretation by the analyst are more and more replaced
by computer-based procedures. The key to success for such automatic rou-
tines is their ability to cope with issues like the high dimensionality of
the pixels, the presence of noise in the images or the scarcity of available
reference information to calibrate the models.

This last aspect is particularly delicate when considering the classifica-
tion of the images to identify the types of land-cover appearing in the scene.
Indeed, the collection of ground truth data is among the crucial factors in-
fluencing the quality of a land-cover map. To be effective, a supervised
classifier needs examples suitably representing the spectral signature of
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THESIS OVERVIEW

the thematic classes found in the image. In an ideal situation, this set of
ground truth samples is acquired for every image the user intends to ana-
lyze. Nevertheless, the sampling process is not a trivial task. The procedure,
depending upon the type of application and the type of image, requires
either expensive terrain campaigns or time-consuming photo-interpretation
analyses. The former solution is adopted especially when dealing with hy-
perspectral data of low spatial resolution, whereas the latter concerns in
particular studies with very high resolution images. In some critical cases,
gathering new field data is simply impossible, for instance because of an
inaccessible area (e.g. dangerous or politically unstable regions) or due
to time constraints when a quick map update is required (e.g. emergency
situations after natural disasters).

In this context, the aforementioned archives of already existing acquisi-
tions could be conveniently exploited to alleviate the demand for reference
data. If a ground truth collection has been carried out for a previous study
with similar objectives, this labeled data could be profitably re-utilized, pro-
vided that the images involved share some key characteristics. The sensors
having acquired them should cover the same region of the spectrum, while
the imaged geographical areas should, of course, display the same type of
landscape. When these conditions are met, it is likely that a classification
model appropriately mapping the land-cover on the first image could per-
form satisfactorily on the second as well. Yet, the images have likely been
acquired at different time instants and/or at distant spatial locations. The
radiometric differences among them can be passably large, owing to sea-
sonal effects, changes in the atmospheric conditions or different acquisition
geometries. Therefore, an even more attractive and elegant solution con-
sists in devising adaptation strategies to ultimately ensure that the model
suitably adjusts to the new image one is interested in.

1.2 OBJECTIVES

The purpose of this Thesis is to find effective solutions to the adaptation
problem outlined above. We aim at providing dedicated processing tech-
niques to enable image analysts to easily map the land-cover over large spa-
tlal and temporal extents by leveraging already existing models or ground
truth data. To this end, we take advantage of the latest developments in the
fleld of machine learning, a discipline born at the confluence of statistics
and computer science. In particular, the methodological framework in which
this work sits is that of domain adaption, the branch devoted to the study of
strategies to overcome a change in the statistical distribution of the datasets.
As regards machine learning, methods for classification, regression and clus-
tering have been widely utilized to analyze single remotely sensed images,
proving to be decisive in applications of land-cover mapping, biophysical
parameter estimation, etc. However, the fundamental problem of adaptation
between several images has often been left aside.



1.2 OBJECTIVES

We believe that joining the efforts of the more method-oriented field of
domain adaptation and those of the more application-oriented field of re-
mote sensing can be highly beneficial for both communities. The challenges
to face are basically the same, just the perspective is slightly different. Ma-
chine learning researchers studying adaptation strategies are introduced
to a new stimulating field of application and will receive useful feedbacks
regarding the concrete issues to focus on. On the contrary, remote sens-
ing scientists are supplied with innovative advanced methods to solve the
problems they always faced relying on techniques whose limitations were
sometimes apparent.

The image analysis needs in Earth observation are often dictated by the
lack of or by the difficulty in obtaining ground truth data. In this respect,
two possible ways to handle a cross-image thematic classification exercise
exist. The practitioner either decides to spend some resources to sample
each new image he receives or prefers to only rely on the already available
reference data belonging to other acquisitions. These two approaches cor-
respond to two families of adaptation methodologies developed in machine
learning: supervised or unsupervised domain adaptation approaches. In this
dissertation, we will analyze and discuss the advantages and shortcomings
of both solutions.

On the one hand, supervised adaptation approaches allow to take full
advantage of the opportunity to access additional samples in the new ac-
quisitions. In this case, the end-user is supposed to have a budget to collect
a limited number of samples in the analyzed scene. As some known spectral
signatures of the new image at hand are being exploited, supervised adapta-
tlon procedures are supposed to yield very accurate thematic classification
products.

On the other hand, unsupervised adaptation methodologies do not require
any thematic information associated with the new images. Such a freedom
opens additional opportunities if compared to the previous approach. If the
appropriate normalization techniques are available, the user could success-
fully apply on the new images an already trained model from a previous
collection. However, as no new samples can be used to refine the model,
this comes to the detriment of the accuracy of the thematic maps. The field
of domain adaptation proves useful to answer these needs since the change
of the feature representation of the datasets is a topic of great interest.

A central aspect contributing to the design of both the mentioned types
of adaptation approaches is represented by a correct and thorough under-
standing of the processes causing the change in data distributions. Thus,
a further objective of this Thesis is to provide robust tools to detect and
assess the dataset shift. Again, we will take advantage of the recent devel-
opments in the field of machine learning to yield a data-driven solution to
be concretely used by remote sensing experts when interpreting their data.

Additionally, it is worth noting that among the factors affecting the radio-
metric homogeneity of the images, the geometry of a remotely sensed acqui-
sition is one of the most crucial. This is particularly evident when working
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with high spatial resolution images. Different combinations of satellite and
sun positions with respect to the scene control several fundamental physi-
cal phenomena. Therefore, another goal of this research is to analyze the
angular effects ensuing from images having been acquired with different off-
nadir view angles and to study the best strategies to overcome the problem.
With this purpose in mind, we deem essential to evaluate the compensation
ability of physical and statistical approaches traditionally used in Earth ob-
servation. We also discuss the synergy of the two approaches in identifying
the reasons behind the observed spectral drift.
To sum up, the main objectives of this Thesis can be stated as follows.

1. Increase the portability of land-cover classifiers by investigating both:
e supervised domain adaptation strategies and

e unsupervised domain adaptation strategies.

2. Evaluate the dataset shift affecting remote sensing images with suit-
able statistical measures.

3. Study and overcome the anqular effects related to the geometry of
the acquisition with a multidisciplinary approach based on machine
learning/statistics and physics.

The application of the approaches investigated in this Thesis is twofold.
First, the joint analysis of series of spatially and/or temporally spaced im-
ages can be improved. Second, we also address the related issue arising
from the usage of training data sampled in small localized regions of large
images. An adjustment is thus required to increase the generalization power
of the classification rules learned on these shifted datasets. Eventually, a
more accurate and automated large-scale mapping will be within reach in
both cases, with practical applications including, for instance, the study of
global urbanization trends or the continuous monitoring and timely assess-
ment of natural hazards.

1.3 CONTRIBUTIONS OF THE THESIS

The key contributions of this Thesis will be briefly outlined in this Section.
These contributions are all directly linked to the objectives discussed in
the previous Section. They will be presented in four separate Chapters in
Part iil of this manuscript. In addition, the relevant publications prepared
during this Thesis project that are connected with each topic will be listed
after each description.



1.3 CONTRIBUTIONS OF THE THESIS

131 Chapter 6: SVM-based adaptive Active Learning via sample reweight-
ing

The first contribution is represented by the study of a supervised domain
adaptation strategy to smartly sample the newly acquired images. In this
Chapter, we propose a scheme to optimally direct the collection of new
ground truth pixels based on an initial training set available from a different
yet related image. The adaptive procedure separately reweights the samples
of the two images based on their representativeness of the land-cover classes
in the new image. At the same time it suggests which pixels are the most
useful to label in order to achieve a maximal improvement of the current
classification model for an effective land-cover mapping. This type of routine
provides the end-user with a list of priorities allowing to minimize the
additional sampling efforts.

The findings of this Chapter have been published in:

[Matasct et al,, 2012] G. Matasci, D. Tuia, and M. Kanevski. SVM-based
boosting of active learning strategies for efficient domain adaptation. I[EEE
Journal of Selected Topics in Applied Earth Observations and Remote Sens-
ing, 5(5):1335-1343, 2012.

The following work is also related to this study:

[Matasct et al, 2011a] G. Matasci, D. Tuia, and M. Kanevski. Domain
separation for efficient adaptive active learning. In Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), pages
3716-3719, Vancouver, Canada, 2011a.

1.3.2  Chapter /: Kernel-based Feature Extraction for relative radiometric
normalization

The second topic addressed during the Thesis concerns an unsupervised
adaptation approach. This Chapter investigates strategies to statistically
align the images in a common subspace constructed anew so that radiomet-
rically shifted acquisitions can find a correspondence. We analyze a feature
extraction technique aiming at reducing the distance between the probabil-
ity distributions of the images. This type of transformation can be thought of
as a relative image-to-image normalization approach. After the projection,
the model portability among acquisitions is thus facilitated. As no labels
from the targeted images are required, practitioners are enabled to rapidly
apply on new imagery a thematic classifier they have trained beforehand.

This Chapter is based on the following accepted paper:

[Matasci et al, Accepted.] G. Matasci, M. Volpi, M. Kanevski, L. Bruz-
zone, and D. Tuia. Semisupervised Transfer Component Analysis for domain
adaptation in remote sensing image classification. /EEE Transactions on
Geoscience and Remote Sensing, Accepted.
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The following works are also related to this study:

[Matasct et al, 2011b] G. Matasci, M. Volpi, D. Tuia, and M. Kanevski.
Transfer Component Analysis for domain adaptation in image classification.
In Proceeding of the SPIE Remote Sensing conference on Image and Signal
Processing for Remote Sensing, Prague, Czech Republic, 2011b.

[Volpt et al, 2012a] M. Volpi, G. Matasci, D. Tuia, and M. Kanevski. En-
hanced change detection using nonlinear feature extraction. In Proceed-
ings of the IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), pages 6757-6760, Munich, Germany, 2012a.

[Matasci et al, 2013a] G. Matasci, L. Bruzzone, M. Volpi, D. Tuia, and
M. Kanevski. Investigating feature extraction for domain adaptation in remote
sensing image classification. In Proceedings of the International Conference
on Pattern Recognition Applications and Methods (ICPRAM), Barcelona,
Spain, 2013a.

[Volpt et al, In press] M. Volpi, G. Matasci, M. Kanevski, and D. Tuia.
Semi-supervised multiview embedding for hyperspectral data classification.
Neurocomputing, In press.

1.3.3 Chapter 8: Assessing angular dataset shift and model portability in
multi-angle image sequences

This Chapter is devoted to the study of the angular properties of remote sens-
ing image acquisitions. We aim at detecting the many physical phenomena
that cause distortions in the imagery when the acquisitions take place with
skewed geometries. In order to isolate the impact of the effects related to
the view angle, we resort to multi-angle sequences quasi-simultaneously
acquired by the satellite. We quantify the dataset shift by means of a non-
linear measure of distance between probability distributions. Furthermore,
adopting an unsupervised domain adaptation setting, we assess the ability
to port across the entire sequence a classification model developed on one
single specific image. In this context, we shed light on the suitability of
standard both absolute and relative normalization methods to overcome the
observed angular shift and we analyze their combined use.

This Chapter is based on a submitted paper that is now under review:

[Matasci et al, Submitted] G. Matasci, N. Longbotham, F. Pacifici,
M. Kanevski, and D. Tuia. Understanding angular effects in VHR in-track
multi-angle image sequences and their consequences on urban land-cover
model portability. ISPRS Journal of Photogrammetry and Remote Sensing,
Submitted.

The following work is also related to this study:

[Matasci et al., 2013b] G. Matasci, N. Longbotham, F. Pacifici, M. Kanevski,
and D. Tuia. Statistical assessment of dataset shift and model portability
in multi-angle in-track image acquisitions. In Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), pages
4134-4137, Melbourne, Australia, 2013b.
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1.3.4 Chapter 9: Cross-image synthesis with dictionaries

This Chapter presents the last and most recent contribution of this Thesis.
We focus again on the fundamental problem of changing the data space of
the images to make them more similar to each other. This time, we propose
to apply an algorithm that takes advantage of sparse representations of the
images. Set in a supervised domain adaptation context, the methodology
seeks a mapping function directly linking the two representations that ulti-
mately permits to re-synthesize the pixels of a given image as though they
were generated under the conditions found on another image.

This Chapter will appear in:

[Matasct et al, 2014] G. Matasci, F. de Morsier, M. Kanevski, and D. Tuia.
Domain adaptation in remote sensing through cross-image synthesis with

dictionaries. In Proceedings of the IEEE International Geoscience and Re-
mote Sensing Symposium (IGARSS), Québec City, Canada, 2014.

The following work is also related to this study:

[Marcos Gonzalez et al, 2014] D. Marcos Conzalez, F. de Morsier,
G. Matasci, D. Tuia, and J-P. Thiran. Hierarchical sparse representation
for dictionary-based classification of hyperspectral images. In Proceedings
of the IEEE Workshop on Hyperspectral Image and Signal Processing, Evo-
lution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 2014.

1.4 ORGANIZATION OF THE MANUSCRIPT

This Thesis manuscript comprises four distinct parts structured as follows.
After this introductory Chapter, the remainder of Part i consists of Chapter 2
presenting the discipline of remote sensing and the related challenges that
are being faced nowadays. In the more theoretical Part ii, Chapter 3 intro-
duces machine learning and the associated techniques that will be utilized
as starting point for the experimental part of this Thesis. Chapter 4 follows
with a thorough overview of the sub-field of domain adaptation. Next is
the core of the dissertation: Part iii, featuring the adaptation approaches
we propose. Chapter 5 firstly sets the context for adaptation studies when
applied to remote sensing and reviews the state-of-the-art of the current
research. The four subsequent Chapters 6, 7, 8, 9 report the respective find-
ings previously outlined in Section 1.3. Finally, Part iv, with its conclusive
Chapter 10, summarizes the main achievements and discusses the possible
future research directions in the field.






REMOTE SENSING AND EARTH OBSERVATION

Outline: This second Chapter will delineate the fundamental
principles of the remote sensing technology as well as the main
challenges arising from its latest developments. In Section 2.1,
we introduce the types of sensors that can be mounted on re-
mote platforms and discuss the possible real-life applications of
this relatively new discipline. Subsequently, Section 2.2 outlines
the physics and the related concepts describing the transfer of
the electromagnetic radiation occurring during a remote sensing
acquisition. In Section 2.3, passive remote sensing systems will
be described in more detail and the principal satellite/airborne
missions will be reviewed. Next, with Section 2.4 we will look
at the products ultimately issued from remotely sensed images
imagery, with special attention to land-cover classification. A
concise literature review of the latest developments in the field
will also be provided. Section 2.5 discusses the opportunities
offered by jointly using multiple images, details the related ra-
diometric issues and describes the most common answers to such
problems.

21 INTRODUCTION

Generally speaking, remote sensing can be defined as the act of mea-
suring (sensing) the properties of objects at the surface of the Earth by
means of a data collection platform not in direct contact with them (remote).
The nature of the sensed signals ultimately allowing to derive the men-
tloned object properties can be multifaceted: optical, microwave, acoustical,
etc. [Schowengerdt, 2007].

The systems designed to acquire such signals can be divided into two
categories, depending upon the type of interaction with the target. On the
one hand, there are passive remote sensing instruments collecting the solar
electromagnetic (EM) radiation that is reflected or spontaneously emitted
by the Earth’'s surface. Among such devices we find multispectral and hy-
perspectral sensors [Richards and Jia, 1999] that record the energy in the
visible, infrared and thermal range of the EM spectrum. On the other hand,
active remote sensing instruments possess an artificial source of radiation,
an antenna, that sends EM signals towards the Earth. The radiation that is
scattered back by the objects on the ground is then detected by the sensor.
In this category we find radar systems working in the microwave domain
such as Synthetic Aperture Radar (SAR) [Curlander and McDonough, 1991]
or technologies such as Light Detection And Ranging (LiDAR) aimed at
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illuminating the objects with laser beams [Shan and Toth, 2008, Wehr and
Lohr, 1999]. This Thesis focuses on the processing of optical images (visi-
ble through thermal wavelengths). Thus, in the following Sections 2.2 and
2.3, we restrict the introduction of the physics of the image acquisition to
this type of signals and the description of the imaging systems to passive
instruments.

The above measurements are recorded by a detector arranging the col-
lected signals in a set of cells called pixels forming a rectangular reqular
grid, the image. The final product output by the remote sensing image ac-
quisition chain is a spatially georeferenced image that can be integrated,
for instance, in a Geographical Information System (CGIS) for further analy-
ses involving additional spatial layers. Generally, the sensors are mounted
on an aircraft or on a satellite collecting thus the energy at-a-distance in-
stead of in-situ. Especially in the case of spaceborne sensors, this enables
the monitoring of vast portions of the surface of our planet within short
time-frames.

For all these reasons, the applications of remote sensing for Earth obser-
vation are numerous and can be pursued at a large scale [Schowengerdt,
2007):

e monitoring of natural hazards (earthquakes, landslides, etc.) [Manto-
vani et al, 1996, Joyce et al, 2009, Jaboyedoff et al, 2012, Hilley
et al,, 2004]

e urban studies (land-use/land-cover mapping, urban growth assess-
ment, etc.) [Jensen and Cowen, 1999, Weng, 2012, Manakos and Braun,
2014]

e agriculture (mapping of crop types and crop condition, yield predic-
tions, etc.) [Moran et al,, 1997, Lamb and Brown, 2001]

e ccological and environmental assessment (biodiversity, hazardous waste
disposal, etc.) [Asner, 1998, Nagendra, 2001, Well et al,, 1994]

e change detection (deforestation, melting glaciers, etc.) [Mas, 1999,
Achard et al, 2002, Raup et al,, 2007]

e resources exploration and monitoring (minerals, oil, natural gas, etc.)
[Sabins, 1999, Brekke and Solberg, 2005]

e meteorology (climate change, weather prediction, atmosphere compo-
sition, etc) [Yang et al, 2013, Kidder and Vonder Haar, 1995]

e mapping (regional land-cover mapping, extraction of topographic in-
formation, etc.) [Manakos and Braun, 2014, Rabus et al, 2003].
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Figure 2.1: The EM spectrum. Adapted from http://commons.wikimedia.org/.

22 RADIATIVE TRANSFER
221  What is measured by the sensor?

The solar or thermal radiation reflected or emitted by the materials consti- EM spectrum
tuting the surface of the Earth can be separated into categories following the

regions of EM spectrum: visible (0.4 — 0.7 pm), near-infrared (NIR) (0.7 — 1.1

pm), shortwave infrared (SWIR) (1.1 — 2.5 pm), midwave infrared (3 —5 pm),

thermal or longwave infrared (8 — 14 pm). A diagram depicting the main

regions of the EM spectrum with wavelengths and corresponding frequency

values is reported in Fig. 2.1.

In the visible and near-infrared (VNIR) to SWIR region, the part of the At-sensor
spectrum we will mainly be dealing with in this manuscript, the radiation radiance
transfer occurring during a remote sensing image acquisition is controlled
by three distinct components, all of which depend on the wavelength A
[Schowengerdt, 2007]:

e the unscattered surface-reflected radiation, L3*
e the down-scattered surface-reflected skylight, Ljd
e the up-scattered path radiance, L’

Making use of these terms, the total at-sensor radiance L5 reaching the
platform is simply defined as

L5 =L+ 157+ LF (2.1)

This quantity is what is eventually measured by the sensor in [W-sr='-m~?]
units. Its counterpart in the thermal region of the spectrum, the total at-
sensor radiance from surface emissions, will not be considered here. Fig-
ure 2.2 graphically illustrates the components of the total at-sensor radiance
as well as two other physical quantities described in the paragraphs below.


http://commons.wikimedia.org/wiki/File:EM_spectrum.svg

14

Incident
irradiance

Surface
reflectance &
surface
radiance

REMOTE SENSING AND EARTH OBSERVATION

Figure 2.2: Illustration of the main physical quantities controlling the radiative
transfer of a remote sensing acquisition.
red —: unscattered surface-reflected radiation L3".
green --»: down-scattered surface-reflected skylight Ljd.
blue --»: up-scattered path radiance Lip.

2.2.2  Components of the at-sensor radiance

The first term of (2.1), the unscattered surface-reflected radiation L3", first
depends on the initial energy coming from the sun that reaches the top
of the atmosphere, i.e. the spectral irradiance ES. The irradiance actually
attaining the Earth’s surface, denoted with £, is controlled by the solar
path (from the sun to the ground) atmospheric transmittance 75(A). The
latter represents the fraction of the irradiance £V that is able to make its
way through the atmosphere. At this time, another factor influencing the
process is the incidence angle with which the solar radiation reaches the
surface of the globe in a given point (x,y) of it. For instance, a maximum
reflection occurs in case of a surface perpendicular to the incoming EM
beam. Therefore, the final incident irradiance is computed as follows:

Ex(xy) = To(X)E) cos(6(x.y)) , (2.2)

where O(x, y) is the incident angle, i. e. the angle between the solar vector
and the surface normal vector at the coordinates (x, y).

At the surface level, the actual surface radiance L) scattered back toward
the sensor is the result of a rescaling of the incident £, by a factor trans-
lating a crucial property of the materials, the surface reflectance p(A), a
unitless quantity between 0 and 1:

Ly = EA”ST’\) . (2.3)

This is valid for surfaces with an equal reflection in all the directions of
the hemisphere (Lambertian surfaces). In most real-life situations this is
rarely the case, since anisotropic behaviors are observed for many types
of surfaces. Hence, the p(A)/JT values are substituted by a Bidirectional
Reflectance Distribution Function (BRDF)[Simmer and Gerstl, 1985, Schott,
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2007, Schaepman-Strub et al, 2006]. Such a function describes the ratio of
outgoing to incoming radiance as a function of incident (related to the sun)
and view (related to the sensor) angles.

Finally, since the outgoing radiance still has to traverse the atmosphere
on its way back to the sensor, to obtain the unscattered surface-reflected
at-sensor radiance, we apply a rescaling by the view path (from the ground
to the sensing platform) transmittance 7,(A):

50 =1, ()L 24)

The view path transmittance depends upon the geometry of the acquisition,
as lower values are expected for high off-nadir view angles (low satellite
elevation angles) with respect to nadir acquisitions. Indeed, the optical path
through the atmosphere is longer in the first situation than in the second.
Moreover, note that both transmittance quantities 7s(A) and t,(A) (propor-
tions between 0 and 1) are highly dependent on the wavelength, as wide
radiation absorption bands (around 1.4 and 1.9 pm) occur in the region
of the spectrum we are considering. The presence of water vapor and car-
bon dioxide in the atmosphere are among the main reasons behind such a
phenomenon.

The second term of (2.1), the down-scattered surface-reflected skylight L3¢,
accounts for the radiance scattered towards the object by the atmosphere
and then reflected upward. The fact that shadowed areas do not appear
as completely black is an evidence of this diffuse down-scattering. Instead,
the third term of (2.1), the up-scattered path radiance L5”, relates to the
radiation directly reflected at the sensor by the atmospheric layer. For im-
age collections taking place with slanted geometries, that is with important
off-nadir view angles (long optical path), the path radiance will heavily im-
pact the total radiance L measured by the detectors. Both Ljd and Ljp are
governed by molecular small-scale Rayleigh scattering, and by aerosol and
particulate (smog, haze, etc.) Mie scattering. The former type of scattering
more than the latter strongly depends on the wavelength, with shortwave
radiations (blue and ultraviolet light) being the most affected.

2.3 PASSIVE REMOTE SENSING IMAGING SYSTEMS
2.3.1  The hypercube

A passive sensor acquires a remote sensing image by sampling the continu-
ous EM spectrum within specific wavelengths and recording the associated
radiance values. This results in images having multiple spectral bands (or
channels), each one responsible for different adjacent parts of the spectrum.
Sensors possessing a limited number of wide bands produce multispectral
images, whereas instruments with many (more than one hundred) very nar-
row bands yield hyperspectral images. Moreover, sensors bearing a single
spectral channel having a bandwidth covering the entire VNIR range acquire
panchromatic  (PAN) images. The spectral resolution of a remote sensing
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Figure 2.3: Hypercubes and associated spectral signatures produced by panchro-
matic, multispectral and hyperspectral sensors. Top row shows the im-
ages with a different number of spectral bands. Bottom row shows
examples of the spectral signatures of four land-cover classes. Adapted
from http://commons.wikimedia.org/.

sensor is defined as the bandwidth of the featured channels (in [nm] gener-
ally). This type of data can be thought of as a three-dimensional hypercube
consisting of two spatial coordinates with the spectral wavelength as the
third dimension. The actual physical quantity measured by the instrument,
the at-sensor radiance L3, is converted and stored as an integer value, the
Digital Number (DN), usually coded in 8, 11 or 12 bits formats (to obtain
the desired radiometric resolution).

Each pixel of the image is described by a sequence of its DN values
in the different bands, the spectral signature. Depending on the ground-
cover constituting the pixel, the spectral signatures can be very different,
allowing to finely discriminate the materials. This is exactly the key op-
portunity offered by remote sensing systems that is shared with the field
of spectroscopy [Clark and Roush, 1984]: the user is enabled to accurately
recognize the materials or to derive meaningful parameters describing them.

Figure 2.3 shows an illustration of the hypercubes resulting from ac-
quisitions with the above-mentioned types of sensors. We present the re-
lated spectral signature for pixels belonging to the following four land-cover
classes: “pinewood’, “grassland”, “sandy soil", “silty water”. A panchromatic
sensor (1st column of the scheme) outputs a gray-scale image composed of
a single band in which each pixel is described by one DN value represent-
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ing the average radiance recorded over a large portion of the spectrum. A
multispectral system (2nd column) instead images the scene through multi-
ple spectral channels. When the VNIR region of the spectrum is involved a
true color RGB composition of the bands can be created. Each land-cover
is described more precisely with several DN values. Hyperspectral sensors
(3rd column) collect a large number of bands yielding a hypercube with
many layers along the spectral dimension. The measured signatures are
very detailed, approaching thus the true reflectance profiles of the consid-
ered materials. This permits for instance to effectively discriminate thematic
classes such as “pinewood” and “grassland” that were spectrally very similar
on both the panchromatic and multispectral images.

23.2 [ypes of sensors

The imaging systems mounted on airborne or spaceborne platforms can be
divided into two categories with respect to the scanning procedure utilized to
sense the scene. The acquisition always takes place with an in-track motion
of the platform (along the flight path). On one side we have pushbroom
scanners (e.g. SPOT, QuickBird) that image the full swath width with a
linear array of detector elements. On the other side, whiskbroom systems
(e.g. Landsat) achieve a sequential cross-track (perpendicular to the flight
line) scan by rotating the series of detectors aligned in-track [Schowengerdt,
2007]. In the resulting image, for both types of systems, the pixel centers are
spaced by the ground sample distance (GSD), a property often referred to
as the spatial resolution of the image.

In this respect, we distinguish the recently launched Very High Resolu-
tion (VHR) sensors (e.g. QuickBird, WorldView-2), producing images with
a metric or sub-metric spatial resolution (< 5 m), from the previous moder-
ate resolution sensors (e.g. MSS/TM/ETM on board the Landsat satellites,
ASTER on board the Terra satellite) bearing a decametric spatial resolu-
tion [Richards and Jia, 1999]. VHR sensors yield images with a high spatial
detail, enabling the end-user with the resources to carry out case studies in-
conceivable until the end of the 1990s. However, such high spatial resolution
is obtained through a compromise: VHR devices are normally multispectral
instruments with bands that are rather broad and mainly cover the VNIR
region of the EM spectrum. This type of sensor is often mounted with a
panchromatic instrument allowing to achieve the smallest GSD. The PAN
band can then be exploited to enhance the spatial resolution of the rest of
the bands by means of pansharpening techniques [Brower and Laben, 2000].
Another asset of the advent of VHR sensors is related to the higher temporal
resolution of the image collections. Indeed, the increased agility of the plat-
forms produces shorter (< 3 days) satellite revisit times (temporal interval
between two consecutive acquisitions of the same scene). Finally, note that
the recent launch of the WorldView-3 satellite marks a significant change
in the spectral properties of VHR instruments. With its 8 SWIR channels
at a 3.7 m resolution complementing the 8 VNIR bands already used by
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Table 2.1: VHR satellites and their sensor characteristics. All native GSD and
swath width figures refer to nadir acquisitions. Band names: C = coastal,
B = blue, G = green, Y = yellow, R = red, RE = red edge, NIR =
near-infrared, NIR2 = near-infrared 2. WorldView-3 CAVIS channels
are dedicated calibration bands. For non-US government customers the
imagery must be resampled so that the output GSD is > 0.5 m. Adapted
from http://eijournal.com/2012/buying-optical-satellite-imagery
and http://www.satimagingcorp.com/satellite-sensors.html.

Launch Swath Native Output PAN-
Satellite aunel width  PAN VNIR(-SWIR)  Bands

year [km] GSD[m] GSD [m]
IKONOS 1999 113 082 1-4 PAN + 4 VNIR (B, G, R NIR)
QuickBird 2001 165 061 06 - 2.4 PAN + 4 VNIR (B, G, R NIR)
PAN + 3 VNIR (G, R NIR) +
SPOT-5 2002 60 5 25-10-20  Soue
WorldView-1 2007 17.6 05 05 PAN
GeoEye-1 2008 15.2 0.41 05-2 PAN + 4 VNIR (B, G, R NIR)
) PAN + 8 VNIR (C, B, G, Y, R,
WorldView-2 2009 164 046 05-2 RE. NIR NIR2)
Pléiades 1 2011 20 070 05-2 PAN + 4 VNIR (B, G, R, NIR)
SPOT-6 2012 60 15 15-6 PAN + 4 VNIR (B, G, R, NIR)
' expected PAN + 8 VNIR + 8 SWIR (+
WorldView-3 in 2014 13 031 05-12-37 12 CAVIS)

WorldView-2, this satellite can be deemed the first spaceborne platform car-
rying a superspectral VHR sensor. A list of the main VHR satellites/sensors
with their characteristics is reported in Tab. 2.1.

Considering the spectral resolution of passive sensors, at the opposite
end, we find hyperspectral sensors capable to acquire up to hundreds of
narrow bands finely sampling the spectrum [Coetz et al, 1985, Plaza et al,
2009} Such type of instruments, when mounted on satellite platforms, never
reaches the spatial resolution of multispectral sensors. In fact, since the spec-
tral resolution is much higher (= 10 nm wide bands), to register enough
energy for each pixel, the GSD needs to be larger (> 15-20 m). The list
of spaceborne hyperspectral sensors is quite short. The two main instances
consist of Hyperion (30 m GSD, 220 spectral bands in the VNIR to SWIR
region) [Folkman et al, 2001] on board NASA’s EO-1 satellite and CHRIS
(highest GSD of 17 m, programmable up to 62 spectral bands in the VNIR
region) [Barnsley et al,, 2004] on board ESA's PROBA satellite. On the con-
trary, for budgetary reasons, the development of airborne sensors has been
much more dynamic. In this category, a non-exhaustive list of instruments
comprises ROSIS (115 VNIR spectral channels) [Mueller et al,, 2002] oper-
ated by DLR, AVIRIS (224 VNIR to SWIR spectral channels) [Vane et al,
1993] developed by NASA, APEX (up to 534 VNIR to SWIR bands) [Itten
et al,, 2008] manufactured by ESA, as well as HyMap (126 VNIR to SWIR
spectral channels) [Cocks et al, 1998] and CASI (up to 288 VNIR spectral
channels) [Babey and Anger, 1993] engineered by private companies. De-
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pending on the flight height of the airplane, the spatial resolution of the
acquisitions can be very high (< 1 m).

A special class of imaging systems concerns platforms possessing multi-
angular capabilities. Indeed, certain instruments have been designed with
a collection mode allowing the acquisition of a sequence of images of the
same scene with different view angles, an ability that has proved beneficial
in many applications (see Chapter 8). This allows to study the BRDF prop-
erties of the materials to better understand their nature or to discriminate
them more accurately. Among the spaceborne platforms offering such a flex-
ible monitoring system there is WorldView-2. Its in-track collection mode
builds on the MISR [Diner et al, 1998] and the CHRIS missions, carrying
multispectral and hyperspectral sensors, respectively. As the recently de-
signed on-board control systems have enabled a rapid re-targeting of the
sensor to a wide range of look angles, the angular sampling density has
been highly augmented with respect to earlier systems. Within a time frame
of a few minutes, WorldView-2 can acquire angular sequences of tens of
images of the same scene along an in-track collection path with off-nadir
angles up to 45°.

Some examples of the images acquired by the instruments mentioned in
this Section can be found in Appendix B reporting the datasets used in this
Thests.

2.4 THEMATIC IMAGE CLASSIFICATION
2.4 Interpretation of the scene

The final goal of the processing of remote sensing imagery is the extraction
of meaningful information helping the end-user in understanding the nat-
ural or anthropic phenomena occurring at the surface of the Earth [Caloz
and Collet, 2001]. In the early years of remote sensing, such a crucial task
has ever been carried out via photo-interpretation: aerial photographs were
transformed into maps by human experts capable of recognizing forms, ob-
jects, and textures on the ground. With the advent of digital image processing
techniques [Gonzalez and Woods, 2002], the automation of this task is now
a reality. The knowledge of the analyst is complemented by the potential
offered by computer programs that sequentially perform the steps needed
to obtain the desired output. Expert advice is still decisive as it is required
to guide the information extraction process and to assess the quality of the
final product.

Techniques for tasks such as thematic classification, physical parameter
retrieval via regression, data fusion, unmixing or target detection are nowa-
days widely investigated to derive useful georeferenced information from
remotely sensed imagery [Bioucas-Dias et al, 2013]. Although many other
types of spatial layers can be obtained (maps of mineral abundances, soil
moisture in fields, chlorophyll content of vegetated areas, salinity of the
oceans, etc), one of the primary interests of remote sensing imagery lies
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in the possibility to (semi-)automatically determine an associated ground-
cover for all the pixels in the scene via classification. A suitable thematic
partition of the image into land-cover classes is deemed a highly valuable
Earth observation product in many fields. For instance, such maps are key
for urban planning, precision agriculture, forestry and land management,
post-catastrophe assessment, to name a few applications.

Taking advantage of methods developed in the research fields of statistics,
signal processing and machine learning (see Chapter 3), a large number of
classification techniques have been successfully adapted and applied to the
analysis of remote sensing data [Mather and Tso, 2003]. The starting point
for this exercise is the spectral signature of the pixels recored by the sensor.
Based on the vector of observations (typically DNs or reflectances), all of
the procedures resort to statistical measures of distance (e.g. Euclidean or
Mahalanobis distances) or similarity (e.g. Gaussian or linear kernels) to
eventually determine the thematic class label of the pixels. In the following,
we briefly review the main families of remote sensing image classification
methods.

2.4.2  Overview of the classification approaches by learning paradigm

On the one hand, unsupervised learning methods, also referred to as clus-
tering methods, exclusively utilize the spectral signature to automatically
group similar pixels into clusters. This type of techniques does not require
labeled pixels: no supervision by the user is needed in the training stage.
Such an approach is particularly suited when a rapid mapping is needed,
for example in a change detection scenario [Bruzzone and Prieto, 2000,
Bruzzone and Cossu, 2003, Volpti et al,, 2012b].

On the other hand, supervised learning methods require a set of exam-
ples with the associated class labels to be fed to the model for training. In
this crucial phase, the model learns the relation between the spectral sig-
nature and the thematic class, a rule which will then be used to predict the
land-cover at new locations in the prediction phase. After the early works
using the parametric Maximum Likelihood classifier [Strahler, 1980], more
recently, the remote sensing community has put the focus on powerful non-
parametric machine learning methods such as neural networks [Benedikts-
son et al, 1990] Support Vector Machine (SVM) and kernel methods in
general [Melgani and Bruzzone, 2004, Camps-Valls and Bruzzone, 2005],
random forests [Pal, 2005], Gaussian processes [Bazi and Melgani, 2010,
etc.

A hybrid category is that of semisupervised learning methods, strategies
whereby the unlabeled data, usually available in large quantities, are lever-
aged to define more robustly the class boundaries of the problem at hand.
One resorts to such techniques when the labeled samples are scarce and the
consideration of the underlying structure of the data provides help in requ-
larizing the solution. Examples of such methods can be found in Bruzzone
et al. [2006], Camps-Valls et al. [2007], Tuia and Camps-Valls [2009]
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2.4.3 Extensions of the classic paradigms

Within the supervised learning paradigm, we find the field of Active Learning
(AL), a booming research topic in the remote sensing community in the
recent years. The underlying principle consists of the incremental addition
of new samples to the training set. A dedicated search strategy is devised
such that the selected pixels, after manual labeling by the operator, will
maximally improve the classification accuracy (compared to a random or
stratified sampling of the image). Thorough reviews of the various sampling
schemes proposed for the analysis of remotely sensed images can be found
in Tuia et al. [2011b], Crawford et al. [2013].

Parallel to the above developments, the inclusion of spatial information in
the thematic classification process has proven highly valuable [Wang et al,
1983]. Integrating a description of the arrangement of pixel values in the
geographical space allows to produce smoother maps, with a higher spatial
coherence, especially when considering VHR images [Tuia et al, 2009a].
These approaches are based on segmentation [Huang and Zhang, 2008],
Markov random fields [Jhung and Swain, 1996, Moser et al, 2013], texture
extracted through the gray level co-occurrence matrix [Haralick et al,, 1973],
mathematical morphology [Pesaresi and Benediktsson, 2001] and, more re-
cently, morphological attribute filters [Dalla Mura et al, 2010].

2.5 WORKING WITH MULTIPLE IMAGES
2.5.1  Model portability

Large-scale Earth observation problems are generally tackled by the practi-
tioner by making use of multiple remotely sensed images. On the one hand,
the mentioned scale can be temporal, with the analysis of time series of im-
ages of the same region to monitor the evolution of the land-cover [Jonsson
and Eklundh, 2002] or with dedicated change detection studies [Coppin and
Bauer, 1996]. On the other hand, the scale can be spatial, with regional or
continental land-cover mapping efforts [Woodcock et al,, 2001, Knorn et al,
2009] The common requirement of all these large-scale applications is that
the employed images bear similar radiometric characteristics. This means
that the same land-covers/objects appear with comparable values on differ-
ent images. However, the fact of being forced to resort to a large number of
different acquisitions to be jointly analyzed makes this requirement hardly
met in practice, which is exactly the situation this Thesis considers.

In the context of thematic classification, the initial efforts by the com-
munity to answer these questions were undertaken in the area of remote
sensing named signature extension [Olthof et al., 2005] (more details in Sec-
tion 5.2.1). Such a research field, by taking advantage of the latest advances
in statistics and machine learning, has recently evolved to a more mature and
specific discipline now usually referred to as Domain Adaptation (DA) [Pan
and Yang, 2010] (see Chapter 4). The problem that both disciplines aim to
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solve consists in modeling and extending the relation between spectral sig-
natures and thematic classes collected over several scenes, reaching thus an
adequate land-cover classification model portability. The particular case of
sample selection bias considers the extension to the whole scene of models
based on localized ground truth data sampled on a small portion of it. By
matching the pixel signatures observed on a source image (or part of it)
where we have labels to those of a target image where (usually) we do not,
classifiers trained on the first can be used to accurately predict the classes
of the second [Bruzzone and Marconcini, 2010].

252 [he issues

Hereafter we present an overview of the factors limiting the portability of
classifiers across multiple or vast acquisitions. In general, heavy radiomet-
ric differences usually exist between images taken over spatially separate
regions at different time instants, even if the acquisition is carried out by
the same Earth observation system. To a lesser extent, these effects also
concern single images having a large extent over complex landscapes or
with a heterogeneous nature of the land-cover. The main factors affecting
the radiometry of the images are the following.

e Changes in atmospheric conditions (composition of the atmosphere,
cloud cover, haze, etc.) [Schowengerdt, 2007].

e Differences in illumination (solar elevation angle depending on season
and time of the acquisition) [Schowengerdt, 2007].

e Topography controlling terrain shading [Teillet et al.,, 1982].

e Seasonal variations affecting the phenology of vegetation [Reed et al,
1994].

e Changes in the acquisition geometry [Longbotham et al., 2012a] (stud-
ied in more detail in Chapter 8 for VHR images):

— longer optical depth of the atmosphere at large off-nadir an-
gles (low satellite elevation angles) leading to an increased
up-scattered path radiance due to Rayleigh scattering,

— varying anqular distribution of the reflectance (small-scale BRDF
effects),

— solar observational cross-section effects responsible for changes
in the reflectance of the objects with non-flat surfaces (e. g. pitched
roofs, trees),

— solar forward and backward scattering regimes (determined by
satellite and sun positions) affecting the last two points.
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25.3 Radiometric normalization

In the case of thematic classification involving multiple acquisitions, a pre-
processing to normalize the images is needed. For instance, a blending of
the set of images via mosaicking procedures [Homer et al,, 1997] is desirable
in order to obtain a vast surface coverage with one single large composite
image having homogeneous characteristics. All the same, in change detec-
tion applications, most methodologies require comparable radiometries for
the bi-temporal images to be profitably jointly analyzed. The possible solu-
tlons to make the images more radiometrically similar to each other, or to
adjust them over their whole extent, can be classified into two categories:
absolute or relative radiometric normalization strategies.

25.3.1 Absolute normalization strategies

In the first category, we find traditional physically-based radiometric cali-
bration approaches [Schowengerdt, 2007]. These procedures are targeted at
compensating atmospheric, solar and topographic effects with the ultimate
purpose of retrieving the original surface reflectance p(A) of the materi-
als. The calibration is a three-stage sequence. The first level of calibration
entails the conversion of the raw DNs to the original at-sensor radiance
values. This step can be accomplished by knowing the sensor gain and off-
set parameters, specific to each acquisition and to each spectral channel.
The second level consists of a transformation retrieving the corresponding
radiance at the Earth’'s surface, the surface radiance L.

Such a process is generally referred to as atmospheric compensation.
By assuming the term Ljd as equal to zero (no surface-reflected skylight),
Eq. (2.1) of page 13 turns into

L=L0"+ Ljp =t(A)L+ Ljp . (2.5)
Solving for L, we obtain
=Bt (2.6)
APy |

In practice, if considering a unit view path transmittance t,(1), this reduces
to estimating the upwelling path radiance L}” induced by the atmosphere.
Well-known approaches such as dark object subtraction [Chavez, 1988] ac-
tually utilize such a simplification to correct the signal by subtracting from
every pixel the radiance measured over dark regions as deep lakes or heav-
ily shadowed areas. The third and final step needed to derive p(A) is the
solar and topographic compensation. Such a conversion transforms the pre-
viously computed surface radiance L, taking into account the solar path
transmittance 7s(4), the exo-atmospheric solar spectral irradiance £9 and
the incident angle 6(x, y). This last term is calculated based on the position
of the sun and the topography, which is subject to the availability of a Dig-
ital Elevation Model (DEM). A sophisticated yet widely adopted algorithm
allowing the calculation of the p(A) values is represented by Fast Line-
of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) [Cooley
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et al, 2002]. This procedure is essentially aimed at adjusting the distortions
caused by the atmosphere. The compensation technique is implemented in
a software package based on the MODTRAN program [Berk et al, 1987]
and is valid only in the visible through SWIR spectrum (up to 3 pm). It is
largely automatized but is highly dependent on numerous parameters of the
atmosphere (water vapor content, aerosol optical thickness, etc.). Once p(A)
is recovered, being this an inherent property of the materials at the surface
of the Earth, the quantity grants more robust inter-image comparisons and
analyses (portability of land-cover classifiers across acquisitions, change
detection, etc.). In general, we draw the attention to the fact that effective
compensation approaches are very demanding processes in terms of prior
knowledge required, in particular for the atmospheric correction step (an-
cillary information and parameters required by physical models). Moreover,
issues such as BRDF effects remain unaccounted for with this type of trans-
formation. This is critical as these angular phenomena are emphasized in
the acquisitions carried out by the latest VHR systems.

For a comparison of absolute and relative atmospheric compensation
approaches applied to moderate resolution imagery we refer the reader
to Song et al. [2001]. Instead, concerning VHR images, Pacifici et al. [2014]
investigate the suitability of both raw DNs and surface reflectance data
when undertaking change detection or multitemporal classification studies.
By examining a long temporal series of acquisitions over the same scene,
the authors point out the importance of resorting to physical quantities
guaranteeing an increased invariance to changes in viewing geometry or in
illumination and atmospheric conditions.

2.5.3.2 Relative normalization strategies

On the other hand, relative normalization strategies are founded on statis-
tical approaches. They are based on comparisons among images so that
each acquisition is modified with respect to a reference image. One fre-
quent requirement for these approaches is that the sensor having collected
the images should remain the same, even though cross-sensor techniques
have been developed, especially in change detection studies [Nielsen et al,
1998).

For instance, regression analyses relying on radiometrically invariant
objects (called pseudo-invariant features) such as man-made structures have
often been employed to obtain a scene-to-scene radiometric normalization.
Examples of this line of work can be found in Schott et al. [1988], Canty
et al. [2004]

Alternatively, rather simple image processing techniques such as His-
togram Matching (HM) [Gonzalez and Woods, 2002] can be adopted. With
this non-linear transform, the shape of the cumulative histogram of the im-
age of interest is matched, band by band, to that of a reference image. The
univariate cumulative distribution function (CDF) modification acts as fol-
lows. Considering a single band, for a given pixel value x; belonging to the
image to be adjusted possessing a CDF F(X), the method looks for the



25 WORKING WITH MULTIPLE IMAGES

Figure 2.4: Illustration of the HM procedure.

cumulative histogram value F(x;) and finds the corresponding value in the
CDF G(X) of the reference image, i.e. G(x;) = F(x;). The new pixel value
x;, is obtained by replacing the input pixel value x; with x;, thus appropri-
ately reshaping the CDF of the image to be modified. In mathematical terms
we can express this as

X =GT(F(x) - (27)

Figure 2.4 graphically illustrates the principle.

The appropriate computation of the histograms to rely upon for the match-
ing process can be challenging. They are usually computed by resorting to
a discrete binning of the intensity values. Thus, the influence of the choice
of number of bins, their width and placement can affect the final results. In
response to these shortcomings, Gevers and Stokman [2004] propose to use
a kernel density estimator. Recently, a more sophisticated HM technique
has been proposed in Inamdar et al. [2008]. The authors present a multivari-
ate extension of the univariate matching which accounts for the correlation
between bands by matching the joint distributions of the images. With the
same objective in mind, Zheng et al. [2012] introduce a procedure they call
Joint Histogram Matching . A transformation of the images from the original
color space to the C/E Lab space [Mclaren, 1976] is applied before combin-
ing a univariate matching of the lightness dimension (L) of the two images
with a matching of the joint 2-D histogram of the two color planes (a and
b).
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MACHINE LEARNING

Outline: [n this Chapter, we present an overview of the funda-
mental concepts of machine learning and a description of the
main techniques and approaches that will be used in this The-
sis. First, the introductory Section 3.1 provides a definition and
lists the main applications of the subject area. Afterwards, Sec-
tion 3.2 will review the principal ways of learning from data and
will introduce the statistical theory that is the foundation for all
the predictive approaches adopted in this Thesis. In Section 3.3,
we will focus on the Support Vector Machine classification tech-
nique and on the properties of the related kernel functions. Sec-
tion 3.4 introduces the Linear Discriminant Analysis framework
both for classification and for Feature Extraction. Section 3.5
addresses the latter topic in more details, namely by present-
ing two widely used techniques of unsupervised dimensionality
reduction. In the end, the Dictionary Learning approach for the
sparse representation of signals is examined in Section 3.6.

3.1 INTRODUCTION

Machine learning can be thought of as an approach to learn from examples
the dependencies existing in the data in order to perform a predictive task.
Algorithms are designed such that the learning procedure takes place in a
data-driven way: once the learning machine has been trained, it is used to
predict the future output of the system at hand based on the related input
samples [Cherkassky and Mulier, 2007]. Generally speaking, contrary to
classic parametric methods developed in statistics, assumptions concerning
data probability distributions are not required by machine learning proce-
dures. Moreover, with these flexible methods, human prior knowledge can
be integrated with more efficacy in the learning process, often resulting in a
beneficial user-machine interaction. This rapidly growing research field can
be placed at the interface between the disciplines of computer science and
statistics. The terms artificial intelligence, pattern recognition and data min-
ing also come into play when describing such a multifaceted science. Good
foundations on the topic of machine learning and detailed explanations of
the main families of techniques can be found in Bishop [2006] Cherkassky
and Mulier [2007].

Machine learning has many real-world applications in diverse fields
such as biology (biosequences analyses, gene expression, etc), medicine
(e.g. cancer diagnosis), chemistry (e.g. analytical chemistry), finance
(e.g. stock market forecasting), web and text analysis (automatic transla-
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tlon, web pages categorization, hand-written character recognition, etc.).
In the area of environmental sciences, the application of these develop-
ments concerns domains such as spatial interpolation (e.g. soil mapping),
weather forecasting (e.g. radar-based nowcasting), natural hazards assess-
ment (e.g. avalanches, landslides), etc. [Kanevski et al, 2008, 2009]. More
specifically, data-driven methodologies naturally find a synergy within the
study of geospatial data and remotely sensed images make no exception.
Indeed, the breakthroughs occurred within the machine learning commu-
nity have almost directly been put into practice to assist the practitioner
in image analysis [Swain, 1972, Davis et al, 1978]. Especially in the last
decade, the knowledge exchange and collaboration between these two scien-
tific communities has flourished, leading to highly promising developments
in the automated processing of remote sensing images [Camps-Valls, 2009,
Camps-Valls et al, 2011, 2014, Tuia et al, 2014].

3.2 LEARNING FROM DATA

Data-driven machine learning approaches can be mainly classified into two
distinct categories: supervised and unsupervised learning. The techniques
belonging to the former family aim at developing a model describing the
input-output relationships existing in the data at hand based on the training
set comprised of input sample-output label pairs. On the contrary, the latter
represents an ensemble of approaches devised to extract information about
the process having generated the data by solely resorting to the input
samples. For the purposes of this Thesis, in the following we will consider
only the supervised learning paradigm.

3.2 Supervised learning

Formally, supervised machine learning seeks relations between an input
space X € R? and an output space ) € R. To this end, a training set D =
{X. Y} = {(xiyi)}_, composed of n labeled data samples is available
to the system. Each one of these samples is described by a d-dimensional
input vector x and presents a related known output y, the label. Such
sample pairs are drawn from a given unknown joint probability distribution
P(X,Y) of variables X and labels Y. The set of input variables X will
also be referred to simply as a dataset, whereas the above-defined D will
denote more precisely a labeled dataset. In this Thesis, a notation using
matrices will often be adopted, as many equations involving matrix calculus
will appear. In such cases, a n x d data matrix X = [x1 ,,,,, xn]T composed
of the n column vectors x; of length d belonging to dataset X will be used
to represent the available training set.

Starting from the input vector x, the goal is find a predictive function
f(x) linking the input space X to the output space ) to correctly predict
the associated y value. Once the appropriate model is learned, the prediction
on new data takes places as follows. For each sample Xt belonging to an
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unseen test set, which is also following P(X, Y), the machine provides a
prediction y* = f(xiest) that can be compared to the corresponding actual
label yiest. In Chapter 4 we will examine the issues arising in case of a
different probability distributions governing the training and test data. As
previously remarked, the scope of this Thesis is to develop strategies robust
to this shift in probability distributions.

Concerning the output space, the type of value of y defines the task with
which we are coping. On the one hand, in regression problems, the output
is a real value y € R. On the other hand, in classification problems, output
values are discrete class labels, i.e. y € Z. In this case, we make the distinc-
tion between binary classification tasks usually coded with y € {—1,4+1}
and multi-class classification tasks with y € C = {1,2,...,c}, a set of ¢
classes. A list of the main instances of supervised learning includes SVMs
(see Section 3.3), neural networks, linear regression, maximum likelihood
classifiers (see Section 3.4), logistic regression, decision trees and random
forests, nearest neighbors, etc. [Duda et al, 2001, Cherkassky and Mulier,
2007).

322 Statistical Learning Theory

Within the field of machine learning, Statistical Learning Theory [Vapnik,
1998], also known as Vapnik-Chervonenkis theory, provides a suitable frame-
work for predictive learning. The ultimate objective consists in the definition
of appropriate models following a tradeoff between their ability to honor
the available information and their complexity. In supervised learning, the
function f performing the prediction can be chosen from a set of functions
F = {f(x,0),0 € O}, where 0 represents a set of hyper-parameters se-
lected from the space @.

A criterion is then required to enable us to evaluate the goodness of the
choice of such a function, i.e. its similarity to the unknown target function
that depicts the actual input-output dependencies. According to Vapnik's
concepts, the following risk functional, called the expected risk, answers
this need [Cherkassky and Mulier, 2007]:

Ren(8) = [ L0y, 1(x,0))p(x.4) dxdy 51)

where the term L(y, f(x, 0)) is a task-defined loss function. The purpose of
a learning algorithm is to minimize this expected average loss, keeping the
risk as low as possible. Focusing on the supervised classification problem,
the type of learning we will be concerned with throughout this Thesis, let
us introduce the most widely employed loss function, the 0-1 loss:

0 if f(x,0) =y

(3.2)
1 otherwise.

L(y. 1(x.0)) = ‘[

For this loss function, the resulting expected risk is nothing but the proba-
bility of a classification error.
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In practice, the probability density function (PDF) p(x,y) appearing in
(3.1) is often unknown. The only available input-output pairs are those of
the finite set of examples {(x;, y;)}7_, the model has to rely on for training.
Therefore, we approximate the theoretical risk functional with the empirical
risk computed on the training examples as

Ranp(6) =+ L(yu7(x.6)) 33
i=1

The minimization of this function, the empirical risk minimization, is then
carried out to choose the best set of hyper-parameters 8. It is worth noting
that as the sample size goes to infinity (n — oc), the empirical risk Remp(6)
converges to the true risk Rex (6).

However, the fact that Rump(6) refers to the performance of the model
in classifying the finite training data motivates the need for an additional
term also considering the ability to extend the learned relationships to
unobserved new data, the test set. The notion of structural risk minimization
is thus introduced. Essentially, the idea is to place an upper bound for
the expected risk Rux(6) of (3.1) defined as the sum of the empirical risk
Remp(6) and a defined confidence interval. Mathematically, we have

Rep(8) < Remp(8) +Qx(n, h) (3.4)

with the confidence interval Q(n, h) depending on the number of training
samples n and the Vapnik-Chervonenkis (VC) dimension h of the class of
functions (e.g. linear, quadratic) employed [Vapnik, 1998].

For a binary classification problem, the quantity h is the maximum number
of samples for which a label-consistent partitioning of the data points can
be found using the class of functions at hand, i. e. their capacity. Since more
complex decision functions allow for more flexible partitions, the value h can
be interpreted as a proxy for the complexity of the function. For instance,
a two-dimensional training data set consisting of 3 samples can always
be partitioned with a linear function, no matter the labeling of the points.
Linear decision functions in RY of the form f(x) = w'x + b, where w
is a d-dimensional vector of variable weights and b the associated bias,
possess a VC dimension of d 4+ 1. As an extreme comparison, for the class
of functions f(x) = bsin(w'x) the quantity h is equal to infinity (for a
sufficiently large [lwll), L. e. the model allows the separation of every possible
configuration of training points. The expected risk is kept to a minimum when
the confidence interval () is small. Such a situation is reached with a low
h/n ratio. In fact, a complicated function possessing a large VC dimension h
will perfectly fit a small number of training samples n but will still result in
a large expected risk by its high complexity. This situation will likely lead to
an important generalization error on new data. To summarize, the structural
risk minimization principle provides a theoretical framework for achieving
the optimal tradeoff between the classification accuracy on training data
and the capacity of the set of functions selected.
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323 Model selection and model assessment

When concretely applying a supervised learning approach there are several
practical considerations that need to be respected. First, the model selection
step is crucial. A learning machine that reached a very low empirical risk
(training error) by perfectly fitting noisy or non-representative training data,
is said to be overfitting the data (in opposition to a too simple model giving
rise to the situation called underfitting). Overfitting will result in a poor
generalization ability of the system when dealing with new data.

Hence, after having fixed the class of functions, it is required that the
selection of the optimal set of hyper-parameters 6 defining the model is
carried out on an independent dataset (different from the training set). Note
that in this more theoretical Section 3.2, to be consistent with the termi-
nology defined in Statistical Learning Theory, the term hyper-parameters
is employed to distinguish these global tuning parameters (e.g. C or ¢ for
the SVM, see next Section 3.3) from the actual parameters of the learning
machine that are obtained by the algorithm after internally solving an opti-
mization problem (e.g. a coefficients of the SVM). Nonetheless, in the rest of
the manuscript we will refer to hyper-parameters simply as the parameters
of the model.

Starting with the training set alone, a common and easy solution to
simulate the availability of a separate set of samples consists in tuning the
hyper-parameters via cross-validation procedures (K-fold or leave-one-out).
In classification for instance, predictions of class membership are performed
on a held-out subset of the training data, the validation set, by using the
rest of the set of samples to train the model. We purposely ignore the known
class labels in the held-out set so that the agreement between the true and
predicted class assignments can be checked. This procedure is repeated
by partitioning the training set as many times as needed to test all the
training-validation combinations. A grid-search over the space spanned by
© allows then the user to determine the best hyper-parameters for the
classification task. Such a cross-validation process, nonetheless, remains
strongly dependent on the examples provided to the learning machine for
training (see sample selection bias issues addressed in Chapter 4).

Finally, the model assessment step is needed to assess the generaliza-
tion error of the selected model. To this end, an independent test set should
be used, when at all possible, to assess the true performance of the model.
Indeed, it is not fair to report the best performances observed during the
previously executed cross-validation as a measure of success because the
learning machine is biased favorably to this data (hyper-parameters per-
fectly tuned for this set) [Kanevski et al, 2008].

In Appendix A, the reader will find a description of the most widely used
metrics to assess the quality of thematic maps produced by supervised classi-
fication of remote sensing images. These measures can be used to evaluate
the performances during both the model selection and model assessment
phases.
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3.3 SUPPORT VECTOR MACHINES AND KERNELS

In this Section we will present one of the main supervised learning sys-
tems used in this Thesis: the SVM classifier. The technique is a large
margin classifier belonging to the family of kernel methods [Shawe-Taylor
and Cristianini, 2004] and rigorously adheres to the guidelines provided by
Statistical Learning Theory discussed in Section 3.2.2.

3.31 Large margin linear classifier

We will examine here the reasons why a linear decision function can opti-
mally be used as a foundation for the classification task. In a d-dimensional
space, a set of training samples {(x; y;)}7_, belonging to two categories
y; = +1 or y; = —1 can be effectively partitioned by placing a hyperplane
f(x) = w'x + b. The input vector x € RY describing each sample is mul-
tiplied by a weighting vector w which needs to be retrieved along with the
offsetting scalar b. The new data points are labeled following the sign of
the function f(x): they are classified either in the positive class (yf = +1)
if f(x) > 0 or, otherwise, in the negative class (y¥ = —1) if f(x) < 0. On
the training dataset, the decision function f(x) should respect

g[(wa[ +b)>1-& Vi. (3.5)

The slack variables & allow noisy training samples to lie inside the region
between f(x) = +1 and f(x) = —1 referred to as the margin. In order
to keep low the empirical error of (3.3) one should, of course, force the
algorithm to assign non-zero & values to as few as possible of the training
samples (see Eq. (3.0)). This formulation is referred to as soft margin SVM
and provides more flexibility with respect the a hard margin principle where
all the training data points are forced to be outside the margin, that is when
yi(w'x;+b) >1Viholds.

Besides the few training samples lying in the margin, most of the training
points should bear a decision function f(x;) > +1 if y; = +1 and f(x;) <
—1 if y; = —1. Meanwhile, the points in correspondence of whom f(x)
takes the exact values +1 or —1 are called Support Vectors (SVs).

The ultimate goal of a supervised classifier is to suitably generalize the
rules learned from the training data to any new set of instances that has
to be classified (the test set). The situation in which most of the new data
points will likely be correctly labeled is reached by setting the largest
possible margin. Since the margin has a width of o = 2/ llwll, the search
for this optimal separating hyperplane can be guided by the minimization
of llwll. Moreover, such a minimization problem is theoretically justified by
the principles of the Statistical Learning Theory [Vapnik, 1998] Figure 3.1
pictures the main elements defining the soft margin SVM.

The algorithm behind SVMs provides an efficient solution to maximize
o while respecting the constraints in (3.5). These two objectives can be
combined in the following minimization task, i.e. the primal formulation of
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Figure 3.1: lllustration of the soft margin SVM principle. Samples x with class
labels y = +1 appear with green circles whereas samples with class
labels y = —1 appear with red squares. Data points denoted with
xT and x~ constitute the SVs of the positive and negative classes
defining the hyperplane. In this example, slack variables & and &
are assigned to positive and negative noisy samples lying beyond the
margin boundary of their class.

the SVM problem, which privileges simple functions with large margins (left
term) and tries to commit as little errors on the training set as possible (right
term):

N &
min {ZIIWII +C[_Z1§l]» (3.6)

st &>0, (37)
yiw'x;+b) >1-& Vi.

The tradeoff constant C (the cost or penalty parameter) allows the user
to control the number of errors allowed during the training phase. A value
of C that is too large implies almost no training errors, forcing a highly
complex model eventually incurring in the risk of overfitting. Conversely,
a too small C permits many misclassified training samples, leading to an
over-simplistic model. The above formulation involving the constraint (3.8)
is associated with a hinge loss L(y,f(x,6)) = max(0,1— yf(x, 6)) which
differs from the classic binary 0-1 loss of (3.2). Unlike the latter that merely
looks for misclassifications, the hinge loss depends on how far the samples
are from the hyperplane. Being thus a continuous function, it ensures an
optimal and tractable solution for the SVM problem.
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To this end, after introducing Lagrange multipliers o; > 0 (dual sample
weights) associated with each training sample x;, the dual formulation is
derived as

n ,I n
max «{ 21 %= 21 a,-ajyiij?x/} (3.9)
= ij=
n
st ) g =0, (3.10)
i=1
0< o <C Vi. (3.11)

A comprehensive description of these steps can be found in Scholkopf and
Smola [2002], Cristianint and Shawe-Taylor [2000], Hastie et al. [2009].

After having solved this convex quadratic programming problem yielding
a unique solution, the final SVM decision function for a generic unseen
vector x can be formulated as

n
f(x) = Z yiaix; x+b . (3.12)
i=1

When facing a binary classification task, the predicted class label y} (+1
or —1) is simply assigned following the sign of (3.12). In a multi-class case
(c > 2), the solution consists in combining several binary classifiers with
either a one-vs-all approach (c binary SVMs separating a given class from
all the rest) or a one-vs-one approach (c(c —1)/2 binary SVMs coping
with two classes at a time) [Scholkopf and Smola, 2002]. When adopting
the first strategy, one assigns the sample to the class which has the largest
f(x) value, whereas with the second strateqy a majority vote is used to
select the winning class.

The main output of the SVM training procedure are the dual coefficients ¢;
controlling the definition of the decision function. From Eq. (3.12) we realize
that these coefficients are nothing but weights given to each training sample
x;. Only a small fraction of them receives a non-zero «;, implying that solely
an exclusive subset of the initial training set is actually contributing in the
evaluation of the decision function for a given new point x. These highly
informative samples are the same SVs already mentioned above for which
yi(w'x;+ b) =1 holds. Note that the ratio of SVs to the total number of
training points carries an important meaning: the higher the ratio, the more
the model is fitted to the training data. In fact, in such a situation many
SVs contribute to the final SVM solution, leading to a complex prediction
model. Furthermore, let us recall that the upper bound for the «o; is set by
the penalty parameter C, so that 0 < o; < C, Vi. Such a property will be
of interest in Chapter 6.

3.3.2  Non-linear extension: the kernel trick

Hereafter, we will build on the linear SVM presented above by address-
ing the developments enabling non-linear decision functions. Indeed, when
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dealing with challenging datasets, the input-output relationships are sel-
dom linear. In this situation, the two classes of interest can only be suitably
discriminated by a non-linear boundary. Rather than applying complex deci-
sion functions directly on the initial data set, the intuition (Cover’s theorem)
consists in mapping the dataset into a space of higher dimension and then
only there, on the transformed data, perform the well-known linear separa-
tion [Cover, 1965].

This is possible since in Eq. (3.12), the calculation of f(x) involves a
dot product between the input vector x whose prediction is being computed
and all the training samples x;. Therefore, by means of the so-called kernel
trick, the idea is to substitute the dot product with a kernel function /<(~, )
involving the same two vectors, so that the final SVM decision function
changes to

f(x) =) yiaK(xi,x)+b (3.13)
i=1

The function K(-,-) implicitly carries out an implicit mapping ¢ to a
higher-dimensional space, referred to as reproducing kernel Hilbert space
(RKHS). As a matter of fact, it does not directly generate new vectors for the
two samples in the mapped space. Instead, it concentrates on the result of
the dot product involving the mapped vectors ¢(x;) and ¢(x), which should
be equal to the output of the kernel computed with the low-dimensional
vectors as inputs:

xl-Tx — (p(x,-)T<p(x) = K(x;,x) . (3.14)

In machine learning, we refer to the original space as the input space,
whereas we name the kernel-induced one the feature space.

3.3.3 Kernel functions

A wide range of different kernel functions that can be applied, especially
as the rapid developments in the field of kernel methods are continuously
bringing up new variants adapted to specific problems. However, note that
not every function taking two vectors as input constitutes a kernel. In fact,
valid kernels have to fulfill the Mercer’s conditions [Vapnik, 1998, Cristianint
and Shawe-Taylor, 2000]. These constraints must be met for a selected
function K(+,-) to act as a kernel associated with the desired feature space.

n

Strictly speaking, this means that the n x n kernel matrix K = (K"J)ij:1 =
(/<(x[,xj))z.7j:1 also known as Gram matrix, has to be symmetric and positive
semidefinite (possess non-negative eigenvalues).

Hereafter, we list some of the most widely used kernel functions:

e Linear kernel:
K(xixj) = x!x; (3.19)

e (aussian RBF kernel:

2
K(xi,xj) = exp (—HX’Z_O;’H) , 0€RT (3.16)
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e |aplace kernel:

[xi =]

K(xi,x;) = exp (—‘ ) , 0 €RT. (3.17)

o

The first item, the Linear kernel, corresponds to the situation where the
kernel trick has not been applied and computes a similarity based on the dot
product only, i.e. the cosine between the two vectors. The second and third
kernels listed, the Gaussian Radial Basis Function (RBF) kernel and the
Laplace kernel, both consists of an exponential function with an argument
involving a dissimilarity measure between vector x; and vector x; rescaled
by a kernel width parameter o. In fact, Hx,- —xjH is the Euclidean distance
between the examples computed in the input space. Such kernels offer an
intuitive geometrical interpretation: they reflect the similarity between the
samples.

Additionally, thanks to the properties of these functions, user-defined
kernels can be created by multiplying or adding valid kernels since the
resulting functions also respect Mercer’s conditions. If Ki(-,-) and Ky(-,-)
are valid kernels,

aki(-, )+ bKs(--)  for a,b>0, (3.18)
Ki()Ka(-) (3.19)

are valid kernels as well [Genton, 2002, Shawe-Taylor and Cristianing, 2004]
These properties permit the construction of composite kernels that may im-
prove the classification performance of the SVM [Camps-Valls and Bruzzone,

2005

3.4 LINEAR DISCRIMINANT ANALYSIS
3.41  Maximum Likelihood classifier

Another supervised classifier we will often resort to in this dissertation for
its simplicity (no hyper-parameters to tune) and ease of application (rapidly
computed) is the Linear Discriminant Analysis (LDA) [Fukunaga, 1990]. Al-
though with a strict categorization this approach would not be considered
as belonging to machine learning, it is a predictive learning tool as well.
Such a model, also known as the Maximum Likelihood classifier, is a para-
metric classifier (hypothesis of data normality) based on Bayesian decision
theory. In this context, it is suggested that with the knowledge of class pos-
terior probabilities for the samples at hand, an optimal classification can be
obtained. Considering Bayes' theorem, a sample x should be assigned to
the class cl with the largest posterior probability

P(cllx) = p<xtil§161), (320)
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where P(cl) is the prior probability of each class ¢/ = 1,..., ¢, whereas
p(x|cl) and p(x) are the class-conditional and marginal PDFs of sample
x, respectively.

If we suppose that the samples of each class ¢l are drawn from a multi-
variate normal distribution with mean vector p.; and covariance matrix X
we have

1 1 _
:D(X’Cl) = (ZJT)d/Z |Z [|1/2 exp _E(X_UCI)TZcﬂ (X_/Jcl) : (321)
c

Substituting (3.21) in (3.20), taking its natural logarithm and then dropping
the terms that are independent of c/, we obtain the following discriminant
function

fax) = W(P(eD)) ~ S0 [Ea] — 2 (v~ o) B (x - pe) . (32

Finally, the predicted class label y* for sample x is attributed according to

y* = argmaxfy(x) . (3.23)

cl
Mean vectors p., and covariance matrices 2. for each class can be de-
rived from the training data using classic maximum likelthood estimates.
The class mean vector is estimated as fi.,; = X, corresponding thus to the
class sample mean vector. The d x d covariance matrix is estimated with

A

2ol = M%Sd, where n¢ is the number of training samples x;, belonging
to class ¢l and .
cl
S = Z(Xcll _)_(c[)(xc[l _)_(C/)T (324)

i=1
is the scatter matrix of class cl. Prior probabilities are obtained as P(cl) =
nei/n.

In the special case where a common pooled within-class covariance matrix
Y. is assumed for all the classes, i.e. Sy = Zy = ﬁ 25121 S Vel, we
refer to this method as LDA. Conversely, the version with separate class-
specific 3¢/ gives rise to Quadratic Discriminant Analysis. As the name
suggests, the former yields linear class boundaries, while the latter provides
non-linear, quadratic boundaries. Furthermore, a special case of LDA is
represented by the Naive Bayes classifier, which arises if we assume that
all the variables are independent, that is the class-conditional densities are
computed based on a pooled covariance matrix that is diagonal.

3.4.2 Linear Discriminant Analysis for Feature Extraction

The method presented above for a classification problem can also be consid-
ered from the perspective of Feature Extraction (FE) (see next Section 3.5).
Indeed, this corresponding formulation originates from the Fisher’s linear
discriminant [Fisher, 1936] a technique developed for two-class problems
and without making the assumption of normally distributed classes. The
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underlying principle consists in seeking the directions in our initial input
space that ensure the best discrimination of the classes. More precisely, in
a multi-class case, the ideal purpose is to obtain a new subspace in which
the centroids (sample means) of the classes are the most spread, while the
variance of the data points within the classes is the smallest.

Mathematically, these directions are given by the vectors u maximizing
the ratio of the between-class scatter to the within-class scatter in the
projected space, i.e. maximizing the following Rayleigh quotient

u' Sgu

ey (3.25)

arg max

u
Matrices Sg and Sy, are the between-class scatter matrix and the within-
class scatter matrix in the input space and are computed as

C

Sg= Z”cl()_(cl_)_()()_(cl_)_()T (3.26)
cl=1

Sw=) Su. (3.27)

cl=1

with X representing the total sample mean vector. We find projection vectors
u by solving the generalized eigenvalue problem

Sgu = pSyu, (3.28)

where {u;}2_, are the eigenvectors defining the projection and {p;}?_, are
the associated eigenvalues. Let us remark that the number of non-zero eigen-
values is actually ¢ — 1 at most and this bounds the maximum number of
extracted features representing the directions of greatest class separability.
Eventually, the projection of some test data points arranged in a Ngest X d
data matrix Xiest (€.g. all the pixels of a remote sensing image) onto these

newly extracted discriminant components is carried out through
X*

tes

t = XiestU (329)

where U is the d x (¢ — 1) matrix constituted by the ¢ — 1 eigenvectors
[u1,... ucq] of (3.28).

For more complete developments and for an in-depth discussion of the
connections between the classification and FE frameworks of LDA we refer
the reader to Duda et al. [2001] and to Hastie et al. [2009]. A kernel-based
extension of this discriminant dimensionality reduction method called Gen-
eralized Discriminant Analysis (GDA) has been proposed by Baudat and
Anouar [2000]. Such an implementation allows a non-linear supervised FE
that can cope with multi-class problems.



35 FEATURE EXTRACTION

3.5 FEATURE EXTRACTION

Many datasets encountered in machine learning and, more and more often
also in remote sensing, present a very high number of variables (hundreds
to thousands). When relying on a limited amount of training samples, the
predictive power of a learning machine is hindered by a too large number
of dimensions describing the data. Such a negative effect is called Hughes
phenomenon or curse of dimensionality [Hughes, 1968]. To cope with this
issue, as well as with the intrinsic non-linearities in the data, an option is
that of dimensionality reduction via FE. The purpose is to map the origi-
nal data into a space of (much) lower dimensionality while preserving their
main characteristics [Arenas-Garcia and Petersen, 2009]. In this Section we
describe two key FE techniques: the linear Principal Component Analy-
sis (PCA) and its non-linear kernel-based extension, the Kernel Principal
Component Analysis (KPCA). They are considered unsupervised FE meth-
ods because they do not make use of the label information in the definition
of the mapping. In contrast, the LDA technique presented in the preceding
Section is a supervised approach to dimensionality reduction. We recall
that in Chapter 7 we will consider FE methodologies to tackle adaptation
problems.

3.5.1  Principal Component Analysis

The multivariate techniques known as PCA [Hotelling, 1933] allows to con-
vert an initial set of correlated variables into a new set of linearly uncor-
related variables referred to as the principal components. The procedure
is based on a multidimensional rotation relying on an eigenvalue decom-
position of the covariance matrix of the initial data. The newly extracted
principal components, besides being orthogonal to each other, also aim at
keeping a maximum of the original data variance.

Let us consider the n x d data matrix X (with columns centered to a zero
mean). The objective of classical PCA is to find the directions of maximal
variance by diagonalizing the d x d covariance matrix £ = n%XTX. In
the primal formulation (R-mode analysis), this is carried out by solving the
following eigenproblem:

. 1_ 1 X"Xu = pu, (3.30)
where {u;}9, and {p;}9_, are the eigenvectors and the respective eigen-
values. The largest eigenvalue is associated with the eigenvector specifying
the direction of greatest variability in the initial data.
The projection of some test samples Xiest is usually done on the first m
principal components (m < d). Such a mapping is obtained as
X*

tes

t = XiestU (331)

where U in this case is a d x m matrix constituted by the first m eigenvectors
[u1,...,up| (ordered by decreasing eigenvalue).

4

Objectives

The basics

Primal PCA
formulation

Projection of
new samples



42

The basics

Dual PCA
formulation

KPCA
formulation

Projection of
new samples

MACHINE LEARNING

3.5.2 Kernel Principal Component Analysis

Introduced by Schaolkopf et al. [1998], KPCA is the non-linear extension
of standard PCA. As its linear counterpart, KPCA aims at extracting a set
of features enhancing the data representation in a subspace of reduced
dimensionality. The extracted components are still orthogonal to each other,
but, contrary to PCA, these are no more simple linear combinations of the
input variables.

In the corresponding dual formulation (Q-mode analysis) of PCA even-
tually leading to KPCA, instead of the covariance matrix, we analyze the
n x n Gram matrix rﬂjXXT, . e. the kernel matrix obtained with a linear
kernel. With this formulation, the PCA eigenproblem becomes

1
n—1

XX"v=pv, (3.32)

and yields dual eigenvectors {v}?_, and eigenvalues {p}_;. It is possible
to show that the eigendecomposition yields the same non-zero eigenvalues
pi whose eigenvectors v; are related to their primal counterparts u; by
vi = Xu;/~/(n—1)p; [Nielsen and Canty, 2008].

Since in this representation a dot product between samples X[ij- (XXT
in matrix notation) comes into play, we take advantage of the previously
introduced kernel trick (see Section 3.3.2) to implicitly simulate a mapping
@ of the samples into a higher-dimensional RKHS. Consequently, Eq. (3.32)
becomes

ae(X)e(X)Tv = pv & 533)
1 Ky = pv, .

where K is the kernel matrix with elements K;; = K (x;, x;) = ¢(x:) " o(x;).
Dropping the 1/(n —1) factor and by using the centered kernel matrix
K = HKH, witha n xn centering matrix H = [ — 11" /n, the final KPCA
eigenvalue problem is set up as

Kv=pv . (3.34)

As seen in (3.32), opposed to the primal PCA, the number of features the
user is allowed to extract is bounded by the number of training samples n
and not by the number of initial variables d. This is due to the fact that
the eigendecomposition involves a n x n matrix (the kernel matrix). The
projection of new samples Xiest on the first m kernel principal components
(m <« n) is computed as

X*

test

= KiestV , (3.35)

where Kieet is the N x n centered test kernel matrix between the Niee
test samples and the n training samples and V is constituted by the first
m eigenvectors [v1, ..., vyl
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36 DICTIONARY LEARNING

This Section introduces the basic concepts necessary for the developments
proposed in Chapter 9. We will explore a family of methods belonging to the
sparse representation [Wright et al, 2010] framework based on Dictionary
Learning (DL) [Aharon et al, 2005, Tosic and Frossard, 2011]. This area of
research is more related to classical signal processing and its sub-field of
compressive sensing but, as we will see in Section 3.6.2, it can provide pow-
erful predictive tools. In general terms, the sparse representation of signals
has proven to be an extremely useful tool to represent and compress high-
dimensional real-world signals. Data such as audio recordings or images,
for instance, present a sparse nature which immediately lends itself to com-
pression. Sparse representations take advantage of this very fact to express
a sample as a combination of a few other samples, the atoms, constituting
a reference set called the dictionary. In particular, sparse representations
have been successfully used in a variety of image processing tasks including
timage denoising, inpainting and classification [Wright et al, 2010].

3.6.1  Learning the dictionary

Given a training data matrix X € RY" of n column vectors x of di-
mension d (the signals)!, DL basically consists in finding a dictionary
D = [dy,....d;,. . ., dg] € R?”K composed of K atoms d; and a ma-
trix C =lc1,...,¢i,...,cn) E RX*" composed of n vectors of sparse codes
¢; such that X =~ DC. The search for the dictionary D and associated ma-
trix C allowing to recover the original data X can be expressed with the
following optimization problem:

g <s Vi (336)

{D,C} =arg m'LnHX—DCHi st |le
D.C
The operator |I-1lp denotes the ¢ norm counting the number of nonzero
entries in a vector and s is the sparsity level, i.e. the desired number of
nonzero coefficients used in the retrieval of each signal.

The problem in (3.36) is NP-hard and therefore only an approximate
solution can be found. To this end, an approach named K-SVD [Aharon
et al, 2005] can be adopted. It consists of an alternate minimization using
the greedy Orthogonal Matching Pursuit (OMP) [Tropp and Gilbert, 2007]
to find a sparse C for a given D, followed by a minimization over D where
each column of it, the atoms, is modified to better represent the signals in
X. After an appropriate number of iterations, D will be particularly suitable
for the sparse representation of signals similar to those forming the training
set X.

Please remark that the notation used in the field of sparse coding/DL differs from that
normally used in machine learning where the data matrix X is transposed, i.e. of size n x d.
Moreover, in this Section 3.6 as well as in Chapter 9, the term “signal” is interchangeably
used with the term “sample” to refer to the data vector x.
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3.6.2  Dictionary-based classification

Cood classification performances have been obtained by applying classifi-
cation routines based on dictionaries to a variety of problems [Kong and
Wang, 2012]. In the field of remote sensing, the applications have mainly fo-
cused on hyperspectral image classification [Chen et al,, 2011b, Wang et al,
2014, Li et al,, 2014]. Basically, when facing a supervised classification task,
two main approaches exist to tackle the problem using dictionaries.

On the one hand, a first class of strategies aims at guiding the learn-
ing process to make the coefficients C more discriminative. In Mairal et al.
[2008], an approach adding to (3.36) the logistic regression loss function is
presented, whereas in Jiang et al. [2011] the authors introduce a label consis-
tent K-SVD, a method adding to the minimization problem a term forcing the
signals belonging to the same class to have similar sparse representations.
These approaches either learn the parameters of a classifier (e.g. weights
of a linear predictor) in parallel during the optimization process or, once
the final coefficients C have been determined, they subsequently feed these
now discriminant coefficients to an external classifier.

On the other hand, attention could be paid to directly make the dictionary
D more discriminative [Yang et al,, 2010]. To predict the class label of the
test samples, such an approach effectively exploits the mentioned special-
ization of the dictionary to represent the training set. Considering a c-class
classification task, the problem is set up as follows. By means of Eq. (3.36),
one starts by learning ¢ class-specific dictionaries {D¢}¢,_;, each time
by leveraging exclusively the training samples of that very same class to
form X.

Once the global dictionary D = [Dy, ..., D] made of the class-specific
D, has been learned, there are two possible approaches to compute (via
OMP for instance) the sparse representation, i.e. the sparse coding, of a
new test sample xest in terms of D:

e Global coding: the whole D is used at once to sparsely represent
Xtest With the coefficients ciest. A single coding process takes place
and the s nonzero coefficients are shared by all the sub-dictionaries.
Class-specific coefficients ciest; can be retrieved as the respective
portions of the global vector ciest.

e Specific coding: each D is separately used to sparsely represent
Xtest DY means of cestcr, @ class-specific vector of coefficients. These

dedicated coefficients can then be concatenated to form the global

— [T T T ;
Ctest = [ctest,1,.4.,ctestrc] . There are as many sparse coding pro-

cesses as classes, each one using only the atoms of the sub-dictionary
D¢, of the corresponding class.
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In both cases, the coefficients ciest; and the associated dictionaries D
of each class will be in turn used to represent a new test sample Xiest. The
goodness of the representation is usually measured using the & norm of
the reconstruction error

Fel = thest - Dclctest,clHZ ) (337)

where a small error r¢; indicates a high affinity of xtest with class cl. The
signal will be assigned to the class whose D¢, yields the best reconstruction,
meaning that the predicted label for xes s determined as

y* =argminrg . (3.38)
cl

In the global coding case, it can occur that all the coefficients of a sub-
dictionary receive a zero value. As a consequence, these sub-dictionaries
will be unable to reconstruct the pixel at all. Moreover, the coefficient with
the largest magnitude is generally dominant, as the remaining coefficients
only receive a negligible weight. Thus, the test signal is almost always di-
rectly assigned to the class receiving the largest coefficient in ctest. In fact,
the sub-dictionary D that possesses the most similar atom to xest will de-
cide the class attribution. On the contrary, the specific coding returns s - ¢
active coefficients, allowing each class to reconstruct the signal to some ex-
tent. The residuals associated with the classes are therefore relatively small
and comparable with each other. An analysis of these two strategies and an
approach exploiting their complementarity in the context of hyperspectral
classification is provided in [Marcos Conzalez et al, 2014].
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Outline: In this fourth Chapter, we tackle the very problem that
this Thesis attempts to solve: find a proper adaptation strateqy
to continue learning from data also when the underlying distri-
butions change from one dataset to another. Section 4.1 outlines
what are the issues arising from shifting distributions and lists
the sub-fields of machine learning dealing with such problems.
In Section 4.2, we define the specific notation and formalize the
basic Domain Adaptation concepts used throughout the rest of
the manuscript. Section 4.3 presents some measures that can
be used to assess the degree of shift: both classic and recently
proposed metrics of distance between probability distributions
are introduced. Ultimately, Section 4.4 reviews the existing ap-
proaches to adaptation while proposing their classification into
three distinct families.

4.1 INTRODUCTION

Within the field of machine learning, the large majority of predictive ap-
proaches proposed up to these days relies on a widespread key assump-
tion: the training and test datasets are drawn from the same probability
distribution [Pan and Yang, 2010]. Another additional and more easily met
condition required by most of the methods is that the variables describing
the samples need to be the same or at least they need to be measuring
the same phenomena. It is well-known that when the input space or the
distributions governing the data change, classic statistical models fail at
suitably generalizing the learned properties over multiple datasets. As a
matter of fact, for each new dataset, the user needs to collect every time a
series of training samples and build a new model from scratch. Depending
on the application, such a process might be expensive or even impossible to
be completed.

A more attractive option consists in developing effective strategies to ease
the knowledge transfer between datasets. Indeed, the ability to re-utilize
pleces of information collected on a different but related set of data in fur-
ther applications is highly desirable. Over the last decade, the study of such
methods has become more and more popular within the machine learning
and pattern recognition communities. In particular, the research field devoted
to the study of adaptation algorithms aimed at overcoming the shift in prob-
ability distributions is referred to as Domain Adaptation and falls under the
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broader field of transfer learning [Pan and Yang, 2010]". Transfer learning is
a more general sub-field of machine learning, which is itself closely related
to multi-task learning [Thrun and Pratt, 1998]. Indeed, transfer learning is
concerned with the development of solutions for problems involving not only
different underlying distributions, but also different learning tasks, i.e. clas-
sification or regression scenarios in which both the output label space Y
and the associated predictive function f(-) change.

4.2 NOTATION AND DEFINITIONS

As in this Thesis we focus our attention to the changes in probability dis-
tributions, in the present Section we fix the notation and introduce the
concepts necessary to tackle the adaptation problem in these situations.
The definitions below build on the initial machine learning terms presented
in Section 3.2. In general, the field of investigation of DA aims at leverag-
ing the information collected in a given source domain Ds for its use in a
different but related target domain Dr. Throughout the Thesis, subscripts
“.s"and "-7" will be used to denote elements related to the source and tar-
get domains, respectively. A domain D consists of some input variables X
and associated output labels Y, governed by a joint probability distribution
P(X,Y).

Based on the observed change in the probability distributions, several
distinct types of shift can be distinguished [Quinonero-Candela et al,, 2009,
Moreno-Torres et al, 2012]. In the most general case, when the joint source
and target distributions differ, .e. Ps(X,Y) # P7(X,Y), the problem is
referred to as dataset shift. A more specific situation called sample selec-
tlon bias is encountered when a constraint affects the sampling process:
Ps(X,Y) = P(X,Y[6 = 1) while P7(X,Y) = P(X,Y), where 0 is a bi-
nary selection variable. This means that, even though the general distribu-
tion P(X, Y) controlling the two domains is the same, in the source domain a
bias in the selection of the samples occurs, i. e. its training set will only cover
a portion of the support of the complete distribution. Other more technical
terminologies include the distinction between covariate shift, where only the
distribution of the input variables (covariates) changes (Ps(X) # P7(X)),
prior probability shift, where the prior distribution of the labels evolves
due to an imbalance in the class counts (Ps(Y) # Pr(Y)) and concept
shift, when only the class-conditional distributions or the posterior distri-
butions of the classes change (Ps(X) = P1(X) but Ps(X|Y) # Pr(X|Y)
or Ps(Y|X) # Pr(Y|X)) [Moreno-Torres et al, 2012] In what follows, we
consider general dataset shift problems.

Because both Domain Adaptation and transfer learning are very young research areas, a
unifying terminology and common definitions are still lacking. Nonetheless, throughout this
Thesis, the designation, description and usage of the different concepts is consistent with
the definitions of Section 4.2, which, in turn, may differ from those found in specific papers.



4.3 ASSESSING DISTANCES BETWEEN DISTRIBUTIONS

Table 4.1: Categorization of standard and DA learning problems based on the avail-
ability of class labels in each domain.

P(Xs,Vs) = Ys available ? Y7 available ?  Approach

P(X7.Yr)? . SR
v X X Standard unsupervised learn.
v v v Standard supervised learn.
X v X Unsupervised DA
X v v Supervised DA

Restricting our view to classification problems, a categorization of the dif-
ferent DA approaches with respect to the availability of labels in the source
and target domains can be attempted as follows. Let Ds = {Xs, Ys} =
{(xs,ys,)}2, be the set of ns labeled source data and D7 = {X7, Y7} =
{(x7.y7)) 7;1 the set of ny labeled target data, with samples xs, € R?5 Vi
and x7, € RY7V j. The scope of all adaptation techniques is to predict the
class labels yTtest for some unseen target test samples x 75t € Dr based
on the labeled information Ds in the source domain. In this context, strate-
gies that are allowed to resort to labeled samples also in the target domain,
L.e. the pairs (x7,,y7,) € Dr, are termed (fully) supervised DA approaches.
Conversely, unsupervised DA methodologies predict target labels based ex-
clusively on the use of labeled data from Ds in the training phase and/or for
the definition of the adaptation strategy (no access to Y7). Table 4.1 summa-
rizes these different types of knowledge transfer across domains and relates
them to classic same-domain learning problems. Regarding this Thesis, the
research presented in Chapter 6 and 9 deals with a supervised DA exercise,
whereas Chapters 7 and 8 fit into an unsupervised DA context.

It is generally assumed that the dimensionality of the two domains is the
same and amounts to d, L.e. ds = d7 = d. However, methodologies that are
independent of the data dimensionality can be envisaged (see Chapter 9).
Likewise, most of the methods are developed under the hypothesis of a
common set of ¢ classes, that is both ys, and y7, generally can only take
the same ¢ labels.

4.3 ASSESSING DISTANCES BETWEEN DISTRIBUTIONS

In a first stage of an analysis involving more than one dataset it is crucial to
quantify the importance (and the type) of the dataset shift occurred between
source and target domains. Therefore, objective and robust measures of
distance between distributions are needed. Hereafter, we present the main
existing parametric measures along with a novel distribution-free kernel-
based metric.
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4.3 Parametric distance measures

In the literature, many measures have been used to evaluate the statis-
tical difference between probability distributions: Kullback-Leibler diver-
gence [Kullback and Leibler, 1951], Jensen-Shannon divergence [Lin, 1991],
Bhattacharyya distance [Bhattacharyya, 1943], Jeffries-Matusita (JM) dis-
tance [Toussaint, 1972] are among the most popular. These distances have
been developed and thoroughly employed in the field of statistics. More
specifically, in the remote sensing community, the attention has focused
mainly on the last two metrics of this list. These measures have mainly been
used to estimate class-separability when comparing filter feature selection
techniques [Serpico and Bruzzone, 2001] or to evaluate the invariance of
the selected features over different spatial domains [Bruzzone and Persello,
2009].

The distance between the distributions associated with an unlabeled
source dataset Xs and another unlabeled target dataset X7 is provided
by the above-mentioned distance measures as:

e Bhattacharyya distance

306 X0) =~ | [\obsptrax)

o |M distance

JM(XS,XT)Z\//X (Jp(m)—%p(m)zdx. (12)

The two quantities are intimately related, so that the latter can be computed
from the former as

IM(Xs, X7) :\/2(1 —exp(—B(Xg,XT))) | (43)

Concretely, under the assumption that both Xs and X7 follow multivariate
Gaussian distributions defined by mean vectors ps and py and by covari-
ance matrices £s and X7, the Bhattacharyya distance becomes

1 Yoo\
B(Xs, X7) =§(U5*N7)T (S;—T) (us —ut)
1 |(25+ZT)/2’
I P St et A e 44
2" ] 9

When investigating class discrimination, the JM distance is usually preferred
to the Bhattacharyya distance since, for increasingly separable classes
(mean vectors moving far apart), the JM distance will saturate at v/2 when
the classes do not overlap anymore (maximal classification accuracy, in
Bayesian sense), while the Bhattacharyya distance will continue to grow.
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4.3.2  Maximum Mean Discrepancy

The previously presented distance measures can be affected by data dimen-
sionality (they are based on the Mahalanobis distance) and by the presence
of multimodal distributions (they assume unimodal Gaussian PDFs). To cope
with these problems, we introduce a recently presented metric for comparing
distributions, the Maximum Mean Discrepancy (MMD) [Borgwardt et al,
2006, Gretton et al, 2012]. MMD is based on the difference of the mean of
the distributions computed in a common RKHS. This non-parametric kernel-
based measure can be easily calculated also in presence of a large number
of variables describing the data points. Furthermore, it is able to finely de-
tect distribution shifts even when these appear under the form of additional
modes in the distribution. MMD has previously been used to attribute dif-
ferent weights to shifted training and test samples when trying to match
their distributions in the RKHS [Huang et al, 2007] Likewise, in Gomez-
Chova et al. [2010] the authors also exploit this mapping to evaluate cluster
similarity by computing the difference of the means of sets of samples in
the feature space.

The empirical estimate of the MMD between the distribution of source
data Xs and that of related target data X7 is given by

e

1 ns 1 nr
MMD(Xs, X7) = HE Z @(xs,) — TT Z (P(XT/)
i=1 J=1

where [|-1l% is the ¢, norm computed in a RKHS induced by ¢. Thus, MMD
is the squared distance between sample means in this feature space and
approaches zero when the two distributions tend to be exactly the same.
Taking advantage of the kernel trick one can rewrite (4.5) as:

1 ns 2 ns,nr
MMD(XS,XT) = (2 Z K(XS[,XS/) - Z K(XSuXT,)

s = SUT i
,I nr 1/2
T ij=1

where
K — KS,S KS,T c ]R(nSJrnT)X(ns+nT) , (4'7)
Krs Krr

with Kss,K77,Ks7, K75 being the kernel matrices reflecting data sim-
ilarities in the source domain, target domain and across domains, respec-
tively. Matrix L contains the coefficients combining the elements of ker-
nel matrix K to obtain (4.5). If xixj € Xs: Lijj = T/n%, if xi,xj € Xr:
Lij = 1/n27, and otherwise: L;; = —1/nsnr.

Theoretically, to detect subtle distribution differences, the kernel func-
tion K(-,-) should be chosen as a universal kernel, e.q. Gaussian RBF or
Laplace kernels [Cretton et al, 2012] Practically, it can be any positive
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Figure 4.1: Dataset shift assessment on a toy dataset consisting of source (blue cir-
cles) and target (red diamonds) domain combinations with increasing
levels of dataset shift (one realization is shown). (a) shift level #1, (b)
shift level #4, (c) shift level #7. (d) Distance between domains (aver-
age and standard deviations over 10 experiments) as measured by the
MMD computed using a Gaussian RBF kernel with o = /2 (MMDrbf),
the MMD with a linear kernel (MMD1in), the Bhattacharyya distance
under a unimodal Gaussian assumption (Bhatt), the IM distance under
a unimodal Gaussian assumption (JIM).
semi-definite function [Jegelka et al, 2009], hence fulfilling Mercer's condi-
tions (see Section 3.3.3). In the linear case Kj; = xl-ij, the MMD measure
reduces to be the simple difference of the means of the two distributions
in the input space. Thus, for such an indicator the use of an appropriate
non-linear kernel function is key.
433 A toy example
Experimental To illustrate the importance and the effectiveness of the non-linear mapping

setup induced by the kernel trick for MMD, we resort to Fig. 4.1. In panels (a), (b)
and (c), this figure presents a toy dataset consisting of source domain data
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being kept fixed and target domain data displaying an increasing level of
shift with respect to the source domain. The source distribution is a unimodal
bi-variate Gaussian distribution. Initially, the target distribution is also a
unimodal Gaussian but throughout 7 shift levels, it turns into a mixture of
2 Gaussians migrating farther apart along the vertical axis. The variance
of these 2 components is gradually reduced to keep a constant common
covariance matrix. Note that both distributions are always centered at zero
mean, .e. ys = pr = (0,0). Shift level #1 (Fig. 4.1(a)) represents the initial
situation where the target dataset presents a single mode but the point cloud
has a higher variance with respect to the source data. Reaching shift level
#7/ (Fig. 4.1(c)), the target distribution is made up of two Gaussians centered
at (0,3.4) and (0, —3.4), respectively. We considered 10 random realizations
of the datasets consisting of 400 samples per domain and measured the
distance between them with the previously presented metrics.

By examining the results presented in Fig. 4.1(d), the effectiveness of
the MMD indicator in detecting the distribution shift appears as striking.
Indeed, the MMD using a Gaussian RBF kernel steadily grows as the shift
level increases. The ability of the MMD to properly capture the progressive
evolution in the shape of the data is quaranteed by the non-linear mapping
ensured by the chosen kernel function. This is highly encouraging since
the first two moments of the overall target distribution (mean vector and
covariance matrix) remain unchanged throughout the 7 stages. Contrarily,
the MMD in its linear version (with a linear kernel) does not detect the
dataset shift at all because it simply measures the distance between the
means in the input space. This is exactly the distance between centroids
represented with squares in the plots, which remain very close, yielding a
distance value close to 0. The parametric measures also fail in highlighting
the change in probability distributions, returning constant distance values
across the entire range of shift levels. In this case, the assumption on the
underlying distribution needed by both the Bhattacharyya and JM distances
is what precludes the correct assessment of the shift. Indeed, without a prior
knowledge on the PDF generating the data (the case generally encountered
in real-life problems), these metrics assume a Gaussian distribution with a
single mode, an over-simplification of the actual situation. Nonetheless, as
the covariance of the source and target domains is different, we draw the
attention to the fact that the distance values are at least far above zero.

4.4 FAMILIES OF ADAPTATION APPROACHES

The approaches to DA that have been recently proposed in the literature
can be divided into three main categories [Pan and Yang, 2010, Margolis,
2011]. Focusing on the problem of classification, such a grouping is based
on what type of knowledge is being transferred across domains and how
this transfer takes place.

1. The first category of strategies concerns instance-transfer approaches,
where samples of the source domain are reweighted for their further
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use in the target domain or taken as initial training set to define
active queries on this newly acquired data. In Chapter 6, we propose
a method belonging to this family.

2. The second category regards the feature-representation-transfer frame-
work. The purpose of this type of techniques is to change the input
space of our datasets to obtain a new set of shared and invariant fea-
tures. The methods utilized here are rooted in the machine learning
sub-fields of FE, feature selection, manifold learning, etc. The differ-
ences in the statistical distribution between the two domains should
thus be maximally reduced, resulting in an improved portability of
the classifiers across domains. Chapters 7, 8 and 9 will deal with this
type of adaptation strategy.

3. The third category is related to methods aiming at transferring and
adapting the parameters of a classification model to be applied in the
target domain. These solutions directly adapting the classifier itself
are termed parameter-transfer approaches.

4.41  Instance-transfer

Instance Among the approaches relying on a sample-based transfer, one of the main
reweighting directions of research is that of instance reweighting techniques. In Dat
et al. [2007], the authors propose TrAdaBoost, an adjustment to DA of the
AdaBoost method [Schapire, 1999]. As it will be explained in more details
in Chapter 6, TrAdaBoost is a technique designed to iteratively change the
weight of the data points in each domain. The goal is to increase the at-
tention of the classifier to incorrectly predicted samples in the domain of
interest, the target domain, while reducing the impact on the final solution
of misclassified source samples. Along this line of thought, Eaton and des-
Jardins [2009] extend the approach to handle multiple source domains. They
introduce an additional reweighting factor accounting for the quality of the
knowledge transfer provided by each of the source domains. This attempts
to prevent the situation referred to as negative transfer, encountered when
the information transferred from the source domain actually hampers the
prediction task in the target domain.
Importance Another ensemble of techniques falling in the instance-transfer category
sampling is constituted by importance sampling approaches. Under the hypothesis of
simple covariate shift, where only the marginal probabilities are assumed
to have changed (Ps(X) # P7(X)), the key insight behind all of these
techniques is the following. Each source sample xs carries an importance
for the target domain prediction that can be appropriately determined by
estimating P1(xs,)/Ps(xs,). This ratio of the target to source domain prob-
ability is then used as a weight to raise the impact of those labeled source
samples lying in a region with a high density of target samples. Since in
practice Ps(X) and P7(X) are often unknown, the interest has focused
on approaches that do not require an explicit modeling of such probabili-
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ties. The previously cited ratio is instead directly estimated. In this context,
Huang et al. [2007] introduce a technique based on MMD called Kernel
Mean Matching (KMM) to retrieve the ratio by matching, via reweighting,
the means of the source and target domains in a kernel-induced feature
space. In parallel to this work and with the same goal, Sugiyama et al.
[2007] propose an algorithm which minimizes the Kullback-Leibler diver-
gence from the true target probabilities to their estimate produced via a
rescaling of the source probabilities.

A third sub-category we term adaptive Active Learning concerns the ap-
proaches resorting to AL techniques to smartly sample the new domain.
Such a group can be considered part of the instance-transfer category be-
cause the samples of the source domain are somehow re-used as the starting
point for the sampling of the target domain. Recent advances in machine
learning show that the combination of the AL and DA frameworks is effec-
tive. In Shi et al. [2008], a principle apt to reduce the number of examples to
be labeled by the user is outlined. The authors suggest to use the classifier
trained in the source domain to obtain a prediction for the relevant target
instances proposed by an AL strategy. At this point, if the confidence on
the prediction is too low, an expert is asked to provide the correct label
for the sample. Later on, Rat et al. [2010] proposed a preprocessing step
highlighting the interesting regions of the target domain in order to reduce
the size of the set of candidate samples for the AL search. Based on this
contribution, the same authors outline a complete framework for AL in a DA
setting [Saha et al, 2011]. In Chapter 6, we will consider a combination of
instance reweighting and AL to achieve adaptation.

4.4.2 Feature-representation-transfer

The purpose of feature-representation-transfer strategies is to find a com-
mon representation of the source and target datasets that minimizes the
differences between these two domains while maintaining their main data
properties. Once the samples are mapped to the same space defined by
the new features (either with a projection to a common subspace or with a
cross-domain conversion of the input spaces), a classifier is trained in the
source domatin using the available labeled examples, and then inference is
performed directly in the aligned target domain.

A first sub-category of these feature-representation-transfer approaches
ts constituted by FE techniques. In Pan et al. [2008], the researchers have
been concerned with the development of Maximum Mean Discrepancy £Em-
bedding, a technique that aims at minimizing the MMD between the pro-
jections of the source and target domains. After solving a kernel learning
problem, the technique extracts a new set of common features for the two
domains embedding the samples in a shared low-dimensional sub-space.
However, the procedure has many drawbacks, the most important of which
is that it can not generalize to unseen samples. Subsequently, the same
authors extended these preliminary findings to develop Transfer Component

55

Adaptive AL
strategies

The principle

Feature
extraction



56

Manifold
alignment

Feature
selection

Augmented
input space

DOMAIN ADAPTATION

Analysis (TCA)[Pan et al,, 2011], an out-of-sample and faster formulation of
the previous method. More details about this approach and, namely, a thor-
ough study of unsupervised TCA and its semisupervised extension named
Semisupervised Transfer Component Analysis (SSTCA), will be provided in
Chapter 7.

Another line of research is represented by manifold alignment [Ham et al,
2003]. As for FE strategies, the purpose is find a new latent space minimizing
the distance between the data points of the same class coming from different
domains. The key property of these approaches considering the manifold is
that they try to maximally preserve the original local structure of the data.
In this context, a suite of effective approaches has been proposed by Wang
and Mahadevan [2008, 2009, 2011]. All these works encode the local simi-
larities through a graph Laplacian based on a nearest neighbor adjacency
matrix. The proposed methods are designed to handle datasets presenting
a different dimensionality, a characteristic that makes them highly flexible.
In Gopalan et al. [2011], Gong et al. [2012], Copalan et al. [2013], a slightly
different perspective is adopted. The authors assume the existence of a se-
ries of intermediate subspaces gradually connecting the source and target
domain manifolds. They propose to compute the projections of the data on
these subspaces and train a classifier therein.

Instead of extracting features anew, Chen et al. [2011a] propose an ap-
proach centered on feature selection that builds on a previous work by
Satpal and Sarawagi [2007]. In an iterative procedure extending the train-
ing set both with new samples and with new features, they try to promote
the usage of those features that behave similarly in both domains, namely
in the source training set and in the target test set.

An important ensemble of techniques devised especially in the field of
natural language processing, is constituted by strategies augmenting the
initial input space with new variables. The stacked set of features is then
utilized to build a transfer model. In Daumé Il [2007] and in Daumé Il
et al. [2010], the authors propose a kernel-based feature replication ap-
proach with a semisupervised extension that proved potential in sequence
labeling tasks. Other relevant works concern the development of algorithms
such as Structural Correspondence Learning [Blitzer et al.,, 2006, 2007] and
Spectral Feature Alignment [Pan et al, 2010]. These techniques provide
appropriate solutions to problems such as sentiment classification for opin-
ton mining [Pang et al, 2002} In this type of application where a human
expert is asked to decide the polarity of a product review, much interest has
been devoted to algorithms able to suitably transfer the classification rules
from one product domain to another (for instance from the digital cameras
to the video games domain) [Blitzer et al, 2007]. These methodologies ex-
ploit the fact that, working with bag-of-words models, in the two types of
datasets both domain-independent and domain-specific features will natu-
rally appear. The former (e.g. terms such as “good”, “bad” or "never buy”)
are considered pivot features allowing to bridge the gap between domains,
whereas the latter (e.g. terms such as “compact” and “blurry” for digital
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cameras or “realistic” and “boring” for video games) are the features to be
aligned by finding the proper cross-domain correspondences.

A last sub-group of techniques tackling adaptation through changes in
the representation of the features consists of DL-based methods. In Ni et al.
[2013] a procedure to gradually capture the dataset shift is outlined. The
source and target domains are represented with their respective dictionar-
ies and a virtual path easing the knowledge transfer among them is defined
thanks to a series of intermediate dictionaries connecting the two ends.
Shekhar et al. [2013], instead propose an algorithm that first embeds the
samples of the two domains into a low-dimensional common sub-space and
then learns a shared dictionary suitably representing both. Subsequently,
a classification based on the reconstruction error is carried out. In Wang
et al. [2012], the authors propose a cross-domain image synthesis approach
to directly convert one into another the input spaces of images of differ-
ent styles (e.g. sketch vs. photo) by means of a linear transformation. The
algorithm simultaneously learns a dictionary pair (one per image) and a
mapping function from one to the other. A more detailed explanation on this
work will be provided in Chapter 9.

Within this category of feature-representation-transfer strategies we can
make three further distinctions as regards the basis for the alignment. First,
when the samples from both domains used to define the change in the input
space are all unlabeled, such transformation is unsupervised. In general,
a joint-domain FE via PCA, KPCA and TCA (see Chapter 7), or the HM
procedure in remote sensing (see Chapters 7 and 8) are all good examples
of such a category of techniques. Second, if the employed method makes use
of the available labeled data in the source domain, it can be defined as a
supervised transformation (see SSTCA in Chapter 7). Third, when also target
labeled data come into play in the definition of the alignment, the procedure
modifying the feature representation could be termed fully supervised (see
the cross-image synthesis based on DL of Chapter 9). However, note that
this grouping only concerns the type of change of the initial input spaces
prior to the actual cross-domain classification. The entire methodology, with
its alignment and classification phases, will still be fitting under either the
unsupervised DA or the supervised DA category.

4.4.3 Parameter-transfer

Lastly, we review a perhaps less developed family of adaptation strategies,
the parameter-transfer approaches. These methods deal with the adjustment
of the classifier itself and have often been adopted in combination with
SVM classifiers. In Yang et al. [2007a] the researchers propose an Adaptive
SVM for video classification to adjust several SVMs initially trained on
multiple source domains (called auxiliary datasets). The goal is to learn a
specific delta function to be added the original decision function in order
to properly model the instances of the new target domain. An AL extension
of the latter method has been then proposed in Yang et al. [2007b] by the
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same authors. Within this family of methodologies as well, the ability of
MMD in detecting the distribution mismatch has been used as foundation
to develop new DA algorithms. Duan et al. [2009] suggest to combine the
structural risk functional of the SVM and the MMD in a joint minimization
problem. By further generalizing the approach, in Duan et al. [2012] the
authors develop a combination of the MMD minimization principle with a
multiple-kernel learning framework. With a different perspective, Bruzzone
and Marconcini [2010] propose to deform the SVM classifier by discarding
contradictory old source training samples with respect to the distribution
observed in the target domain.



Part I

DOMAIN ADAPTATION APPROACHES FOR
REMOTE SENSING IMAGE CLASSIFICATION






REVIEW OF DOMAIN ADAPTATION STUDIES IN
REMOTE SENSING

Outline: This Chapter acts as a bridge between the preceding
Part ii of this manuscript, describing the machine learning and
Domain Adaptation frameworks, and the next Chapters 6, /, §
and 9 where, from that standpoint, we seek a solution to remote
sensing problems. In Section 5.1, the challenges encountered
in the field of Earth observation are translated into Domain
Adaptation terms. The remote sensing concepts are linked with
the statistical notation that will be adopted in the following. In
Section 5.2 we include an overview of the early approaches de-
veloped to extend classification systems beyond single images.
Subsequently, starting from the same three previously defined
categories of Domain Adaptation techniques, we provide an ex-
haustive review of the current state-of-the-art of the adaptation
approaches in remote sensing.

51 THE CONTEXT

As mentioned in Section 2.5.2, when the atmospheric and ground conditions
or the geometry of the acquisition vary from one image to another, a series
of physical phenomena (list available on page 22) induces a shift in the
probability distribution of the spectra of the different land-cover classes.
Another relevant problem concerns incomplete reference data. In many ap-
plications, the user is interested in classes that are far from being pure
and uniform over the scene. When the sampling areas are small and very
localized, this can lead to a bias in the composition of the training set,
with reference data only partially covering the complete class distribution.
As a consequence of these two types of issues, we observe a shift in the
statistical distributions of the pixels and the land-cover classes. This com-
promises a direct knowledge transfer from one image to another or among
portions of a large scene. Since land-cover models are dependent on the
spectra observed under specific acquisition conditions, they tend to gener-
alize poorly when applied to new environments. Under such constraints, the
development of large-scale VHR land-cover/land-use mapping systems that
require multiple or extended remote sensing images is hindered.

As we discussed in Section 25.1, Earth observation scientists have re-
cently started tackling the above-mentioned model portability problems
from the standpoint of statistical learning (see Section 3.2). In this con-
text, each image possessing an associated ground truth can be represented
by a set of d spectral bands X with the thematic class labels Y. Using a
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matrix notation, a set of n labeled pixels is denoted by {(x; y;)}/_, with
yeC=1{12...c}, the set of ¢ land-cover classes.

Looking more specifically at DA applied to remote sensing image analysis,
following the notation introduced in Section 4.2, we can state the underlying
problem in this fashion. We consider each image acquisition a separate
domain. The goal of portability is reached when a classifier trained on a
given source image Ds governed by Ps(X,Y) is successfully applied on
a target image of interest D whose pixels are assumed to be drawn from
a slightly different but related probability distribution P7(X,Y). The same
applies to models developed on portions (Ds) of large images and applied
to predict the land-cover over their entire extent (D). We name the former
a case of dataset shift (Ps(X,Y) # Pr(X,Y)) while we refer to the latter
as an instance of sample selection bias (Ps(X,Y) = P(X,Y]0 = 1) and
P7(X,Y) = P(X,Y)), the selection variable d being the spatial constraint
preventing the sampling of the training set from the exhaustive distribution
P(X,Y) governing the whole image. As mentioned earlier, for simplicity, it
is assumed that the two domains however bear some key similarities: they
should share the same set of d spectral bands (same sensor having acquired
the images), L.e. ds = dr = d, and c land-cover classes (no new classes
should appear in the target image), i.e. cs = ¢ = c. Still, in the next
Section 5.2 and in Chapter 9 we will see some exceptions to these rules.

By adapting and applying the techniques developed in the field of DA we
reviewed in the preceding Chapter 4, or simply by taking inspiration from
the novel concepts proposed, the remote sensing community has taken a
notable step forward. The common goal of DA strategies in remote sensing
thematic classification tasks is to be able to accurately predict the land-
cover in the target image. The procedure is based on an initial training set
{(xs, ys,)}2, composed of usually abundant ground truth data existing on
a given source image. Starting from the types of learning problems listed
in Tab. 41 on page 49, in Earth monitoring applications we can draw a
distinction between two main settings in which DA can take place.

e Supervised DA remote sensing problems: the user has access to a

small set of labeled samples {(XT/, yr,) }L in the target image. This
implies that the model initially built based on source data can be
refined for the prediction in the target domain. The assumption of a
large ground truth for the new images is both unrealistic and void
of any interest. In fact, in most applications nt <« ns will hold, as
the target image is generally a very recently acquired image not yet
analyzed nor sampled. Moreover, if n7 > ns, models built exclusively
based on target samples would outperform those based on the less
thoroughly labeled and shifted source domain. There would be no

need to resort to previously labeled acquisitions.

e Unsupervised DA remote sensing problems: the user has no access
to any sample in the target image. This is clearly a more challenging
yet common situation. The newly acquired target images have to be
classified relying solely on models developed on labeled pixels of the
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source image. Such an approach is preferred when a large number of
new images is collected and a rapid batch processing of the series
of acquisitions is required. In this case, after that suitable adaptation
measures are adopted, an antecedently developed source classifier
can be directly applied to predict the land-cover on the target images
(L. e. without re-training).

7.2 LITERATURE REVIEW

In this Section we will review the existing state-of-the-art DA approaches
to remote sensing model portability problems. As already mentioned, this
is a relatively new research direction, thus mostly encompassing literature
from the last decade concentrating on the study of VHR and hyperspectral
imagery. For the sake of coherence, we will continue with the distinction
of the approaches in the same three categories previously identified in
Section 4.4. Before that, in the next Section, we will focus on a brief review
of the first pioneering moderate resolution approaches using multispectral
acquisitions.

5.21  Signature extension approaches

When pursuing thematic image classification at a large scale, the portability
of land-cover classifiers across acquisitions has been initially studied in the
signature extension framework. This field of investigation has been a lively
research area ever since the beginning of the Landsat mission [Fleming
et al, 1975], mainly focusing on moderate resolution applications.

Among the early works, in Pax-Lenney et al. [2001], the researchers have
evaluated the extension of the predictions of a neural network classifier
across space and time on Landsat TM imagery for forestry applications. In
doing so, they gauged the efficiency of simple atmospheric compensation
methods with respect to more sophisticated physically-based approaches.
Additionally, attention was paid to the influence of the seasonal effects.
In Woodcock et al. [2001], the authors proceeded with a cross-sensor ap-
proach to combine Landsat 5 TM and Landsat 7 ETM+ acquisitions to
ease binary forest change mapping efforts over nearby scenes. Foody et al.
[2003] investigated the transferability across validation sites located in dif-
ferent tropical regions of the world of predictions of forest biomass based
on Landsat TM data. In this context, they assessed the performances of veg-
etation indices, multivariate regression and neural networks. Nonetheless,
they witnessed poor portability results in general.

In Olthof et al. [2005], a study of the extension of northern land-cover
spectral signatures is proposed. By comparing it to an absolute atmospheric
compensation method, the authors observed superior classification accura-
cies for a relative normalization method based on a calibration with respect
to low resolution SPOT imagery. Moreover, due to the change in vegeta-
tlon composition, the authors noted a marked decrease in accuracy when
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the knowledge transfer took place in the north-south direction over large
latitudinal extents. Finally, Knorn et al. [2009] exploited the overlap exist-
ing between neighboring Landsat images to set up a chain classification
procedure based on SVMs.

5.2.2 Instance-transfer approaches in remote sensing

As regards DA, the remote sensing community has mostly applied instance-
transfer techniques via AL procedures to iteratively sample the new image
while initially relying on source samples. General purpose AL techniques
have been widely studied in the remote sensing community during the last
years [Rajan et al,, 2008, Tuia et al, 2009b, 2011b, Demir et al,, 2011, Volpi
et al, 2012¢, Dt and Crawford, 2012]. Indeed, when analyzing a given scene,
procedures allowing the user to optimally select the pixels to label can
dramatically reduce the sampling burden. Smartly built training sets also
yleld classification models more effectively discriminating the land-cover
classes [Crawford et al, 2013].

The application of these principles in a cross-domain setting is enticing:
a classifier trained on a first acquisition can be adapted to a new image
with a minimal effort by finding the pixels representing the shift between
the two images. Under this perspective, adaptive AL can be considered a
fully supervised DA approach. Such a principle was firstly explored by Jun
and Ghosh [2008] The authors showed that the proper adaptation could be
achieved by actively querying, pixel by pixel, the target samples necessary
to be integrated in the knowledge transfer process. They combined these
active queries with a reweighting concept similar to that proposed in Dat
et al. [2007]. The AL method they employed is based on the Kullback-Leibler
divergence and is thus constrained by data normality assumptions. In Tuia
et al. [2011a], AL has been proposed for the correction of sample selection
bias when dealing with a training set issued from a small sub-region of an
image. In this setting, they studied the ability of an adaptive system based
on pre-clustering to discover previously unknown classes appearing in the
target domain (the complete image). In this case it is thus assumed that the
target domain possesses more land-cover classes than the source domain,
.e. cT > cs. Successively, other methods specifically designed to re-use
already collected source ground truth information to initialize the AL loop
have been advised in Persello and Bruzzone [2012]. The authors propose to
gradually remove along the iterations the source samples conflicting with
the distribution of the classes in the target domain. A convergence criterion
to know when to stop the iterative process without resorting to a test set
is also put forward. Lastly, Alajlan et al. [2014] investigate the benefits of
adaptive AL for classification problems at the continental scale by employing
low spatial resolution MODIS data.
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5.2.3 Feature-representation-transfer approaches in remote sensing

The second type of techniques, based on the feature-representation-transfer
framework, constitutes also a relatively new research direction within the
remote sensing community. However, few papers have addressed the anal-
ysis of multiple images through dimensionality reduction, despite the fact
that the change of the data space (i.e. the input space in a machine learn-
ing sense) is a largely studied topic for single images. Considering FE,
many different methods have been applied to single images to provide the
end-user with either noise-free or more class-discriminant features [Arenas-
Garcla and Petersen, 2009, Kuo and Landgrebe, 2004, Li et al, 2011]. The
same can be said for feature selection algorithms [Bruzzone et al,, 1995, Tuia
et al, 2010, Camps-Valls et al, 2010] aiming at subsetting the input space
while preserving the physical meaning of the variables, with a significant
number of contributions dating back to the 1970s [Narendra and Fukunaga,
1977]. Another line of research is represented by the strategies known under
the name of manifold learning approaches. Those models have also been
widely investigated for the application on single images [Bachmann et al,
2005, Yang and Crawford, 2012, Lunga et al, 2014]. Such approaches, par-
ticularly suitable for the analysis of hyperspectral images, rely on the local
properties of the data to preserve their topology after the dimensionality
reduction step.

When dealing with multiple images, the family of approaches based on
FE generally comprises contributions that are focused on change detection
applications. Nielsen et al. [1998] introduce the Multivariate Alteration De-
tection (MAD) technique to detect changes in bi-temporal images. Making
use of the standard canonical correlation analysis [Hotelling, 1936], this FE
method is aimed at finding suitable separate linear combinations of the ini-
tial spectral bands of the two images. Ideally, the difference between these
newly extracted components (canonical variates) should bear a maximum of
variance. The samples are projected into a space where the extracted compo-
nents from the two images display similar values for the unchanged regions
while maximally differing on the changed areas. The MAD framework has
been extended with the inclusion of boosting-like procedures to iteratively
increase weights for no-change pixels, and regularization to avoid singu-
lar covariance matrices, giving rise to [teratively Reweighted-Multivariate
Alteration Detection (IR-MAD) [Nielsen, 2007]. Moreover, preliminary re-
sults obtained with a kernel-based version of the technique are presented
in Nielsen and Vestergaard [2013] The MAD and IR-MAD transforms have
also proved to be effective in detecting invariant regions in image time series
to be used for relative radiometric calibration via regression analyses [Canty
et al, 2004, Canty and Nielsen, 2008]. Starting from the same canonical cor-
relation analysis, Volpt et al. [2013] present a semisupervised kernel-based
FE method integrating both knowledge on unlabeled samples and a man-
ifold reqularization. Finally, the spectral alignment of bi-temporal images
via FE has also been carried out with non-linear KPCA-based strategies
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as well [Nielsen and Canty, 2008, Volpt et al, 2012al. It is worth noting
that all the above methodologies are restricted to the study of spatially
co-registered images, preventing thus their use in a standard cross-scene
DA case.

A feature selection approach to improve the generalization abilities of
a classifier applied across disjoint portions of a hyperspectral image has
been presented in Bruzzone and Persello [2009]. The authors pursue the
selection of spectral channels that exhibit both a high spatial invariance
throughout the image and a good class discrimination capability. To this
end, a criterion function combining a discrimination term and an invariance
term has been proposed to direct the search strategy for the identification
of the best set of features.

The techniques exploiting the data manifolds for DA purposes can be
considered as a means to further generalize standard semisupervised tech-
niques [Shahshahani and Landgrebe, 1994] to the case where the unla-
beled samples employed by the model belong to a dataset, the target do-
main, that follows a different probability distribution. In this framework, Kim
et al. [2008] develop an iterative methodology to adapt a general land-
cover classifier trained over a large area to adjust it for the prediction on
a small, localized area. The technique, based on a reqularization via the
graph Laplacian, exploits local unlabeled samples appropriately reflecting
the data distribution in the sub-region of the image where the prediction
takes place. In Kim and Crawford [2010], the authors provide a complete
framework for the application of manifold reqularization to adapt the land-
cover classification models. Under the assumption that no labeled samples
can be obtained in the target domain, the knowledge transfer is suitably
carried out among spatially disjoint areas of the same hyperspectral scene.
Following a slightly different research direction, a manifold alignment ap-
proach is studied in Yang and Crawford [2011]. The authors address the
problem of matching two datasets by seeking a joint manifold which incor-
porates prior features, i.e. the manifold of the source domain, and preserves
the smoothness of the resulting aligned manifold. In Tuia et al. [2013a], af-
ter the application of a vector quantization algorithm to retrieve relevant
centroids, adaptation is achieved by matching the shape of graphs defined
thereon. These representations of the underlying data structure of the im-
ages are locally deformed and aligned to each other. Such a transformation
of the manifolds is completely unsupervised and therefore is applicable in
both directions, meaning that source and target images can interchange-
ably be taken as reference to adapt the other image. Jacobs et al. [2013]
further refine this process to overcome the difficulties in handling large
changes in the manifold structure and sub-optimal graph representations.
As to the latter, they enhance the representation of the internal structure of
the graphs for both domains by modeling them as two instances of a common
underlying Hidden Markov Random Field. Finally, in Tuia et al. [2013b, In
press.] the manifold alignment strategy of Wang and Mahadevan [2011] is
smartly applied to map the images into a latent common space by means
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of two different projection functions. The latter are invertible and can even
be defined for datasets possessing a different dimensionality, i.e. ds # dT.
Hence, images taken from different sensors can be converted to the data
space of another related image. This ultimately opens the opportunity for
cross-sensor model portability. Although highly promising, the proposed
methodology only works in supervised DA settings needing labeled sam-
ples from both images.

In general, one can readily see the great value brought to the field of
remote sensing image classification by these feature-representation-transfer
strategies. In fact, in most of the cases, the model for the target classification
is exclusively built using labeled examples from the source image that have
already been acquired. Thus, this family of methods is particularly suited
for unsupervised DA tasks.

5.2.4 Parameter-transfer approaches in remote sensing

This last category focusing on the models themselves, comprises the early
DA papers by Bruzzone and Fernandez Prieto [2001] and Bruzzone and
Cossu [2002]. The common trait of both contributions is the type of applica-
tion: the update of land-cover maps. In fact, the source domain is considered
in this case to be the first acquisition of a multitemporal collection, while
the target domain is represented by the images of the same area acquired
at later times. The goal is to update the thematic classification map as soon
as a new image enters the system but without requiring additional ground
truth information. The authors term this exercise involving co-registered im-
ages a partially unsupervised classification task, a particular instance of
unsupervised DA. In Bruzzone and Fernandez Prieto [2001] pixels of the
target domain are used to re-estimate parameters of the maximum likeli-
hood classifier initially trained on the source image. The problem is solved
by estimating, via expectation-maximization, a mixed density distribution
(with as many components as the common number of classes) for the pix-
els of the target image. Building on the findings above, in Bruzzone and
Cossu [2002], the researchers developed a cascade-classification approach
to leverage the temporal correlation naturally observed between images of
the same scene acquired at different time instants. In Bahirat et al. [2012],
the Bayesian framework of the previous studies listed above is extended
to handle a difference in the sets of land-cover classes observed in the
multitemporal images.

In Rajan et al. [2006], ensembles of binary hierarchical classifiers are used
to adapt to the target domain. Diversity in the predictions of the ensemble
on the target image is used to reduce the number of binary classifiers to be
combined via majority voting. Later on, Bruzzone and Marconcini [2009], pro-
pose to deform a SVM classifier by discarding old training samples that are
contradictory with respect to the distribution observed in the target domain.
At the same time, semi-labeled target samples are added to the training set.
These samples are pixels of the target image whose tentative class labels
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are assigned by the adaptive classifier itself [Jackson and Landgrebe, 2001]
Additionally, the authors present an innovative circular accuracy assess-
ment strateqy for classifiers applied in a DA context, when no ground-truth
is assumed available on the image of interest. In Gomez-Chova et al. [2010],
knowledge transfer from source to target images is performed by matching
the means of data clusters in a kernel-induced feature space with a pro-
cedure based on the same principles of MMD [Borgwardt et al, 2006] and
KMM [Huang et al,, 2007]. In Jun and Ghosh [2011], the authors use spatial
detrending with a Gaussian process regression to compensate for spectral
shifts that may have occurred in distinct regions of the image. Next, in Jun
and Ghosh [2013], the latter approach addressing the spatial variations of
the spectral signatures is extended to discover previously unknown land-
cover classes. In Sun et al. [2013], the adaptation approach based on MMD
and multiple-kernels of Duan et al. [2012] is applied to hyperspectral remote
sensing data. Finally, Leiva-Murillo et al. [2013] apply to remote sensing the
concepts of multi-task learning, a widely studied topic in machine learning.
Working with SVMs, by sharing information across different classification
tasks, they show improvements over approaches independently considering
one task at a time.



SVM-BASED ADAPTIVE ACTIVE LEARNING VIA
SAMPLE REWEIGHTING

Outline: This Chapter is devoted to the study of adaptive Ac-
tive Learning strategies. We will present an approach based on
the TrAdaBoost algorithm to adequately reweight the samples
of the source and target domain. The method takes advantage of
the opportunities offered by Support Vector Machines in regard
to weighting the training samples and returning probabilistic
outputs. After the introductory Section 6.1 setting the context for
the approach, the proposed iterative methodology consisting of
two nested loops is outlined in Section 0.2. Next, Section 6.3
describes the datasets used and the setup of the experiments,
while Section 6.4 reports and discusses the results. Finally, Sec-
tion 6.5 summarizes the main achievements of this Chapter.

6.1 INTRODUCTION

Many DA strategies we reviewed in Section 5.2 assume that the labeled
examples from the target image, when available, are passively obtained
at once. However, if little resources can be allocated to the sampling and
labeling of a given amount of new pixels, such sampling must be handled
with care, in order to get maximal information from the limited number of
queries. In this sense, the combined use of AL and DA approaches can be a
winning strategy, since AL can be used to sample where source and target
distributions differ. The DA component of such a hybrid system will make
sure that the labeling effort could be further reduced by re-utilizing already
collected ground truth associated with images acquired by the same sensor
in a region with comparable characteristics.

In this Chapter, we propose to effectively combine the DA and AL frame-
works in the context of SVM classification. The most informative pixels are
sampled with active queries from the target image while adapting the ob-
tained classifier using a transfer learning strategy, TrAdaBoost [Dat et al,
2007] (see Section 4.4.1), to leverage the original source data. The proce-
dure fits in the framework we named adaptive AL. On the one hand, as base
AL heuristic we apply the Breaking Ties (BT) strategy [Luo et al, 2005].
BT uses posterior class probabilities to rank the potential new training

The findings of this Chapter have been published in:

G. Matasci, D. Tuia, and M. Kanevski. SVM-based boosting of active learning
strategies for efficient domain adaptation. /EEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 5(5):1335-1343, 2012.
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samples according to their uncertainty for the current model. Note that, in
any case, the AL procedure can be run using the sample selection heuristic
that best suits the needs of the user (e.g. margin sampling or others, for a
review see [Tuia et al, 2011b]). On the other hand, TrAdaBoost promotes
a reweighting of the training instances provided to the classifier in order
to assign a broader impact to key target domain samples while decreasing
the influence of misleading source samples. This last step boosts the per-
formance of traditional AL techniques when asked to intelligently suggest
a sampling scheme in a target image whose class distributions have shifted.
We propose an analysis of the performance of this procedure when com-
bined with a SVM classifier accepting, in the optimization phase, weights
associated with the training data samples. However, note that any super-
vised model allowing sample weights, such as the LDA classifier presented
in Section 3.4, could be used.

The purpose is to build a classifier that is able to efficiently handle the
samples coming from the new image in order to provide a more accurate and
adapted AL criterion. We provide a thorough illustration of the TrAdaBoost
algorithm and an analysis of its behavior. Concerning the SVM classifier
integrating weights for the instances, we study the separate evolution, with
respect to the domain of membership, of the number of SVs and their weights
during the AL procedure. Additionally, we carried out experiments study-
ing the individual impact of the two approaches combined here: the active
queries and the reweighting of the samples.

From the results, we can appreciate how both approaches are comple-
mentary and perform differently depending on the degree and complexity of
the shift. Still, in all experiments, their combination resulted in an improved
solution always providing the best accuracies. The sampling strategies are
tested on two datasets. The first one concerns two QuickBird images of ur-
ban scenes while the second one implies a hyperspectral AVIRIS image of
a natural environment. In both cases, experimental results prove the efficacy
of the technique with respect to traditional non-adaptive AL approaches.

0.2 ADAPTIVE ACTIVE LEARNING
6.214  SVM using instance weights

Hereafter, we introduce the instance weighting SVM, the base classifier
utilized in this AL study. Theoretical descriptions of this implementation
accepting weights for the training instances are presented in Nguyen et al.
[2010] for classification purposes as well as in Chang et al. [2004] for re-
gression tasks. We will now detail the main points differentiating it from
the standard version of the SVM outlined in Section 3.3.

During the optimization of the weighted variant of the SVM, one assigns
sample weights w = {wi}?_,, w; € RT to all the n training samples
belonging to the training set {(x;, y;)}7_;. Then, the training of the weighted
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SVM implies solving the primal problem of Eq. (3.6) (see page 35) modified

as
_ T .
min {2 wll* + C 2_1 wzéﬂ} : (6.1)

but subject to the same constraints (3.7) and (3.8). The associated dual
problem of Eq. (3.9) remains the same except for the condition (3.11) which
becomes

0< o <wC Vi, (6.2)

where the o; are the Lagrange multipliers related to each training point in
the final (linear) SVM decision function (3.12), which also remains intact.
One can notice the upper-bound for such coefficients defining the actual
influence of the SVs (training points with o; > 0) being dependent on
the sample weight w;. This induces an increased flexibility of the method,
with samples allowed to receive ¢; coefficients larger than the employed C
value when w; > 1 (see discussion of the last paragraph of Section 3.3.1).
Consequently, particularly relevant samples could have an additional impact
on the classification system if compared to the usual SVM implementation.

6.22 TrAdaBoost and Active Learning

Throughout this Chapter, sample pairs of both domains will actually be
denoted with (x;, y;). The adaptive AL procedure detailed here will use a
joint training set T = Ts U T7 composed of a source training subset Ts
and a target training subset T7. Source samples pairs (xs,ys) € Ts will
be indexed as {(x; yi)}i2,, whereas target samples (x7,y7) € Tr will
be indexed as {(xi,g[)}fjlnb. Additionally, the total number of labeled
samples at each stage of the AL procedure will be designated by n =
ns—+nr.

To achieve DA through AL, two nested loops are run in order to select
the most useful samples in the target image (outer AL loop) while iteratively
adapting the resulting classifier to the new domain (inner TrAdaBoost loop).
The scheme of Fig. 6.1 outlines the general procedure while Algorithm 1
provides details about its main steps. In the following, the two phases of
the algorithm are described and their objectives are highlighted.

Initially, the available labeled training set T is composed of the ns source
samples only, L.e. T = Ts = {(x;, y;)}!=;, because the target training set
is initialized as Tr = {}, t.e. nt = 0. Afterwards, Tr is progressively
extended by appending each time g target training instances selected via
AL. To this end, we provide the active learner with a set of unlabeled target
domain candidates U = {xj}7i1 among which to choose the interesting
samples to be labeled by the user. Moreover, we initialize training sample
weights as w; = 1V i. We employ this initialization instead of that with
uniform weights w; = 1 [Dai et al, 2007], to let the second term of (6.1)
become C) [, &, as in the usual SYM formulation. The role of the two
nested loops is as follows.
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1. The outer loop of the adaptation procedure is an AL routine where, at

each iteration, the g most interesting candidates x; € U are identified
using the BT strategy and, after the assignment of the corresponding
true label y;, added to T7. This heuristic selects the best points %8BT
according to the following ranking criterion [Luo et al., 2005]:

BT . *
- C— cllx;)—
x a;genletn ( ggép(gl cl|x;)
= cl|x;)), 6.3
IQRXHP(U ¢ |X/)) (6.3)

where ¢l = argmax ;¢ (p(gjf = cl|x;)) is the class with the high-
est probability for pixel X; andC ={1,2,...,c} is the set of ¢ classes.
These posterior probabilities are the output of the SVM classifier
weighting the samples by means of vector w = {w;}/_; and are esti-
mated with the Platt's method [Platt, 1999] After the inclusion of the
best candidate points to 77, the complete training set T is updated
as T =TsU Tt.

. At each AL iteration, the inner TrAdaBoost loop is run to reweight the

training instances in T. After having added the new labeled training
samples, at the boosting iteration t = 0 we initialize a new weighting
vector v! by setting equal weights v? = 1, Vi. Then, for every round
of the inner loop, we consider the labels y} predicted by the current
SVM model for the training samples. In the multi-class case (extension
of the binary problem approached in Dat et al. [2007]), the weighted
training error on the target set 71 is then computed as:

TSty
€ = Z an—!—nr (64)
i=ns+1 [ n5+1
where e; takes a value of 1 if the classifier commits an error (y; # y;)
when labeling x; and 0 otherwise (yf = y;). Afterwards, the weights
vl are updated for the subsequent boosting iteration in two distinct
ways according to the domain of origin of x;. In fact, we apply

= | Bt dxiels (65)
‘ VIR e ifx; e Ty,

L

where

B=1/(1++/2lnns/tmax), (6.6)
Bi=e/(1—a). (67)

The process is run for tmax iterations and the final weights v
used to retrain the instance weighting SVM (w = v!™™), yielding the
predictions in the target domain (test set and unlabeled candidates
set). The associated estimated class probabilities are subsequently
used by BT in the AL loop to perform the active selection on the pool
of candidates U.

tmax are
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Figure 6.1: Scheme of the adaptive AL procedure: the outer AL loop is highlighted

in green, while the inner TrAdaBoost loop is highlighted in blue.

Algorithm 1 Adaptive AL with TrAdaBoost

1:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

@ N oW N

Inputs: initial labeled source training set Ts = {(x;,y;) ?:51 set of unlabeled
target domain candidates U = {xﬁ}lﬂ, number of candidates to add at each
iteration g, number of TrAdaBoost iterations tmax

initialize Tr = {}, te.nt =0
initialize T = Ts
initialize w with equal unit weights w; =1V
for each AL iteration do
train the SVM using T (weighted by w) as training set
compute the SVM test accuracy in the target domain
predict the c class probabilities p(y; = cl|x;) Vx; € U
compute ranking criterion according to Eq. (0.3)
remove the best g candidates from U and add them to Tt
set T =TsUTt
set vl = v to unit weights vi= vlO =1Vi
for each TrAdaBoost iteration t = 1,..., tmax do
train the SVM (weighted by v!) using the extended T
repredict the class labels yfVx; € T
calculate the weighted error €; on 77 according to Eq. (6.4)
update weights to obtain v!*" following Eq. (6.5)
end for
set w = v!M™
end for

Outputs: final training set T, test classification accuracy along the AL iterations
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Taking a closer look at the TrAdaBoost loop, in Eq. (6.5) one will notice
that if the sample is correctly classified, the weight remains unchanged,
whereas if the sample is misclassified, two options are possible. If the sam-
ple comes from the source domain, its weight is decreased by a constant
factor (6.6). Conversely, if the instance originates from the domain of interest,
the target domain, its weight is increased by a factor inversely proportional
to the target training error (6.7). This updating strategy aims at reducing the
impact of misleading source examples, supposed to be the most dissimilar to
the target instances the model should focus on. Conversely, the increase of
the influence of misclassified target samples translates the need to concen-
trate on the regions of the target domain in which the class discrimination
is harder. In light of these considerations, the boosting loop could be prone
to overfit potential outliers. However, let us remark that, when the weighted
target training error €; is excessively large (> 0.5), the reweighting factor
Bt exceeds the value of 1, allowing therefore a decrease of the weights for
the misclassified target samples in (6.5).

This transfer learning approach enables the SVM model to gradually
adjust itself to the new domain. The different weighting of the examples
leads to a boosted decision function more and more suited to model the
input-output relationships in the target domain. Hence, the benefits of this
procedure are twofold. On the one hand, the quality of the classification
on test data (belonging to the target domain) is improved. On the other
hand, since we are acquiring samples representing the target distribution,
the class membership probabilities for the unlabeled samples in U are more
accurately computed. This induces an AL selection criterion better suited to
identify candidates lying in uncertain regions of the extended input space
in the following iterations.

63 DATA AND EXPERIMENTAL SETUP

In the following Sections, we describe the data we considered for the exper-
iments as well as the related setup. The proposed methodology has been
tested on two datasets. The first one represents an urban case study bearing
a moderate shift between the source and target images. On the contrary,
in the second dataset the target domain is represented by a region show-
ing remarkable differences in the spectral signatures of the vegetative cover
with respect to the source region.

6.31  VHR QuickBird images of Zurich

The first dataset consists of the two VHR QuickBird images of the city of
Zurich (Switzerland) presented in Appendix B.1 (see page 152). The his-
tograms of the two images have first been matched via HM (see page 25)
taking the source image as the reference and, subsequently, textural (3 x 3
data range, mean, homogeneity and entropy) [Haralick et al, 1973] and
morphological (5 x 5 opening and closing, 7 x 7 and 9 x 9 opening and
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Figure 6.2: Scatterplots for the two KSC images in the red (AVIRIS band #29:
~ 667 nm) vs. NIR (AVIRIS band #49: = 831 nm) space. (a) Source
training set. (b) Target test set. In the legend: CP = cabbage palm.

closing by reconstruction) [Pesaresi and Benediktsson, 2001] features have
been extracted from the panchromatic band to enrich the ground-cover de-
scription with spatial information. For the following experiments, the total
number of considered features is thus 15 (4 VNIR bands, 1 PAN, 4 textural,
6 morphological). Prior to the analyses, the variables have been normalized
to have zero mean and unit variance, based on the source image descriptive
statistics.

The ground truth, whose details are listed in Tab. B.1 of the Appendix,
is made up of thematic classes usually encountered in urban environments.
For the target image we derived two separate datasets: the set of unlabeled
samples and the test set. On the one hand, the set of candidates U to be
provided to the AL procedure (assuming their true label unknown) includes
22,723 pixels. On the other hand, the generalization ability of the different
techniques in the target domain has been assessed on 26,797 test samples
issued from spatially separate regions of the target image. For the source
image, only a labeled set was needed and was composed of 15,934 pixels.

0.3.2  Hyperspectral AVIRIS image of the KSC

The second case study deals with land-cover classification in a subtropical
region. The source and target images have been defined as sub-regions of
the same hyperspectral image acquired by AVIRIS over the Kennedy Space
Center (KSC), Florida (USA). For the details related to this dataset we refer
the reader to Appendix B.2 (see page 154). As for the QuickBird dataset,
after a matching of the histograms, the bands have been normalized (zero
mean and unit variance) using source image parameters.

The list of the classes to discriminate during the experiments, mostly
subtropical vegetation land-cover, is provided in Tab. B.2. As depicted by
the scatterplots of Fig. 6.2, the classes have a rather large overlap along with
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important radiometric variations across domains. The resulting dataset shift
observed from one image to the other is marked (divergence in both class-
conditional and marginal probability distributions). A labeled set consisting
of 2,522 pixels was issued from the source image. For the target image, we
partitioned the available labeled dataset into an unlabeled set of candidates
U and a test set both including 1,927 pixels. This independent target test
set is then used for the comparison of the performances of the AL strategies.

0.3.3 Experimental setup

The experiments were conducted with 10 different and independent real-
izations of the initial source training sets Ts (drawn from the labeled sets
mentioned above). For the Zurich images ns = 1000 randomly selected pix-
els were retained, while the size of the training set was fixed to ng = 500
for the KSC dataset. An instance weighting SVM with a linear kernel has
been used as supervised learner and a 5-fold cross-validation has been per-
formed to find the optimal initial C parameter (extensive search in the space
{10_1, o 105}). For both datasets and for all the AL methods, g = 10 tar-
get samples per iteration were added to augment the initial source training
set while the AL process was run for 35 iterations. At each iteration, the
performance of the SVM models has been assessed on the test set extracted
from the corresponding target image.

We compared the proposed adaptive AL strategy (AdaptiveAL_BT) with
the standard BT without instance reweighting (AL_BT) and with a procedure
randomly selecting the pixels to label in the target image while adapting
their weights following the TrAdaBoost scheme (AdaptiveRandomS). Also, in
order to provide the usual AL baseline, the random selection of the samples
to label (RandomS) has been considered. Finally, to set reference perfor-
mances for the considered target images, linear SVM classifiers exclusively
trained on source (same 10 independent samplings of ns pixels from the
complete training set) and target (also ns pixels sampled from the set of
candidates U retaining their labels) datasets have been tested (Source and
Target methods, respectively). Regarding the proposed AdaptiveAL_BT
method and AdaptiveRandomS, at each AL iteration, the weights of the
samples in the training set were updated after 5 iterations of TrAdaBoost
(stabilized v; values). In this sub-routine, the prediction on the training set
was implemented through a 20-fold cross-validation to avoid overfitting.

The algorithms were implemented in MATLAB® using LIBSVM as library
both for the standard SVM and instance weighting SVM (version available
at http://www.csie.ntu.edu.tw) [Chang and Lin, 2001} The computation of
class probabilities to be used by BT is described in the same paper.


http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#weights_for_data_instances

6.4 RESULTS

0.4 RESULTS
0.4.1  Learning curves

Figure 6.3 summarizes the results for this task of DA through AL. The perfor-
mance of the different AL techniques along the iterations (increasing training
set size) has been assessed in terms of overall classification accuracy (see
Appendix A). The depicted learning curves represent the average OA over
the 10 experiments.

6.41.1  VHR QuickBird images of Zurich

Analyzing Fig. 6.3(a) referring to the Zurich dataset, one can first notice the
bad performance achieved by applying on the target data the source model
(Source) without any adjustments (OA = 70.07%). The method consisting in
randomly sampling the pool of unlabeled pixels (RandomS), considered as
a baseline for AL, and the standard AL heuristic of BT both reveal a slow
convergence. Nevertheless, the AL_BT method yields SVM models that are
slightly more accurate than those built by sampling at random, but this
happens only from the 10th iteration onwards (approximately +0.5% OA).

The proposed combined methodology integrating the TrAdaBoost routine
in the AL process (AdaptiveAL BT) clearly outperforms these two sampling
schemes by sharply increasing the classification accuracy since the very be-
ginning of the AL iterations. In fact, already after 14 iterations (140 target
pixels added) the associated curve achieves an OA of 86.2% (+3.4% OA
with respect to AL_BT). Such a precision is never reached by the two
baseline approaches during the considered first 35 AL cycles. Neverthe-
less, we remark how the other procedure including the reweighting scheme,
AdaptiveRandoms, is yielding a performance comparable to that of its ac-
tive counterpart in the first 7 cycles of the AL routine. Subsequently, after
the addition of 80 samples, the actively guided selection of the pixels to
label provides an average improvement in OA of 1.5%. It is interesting to
note that none of the strategies is able to reach the Target performance at
OA = 87.55%.

0.41.2  Hyperspectral AVIRIS image of the KSC

Figure 6.3(b) reveals a similar pattern in the KSC dataset, except for the
improved performance of the AL_BT strategy and a worsened performance
of the AdaptiveRandomS method. The random sampling of the pixels in
the target image (RandomS) results in poor updates of the initial training
set. In fact, even after the inclusion of 350 samples, the model still lies
5% OA below the performance of a SVM trained with pixels from the target
image only (Target reference classification with average OA = 90.35%). On
the other hand, both the AdaptiveAL BT and the AL_BT show promising
learning curves, eventually reaching and even exceeding the upper reference
accuracy of the same-domain SVM model. In particular, one can remark the
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Figure 6.3: Average learning curves (% OA) over 10 runs on the target image
of the (a) Zurich dataset and (b) KSC dataset. Source (dashed red
line) = model built using pixels of the source domain only, Target
(solid blue line) = model built using pixels of the target domain only,
RandomS (dashed green line with asterisks) = random sampling method,
AdaptiveRandomS (solid brown line with crosses) = random sampling
method combined with TrAdaBoost, AL_BT (dashed light blue line with
diamonds) = AL via breaking ties, AdaptiveAL_BT (solid black line
with circles) = proposed adaptive AL method.

adaptive AL procedure evolving = 1% OA higher than its non-adaptive
counterpart. The effect of the intelligent selection of the most informative
pixels, as provided by the BT strateqy, when combined with the TrAdaBoost
algorithm is more evident on the KSC dataset. In fact, the curve associated
with the integration of TrAdaBoost with the random, passive sampling in
the new image (AdaptiveRandomS) remains between 4% and 6% OA lower
than the active one from the beginning of the AL process.
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Figure 6.4: KSC dataset: histograms showing the distribution (frequencies over the
10 experiments) of the final TrAdaBoost weights w; and SVM coeffi-
clents a; (normalized by C to account for its different values in the
experiments) for the SVs of the two domains at the AL iteration #15
(n = ns+n7y = 500+ 150 = 650 pixels in the training set). (a)
Source SVs: weights w;. (b) Target SVs: weights w;. (c) Source SVs:
a;/C. (d) Target SVs: ¢;/C.

0.4.2 Analysis of sample weights

With the purpose to shed light on the actual effect of the TrAdaBoost model
on the SVM-based AL procedure, it is worth analyzing the evolution of the
weights w; and the coefficients ¢; along the AL iterations.

Figure 0.4 illustrates the distribution of the respective weights w; and
coefficients ¢; for the SVs of each domain at the 15th AL iteration. Indeed,
these are crucial training samples, the only ones contributing to the final
SVM decision function. With this example concerning the KSC dataset,
we focus on the state of the AdaptiveAL_BT method. From Figs. 6.4(a)
and 6.4(b), one can observe how the weights of roughly 60% of the training
SVs belonging to the source image are set to very low values (w; < 0.15),
whereas more than half of those of target domain SVs take values larger
than 1. This translates, for the source SVs (Fig. 6.4(c)), to a significant




80

100

% SVs

SVM-BASED ADAPTIVE ACTIVE LEARNING VIA SAMPLE REWEIGHTING

100

— — % source norm. alphas > 0.02
901 —— % target norm. alphas > 0.2
80
70r
g 60‘
<
S 5o
© |
X 40t v TS e e i i e o e ]
—————————— 30}
20
— — % SVs (source) 10
—— % SVs (target)
i i i 1 1 1 0 i i i i i i
5 10 15 20 25 30 35 0 5 10 15 20 25 30
AL iteration AL iteration
(a) (b)

Figure 6.5: KSC dataset: evolution along the AL iterations of the ratio of SVs and
magnitude of the alpha coefficients for the two domains (percentages
over the 10 experiments). (a) Percentage of SVs among source (dashed
red line) and target (solid blue line) training data. (b) Percentage of
source (dashed red line) and target (solid blue line) normalized alphas
(0;/ C) larger than 0.02 or 0.2, respectively (percentages computed over
the total number of alphas obtained in each domain).

amount of alpha coefficients found to be close to 0 and, for the target SVs
(Fig. 6.4(d)), to a non-negligible number of alpha values that are actually
larger than the corresponding SVM hyper-parameter C, t.e. ;/C > 1.

The highlighted tendency is noticeable since the early stages of the AL
cycle, with more importance given to useful instances in the target domain
and, conversely, with less weight assigned to misleading source instances.
To better perceive the cited evolution as the AL and TrAdaBoost loops
proceed to the adaptation of the SVM, we resort to Fig. 6.5.

Figure 0.5(a) depicts the evolution of the share of training points that
eventually become SVs in the two domains. The number of such key samples
remains stable over the entire AL procedure for the source training set Ts.
On the contrary, for the target training set 77 we notice a growth of the
considered ratio of SVs which is especially steep at first (until iteration 4),
and then gradually slows down as the new image is sampled.

In Fig. 6.5(b), it is insightful to notice how, among the alpha coefficients
(represented by their normalized counterparts o;/C) associated with the
SVs, there is a consistent polarizing trend as the AL algorithm runs. In fact,
always more and more of these ¢; take either high values if corresponding to
target samples, or low values if representing source samples. This evolution
of the alphas is more marked for the target image, almost doubling the
proportion of normalized a; > 0.2 found in the first iterations by the time
the AL loop reaches its end. It is worth pointing out the sheer drop (from
65.2% to 39.7%) in the proportion of source normalized alphas larger than
0.02 when the first ¢ = 10 target samples are added to the joint training
set T. The model reweights samples according to the domain of origin and
this is reflected in the SVM coefficients.
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0.4.3 Discussion

As pointed out in Section 6.4.1, an appropriately designed weighting scheme
for the training instances, as the one provided by the presented method, en-
sures an improved transfer of the knowledge between the source and the
target image. A direct consequence of this fact, due to the improved posterior
class probability estimates, is the more accurate selection of samples to be
labeled along the subsequent AL iterations. We obtain an improved model,
able to outperform in test the one built by selecting the training instances
with the simple BT heuristic, if the latter is naively applied without any
adaptation to the domain of interest. Moreover, improvements over the sim-
ple application of the TrAdaBoost algorithm in combination with a random
sampling of the new image were observed. This highlights the impact of the
active selection, via BT in this case, of the most helpful pixels of the target
image.

In more detail, we can comment on the influence of the two qualities
an adaptive AL system should possess: the ability to adapt to the domain
of interest and the ability to actively select the new samples. The experi-
ments we conducted reveal an opposite trend in the two considered datasets.
On the one hand, on the Zurich images, we notice a higher importance
given to the adaptation to the new domain (superior performance of the
AdaptiveRandomS over the AL_BT method). That could be linked to the
need of downweighting source pixels found in areas related to the shift, but
in a rather stable environment, in terms of marginal distributions. At the
same time, the misclassified target pixels, lying in a region where the class
boundaries have changed, require more attention (increasing weights) to ad-
just the model. On the other hand, when dealing with the KSC dataset, the
effect of the active sampling alone proves to be more decisive than the sim-
ple adaptation of the weights (superior performance of the AL_BT method).
This behavior can be linked to the larger and nonlinear shift observed in this
second hyperspectral case, that forces the algorithm to completely redefine
the decision boundaries with the new queries. These additional samples
are extremely useful to precisely redefine the new distribution of the highly
mixed and overlapping classes that characterize the study area.

Despite the contradictory behavior observed in the case studies (in the
first DA is more beneficial than AL, while in the second the opposite holds),
the proposed method returns the best results in both cases. First, this illus-
trates the complementarity of the AL and DA approaches, that are effective
in different scenarios. Second, this also strengthens the interest of a joint
approach capable of taking the best from both worlds: in the nested loops of
the proposed strategy, AL and DA interact constantly and can thus provide
the relevant samples, while adapting the model to the new domain. The
consequence is the remarkable gain in classification accuracy during the
first iterations, observed in both case studies when using adaptive active
sampling strategies.
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Additionally, it is worth noting that, for the KSC images, both the active
strategies converge to a performance exceeding that of the model built exclu-
sively on target data. These superior classification accuracies are obtained
with training sets that required the labeling of 270-290 target pixels only
and thus showing the interest of intelligently built compact models avoiding
the labeling of redundant samples. Furthermore, this fact indicates that the
source data is still relevant and brings into play universal information that
is useful to solve the problem in the target domain. This accuracy improve-
ment is even more significant in light of the large shift of the class spectral
signatures existing between the two images, as testified by the =~ 26.6% OA
difference between the Source and Target models (see also scatterplots of
Fig. 6.2).

Section 6.4.2 emphasizes instead the usefulness and the impact of the
dedicated instance weights included in the SVM model, core of the proposed
adaptive AL approach. As pointed out in Section 6.2.1, the standard kernel-
based learning machine optimizing the alpha coefficients with an equal
upper-bound (a; < C, Vi) is turned into an adaptable learning machine
(a; < w;C, Yi). This weighted version of the SVM, as a matter of fact, is
able to accord distinct relevance values to the training examples following
both their domain of origin and their contribution to the class discrimination
task. We draw the attention on the fact that, since these alpha coefficients act
as sample weights in the SVM final decision function (3.12), the predictions
are notably affected by the TrAdaBoost reweighting scheme.

In this sense, the evolution curves of Fig. 6.5 testify the increasing influ-
ence on the classification system of the pixels collected in the target image.
As batches of these new domain samples are included in the training set,
they quickly display a higher likelihood to become SVs than the already
present source samples. Furthermore, the magnitude of the associated alpha
coefficients is also increasing, translating the augmented relevance of the
pixels belonging to the target domain we are interested in. The adjustable
instance weights boost the SVM performance and enable the model to as-
sign tailored alpha coefficients to its SVs. The AL process efficiently adapts
the classifier by attributing more and more importance to the target domain
while discarding unprofitable source information. As a result, we obtain an
improved discrimination of the land-cover classes in the image for which we
need to produce a new thematic map.

0.5 CONCLUSIONS

In this Chapter, an approach to boost the performance of AL methods when
applied in the context of DA has been presented and analyzed. We de-
scribed a technique, TrAdaBoost, aimed at properly adapting training sam-
ple weights during the AL process. Such adjustments proved potential in
refining the ranking criterion for the selection of the most informative target
pixels to be manually labeled by the user. The individual contributions of
the smart sampling and of the adaptive adjustment of sample weights have
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been assessed, concluding that the best performances are obtained when
the two approaches are combined.

One of the objectives was also to uncover and better understand the
behavior of the proposed reweighting scheme when integrated with a SYM
classifier accepting instance weights in the training phase. The influence
of these weights on the decision function, conveying the importance and
pertinence to the domain of interest of each pixel, has been highlighted
through the analysis of the evolution of the SVs all along the sampling
procedure.

The present Chapter demonstrated that in a classification task involving
a newly acquired image and when already collected ground truth data
are available, the modeling effort for the target image can be efficiently
reduced. In fact, by means of the proposed adaptive sampling strategy, the
operator will be properly guided in the collection of the labels for the most
useful pixels on the new image. Standard supervised classifiers are supplied
with a minimal and effective training set for a suitable land-cover thematic
mapping.

Further developments of adaptive AL approaches could concentrate on
one of the open issues that have been seldom addressed in the literature so
far: the change in the set of classes from one image to another. Indeed, in
truly large-scale applications, the common DA assumption that the types of
land-cover are the same across the entire study region is often violated. On
the one hand, intelligent sampling strategies able to discover new thematic
classes previously unseen in the source image are in high demand. On
the other hand, attention should also be paid to appropriately handle the
disappearance of a given land-cover when moving to the target image.
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KERNEL-BASED FEATURE EXTRACTION FOR
RELATIVE RADIOMETRIC NORMALIZATION

Outline:  In this Chapter, we study the problem of Fea-
ture Extraction for the relative normalization of multiple re-
motely sensed images in order to ease the knowledge trans-
fer among them. We analyze a recently proposed Feature Ex-
traction method specifically designed for Domain Adaptation,
Transfer Component Analysis, and its semisupervised implemen-
tation named Semisupervised Transfer Component Analysis. In
Section /.1, we briefly recall the motivation for this work and
in Section /.2, we formalize the associated Feature Extraction
framework. Next, in Section /7.3 we present the studied tech-
niques. Section /.4 describes the datasets used and the setup
of the experiments whose results are presented and discussed
in Section /5. Finally, in Section /.6, we summarize the main
findings of this study while providing further possible research
directions.

71 INTRODUCTION

Previously, in the introductory Part i of this Thesis, we have seen how the
issues affecting the radiometry of the images acquired under different condi-
tions (see Section 2.5.2) can be alleviated by adopting image normalization
strategies. Among these compensations methods briefly reviewed in Sec-
tlon 2.5.3, we find relative normalization techniques that aim at providing
a dedicated image-to-image calibration. It is indeed in this context that
the application of the suitable feature-representation-transfer methodolo-
gies can reveal potential (see Section 5.2.3). Particularly attractive are the
alignment strategies based on the extraction of totally new features derived
from the initial data with the purpose to bridge the gap existing between
the images. In this context, if the only labeled ground truth data refers to
the source image, FE can be considered as a means of resolving the im-
age adaptation problem in an unsupervised way. Both images are mapped
in a common latent space where the class boundaries are expected to be

This Chapter is based on the following accepted paper:

G. Matasci, M. Volpi, M. Kanevski, L. Bruzzone, and D. Tuia. Semisupervised
Transfer Component Analysis for domain adaptation in remote sensing image clas-
sification. /EEE Transactions on Geoscience and Remote Sensing, Accepted.
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more domain-invariant and, subsequently, a prediction based on the source
training set can be performed.

In the present Chapter, we study the effectiveness of non-linear FE tech-
niques when applied in a cross-domain setting where we have at our dis-
posal labeled samples only in the source image. In particular, the novelty of
the work consists in the investigation of the capabilities of a FE method es-
pecially developed for DA. We consider the recently proposed Transfer Com-
ponent Analysis and, specifically, we focus on its extension named Semisu-
pervised Transfer Component Analysis [Pan et al, 2011]. Both approaches
explicitly minimize a term measuring the distance between the domains:
the MMD presented in Section 4.3.2. Moreover, SSTCA also includes in
the objective a manifold regularization term enforcing the smoothness of the
projections and a label dependence term. The former enforces the preser-
vation of the local geometry (data manifold) while the latter maximizes the
alignment of the projections with the available source domain labels.

We analyze these methods in a range of settings specifically designed to
enforce the similarity of the domains. In particular, we study in detail the
behavior of SSTCA with respect to its key parameters and related objectives
of the projection. A thorough comparison to a number of general purpose
feature extractors which may also be used in a DA setting is provided. First,
the quality of the alignment is assessed in classification tasks involving
spatially disjoint pairs of images acquired by multi- and hyperspectral sen-
sors. Then, we perform a visual assessment of both the invariance property
and the class discrimination property of the extracted features. Furthermore,
several other key issues related to the cross-image knowledge transfer by
FE are studied. First, we analyze the combined use of the considered FE
strategies with the widely utilized HM procedure. Second, we evaluate the
influence of the origin of the unlabeled samples used for FE (source image
only or both source and target images). Third, we assess the importance of
spatial features by comparing the DA results obtained using spectral-spatial
information to those using spectral data only.

7.2 DOMAIN ADAPTATION VIA FEATURE EXTRACTION

As introduced in Section 4.4.2, the purpose of feature-representation-transfer
strategies is to find a common representation of the source and target
datasets that minimizes the differences between these two domains while
maintaining their main data properties (data statistics, local relationships,
label dependence, etc.). Once the samples are mapped to the same subspace
defined by the extracted features, a classifier is trained in the source do-
main using the available labeled examples, and then inference is performed
directly in the aligned target domatn.

Let us consider the set of ns labeled source training data Ds = {Xs, Ys} =
{(xs.ys)}i2 and the set of the ny unlabeled target data X7 = {x7,}7.;.
The goal of the unsupervised DA approach considered in this Chapter is to
predict target labels y7 € C = {1,2,...,c} (set of ¢ classes in common



7.2 DOMAIN ADAPTATION VIA FEATURE EXTRACTION

original

feature extraction
based on

XCXgUXr or
X CXg

mapping

<F\

training o
using source prediction
labels Yg on XT,test

final target

land-cover
map

supervised |>
classifier

Figure 7.1: Flowchart of the considered FE approach to DA in image classification.

with Ds) based exclusively on the use of labeled data from Ds in the train-
ing phase. To this end, a mapping ¢ of the samples of both domains to a
common space is needed: Xs — ¢(Xs) = X&, X7 — ¢(X7) = X7 After
this projection the two domains should be aligned, i. e. their probability dis-
tributions should be as similar as possible: P(X%) = P(X7). In practice, we
need a matrix W to perform the joint mapping ¢ of the data. The projection
matrix can be found using a set of samples X collected either from

e the two domains (X C X5 U X7), or
e one domain only, (X C Xs or X7).

Various FE methods (see Section 3.5) can be employed to estimate this
matrix embedding the data in a m-dimensional sub-space with m « d.
Ultimately, the purpose is to train a classifier on the projected training
set {(Xg,ysl) >, and then to apply it to predict class labels y7 for the

projected target test set X7 ., (the entire image). Figure /.1 illustrates the
concept of the considered FE-based DA.
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7-3 TRANSFER COMPONENT ANALYSIS

Hereafter, we describe the non-linear kernel-based FE technique enabling
the domain-approaching projection, the unsupervised TCA. Next, we outline
its semisupervised extension, SSTCA, a development taking into account
the need both for a preservation of the local manifold structure and for the
alignment with the class labels.

7.3 Unsupervised Transfer Component Analysis

The TCA technique we investigate in this Chapter has specifically been
developed for DA [Pan et al, 2011], and is based on the MMD metric
presented in Section 4.3.2. TCA aims at finding a common embedding of the
data from the two domains by:

1) minimizing the distance between the probability distributions of ¢(X5s)
and ¢(X7) (MMD minimization),

2) preserving the main statistical properties of the original data Xs and
X7 (maximization of data variance in the first extracted orthogonal
components).

The mapping function ¢ is empirically estimated by a transformation matrix
W e ROsHn)xm with m « (ns + n7) which explicitly incorporates both
objectives.

Using the transformation matrix W, and the original kernel matrix K
of (4.7) (see page 51) built on the stacked source and target sets, it is
possible to compute the kernel matrix between mapped samples as K* =
KWW?TK. Note that the projection of the samples in the transformed do-
mains is obtained as X* = KW. Thus, this matrix K* is evaluated by dot
products of the mapped samples as X*X*, where X* is the non-linearly
transformed data matrix of size (ns+ n7) x m having the projected sam-
ples ¢(x) = x* as its rows. Consequently, rewriting the MMD formula of
Eq. (4.6), the distance between the mapped samples can be obtained as

MMD(XE X3) = Tr((KWWTK)L)
=Tr(WTKLKW) . (7.1)

The goal stated in 1) is thus achieved by minimizing (7.1) with respect to
W, guaranteeing therefore that the distributions of the projected domains
minimize the MMD.

On the other hand, objective 2) requires that ¢ does not inappropriately
deform the input space, which would complicate the task for the classification
routine. Hence, matrix W should be found such that the projection into the
newly created subspace is able to preserve (and ideally compress in few
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components, as in PCA or KPCA) the initial data variance. The covariance
matrix 2* of the projected samples x* is given by

1 ns+nr

= Z (x7 —)‘(*)(X;F —)'(*)T

ns—+nr =
= WTKHKW , (7.2)

where X* is the average of the mapped samples and H = | — ’I’IT/(ng +
nt) is the (ns+n7) x (ns + nt) centering matrix. Thus, the following
orthogonality constraint will be integrated in the optimization problem (di-
agonal covariance): 2* = [, where I is the m x m identity matrix.

The final kernel learning problem for the unsupervised TCA is then set
up as

arg minyy {Tr(WTKLKW) + uTr (W' W)}
st X=W'KHKW =1, (7.3)

where p is a tradeoff parameter tuning the influence of the regularization
term Tr(WT W) controlling the complexity of W. The present optimization
problem can be reformulated as a trace maximization problem whose final
solution may be obtained by introducing Lagrange multipliers and setting
the partial derivatives with respect to W equal to zero, thus solving the
generalized eigenvalue problem [Pan et al, 2011]

KHKv = p(KLK + pl)v . (7.4)

This entails the eigendecomposition of (KLK + ul)~'KHK. The mapping
matrix W is obtained by stacking the m eigenvectors v; associated with the
m largest eigenvalues p; of (7.4) as [v1,.. ., Vin)-

Finally, we compute the m transfer components for new test samples
Xiest a5 Xjoet = Kiest W, where Kot represents the niest x (ns + nt) kernel
matrix between the N test points and the (ns 4 nt) training samples.

7.3.2  Semisupervised Transter Component Analysis

Besides the regularized MMD minimization objective used by the unsu-
pervised version of TCA, a desirable aligning projection should fulfill two
additional requirements.

1) It should maximize the dependence between the extracted features and
the class labels by exploiting the available source labeled samples
(introducing a form of supervision in the definition of the appropriate
projection).

2) It should preserve the local structure in both domains to further reg-
ularize the projection and to avoid an exaggerated deformation of the
respective data manifolds with the joint transform.
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Indeed, SSTCA pursues these two extra goals.

To achieve the first objective, we force the projections to be dependent
on the available labeled data. A label indicator matrix is included in the
objective function:

Kyy =vKyy +(1=y)I, (75)

where Kyy is a kernel matrix computed on the labels Y that, while be-
ing of size (ns+n7) x (ns 4+ nt), is only defined on the source domain:
Kyyw =11 y; = y; with x;,x; € Xs, whereas Kyyi’/. = 0 otherwise. The
first term in (7.5) aims at maximizing the label dependence whereas the
second serves to maximize the data variance in both domains. The two com-
peting terms are balanced by the tradeoff parameter y > 0. This alignment
can be achieved by making use of a measure of dependence between sets
of variables X’ and Y’ (the labels) called Hilbert-Schmidt Independence
Criterion (HSIC) [Gretton et al, 2005, Camps-Valls et al, 2010]. Such a
non-parametric measure can be computed thanks to kernel matrices K’ and
K",y (of size n x n), corresponding to X" and Y’, respectively:

HSIC(X', Y') = (1/(n = 1)) Tr(HK'HK', ) . (7.6)

After substituting the kernel matrix K* representing the projections (re-
placing K’) and the matrix based on the labels K% (replacing K y) into
the HSIC formula (7.6), and dropping the unnecessary scaling factor, our
objective becomes the maximization of

Tr(HKWW'TK)HKY ) = Ti(WTKHKY  HKW) . (7.7)

The second purpose, the locality preservation, is attained through a man-
ifold reqularizer enforcing smoothness with respect to the underlying data
geometry, i. e. a regularizer for which small variations over the manifold lead
to small variations in the projection [Belkin et al,, 2006]. To this end, we first
build the graph Laplacian matrix £ = ID — M, where M is an affinity ma-
trix of elements M ; = exp(—dgj/ZUZ) if x; and x; are k-nearest neighbors
(with an Euclidean distance d;; in the input space) and M;; = 0 otherwise.
D is a diagonal degree matrix with elements ID;; = ZJET”T M; ;. Since
we would like that samples that were close in the initial data space remain
close in the transformed space, the goal is to minimize

1 2
—_— M |[x7 — X*H =
(ns+nrt)? ; ! !

1 T

where x7 and x7 are the projections of the tnitial samples.
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Ultimately, including the manifold regularization term, we may formulate
the final optimization problem of SSTCA as

arg miny, {Tr(WTKLK W) + uTr(WT W)

A
+ T (WTKLKW
(nS+nT)2 r( )}
st WIKHKy HKW =1, (7.9)

where A > 0 is a tradeoff parameter weighting the importance of the local
manifold. Note that in the following, for simplicity’s sake, otnT)? is directly
referred to as A. As for unsupervised TCA, the optimization can be reformu-
lated as a trace maximization problem solved via the following generalized
eigenvalue problem:

KHK% HKv = p(K(L+ AL)K + pl)v . (7.10)

The projection matrix W and the subsequently derived m SSTCA transfer
components for some new samples are obtained in the same fashion as for
TCA.

7-4 DATA AND EXPERIMENTAL SETUP

For our analyses we utilized two different datasets bearing different degrees
of shift between source and target domains.

7.41  Hyperspectral ROSIS image of Pavia

The first dataset is the hyperspectral ROSIS image of Pavia (ltaly) presented
in Appendix B.3 (see page 156). For our adaptive thematic classification
task, we took into account the 4 classes appearing throughout the entire
scene: “buildings”, “roads’, “shadows” and “vegetation”. Details are available
in Tab. B.3.

As one can see from Fig. B.3, the spatial extent of the source sub-image
is quite small, involving a description of the classes that is presumably not
rich enough to account for the complete variation of the spectral signatures
over the entire image. This raises the question of the representativeness
of the training samples for classification. Hence, adaptation is required to
correct a sample selection bias problem. The dataset shift level is qualified
as ‘light”, as it is illustrated by the scatterplots of the top row of Fig. 7.2.

7.4.2  VHR QuickBird images of Zurich

The second dataset used here is the same already used in Chapter 6: we
utilized the two VHR QuickBird images of Zurich (see Appendix B.1). To
enhance the spatial information content of the scenes, the standard set of
QuickBird bands has been extended by the same textural and morphological
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Figure 7.2: Raw DN data (standardized variables) red (R) vs. near-infrared (NIR)
scatterplots of the (left) source and (right) target images of the (top)
Pavia dataset with ROSIS band #49 vs. #95 and (bottom) Zurich
dataset with QuickBird band #3 vs. #4.

features described in Section 6.3.1. Additionally, a textural feature based
on correlation has been added to favor even more the label smoothness in
the spatial domain. Thus, we obtained a final set of 16 variables: 4 VNIR
bands, T PAN band, 5 textural features and 6 morphological features. For
the sake of comparison, results obtained exclusively using the 5 spectral
bands are reported in Section 7.5.6. For the classification task in this urban
setting, again, we considered the 5 classes shared by the two images listed
in Tab. B.1.

As mentioned, between the two acquisitions we notice strong differences
in illumination conditions induced by changes in the sun elevation and in
the acquisition geometry. Moreover, seasonal effects affecting the vegetation
and the different nature of the materials used for roofs and roads increase
the differences between images. This shift alters both the marginal and the
class-conditional probabilities governing the two images: the deviation is
thus judged as “moderate” in this case (see bottom row of Fig. 7.2).
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7.4.3 Experimental setup

In the experiments below we compared TCA and SSTCA to the following
other FE techniques: the classical PCA (see Section 3.5.1), its non-linear
kernel-based counterpart, the KPCA (see Section 3.5.2), and the supervised
kernel-based GDA mentioned in Section 3.4.2.

With respect to the sampling strategies outlined in Section 7.2, TCA and
SSTCA were always applied on a set X extracted from both the source and
target domains, X C Xs U X7, as a joint extraction was required by definition
(strategies simply named TCA and SSTCA). Regarding the competing methods,
PCA and KPCA have been applied considering a FE based on a single
domain, the source image, i.e. X C Xs (see Section 7.5.5 for a comparison
to the X C Xs U X7 setting). We termed these strategies PCA_1DOM and
KPCA_1DOM, respectively. The application of GDA obligatorily requires label
information, so the only setting adoptable was X C Xs (GDA_1DOM).

For the two TCA methods, previous works [Pan et al, 2011] suggested
as valid the standard value of 1 for the tradeoff parameter u. Likewise, for
SSTCA we fixed the label dependence parameter y = 0.5 equally balancing
label dependence and orthogonality, whereas we varied the more critical
locality parameter A in {0, 1074, .. .,104} and the number of neighbors k in
{10,50,100,150,200}. For the four kernel-based techniques (KPCA, GDA,
TCA and SSTCA), we employed Gaussian RBF kernels, with the o parameter
selected as the median Euclidean distance among the data points used to
define the mapping. We adopted this approach also for the selection of the
scaling parameter o needed in the computation of matrix M in SSTCA.

For both the Pavia and Zurich datasets, all the initial features have been
standardized to zero mean and unit variance, based on the descriptive statis-
tics of the source domain. Sets of 200 pixels per class were used to define
the projections (similar behaviors have been observed with sets of 150 and
300 pixels). The same samples constituted the training sets for the thematic
classification. When pixels X7 were needed, 200 - ¢ unlabeled target pixels
were randomly selected in the corresponding image. A total of 10 indepen-
dent realizations of these sets has been used for the experiments to ensure
a robust comparison. After exploratory analyses, the maximum number of
extracted features was fixed to 18 and 15 for the Pavia and Zurich datasets,
respectively.

To assess the suitability of the proposed FE methods, after the cardinal
projection step, we proceeded with a classification by applying two intrinsi-
cally different classifiers trained on the transformed source training samples
X;. We made use of a parametric classifier, the LDA model describing all
the classes by a common covariance matrix (see Section 3.4.1), and a kernel-
based non-parametric classifier, the soft margin linear SVM with a penalty
parameter C tuned in the range {10~",...,10%} by 5-fold cross-validation.
After FE, the classifiers have been trained with source samples mapped into
a space of increasing dimension. With the LDA model we run the classifier
for each number of dimensions. With the linear SVM we run the model for
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Table 7.1: FE methods and baselines compared in the classification experiments
(predictions on the target image).

Name FE method FE based on  Training on
Tgt none - X7
Src none - Xs
PCA_1DOM PCA Xs X;
KPCA_1DOM  KPCA Xs X&
GDA_1DOM GDA Xs X;
TCA TCA XsUXT X<
SSTCA SSTCA XsUXr Xé

every third dimension starting at 2 extracted features for all FE techniques
to reach convergence, except for GDA, for which we trained a SVM per ad-
ditional feature. As reference upper and lower baselines, we also reported
performances of models built using samples exclusively belonging to the
target or source images (Tgt and Src). In these cases, the input space was
constituted by the original spectral bands Xs or X7 (plus spatial informa-
tion for the Zurich images). Table 7.1 summarizes the considered settings
and the related names. The overall quality of the classification has been
assessed by means of the Kappa statistic (see Appendix A).
To carry out these classification tasks, we considered two scenarios:

1. FE methods applied to the raw data, without any initial matching of
the source and target images.

2. FE methods applied after a preprocessing with HM, taking the source
image as reference image.

The accuracy assessment in the target domain has been done by means of
an independent test set counting 14,047 pixels for the Pavia dataset and
26,797 samples for the Zurich dataset.

7.5 RESULTS
7.5.4  Analysis of SSTCA parameters

In Fig. 7.3, we report the results of a sensitivity analysis of SSTCA involving
its two critical parameters: the A parameter controlling the importance of
the locality preserving term and the number of neighbors k used to build
the graph Laplacian £. We focus on data after HM and we employ a LDA
classifier. As illustrated in Fig. 7.3(a) for the Pavia dataset, A returned the
best overall performances when set as > 1072, Concerning the number
of neighbors, as shown in Fig. 7.3(b) for the Zurich images, k seemed to
reach an optimum in classification accuracy if chosen between 50 and 150.
Therefore, for the rest of the study, we set A = 102 and k = 100.
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Figure 7.3: LDA classification performances on the target image (average of esti-
mated Kappa statistic over 10 runs) after SSTCA (v =1, y = 0.5). (a)
Behavior of the A parameter on the Pavia dataset with k fixed to 100.
(b) Behavior of the k parameter on the Zurich dataset with A fixed to
102. Datasets after HM have been considered.
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Figure 7.4: LDA classification performances on the target image (average and
standard deviation of estimated Kappa statistic over 10 runs) on the
(a) Pavia and (b) Zurich datasets to assess the influence of locality
preservation and label dependence in the SSTCA optimization prob-
lem. SSTCA_OnlyLocality: SSTCA run with the y parameter control-
ling the label dependence set to 0. SSTCA_OnlyLabelDep: SSTCA run
with the A parameter controlling the locality preservation set to 0. Rest
of the SSTCA parameters kept as described in Section 7.4.3. Datasets
after HM have been considered. Legend of (a) is also valid for (b).

With Fig. 7.4 we depict the influence of the peculiar objectives of SSTCA
(extending the goals of unsupervised TCA) by analyzing the impact of the
associated terms appearing in the optimization problem: the locality preser-
vation term and the label dependence term (see Section 7.3.2). In both
Figs. 7.4(a) and 7.4(b), relating to the Pavia and Zurich images respectively
(HM setting and LDA classifier also in this case), we first remark the over-
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all best performance of the standard SSTCA-based extraction (SSTCA: solid
light green line). Indeed, when both the terms enter the optimization pro-
cedure, the benefit of SSTCA over the unsupervised TCA (TCA: solid purple
line) is tangible. On the one hand, if only the locality term influences the
definition of the mapping (SSTCA_OnlyLocality: dashed black line), we
observe classification accuracies superior to those obtained after TCA, es-
pecially in the case of the Zurich image. On the other hand, when optimizing
the label dependence only (SSTCA_OnlyLabelDep: solid orange line), we
do not remark any significant improvement over TCA. Therefore, this experi-
ment confirms the usefulness of the combination of the two objectives within
SSTCA.

7.5.2 Classification performances

Figure 7.5 illustrates the performances of the previously depicted DA strate-
gies via the cross-domain classification accuracies achieved on the target
image. The left-hand side of the figure refers to the Pavia dataset while the
right-hand side reports on the Zurich experiments.

7521  Pavia ROSIS dataset

Figure 7.5(a) shows the results obtained using LDA without HM, whereas
Fig. 7.5(b) depicts the behavior of the same LDA classifier after HM. A sig-
nificant gap is noticeable in both plots between source and target-based
models. Nevertheless, the influence of HM as a preprocessing step is remark-
able. Indeed, LDA classifiers trained on original target data (Tgt: solid blue
line) outperform LDA models based on original source data (Src: dashed
red line) by 0.356 Kappa points when no matching is performed, while this
difference reduces to 0.188 Kappa points when applying HM.

Moreover, in Figs. 7.5(a) and 7.5(b), we remark three separate trends. First,
a PCA-based FE (PCA_1DOM: dashed dark green line), reveals a performance
just above the baseline of the Src model. Peak accuracies are observed
in both experiments with 2 features, while as noisy features related to
smaller eigenvalues are provided to the classifier, the quality of the model
deteriorates (see Figs. /.11 and 7.12 for a representation of these features).

Second, we note comparable evolutions for the kernel-based FE tech-
niques TCA and KPCA (TCA: dashed purple line, KPCA_1DOM: solid brown
line), yielding a robust and much more satisfactory performance reaching
and even exceeding the accuracy of the target model. When using less
than 9 (no HM) or 8 (with HM) extracted features, TCA seems to be the
more reliable of the two methods, while as more features come into play
they converge to similar performances. A possible reason behind the ob-
served tendency is that the two feature extractors share some properties
and objectives. Both are non-linear kernel methods aiming at the maximally
preserving the variance of the original data.

Third, the behavior across the entire range of features of SSTCA (SSTCA:
solid light green line) stands out for its remarkable accuracies being much
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higher than the rest of the FE methods from 4 (no HM) or 3 (with HM) fea-
tures on. The performance with unmatched data (Fig. 7.5(a)) is particularly
satisfactory since the associated Kappa statistic is within the error bar of
the target model with just 4 features (compared to 9 or more for the other
kernel-based methods).

Finally, the GDA technique (GDA_1DOM: dashed light blue line) provides
reasonable accuracies competing with those of the other FE methods when
extracting 3 features. However, since the maximum number of features it can
extract is bounded by ¢ — 1, this approach can not go beyond this level of
precision.

Considering the classification with a linear SVM, Fig. 7.5(c) illustrates
the results obtained without HM, while Fig. 7.5(d) refers to the HM case. We
first remark the general improvement in the precision of the classification
over LDA (=~ 0.1 Kappa points increase of the upper reference accuracy
provided by the Tgt approach). The tendency for the two baselines Tgt
and Src is basically the same: a large reduction of the gap is ensured
by a pre-processing with HM. However, thanks to the intrinsic properties
of the SVM, we observe that the differences between the other curves are
reduced. In both cases (with and without HM) the only technique able to
positively differ from the rest is SSTCA. In Fig. 7.5(c), this semisupervised
method allows to outperform (from 3 features on) the already very robust
SVM model trained on the original source image (Src) while the other FE
methods remain below this baseline. In Fig. 7.5(d), SSTCA again is the only
strategy attaining the precision of the Tgt model. In both figures, we note
the unsatisfactory performance by GDA, far below the rest of the strategies.

7.5.2.2  Zurich QuickBird dataset

Presented in the right-hand column of Fig. 7.5, the results referring to the
Zurich dataset when using the LDA classifier allow us strengthen the conclu-
sions drawn above. Indeed, Figs. 7.5(e) and 7.5(f) confirm the usefulness of
HM, as all the methods we employed manifestly fail if applied to unmatched
data. The reason behind this result, particularly marked for the SSTCA, is
that, since the shift is larger than in the Pavia dataset, no well-behaved
cross-domain relationships may be extracted. On these images where the
dataset shift is moderate, the Kappa accuracy of the straightforward appli-
cation of the original source LDA classifier (Src) on target image improved
from 0.187 to 0.527 after HM. The HM preprocessing allowed the FE mod-
els to correctly find the principal directions of data variation that are shared
across domains.

Analyzing more precisely Fig. 7.5(f), we observe a similar behavior as for
the Pavia dataset. A larger number of features are needed by the TCA and
KPCA approaches to achieve good performances with respect to PCA (best
performance with 3 features). Nonetheless, these accuracies are still more
than 0.1 Kappa points below the same-domain target model (Tgt). In this
situation as well, the SSTCA mapping proves to be the most appropriate
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(best Kappa = 0.718, obtained with 4 features), at least until the inclusion
of the 7th feature.

On the contrary, the GDA-based FE performs poorly, with only a minimal
improvement over the Src baseline. This poor performance, already noted
on the Pavia dataset, suggests that only focusing on the maximization of the
class separation in the source domain (the sole image where class labels
are known) is detrimental when the purpose is to find a shared data space
in which domain invariance too has to be ensured.

The performance of unsupervised TCA being systematically exceeded by
SSTCA indicates that the reduction of the statistical deviation between
datasets alone (as measured by the MMD) is not sufficient to achieve a good
portability of the classifiers across domains. Indeed, we stress the importance
of jointly considering the label dependence and the locality preservation
objectives in the definition of the mapping function. When these components
are appropriately combined, as done by SSTCA, the MMD minimization
goal guarantees a suitable knowledge transfer among the images.

Additionally, we remark that exclusively pursuing a better class discrim-
ination, especially since the latter is sought based on class labels from
the source domain only, excessively deforms the input space. Such a draw-
back harms the FE via GDA, preventing thus a proper classifier adaptation.
SSTCA ensures a better tradeoff, as it simultaneously considers geometric
preservation and class discrimination.

In general, another main finding consists in the complementarity of the
two key pre-classification procedures: HM and FE. On both sets of im-
ages, the best accuracies were reached by models built on images with
matched histograms having undergone the FE. After these processing steps,
the source and target datasets are sufficiently aligned and the features are
discriminant enough to allow classifiers trained on one image to generalize
well on the other too.

7.5.3 Classification maps and individual class accuracies

Figure 7.6 provides the LDA classification maps referring to the Pavia
dataset (experiment with HM, run #1). Compared to the map produced
by the target-based model Tgt (Fig. 7.6(a)), the thematic map obtained by
the straightforward Src strategy is poorer, with an inadequate delineation
of the built areas (Fig. 7.6(b)). A more acceptable result is obtained with a
FE by PCA (Fig. 7.6(c)), but in this case many false alarms for the class
‘shadows” are observed. Changing the representation of our data in a non-
linear fashion, as done by SSTCA (Fig. 7.6(d)), facilitates the LDA model
in providing a precise thematic map. No recurrent errors appear and the
resulting map seems less affected by noise.

Figure 7.7 reports the LDA thematic maps for the Zurich dataset (exper-
iment with HM, run #1). The reference map, the one where the model has
been trained on the target image (Tgt), is shown in Fig. 7.7(a). The Src
approach (Fig. 7.7(b)) yields a map having a much lower accuracy. The most

99
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Figure 7.6: LDA classification maps on the Pavia target image, after HM (run #1).
Legend: “buildings” — brown, “roads” — grey, “shadows” — black,
‘vegetation” — green. (a) Tgt: Kappa = 0.769. (b) Src: Kappa = 0.601.
(c) PCA_1DOM (2 features): Kappa = 0.690. (d) SSTCA (11 features):
Kappa = 0.864.

striking type of error relates to the almost complete failure in detecting the
class “trees”. On the contrary, few misclassifications are committed by the
procedures involving a FE step beforehand, thus highly enhancing the over-
all quality of the map. Indeed, after a FE by PCA (Fig. 7.7(c)) or by SSTCA
(Fig. 7.7(d)), the two vegetation classes are fairly correctly detected while
keeping a good characterization of the buildings. However, in both cases,
false alarms concerning this class, with a negative impact mostly on the
class “roads’, appear throughout the map.

Let us now focus on the evolution of the LDA individual class accuracies,
assessed via the F-measure (see Appendix A), as a function of the number
of extracted features both for the Pavia (Fig. 7.8) and Zurich (Fig. 7.9)
datasets. On the Pavia dataset, we first analyze class-specific trends of
the PCA_1DOM method thanks to Fig. 7.8(a). We can identify a distinct F-
measure peak with 2 features for the classes “roads” and “buildings”. It is
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Figure 7.7: LDA classification maps on the Zurich target image, after HM (run #1).
Legend: “buildings” — brown, “roads” — grey, “shadows” — black,
“trees” — dark green, “grass” — . (a) Tgt: Kappa = 0.806.
(b) Src: Kappa = 0.573. (c) PCA_1DOM (3 features): Kappa = 0.694. (d)
SSTCA (4 features): Kappa = 0.716.

thus straightforward to explain the maximum in Kappa statistic observed
in Fig. 7.5(b) for the PCA-based system with the appropriate detection of
these two types of land-cover. The performance of the SSTCA technique is
illustrated in Fig. 7.8(b) instead. Aside from a general increase in all the
per-class accuracies, the most apparent advantage of SSTCA over PCA lies
in the correct classification of the class “shadows’, a category which was
highly mishandled by the linear feature extractor.

Turning to the Zurich dataset, Fig. 7.9(a) illustrates the behavior of the
PCA_1DOM approach. We notice the good precisions for all classes in the
3 to 5 features region, leading to the peak in overall accuracy visible in
Fig. 7.5(f). This class specific plot allows us to have a good insight on the
reasons behind the Kappa statistic decrease from feature #6 on. It is in-
deed the class “trees” that shows a decreasing trend in precision as more
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Figure 7.8: LDA individual class accuracies (average of F-measure over 10 runs)
on the Pavia target image after HM. (a) PCA_1DOM. (b) SSTCA. Legend
of (a) is also valid for (b).
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Figure 7.9: LDA individual class accuracies (average of F-measure over 10 runs)
on the Zurich target image after HM. (a) PCA_1DOM. (b) SSTCA. Legend
of (a) is also valid for (b).

features are extracted by PCA, probably indicating that these components
possessing a high spatial frequency badly affect the discrimination of this
class. Figure 7.9(b) breaks down the performance of the SSTCA method and
reveals that the critical land-cover is in this case the class “roads’, whose F-
measure curve evolves far below the rest. Since the “buildings” and “roads”
thematic classes are spectrally very similar, the label dependency term can-
not convey information useful for discrimination, and a naive approach may
result in better class-specific scores. This confirms the visual inspection of
the classification map in Fig. 7.7(d).

14
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Figure 7.10: Scatterplots of the (left) source and (right) target images of the Zurich
dataset (run #1). (top) Data after HM in the red (R) vs. near-infrared
(NIR) space (standardized variables). (bottom) Data after HM and
after FE by SSTCA based on X C X5 U X7 plotted in the 1st vs. 2nd
component space.

7.5.4 Visual analysis of the extracted features

Referring to the Zurich QuickBird dataset, the scatterplots of Fig. 7.10 al-
low us to visually perceive the reduction of the shift (invariance property)
between data distributions. Looking at the plots for the raw images (bottom
row of Fig. 7.2 on page 92), we easily understand why a model trained in the
source domain fails if applied on the target domain. The scatterplot of the
classes of the source image is compressed towards the origin of the space
since, for the vegetation class for instance, the reflected energy is lower due
to the leaf senescence process associated with the season (image taken in
autumn). After HM (top row of Fig. 7.10) the situation improves, with point
clouds roughly occupying the same regions of the red vs. NIR space in
the source and in the target domain. Nonetheless, overlapping classes and
shifts in the class-conditional distributions explain the poor target classifi-
cation maps produced by a model trained on the original, though histogram
matched, source image (see Fig. 7.7(b)). If we apply the crucial FE step,
via SSTCA for instance (bottom row of Fig. 7.10), we notice a clear de-
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crease both in the general shift of the images and in the change in class
distributions. In the space formed by the 1st and 2nd SSTCA components,
the boundaries of the land-cover classes a supervised classification model
learns on the source image are directly transferable to the target image,
resulting in accurate thematic maps (see Figs. 7.5(f) and 7.7(d)). As no-
ticed above, we may also observe the mixing of the “buildings” and “roads”
classes.

Figures 7.11 and 7.12, both concerning the Pavia dataset, reveal the en-
hancement of class separability (discrimination property) induced by feature-
representation-transfer methods. On the one hand, Fig. 7.11 illustrates the
scatterplots after FE for source and target data in the space formed by the
first two components (left) compared to those constituted by the 4th and 5th
components (right). On the other hand, Fig. 7.12 visualizes the same infor-
mation, but in the geographical space: the RGB compositions of the target
image correspond to the 18 extracted components taken 3 at a time and in
a decreasing variance order. Class discrimination in the first components is
appropriately guaranteed by all the FE techniques illustrated here. In fact,
well separated clusters (plus good superimposition of the source and target
data) appear when looking at the 1st and 2nd features (Fig. 7.11) and clear
structures are visible in the RGB image associated with the first 3 compo-
nents (Fig. 7.12). As we investigate the subsequently extracted features, we
remark some differences among the methods. In fact, PCA starts yielding
noisy variables as soon as from the 4th derived feature onwards, resulting
in a single large cluster mixing all the classes in the scatterplot and a noisy
image in the RGB composition. This is the reason of the decrease in classifi-
cation accuracy for the PCA-based system observable in Fig. 7.5(b) after the
peak at 2 features. We appreciate the superior quality of kernel-based ex-
tractors (KPCA, TCA and SSTCA), almost always returning informative and
discriminant features throughout the investigated range. Especially, with
the plot of the 1st vs. 2nd component (4th row, left column of Fig. 7.11), we
draw the attention to the ability of the SSTCA method in yielding a new
space of features in which the classes are very well separated as a result
of the label dependency goal pursued by the projection.
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Figure 7.11: Scatterplots after FE in the (left) 1st vs. 2nd component and (right)
4th vs. 5th component space for the Pavia dataset (experiment with
HM, run #71). Source data: @, target data: [J. (1st row) PCA based
on X C Xs. (2nd row) KPCA based on X C Xs. (3rd row) TCA based
on X C Xs U X7. (4th row) SSTCA based on X C Xs U X7.
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Figure 7.13: LDA classification performances on the target image (average and
standard deviation of estimated Kappa statistic over 10 runs) on the
(a) Pavia and (b) Zurich target images to test the sampling settings.
Datasets after HM have been considered. Legend of (a) is also valid
for (b).

7.5.5 Influence of the origin of the samples

We present here the results of an experiment aimed at gauging the influence
of the domain of origin of the samples used to design the mapping function.
To this end, for PCA and KPCA, the only methods allowing such a flexibility,
we tested the sampling schemes described in Section 7.2. We compared the
joint domain extraction based on X C Xs U X7 (approaches named PCA
and KPCA) to the single domain scheme involving pixels drawn from the
source image only, i.e. X C Xs (PCA_1DOM and KPCA_1DOM). Figure 7.13,
referring to datasets after HM, reports the results of this experiment relying
on LDA as the base classifier. On the Pavia image (Fig. 7.13(a)), we draw
the attention to the almost indiscernible behavior between models built after
the FE based on both domains (PCA and KPCA curves) and those based on
the source domain only (PCA_1DOM and KPCA_1DOM curves). On the Zurich
dataset (Fig. 7.13(b)), the single-domain FE settings even outperform the
joint-domains counterparts for a wide range of number of features. Such
a behavior suggests that using one domain only (the source image) as
foundation for the FE does not imply a loss in invariance across domains.
Instead, the overall trend in Kappa statistic of the classification system built
after a single-domain FE can be judged superior to the FE involving two
domains.
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Figure 7.14: LDA classification performances on the target image (average and
standard deviation of estimated Kappa statistic over 10 runs) on the
Zurich target image using spectral bands only (4 VNIR + 1 PAN).
Datasets after HM have been considered.

7.5.6  Adaptation using exclusively the spectral bands

In this Section, we briefly report on a test we carried out to gauge which
is the real benefit of using the spatial information in the experiments on
the Zurich data. Figure 7.14 presents the classification performances of the
LDA classifier in a situation where both the FE and classification steps have
been applied by considering only spectral data, i.e. the 4 VNIR bands and
the PAN channel of the QuickBird acquisitions. In this case, with KPCA,
TCA and SSTCA we extracted up to 21 features whereas we were limited
to 5 components with PCA (bounded by the number of input variables d)
and to 4 components with GDA (bounded by the number of classes ¢ —1).
The results can be directly compared to those of Fig. 7.5(f) concerning the
standard setting adopted in this Chapter for the Zurich data: a combination
of spectral and spatial features.

Firstly, we notice the benefits of resorting to the spatial information for
the single-image classification case, as testified by the purely spectral Tgt
model only achieving an average Kappa of 0.775 compared to a Kappa of
0.810 when including the spatial features. Also, we observe the much larger
variance in the results of the Src classifier with respect to that visible in
Fig. 7.5(f), an indicator of the stability in the cross-image classification per-
formance ensured by textural and morphological features. Second, a slight
decrease in the performance of the PCA_1DOM and GDA_1DOM methods is
detected for every size of the set of input features we tested. Third, the
tendency for the KPCA_1DOM, TCA and SSTCA methods is to peak at the
same level of accuracy as the previous spectral-spatial setting but by ne-
cessitating more features (> 15). Summing up, we can state that introducing
contextual information in the DA exercise generally helps in augmenting the
invariance of the input space used to describe the samples across domains.
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7.6 CONCLUSIONS

In this Chapter, we studied the suitability of non-linear aligning transfor-
mations by FE in a remote sensing DA context. The purpose was to match
the probability distributions of a target image to be classified to those of a
source image whose labeled training data are already available. We verified
the assumption that, after the proper projection, even a simple linear super-
vised classifier is able to accurately predict the land-cover across images.

In this regard, we extensively analyzed the SSTCA technique by under-
standing the crucial role played by all the terms concurring in its optimiza-
tion problem. The clear improvements over the unsupervised version, TCA,
were apparent in all scenarios and regardless of the classifier, confirming
thus the interest of a projection preserving the local geometry of the data
as well as maximizing the dependence with the labels. Regarding the other
considered FE techniques, a better performance of kernel-based methods
such as KPCA and TCA with respect to simpler linear ones such as PCA has
been distinctly noted. Nonetheless, these two kernel methods have demon-
strated to perform almost equally throughout the entire set of scenarios we
tested.

Experiments also showed that the combination of HM with FE is ex-
tremely beneficial, pointing out the complementarity of these alignment
strategtes.

Furthermore, by means of dedicated visual representations of the derived
features, we could provide important insights on the reasons behind the ob-
served behaviors: class discrimination and domain-invariance are two fun-
damental properties the new features should display. SSTCA in particular
has demonstrated to possess them both.

To sum up, a well designed FE step will greatly improve the accuracy of a
classifier trained on a different image. These findings represent a step ahead
in defining effective tools for addressing large-scale land-cover mapping
applications involving multiple remotely sensed images.

As regards the outlook on new research directions, a development we
envisage is to broaden the set of FE techniques to be compared. In fact,
especially among supervised methods making use of class labels, there is
room for improvement in the definition a transformation that increases the
class separability in both domains while preserving the data structure. Syn-
ergies between supervised FE and manifold alignment could prove highly
beneficial. In addition, to further overcome the dataset shift, the application
of FE strategies could be exploited in combination with classification tech-
niques specifically designed for DA, the parameter-transfer approaches we
reviewed in Sections 4.4.3 and 5.2.4.
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ASSESSING ANGULAR DATASET SHIFT AND MODEL
PORTABILITY IN MULTI-ANGLE IMAGE SEQUENCES

8.1

8.1.1

The decrease of revisit time of satellites carrying VHR sensors has drasti-
cally increased the amount of data available to the end-users. These shorter
collection intervals are, among other reasons, a consequence of the agility
of the latest on-board control systems engineered to swiftly redirect the
sensor even to very high off-nadir angles (see last part of Section 2.3.2). In
this respect, as we mentioned in Section 2.5.2, it is acknowledged that the
difference in the observation angle is a key factor altering the radiometry of
remotely sensed images, together with atmospheric conditions, solar illumi-
nation, and phenology of vegetation [Schowengerdt, 2007]. Indeed, for every

Outline: This Chapter investigates the angular effects caus-
ing spectral distortions in multi-angle remote sensing imagery.
We study two WorldView-2 multispectral in-track sequences ac-
quired over urban areas. First we quantify the degree of distor-
tion affecting the sequences by means of the Maximum Mean
Discrepancy. Second, we assess the ability of a classification
model trained on an image acquired with a certain view angle
to predict the land-cover of all the other images in the sequence.
For both datasets, the efficacy of physically- and statistically-
based normalization methods in obtaining angle-invariant data
spaces is compared and synergies are discussed. In Section 8.1,
we review the latest developments in exploiting multi-angle im-
agery as well as the main issues arising from a variable ac-
quisition geometry. Subsequently, Section 8.2 introduces the
multi-angle sequences we used. Section 8.3 presents the sta-
tistical quantification of the angular dataset shift. In Section 8.4,
we tackle the question of the land-cover model portability. Sec-
tion 8.5 concludes the Chapter and provides future research di-
rections.

INTRODUCTION

Impact of the acquisition angle

This Chapter is part of a submitted paper that is now under review:

G. Matasci, N. Longbotham, F. Pacifici, M. Kanevski, and D. Tuia. Understanding an-
gular effects in VHR in-track multi-angle image sequences and their consequences
on urban land-cover model portability. ISPRS Journal of Photogrammetry and

Remote Sensing, Submitted.

Acquisition
angle &
at-sensor
radiance
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ground-cover type, the at-sensor radiance L5 measured at the platform level
(Eq. 2.1 on page 13) is dependent on the view angle. Three main angular
physical phenomena are responsible for such a dependence.

First, the optical depth of the atmosphere that the electromagnetic radi-
ation has to go through before reaching the sensor has a critical impact
on the acquisition. In essence, the lower the satellite elevation angle, the
larger the off-nadir angle of acquisition, implying thus a longer optical path.
In this situation, more radiance is scattered to the sensor by the atmosphere
without any contact with the objects on the ground [Schott, 2007]. In Sec-
tion 2.2, such a component of the total at-sensor radiance L5 has been
termed up-scattered path radiance and denoted with Lip. As we discussed,
the distortion is driven by Rayleigh scattering, a physical phenomenon that
is more marked at short wavelengths and at large off-nadir angles.

Second, we observe BRDF effects, consisting in the variable scattering of
an incident EM beam into the different directions of the hemisphere [Roujean
et al, 1992, Schaepman-Strub et al, 2006]. The anisotropic scattering can
be viewed as an angular property of each material. When imaging a given
land-cover class, this causes brighter or darker surfaces depending on the
satellite view angle with respect to the position of the illumination source.

Third, the solar observational cross-section, an effect responsible for
changes in the reflectance of the objects with non-flat surfaces, is also
considered a relevant factor. The consequences are clearly visible in the
form of unmistakable differences in illumination and shadowing of parts of
the surface (e.g. pitched roofs). This phenomenon is particularly apparent
for objects with a considerable vertical structure. For instance, when the
sensor acquires the image with a perspective similar to that of the illumi-
nation source (satellite and sun positioned at similar azimuth and elevation
angles) for different types of trees the observed shadowing is minimized
resulting in a brighter signal. A phenomenon known as backward scattering
hotspot is distinctly detectable at these locations [Stmmer and Gerstl, 1985,
Hapke et al, 1996].

When the geometry of the acquisition varies from one image to another,
all the phenomena above induce further shifts in the probability distribution
of the spectra of the different land-cover classes that add to those considered
up to now. Under these constraints, as discussed throughout this Thesis, the
development of large-scale VHR land-cover/land-use mapping systems that
require multiple remotely sensed images is hindered.

To overcome the shift in the image distributions and therefore to make
classification routines more robust to angular effects (more portable across
acquisitions) the two types of approaches we reviewed in Section 2.5.3 are
usually adopted: absolute or relative normalization strategies. In the first
category, we find atmospheric compensation approaches, whose purpose
is to maintain the physical meaning of the image being processed, hence
delivering final products describing the land-cover through quantities such
as the surface reflectance p(A). The second cateqgory, instead, is mostly



8.1 INTRODUCTION

composed of statistical approaches aimed at adjusting the radiometry of a
given image with respect to that observed on similar imagery.

8.1.2 Exploiting and understanding the angular properties

The multi-angular capabilities of recently launched satellites have proven
beneficial in many applications. Indeed, enriching the spectral information
by simultaneously considering the series of angular images has often been
instrumental in improving the thematic mapping or the information extrac-
tlon over a particular scene. In urban studies, multi-angle sequences have
been leveraged for detailed land-cover/land-use classification. This is due
to the fact that urban materials such as asphalt and concrete possess dis-
tinct BRDF signatures [Puttonen et al, 2009]. Taking advantage of these
properties, Duca and Del Frate [2008] provide encouraging results in the
discrimination of urban structures using moderate resolution CHRIS data.
Also exploiting CHRIS angular acquisitions, Verrelst et al. [2009, 2010] study
the Minnaert-k parameter of the Rahman-Pinty-Verstraete model [Rahman
et al, 1993] which allows to simulate BRDFs of various surfaces. The pre-
viously noted parameter describing the shape ("bowl” or “bell”) of the re-
flectance curve in the angular domain is used to retrieve the density of the
canopy cover in alpine forests. As regards WorldView-2, the potentialities in
terms of urban classification offered by its VHR multi-angle sequences have
been thoroughly analyzed in Longbotham et al. [2012a] In order to include
the angular reflectance profiles of the pixels in the classification problem,
the authors provide a comprehensive investigation of various strategies go-
ing beyond the simple stacking of the images.

On the contrary, in Longbotham et al. [2012b], the authors approach the
subject by individually considering the images of the sequence. They ex-
plore the model portability of a land-cover classifier across the sequence
and weigh the efficiency of physically-based normalization techniques in
mitigating the angular effects.

In this Chapter, we isolate and study the impact of the acquisition an-
gle on remotely sensed images collected in an urban environment. For this
purpose, we analyze two VHR sequences of multispectral images acquired
within a time frame of few minutes each by the WorldView-2 satellite along
an in-track collection path. The unique characteristic of these datasets is
that the images represent the same urban scene under stable atmospheric,
phenologic and illumination conditions: only the observation angle is vary-
ing. Our analysis is statistical: we first highlight and determine the nature of
the shift in the probability distribution of the pixels caused by the increase
of the off-nadir angle. For this purpose, we resort to the measure of distance
between data distributions we presented in Section 4.3.2: the MMD. The
analysis compares the observed distortions with respect to the type of data
used, whether raw DN or atmospherically compensated data, and with refer-
ence to the application of traditional HM strategies. The statistical behavior
of the spectral bands and land-cover classes is then linked to the physical
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properties explaining the observed angular phenomena. Subsequently, we
evaluate the portability of image classification models by training a classi-
fier on a given source image and then applying this model to all the rest of
the acquisitions in the sequence (in turn considered as target images). The
loss in accuracy in land-cover discrimination is analyzed with respect to the
previously highlighted distortions induced by the changing view angle. We
test two supervised classifiers of different nature and complexity: the LDA
and the non-linear Gaussian SVM. The factors influencing the portability
through the collection of images are then investigated. Here as well, we
assess the ability of the statistical technique of HM in providing angle-
invariant data spaces and compare it to atmospheric compensation. Thus,
we evaluate the contribution of a simple yet effective relative normalization
procedure with respect to a standard absolute normalization strategy.

82 DATA: WORLDVIEW-2 SEQUENCES OF ATLANTA AND RIO DE JANEIRO

For the analyses presented in this Chapter, we utilized two multi-angular in-
track sequences acquired by WorldView-2 over the cities of Atlanta (USA)
and Rio de Janeiro (Brazil). The former, a sequence of 13 images, is de-
scribed in Appendix B.4 (see page 158) while the latter, a sequence of 20
images, is presented in Appendix B.5 (see page 161). We considered multi-
spectral imagery consisting of 8 VNIR bands (coastal, blue, green, yellow,
red, red edge, NIR, NIR2). The agile satellite on-board system allows rapid
imaging enabling the acquisition of a sequence of images with different view
angles over the same area during a single overpass.

The observed dataset shift along these series of angular images is en-
tirely due to the changing geometry of the acquisition. Indeed, since the
collection of the images is quasi-simultaneous (time frame of a few minutes),
factors such as changing atmospheric conditions, differences in illumination
(e.g. due to the sun elevation) and seasonal effects on the vegetative cover
do not impact the data acquisition. A discussion of the main reasons be-
hind the observed anqgular dataset shifts, and how these effects manifest
themselves in the two sequences can be found in the respective dataset
description texts in the Appendix.

Both image sequences were obtained in the original raw DN format, with
an 11-bit dynamic range. For the present study we also considered atmo-
spherically compensated data. The conversion to surface reflectance values
has been performed using DG-AComp, a DigitalGlobe proprietary software
allowing an automatic atmospheric compensation yielding very similar re-
sults to FLAASH [Pacifici, 2013} Moreover, we created two additional se-
quences to be compared consisting of the same sets of raw DN and surface
reflectance images but, in this case, after the application of the univariate
HM procedure. We carried out the matching for each image in the sequence
taking the CDF of the source image (specified in each of the experiments
below) as the reference distribution to be reproduced.
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83 QUANTIFICATION OF THE ANGULAR EFFECTS

In this Section, we analyze the spectral response of the land-cover classes
with respect to the acquisition angle. As mentioned, the presented datasets
provide a unique opportunity to isolate the angular effects affecting the im-
ages along an in-track multi-angle acquisition. In the following, we present
the results on the detection of this angular shift by focusing on the At-
lanta sequence only, whereas in Section 8.4 both sequences will be used
to evaluate the model portability.

8.3.1 A visual assessment

Figure 8.1 provides an example of the distortions encountered in the se-
quence by means of a series of scatterplots relating the blue and NIR2 bands
(WorldView-2 channels #2 and #38, respectively). For the raw DN data (1st
column), the main apparent difference between the most nadir image (—8.5°
off-nadir, image #7) and one of the two most off-nadir counterparts (4-31.5°
off-nadir, image #13) relates to the general translation of the data cloud
observable especially along the blue axis due to Rayleigh scattering. Such a
translation disappears when looking at histogram matched (2nd column) or
atmospherically compensated data (3rd column). For instance, in the latter,
we remark the class “shadow” appropriately exhibiting near zero reflectance
values in both angular images.

Nonetheless, in each data space (raw DN and after atmospheric com-
pensation), an overall expansion of the point cloud toward brighter values
(larger DNs or surface reflectances) is observed with the increase of the
off-nadir acquisition angle. This effect can be attributed to the geometry of
the acquisition (see Fig. B.5 on page 160), whereby the sensor is imag-
ing a scene directly illuminated by the sun, with elements like trees being
less affected by self-shadowing (backward scattering hotspot). The relative
normalization of the overall distributions (2nd and 4th column) helps in
mitigating this shift, as it is particularly visible for the class “grass”.

8.3.2 Experimental setup

To quantitatively assess the degree of distortion along the sequence, we
measured the distance between the probability distributions of the images of
the sequence with the MMD. This metric has been computed between pixels
extracted from the most nadir image (—85° off-nadir angle), considered
always as the source image (represented with a dataset Xs of size ns), and
each image of the sequence (including the source image itself), taken in turn
as target images (represented with datasets X7 of size n7). We sampled the
sequence to obtain 10 independent realizations of sets with 100 pixels per
class from each image. The MMD has then been computed as a separate
measure for each individual class (Xs and X7 of size ns = n7 = 100
pixels belonging to the same class) and as an overall measure describing
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the distortion of the complete set of classes (“all classes” case with Xs
and X7 of size ns = ny = 100-9 = 900 pixels from the 9 classes).
Additionally, besides assessing the angular evolution by considering all
the bands together (Xs and Xt of dimension d = 8, as the number of
WorldView-2 channels), we also gauged the shift for each single spectral
band by calculating univariate MMD scores. A Gaussian RBF kernel with
a o width parameter equal to the square root of the number of variables
involved (1 or 8) has been chosen to obtain the kernel matrices of Eq. (4.7)
used by MMD (see Section 4.3.2).

For these analyses, both the raw DN and the atmospherically compen-
sated sequences have been statistically normalized by dividing each pixel
value of all the images in the sequence by the maximal value observed
among the labeled pixels of the source image over the 8 bands. The pur-
pose is to ensure a fair comparison of the trends across the data spaces
while keeping the shape of the spectral signatures unaltered (the relation-
ship between the band magnitudes is not changed).

8.3.3 Results and discussion

Figure 8.2 illustrates the MMD plots obtained. We present the results in
a logarithmic scale for the four sequences described above: 1) raw DN
data, 2) raw DN data after HM, 3) surface reflectances obtained after atmo-
spheric compensation, and 4) atmospherically compensated data after HM.
Moreover, additional to the “all classes” case, we report separate graphs for
certain classes of interest, namely “shadow”, “trees” and “asphalt”.

We begin by first examining the plots considering all the classes together
(1st row). When working with raw DN data (1st column), the statistical dis-
tance between distributions increases as the off-nadir angle increases. In
agreement with the observations in Longbotham et al. [2012a], short wave-
length bands subject to Rayleigh scattering (coastal, blue and green) dis-
play stronger shift trends due to the increasing up-scattered path radiance
at lower satellite elevations (high off-nadir angles). The other striking ten-
dency relates to the larger MMD values in the solar backward scatter region
(off-nadir angle > 9.5°) than in the forward solar scattering region (off-nadir
angle < 95°). Such a phenomenon can be related to the decreased self-
shadowing effects for the objects in the scene when imaging in the backward
scattering region. In the raw DN histogram matched sequence (2nd column)
and in the atmospherically compensated sequence (3rd column), a clear
general decrease in the MMD values (by at least a factor of 10) is noticed
and, above all, a decisive reduction of the shift for the bands of shortest
wavelength can be identified. In particular, we draw the attention to the
almost flat curve for the coastal band in the plot for histogram matched
raw DNs, which is coherent with the successful correction of the data cloud
translation noticed in Fig. 8.1. Applying HM to the already atmospherically
compensated sequence (4th column) allows for an even stronger reduction of
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the general shift in the backward scattering region while slightly inflating
it in the forward scattering region.

Taking a closer look at specific classes, for the “shadow” class (2nd row)
the reduction of the shift is appropriately obtained both through physically-
and statistically-based corrections. Indeed, the consequences of the scatter-
ing of short wavelength radiation that affect the raw DN MMD plot have
successfully been mitigated both with an absolute atmospheric compensa-
tlon and with a relative HM. For completeness, we draw the attention to
the much smaller residual off-nadir shift (close to one order of magnitude)
in the atmospheric compensation plots for the “shadow” class with respect
to the "all classes” case, attesting thus that the distortion for this class was
essentially due to the up-scattered path radiance.

When analyzing the class “trees” (3rd row), we remark sensibly higher
overall MMD values as well as the persistence of a strong anqular diver-
gence even after the corrections. This is particularly visible for the WorldView-
2 channels designed to highlight vegetation properties (NIR, NIR2, red
edge). This matches well with the observation that, once the atmospheric ef-
fects are removed, the response of vegetation in the longer wavelength bands
is the most affected by the off-nadir acquisitions because of the illumination
hotspot effects. Again, we notice the ability of HM (2nd and 4th column) in
handling these distortions by suitably normalizing the data spaces in the
backward scattering region of the sequence. Indeed, in correspondence of
positive off-nadir angles, we notice a stark reduction of the anqular shift for
the NIR and NIR2 bands. This is the outcome of the compensation of the
illumination/self-shadowing effects observed in Section 8.3.1.

For the class “asphalt” (4th row), a subtle behavior can be detected when
successively applying the different normalization strategies. For this partic-
ular material, after a general decrease in the shift when converting raw DN
data to surface reflectances (flatter MMD curves in the 3rd column with
respect to the 1st), a HM on the atmospherically compensated sequence
raises the MMD at large off-nadir angles (see 4th column plot). Such a
phenomenon can be linked to the well-known harmful effect that HM can
have on some of the classes since the procedure acts on the global CDF
instead of on the CDFs of each class.

84 CLASSIFICATION MODEL PORTABILITY ASSESSMENT

In this Section, we study the portability of classification models built on Objectives
a single acquisition (source image), when used to predict the land-cover

on all the images of the sequence (target images). With this exercise, we

are interested in studying the consequences of the previously highlighted

angular dataset shift on the accuracy of thematic classification. We analyze

the compensation brought by statistical and physical normalization strate-

gles, as well as the possible benefits of their joint use. In our case study,

we analyzed the model portability on both the Atlanta and Rio de Janeiro

sequences.
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Table 8.1: The four factors analyzed during the model portability experiments with
associated acronyms of the options used in figure legends or captions.

Factor Cases

negative off-nadir angle vs. near-nadir angle

Source image o .
vs. positive off-nadir angle

raw DN data ("‘Raw DN") vs. atmospherically com-

Initial data space pensated data (‘AC’)

matching not applied (“No HM") vs. matching ap-

Histogram Matching olied ("With HMP)

Linear Discriminant Analysis ("LDA") vs. SVM with

Type of classifier Gaussian kernel (“Gaussian SVM")

8.4.1  Experimental setup

For both datasets, we carried out 3 separate experiments, each one consid-
ering a specific image as the source domain where classifiers are trained.
For the Atlanta sequence, the source images have been chosen as the ac-
quisitions at —24° (image #3), —8.5° (image #7/, the most nadir) and +17°
(image #10). For the Rio de Janeiro dataset, the image considered as the
source were those at —38.8° (image #5), —06.1° (image #9, the most nadir)
and +39.5° (image #16). Such a setup has been adopted to investigate the
possible asymmetry in the ability to transfer a classifier trained in anqular
regions subject to distinct solar scattering patterns (forward and backward
scattering). As mentioned, the target image on which to test the model was
drawn sequentially from the complete set of acquisitions to obtain a se-
quence of 13 (for Atlanta) or 20 (for Rio de Janeiro) accuracy values. We
considered the estimated Kappa statistic as overall precision metric and F-
measure for class-specific accuracies (see Appendix A). We made use of 10
independent training sets of 100 randomly selected pixels per class, whereas
the test set was composed of all the remaining labeled pixels (84,055 for
Atlanta and 17,963 on average for Rio de Janeiro).

Besides the location of the source image, we examined the influence of
three additional factors whose respective cases are detailed in Table 8.1:
1) the initial data space, 2) the application of HM, 3) the type of classifier
used. For both initial data spaces, the dataset normalization and the ap-
plication of HM was executed following the same procedures described in
Section 8.3.2 and in Section 8.2.

With the purpose of underlining the generalization abilities of two funda-
mentally different classifiers, we decided to make use of LDA and of the more
sophisticated Gaussian SVM. The parameters of the SVM have been tuned
by 5-fold cross-validation with a comprehensive grid search. For the penalty
parameter C, the search has been carried out in the range {10~",...,10"}
while for the Gaussian kernel width parameter g, we searched the space
{0.2,...,5} times the median distance among training data points.



off-nadir angle [deg]

off-nadir angle [deg]

Figure 8.3: Atlanta dataset: assessment (average Kappa statistic with standard de-
viation over 10 experiments) of LDA model portability to all the images
in the sequence in turn (target images) from the source image at (top)
—8.5° off-nadir, (center) —24° off-nadir and (bottom) +17° off-nadir. Re-
sults are presented separately for (left) original unmatched sequences
and (right) histogram matched sequences. Data space: “Raw DN" (raw
DN data) vs. "AC”" (atmospherically compensated data).

8.4.2

8.4.2.1

Results and discussion

Atlanta dataset

We first analyze the results obtained with the LDA classifier when trained
in different regions of the angular sequence. Figure 8.3 illustrates the perfor-
mances (Kappa statistic) of the classifiers in the various scenarios described
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above. Without HM (left column), portability appears to be very much de-
pendent on the application of an appropriate atmospheric compensation (red
curve). In fact, with raw data (blue curve), when training on the near-nadir
image at —8.5° off-nadir or on that at —24° off-nadir, the portability suf-
fers acutely when the off-nadir angle increases, especially in the backward
scattering region (angles > 10°). This last observation properly correlates
with the larger shift detected for this region of the angular collection on
the MMD plots (top left plot of Fig. 8.2). Moreover, we remark very similar
behaviors for these two source images, a trend explained by the fact that
both acquisitions lie in the solar forward scattering region, where MMD
values were modest. On the other hand, when training on the image at
+17° off-nadir, the obtained plot is completely different. Besides noticing
the expected Kappa peak in the vicinity of 417°, we detect a sheer drop go-
ing toward the forward scattering region. In this direction, the lowest point
is attained for image #5 (—15.3°), which corresponds to the acquisition
with the most pronounced forward scattering effect, i.e. a collection per-
formed directly opposite the sun with respect to the imaged area (specular
reflection).

Using images bearing matched histograms (right column), when consider-
ing the raw DN case, the classifier reaches satisfactory performances com-
peting with those observed with atmospherically compensated data. The
portability improves further if we match the histograms of the surface re-
flectance data, in some cases (source image at —24° off-nadir) even exceed-
ing the unmatched atmospherically compensated profile (red curve in left
column plots). In this respect, we point out that HM is favored by the speci-
ficities of this case study: the scene remains unchanged, without any change
in the proportion of the land-covers or without the appearance of any new
class. Those events would sensibly modify the shape of the global proba-
bility distribution, lessening therefore the appropriateness of the matching
at the class level. In a context involving geographically disjoint scenes, the
absolute atmospheric compensation approach should show a heavier gain
in model portability.

In general, after the physical correction or the statistical matching of the
images, we notice a minimal loss in accuracy when moving from the respec-
tive source images to the most off-nadir target images in the collection.

Figure 8.4 illustrates the portability performances obtained with a Gaus-
stan SVM trained on the most nadir source image (—8.5° off-nadir). The
main difference with the corresponding LDA plots lies in the higher overall
performances for the SVM, more than 0.2 Kappa points superior to that of the
parametric linear model across large parts of the angular domain. Consider-
ing the unmatched sequences (left), a clear dependence on the compensation
of the atmospheric effects appears as the model moves off-nadir. As noticed
above for LDA, the change in illumination/shadowing conditions towards the
angles > 10° (backward scattering regime) hampers massively the classifier.
With histogram matched sequences (right), the general performance of the
SVM in this critical region of the sequence improves even more (along with



Figure 8.5: Atlanta dataset: evolution of the F-measure (average of 10 experiments)
for each class in the experiment with the image at —8.5° off-nadir as
source image. We considered (left) raw DN and (right) atmospherically
compensated sequences (AC). A Gaussian SVM classifier and a setting
without any preceding HM have been chosen.

a reduction in the variability). However, in this case, throughout the angular
domain, no distinction can be made between the behavior with raw DN or
with atmospherically compensated data.

Figure 8.5 allows us to investigate in more details the model portability
performances by having a look at class-specific trends. We focus on the
experiment without HM where a Gaussian SVM classifier was trained on
the image at —8.5° off-nadir (corresponding to the left panel of Fig. 8.4).
From the raw DN plot (left plot of Fig. 85), we understand how all the
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land-covers suffer the increase in off-nadir angle in the backward scattering
region. The only class not being heavily affected is the class “shadows”.
Working with atmospherically compensated data (right plot of Fig. 85), a
clear benefit for all the thematic classes is observed. The series of F-measure
figures across the entire angular domain are now more stable, with minimal
accuracy losses when moving from the near-nadir acquisition to the off-nadir
counterparts. Moreover, we point out how, in both plots, very similar types of
materials such as “concrete” and “asphalt” are appropriately discriminated
by the SVM. On the other hand, we remark the apparent difficulty of the
model in correctly detecting the classes “water” and “vehicles’, those being
associated with small objects (pools and parked cars) with highly variable
spectral signatures.

8.422 Rio de Janeiro dataset

The Kappa statistic plots obtained by training the LDA model in three dif-
ferent angular locations of the Rio de Janeiro sequence are presented in
Fig. 8.6. Considering the case without HM (left column), the main observa-
tion is that, for this sequence as well, atmospheric compensation (red curve)
is crucial to achieve a good portability.

Examining the overall shape of the plots, the other main noticeable trend
is that, the evolution of the Kappa curves associated with unmatched raw DN
data (blue curves) presents a striking difference if compared to the Atlanta
sequence (left column of Fig. 8.3). As a matter of fact, a clear symmetry
with respect to the nadir is visible in the present case. When setting the
acquisition with the lowest absolute off-nadir angle (image at —6.1°) as the
source image, we notice an almost equivalent decay in accuracy on each
side of the anqular sequence for the raw DN data. The motivation for such
a distinct behavior can be traced back to the acquisition geometry. Indeed,
during this collection overpass, the sun was perpendicular to the satellite
flight path and could illuminate the scene with similar shadowing effects on
each side of the sequence.

The center and bottom rows of Fig. 8.6 report the results obtained when
the images with highly slanted geometries (—38.8° and +39.5° off-nadir)
have been used as the source domain. In both situations, the general shape
of the Kappa statistic curves reveals moderate accuracies in the central
region of the acquisition (off-nadir angle between —30° and +30°), then
increasing when moving toward both the —40° and +40° angles (either
the angular region close to where the classifier has been trained or its
symmetrical opposite). This matches the considerations about the similar
illumination/shadowing conditions existing in these off-nadir regions of the
Rio de Janeiro sequence, leading to an adequate portability among them.

Overall, the Kappa values are higher on this dataset due to the lower
number of classes. Moreover, for absolute off-nadir angles > 40°/45°, the
decrease in accuracy is associated with an extremely large variability among
the experiments. This behavior was not observable in the Atlanta sequence,
since only the Rio de Janeiro dataset features such oblique look angles.
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Figure 8.6: Rio de Janeiro dataset: assessment (average Kappa statistic with stan-
dard deviation over 10 experiments) of LDA model portability to all the
images in the sequence in turn (target images) from the source image
at (top) —6.1° off-nadir, (center) —38.8° off-nadir and (bottom) +39.5°
off-nadir. Results are presented separately for (left) original unmatched
sequences and (right) histogram matched sequences. Data space: “Raw
DN" (raw DN data) vs. ‘AC" (atmospherically compensated data).

Results with HM (right column) reveal a very good portability of the LDA
across the entire angular domain (almost no loss in classification accuracy),
no matter the data space. In the central region of the plots for off-nadir
angles of —38.8° and +395°, a slightly more satisfactory performance is
noticed with this relative normalization technique with respect to the un-
matched atmospherically compensated sequences.
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Figure 8.8: Rio de Janeiro dataset: evolution of the F-measure (average of 10 ex-
periments) for each class in the experiment with the image at —6.1°
off-nadir as source image. We considered (left) raw DN and (right)
atmospherically compensated sequences (AC). A LDA classifier and a
setting without any preceding HM have been chosen.

For the analysis of the results obtained with the Gaussian SVM classifier

(Fig. 8.7), we only present the experiments with the near-nadir source image

(—6.1°). As expected, the most accurate thematic maps are produced when
using the classifier on the atmospherically compensated (red curve of the left
plot) or on the histogram matched sequences (both curves of the right plot).
These Gaussian SVMs show an average precision stable at Kappa > 0.9

throughout the sequence.

With Fig. 8.8, we break down the portability results by land-cover type

in order to highlight the benefits of the transformation to surface reflectance
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values. To this end, we retained the experiment using the LDA classifier
trained on the image at —6.1° off-nadir in the setting without HM (corre-
sponding to the top-left panel of Fig. 8.6). On the raw DN plot (left plot
of Fig. 8.8), the evolution of the F-measure points out the classes “water”,
“grass” and “roads” as those heavily suffering the skewed angular acqui-
sitions. Instead, land-covers such as “trees” seem to be less affected. As
soon as we turn to the physically normalized space (right plot of Fig. 8.8),
the improvement is notable for all the classes. The ability to compensate
the distortions caused by atmospheric effects becomes apparent at large
off-nadir angles, in particular for the critical classes cited above.

8.5 CONCLUSIONS

In this study, two in-track VHR multispectral sequences were used to find
means to evaluate and possibly correct the shifts in data distributions caused
differences in acquisition angle. These quasi-simultaneous collections of
multiple images allowed us to isolate the effects caused by the acquisition
geometry. The distortions induced by physical phenomena controlling the
radiation transfer could be quantified thanks to a robust statistical measure
of distance between probability distributions, the MMD. By means of this
insightful non-parametric statistic, we could highlight key effects such as the
increasing Rayleigh scattering when imaging at high off-nadir angles and
its disappearance when working with surface reflectance data. By testing
the model portability of classifiers across the sequence, we could describe
the evolution of the thematic classification accuracy through the angular
domain with considerations about the influence of the location of the source
image in the angular sequence. The experimental trends agree with the
observations related to the dataset shift highlighted in the first place.

Additionally, we studied the influence of classic preprocessing techniques
on the generalization abilities of the models. The basic trends we remarked
can be summarized as follows. On the one hand, a precise atmospheric
compensation provided images with similar radiometric characteristics over
the entire angular domain. The residual shift can be imputed to BRDF or
observational solar cross-section effects not accounted for with the trans-
formation into surface reflectance values. On the other hand, good results
in compensating for the angular divergence have also been observed by
applying a band-by-band matching of the histograms. Such an approach,
even though expected to be less effective on images coming from separate
spatial locations, proved able to overcome the shortcomings of the change
in acquisition angle.

The study has also underlined the complementarity of the physical and
machine learning approaches. Indeed, after an absolute normalization by
atmospheric compensation, remarkable portability performances were ob-
tained by employing a state-of-the-art kernel-based method. In this respect,
we emphasize the key point related to the non-linearity of the cross-image
knowledge transfer process. The empirical results we provided revealed that,
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once appropriate radiometric corrections are applied, by making use of a
non-linear Gaussian SVM in the classification step we obtain an adaptive
land-cover classification system largely immune to the effects of the view
angle. The linear and parametric approach of LDA appeared much more
prone to fail in critical angular shift situations.

In general, appropriately chosen normalization approaches ensuring angle-
invariant data spaces, combined with the most flexible and portable models,
allow to extend the classification rules over multiple images acquired with
different geometries. This could ultimately enable a successful large-scale
land-cover mapping. As a conclusive remark, we demonstrated that, taking
the best of both worlds, the joint use of physically-based atmospheric com-
pensation approaches along with statistical/machine learning matching and
classification techniques allows to attain the desired model portability in
multi-angle VHR sequences.

Future research directions will be focused on the analysis of the gen-
eralization abilities of land-cover models when working with composite
multi-angle data, i.e. an ensemble of image acquisitions carried out dur-
ing multiple satellite overpasses. Such images will thus be characterized
by markedly different satellite and sun positions (elevations and azimuths),
since they were not exclusively collected over the same in-track acquisi-
tion path. The dataset shift due to the geometry of the collections could
then be studied over the entire azimuth-elevation space and not only on a
cross-section of it.



CROSS-IMAGE SYNTHESIS WITH DICTIONARIES

Outline: This Chapter studies an approach based on Dictionary
Learning which enables the alignment of the sparse represen-
tations of two images. A linear transformation is derived thanks
to an algorithm simultaneously learning the image-specific dic-
tionaries and the mapping function bridging them via their re-
spective sparse codes. In the following, Section 9.1 discusses
the advantages of a direct cross-domain conversion of the data
spaces based on sparse representations, a methodology that will
then be summarized in Section 9.2. Next, in Section 9.3 we will
present the particular dataset used to test the technique and the
associated setting of the experiments. Section 9.4 reports the re-
sults we obtained while Section 9.5 concludes the Chapter by
addressing strengths and limitations of the proposed approach.

0.1 INTRODUCTION

The previous two Chapters revealed two noteworthy trends regarding rel-
ative normalization strategies. As we pointed out in Chapters 7 and 8, in
order to lessen the dataset shift affecting the image distributions when deal-
ing with multiple images collected under different conditions, resorting to
elementary techniques such as HM can be very effective. Nonetheless, in
some situations this is too simplistic [Yang and Mueller, 2007] and does not
allow handling images with different number of bands (data spaces of dif-
ferent dimension). At the same time, as observed in Chapter 7, the capacity
to project the images to an appropriate joint sub-space proved extremely
beneficial to suitably match the distributions.

Another possible tempting approach consists in directly seeking a trans-
formation able to convert the data space of one image to that of another
one. The absence of an intermediary sub-space ensures that only one of the
two images has to be transformed. Moreover, by devising a method flexible
enough, it would be very useful if images with different numbers of spec-
tral bands could be treated by the procedure. This would eventually enable
cross-sensor transformations.

This Chapter will appear in:

G. Matasci, F. de Morsier, M. Kanevski, and D. Tuia. Domain adaptation in remote
sensing through cross-image synthesis with dictionaries. In Proceedings of the
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Québec
City, Canada, 2014.
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To this end, in this Chapter, we take advantage of the DL framework
presented in Section 3.6. As reviewed, DL is a rising field of investigation
in hyperspectral remote sensing, where it has shown promising results in
classification with compact models relying on the hypothesis of sparsity.
Likewise, the same sparsity hypothesis has proven successful in applica-
tions aiming at fusing high spatial and spectral resolutions. Song et al.
[2014] suggest learning a dictionary-pair to describe a multispectral and
a hyperspectral image through dictionaries possessing the same number
of atoms. Subsequently, they seek a single matrix of sparse codes recon-
structing the pixel signals of the two images. This matrix allows to link the
spectral properties of each material in the low spectral resolution image to
those in the high spectral resolution acquisition. Such a bridge ultimately
enables the synthesis of pixels bearing both a high spatial and a high
spectral resolution.

Hereafter, we propose to align sparse representations based on dictio-
naries defined on the images of interest in order to perform the adaptation.
The key idea of this cross-domain image synthesis is that the pixels of a
remote sensing image can be converted to the data space of another re-
lated image by means of a linear transformation [Wang et al, 2012]. The
algorithm simultaneously learns a dictionary pair (one per image) and a
mapping function from one to the other. The dictionaries characterize the
structure of the domains, while the mapping encodes the relation between
them. Once the transformation is found, a cross-domain synthesis can be
carried out to convert an image into another, easing thus the DA task at
hand. This approach can be related to that of [Wang and Mahadevan, 2011]
in the sense that the latter also enables the user to reciprocally translate
the image data spaces. However, in their case, this is done through an
intermediate step involving a mapping to a common latent space.

9.2 DICTIONARY LEARNING FOR CROSS-IMAGE SYNTHESIS
9.2.1  Problem formulation

The transformation we study in this Chapter can be applied in both di-
rections (from the source image to the target image or inversely). For this
reason, the notions of source and target domain will be introduced only
for the classification phase. In the following, data spaces X and Y, data
matrices X and Y, samples x and y as well as the associated *-," and "
subscripts denote elements referring to two generic but distinct domains Dy
and D,. We point out that, therefore, ) is not considered here as the output
space of the class labels.

Bearing this in mind, the task of cross-domain image synthesis consists
in finding an invertible mapping () allowing to translate the data space
X of a first image, i.e. the domain D, into the data space Y of a second

image, i.e. the domain D, and inversely: Y = f(X), X = ~'().
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The algorithm requires paired training data matrices X € R%*" and
Y € R%*" composed of n signals belonging to the first and second do-
main, respectively'. Note that the dimension of the two data spaces can
differ, L.e. dy # dy. The mapping function is determined by seeking a con-
version matrix W aligning the sparse coding coefficients C, € RX*" over
dictionary D, € R%*K to those in the other domain, i e. C, e RX*M over
dictionary D, € R%*K [Wang et al, 2012

The optimization problem to jointly retrieve the dictionaries and the map-
ping matrix W is the following:

mino.o,m | IX=0.C1 -+ ¥ - D,C ]

sallo~weli Wil o
st flexillo < sv leyilly < sy
el <10 el <1 v,

where 1 is a tradeoff parameter, ¢ is a regularization parameter and s, s,
are the sparsity levels tolerated for each dictionary. Vectors ¢y, ¢y, are
the sparse codes constituting Cy, C,, while vectors d,;, d,; are atoms of
D,,D,, respectively. Concretely, the first two terms of (9.1) represent the
reconstruction error in the two domains, the third term relates to the linear
mapping error between the two domains, while the constraints ensure the
sparsity of the solution.

9.2.2 Training step

The above optimization problem is solved by splitting (9.1) into three sepa-
rate sub-problems:

e the sparse coding for the training samples C, and C,,
e the update of the dictionaries of the two domains D, and Dy,
e the update of the mapping matrix W.

The first sub-problem needs an initialization of both the mapping matrix
and the dictionaries. We recall that the mapping can be carried out in both
directions (X — Y and Y — X). Thus, in the following joint optimization
problem (9.2), we will be specifically referring to W with W, _,,;, denoting
the matrix executing the mapping of the pixels from data space X to data
space ), whereas we will use W _,, to refer to the matrix carrying out the
inverse task. These two matrices can be initialized as the identity matrix. The
dictionaries Dy and D, can be initialized independently in each domain by
K-SVD [Aharon et al,, 2005], an algorithm also returning initial quesses for

Please remark that in this Chapter, to meet the DL notation, data matrices usually consisting
of n rows and d columns are transposed, i.e. of size d x n.
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the corresponding sparse codes C, and C,. Afterwards, these same sparse
codes can be jointly recomputed through these two minimization problems:

e, { IX=D.C} + )€y~ wa i |

s. t. ch,[Hong Vi,

(9.2)
moie, {1 = 0,6+ nlle - Wi |
s.t. Hcy,iHo <sy Vi
Dictionary Now, keeping the sparse codes C, and C, fixed we can update the
update dictionary pair D,, D, via
ooy | IX=DCIL+ V=Dl
sl <1 Il <1 v

Concretely, this step can be implemented with a one-by-one update strategy
actually separating the update of D, and D,,.

Mapping Finally, the matrix W can be updated so as to minimize the error in the
matrix update conversion of the sparse codes from one domain to the other:
. 2 2
iy | C=WEE+@m Wi} e

The solution to this problem can be found analytically:

W =C,C/(C.C{+(¢/mh)". (9.5)

923 Synthesis step

Synthesis of a Once appropriate dictionaries Dy, D, and mapping matrix W have been
new pixel jointly learned, the synthesis of a new pixel x; from X to Y demands one
last optimization problem to be solved:

(a0 = Do+ = Dy |

 nflay~ Wa |} °o

st ol < su flagilly < sy Vi

The solution is obtained by alternatively updating sparse coefficients ay;
and a,,; after having initialized y; as DyWa,,, with a; resulting from the
coding of x; on D,. The final cross-domain synthesis is then obtained by:

y; = Dyay,; . (9.7)

The newly recreated pixel y;, while of course still belonging to the first
image, is now supposed to better reflect the characteristics of the data
space Y of the second image. Figure 9.1 provides a graphical illustration of
the principle of cross-image synthesis via DL.
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Figure 9.1: Scheme of the approach for cross-image synthesis with dictionaries.

9.3 DATA AND EXPERIMENTAL SETUP
9.31  WorldView-2 images of Atlanta

In the experiments below, we made use of two of the images belonging to
the in-track multi-angle WorldView-2 acquisition over the city of Atlanta
(see Appendix B.4 on page 158). We considered a first acquisition with a
positive off-nadir angle of 31.5° (image #13 acquired from the south of the
city) as the source image and a second image with a negative off-nadir
angle of 24° (image #3 acquired from the north of the city) as the target
image. For the position of the satellite during these acquisitions refer to
the azimuth-elevation plots of Fig. B.5. From the initial scene visible in
Fig. B.4(a) we selected a spatial subset of size 1115x 1266 pixels.

The dataset shift affecting these two images is associated with the distor-
tions of the spectral signatures caused by the view angle. The source image
lies in a region of the anqular sequence where a strong backward scatter-
ing pattern is present (satellite on the same side of the sun with respect to
the imaged area), whereas the target image lies in a region with a forward
scattering regime (satellite opposite to the sun). As seen in Chapter 8, the
loss in classification accuracy when porting a model across different solar
scattering regions can be passably large.

For this study, the ground truth of the scene consisted of 45,706 pixels
featuring 8 land-cover classes (see Tab B.4): “water”, “concrete’, “asphalt’,

“soil’, “grass’, “buildings”, “shadow’, “trees” (the class “vehicles” has been ex-

cluded). The acquisitions have been calibrated to surface reflectance values
using the DG-AComp method (see Section 8.2). Moreover, with the goal of
increasing the spatial representativeness and discriminative power of the
considered signals, the initial data vector (the 8 WorldView-2 bands) has
been augmented with the values of the first two principal components ob-
served in a 5 x 5 neighborhood. For each component, these 24 newly added
values are also sorted to quarantee invariance to rotation of the objects in
the scene [Tao et al, 2014].

Two opposite
angular
images

Nature of the
dataset shift

Land-cover
classes &
preprocessing
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Table 9.1: Description of the different settings (baselines and DA strategies) used
for the classification of the target image.

Name Do.mf‘aln for Tr.aln. set Detail
training [pix./class]

Uses many target pixels for train-

TGT-large target 200 )
ing (upper bound on accuracy)

Uses the few available target pix-

TGT target 20 o
els for training
SRC cource 200 _Uses many so_urce pixels for train-
ing (DA baseline)
SRC-AdaptSRCtrain  source 200 Adaptation: source trai.n'mg set
converted to target domain
SRC-AdaptTGTimage  source 200 Adaptation: entire target image

converted to source domain

9.3.2 Experimental setup

Due to the large variability of the spectra and spatial structures encountered
in the images, the definition of a global mapping valid for the entire image
is highly challenging. Following an intuition similar to that of Wang et al.
[2012], we decided to run the synthesis algorithm at a lower level in the
hierarchy of the image: the semantic class. This means that a different we!
for each class ¢/ € C = {1,2,...,c} is sought and that, consequently, a
dedicated mapping for each land-cover is defined. To enable this option,
labeled samples are needed in both images. We assume that many more
labeled pixels are available in the source image, whereas just a few can be
acquired in the target image (supervised DA setting).

As the projection can be applied in both directions, the pixels x; to be
synthesized by Eq. (9.7) can belong to either the source or the target domain
and be projected into the other one to obtain the corresponding y;. For this
reason, we consider two experimental settings:

e Perform a synthesis of the source training set to convert it to the
target domatin: this option allows the direct use of the mapping matrix
W< of the respective class for each training pixel.

e Perform a synthesis of the entire target image to convert it to the
source domain: this options allows to synthesize anew a complete im-
age matching the radiometry of the source image. This option has the
disadvantage of requiring the knowledge about which class-specific
W< to employ for a given new target pixel to synthesize.

Once both data are in the same data space, we compare the cross-image
classification approaches summarized in Tab. 9.1 by assessing the perfor-
mances using the ground truth of the target image. The reference accuracy
(best foreseeable result) is set by the TGT-large method, which uses a large
training set with 200 pixels per class extracted from the target image. Such
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a dataset is assumed to be unavailable in practical applications. Instead,
TGT and SRC constitute the baseline models built from a small training set
(20 pixels per class) from the target image and a large training set (200
pixels per class) from the source image, respectively. The former dataset is
made up by the only ground truth assumed to be available in the target
image. The latter, although being of substantial size, is not very represen-
tative of the probability distributions in the target image as it belongs to
the original untransformed source image. In strategies SRC-AdaptSRCtrain
and SRC-AdaptTGTimage, the cross-domain synthesis has been carried out
using, for each class, training sets X and Y of size n = 20 pixels (all the la-
beled target pixels assumed to be available). For the SRC-AdaptTGTimage
option, it is important to assign a class membership to each pixel in the
target domain, in order to select the appropriate mapping matrix wet for
each pixel. To do so, we used class assignments of the TGT strategy as ini-
tial class guesses in the target domain. We report results averaged over five
random realizations of the training sets. The test set included all the pixels
in the ground truth of the target image that were not used for training.

For the proposed DL algorithm, initial dictionaries have been found by
K-SVD randomly initialized with dictionary size K = 5. The sparsity levels
sy and s,, which control the maximum number of atoms used for the recon-
struction of a pixel, are set to 4. The reqularization parameter ¢ is set to 0.1
while the tradeoff parameter has been set to n = 0.05. As classifier, we used
a linear SVM with a penalty parameter tuned by 5-fold cross-validation in
{10="...,10°}.

0.4 RESULTS AND DISCUSSION

Figure 9.2 reports the classification performances on the target image (Kappa
statistic on the test set) of the strategies described above. First, we note
the very precise TGT-large classification, with a Kappa statistic of 0.846.
The accuracy of the prediction decreases to Kappa = 0.725 if the linear
SVM is trained on a set composed of 20 target samples per class only (TGT
setting). If we try to predict the thematic classes in a cross-domain setting
and without adaptation (SRC setting), even though the source image model
relies upon 200 samples per class, the average quality of the resulting target
classification maps drops to Kappa = 0.589.

Analyzing the cases were a synthesis aiming at overcoming the dataset
shift is involved, we observe Kappa statistics of 0.698 and 0.711 for the
SRC-AdaptSRCtrain and SRC-AdaptTGTimage approaches, respectively.
These results yielded by SVM models exclusively trained on labeled source
samples are quite satisfactory. Indeed, these strategies clearly improve the
corresponding cross-domatin approach based on the same, yet untransformed,
pixels (SRC).

We remark that the strategies involving a cross-image synthesis are not
able to outperform the TGT setting. On the one hand, this is due to the
already known outstanding performances of the linear SVM even if trained
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Figure 9.2: Classification performances (average and standard deviation of esti-
mated Kappa statistic over 5 runs) obtained on the target image with
the different strategies described in Tab. 9.1.

on a limited amount of labeled pixels. On the other hand, the accuracy of
SRC-AdaptTGTimage is strongly dependent on the quality of the initial TGT
map used to choose which class-specific mapping to use. However, we draw
the attention to the fact that, in the last two cross-domain synthesis cases,
the labeled target samples are not directly involved in the classification.
They are only indirectly contributing to the DA task by helping the DL
algorithm in designing the transform.

0.5 CONCLUSIONS

This Chapter is a first attempt to study the assets of DL strategies for DA in
remote sensing image classification. After a proper synthesis of the source or
target image to match the other acquisition, we observed an improved cross-
domain portability of the classifiers. The algorithm constitutes an elegant
way to align datasets, and does not depend on the dimensionality of the
data sources. This last point opens interesting opportunities for cross-sensor
DA, which will be explored further in future studies.

The basic limitation of the current methodology resides in the need for
labeled samples in both domains for the crucial phase where the mapping
matrix is learned. While this class information allows a suitable cross-image
synthesis, it also bounds the performances of the algorithm by the quality
of the initial classification guess: a more promising setting would be that
of a completely unsupervised synthesis. Hence, an open issue consists in
finding appropriate units (instead of the land-cover classes) from which to
determine the dedicated mapping function.
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101 FULFILLMENT OF THE OBJECTIVES

This Thesis project started with the intent to provide concrete solutions to
one of the main problems currently faced in Earth observation: the difficulty
in gathering ground truth samples when building (and validating) large-
scale supervised land-cover classification models. In this dissertation, we
addressed the issue by resorting to recently proposed developments in the
fleld of machine learning and, more specifically, in its branch named Domain
Adaptation.

A mere application of these novel and highly promising techniques on
a new dataset, a pair of remotely sensed images in this case, would not
suffice to answer the needs of remote sensing practitioners. In fact, all the
fleld-specific implications require a more dedicated study of the different
components of the investigated methods as well as an evaluation of the best
context for their application. We believe that in this Thesis the peculiarities
related to the nature of the datasets we analyzed were taken into account
when exploring the methods we proposed. In each Chapter of Part iii, we
put forward the potential of novel Domain Adaptation methods or measures
and examined their combination with more classical processing techniques
already used in the remote sensing community. In order to favor the knowl-
edge exchange between the two fields, we carefully avoided to treat the
proposed adaptation procedures as black-boxes.

Coming back to the list of specific objectives of this Thesis formulated in
Section 1.2 (page 6), we can proceed with the following assessment of their
fulfillment.

1. V' The main purpose of this work consisted in increasing the
portability of the supervised classifiers across images. In this respect,
we evaluated the suitability of supervised and unsupervised Domain
Adaptation strategies, two means of tackling the dataset shift prob-
lem implying radically different degrees of involvements of the user.
In both cases, encouraging results have been obtained on different
datasets and in a range of settings. In general, the baseline of stan-
dard, non-adaptive approaches we compared them to was systemati-
cally outperformed.

2.V Finding appropriate tools to evaluate the dataset shift occur-
ring in remote sensing images acquired under different conditions was
the second objective. The analyzed kernel-based measure of distance
between probability distributions derived from the field of machine
learning proved potential in detecting this shift and highlighting its
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Table 10.1: Summary of the approaches investigated in the Thesis with their re-
lation to the DA families and types of learning problems outlined in

Chapter 4.
Approach Principle DA family Learning Where?
problem

Adaptive Active
Learning:
Active Learning Intelligently collect samples in  Instance-transfer

the target domain. Supervised Chapter 6
Instance Differently reweight source and  Instance-transfer DA
reweighting target samples to use in target.
Kernel-based Reduce the divergence between  Feature-repres.- Unsupervised  Chapter 7
Feature Extrac-  domains by projecting them into  transfer DA
tion a new subspace.
Classic  radio-
metric norm.:
Histogram Relative band-by-band match-  Feature-repres.-
Matching ing of the CDFs. transfer Unsupervised  Chapter 8
Atmospheric Absolute conversion to surface  Feature-repres.- DA
compensation reflectance. transfer
Cross-image Reduce the divergence between  Feature-repres.- Supervised Chapter 9
synthesis with  domains by synthesizing pixels  transfer DA
dictionaries via sparse representations.

peculiarities. Meaningful considerations about the physical processes
behind the change in the pixels distribution could be derived based
on this indicator.

= The last goal of this dissertation resided in the investigation
of the consequences of a change in acquisition geometry among im-
ages with a joint approach exploiting the complementarity of machine
learning/statistics and physics. In this respect, the quantification and
understanding of the angular effects can be deemed satisfactory. On
the contrary, the efforts turned out to be insufficient to completely
correct the impact of these phenomena. Both in terms of the spectral
distortions of the class signatures and in terms of the portability of
the land-cover models, we see room for improvement in reducing neg-
ative effects such as the reflectance anisotropies observed at various
scales.

10.2

COMPARISON OF THE PRESENTED APPROACHES

In this Section, we will briefly review the solutions to remote sensing adap-
tation problems proposed in this Thesis. More importantly, we will put
them into perspective with a comparison underlining their strengths and
weaknesses. Table 10.1 recapitulates these approaches and recalls their re-
spective Domain Adaptation and machine learning contexts. At the end of
the Section, Tab. 10.2 reports instead a summary of the comparison.
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® SVM-BASED ADAPTIVE ACTIVE LEARNING VIA SAMPLE REWEIGHT-
ING:
In Chapter 6 we addressed the topic of adjusting Active Learning Summary
strategies to the situation in which the target image has seen a shift
in the probability distributions. The main novelty of this study con-
sisted in uncovering and thoroughly analyzing a sample reweighting
scheme implemented using a SVM classifier. The strategy has been
applied in combination with the active sampling procedure in order to
intelligently re-use the information on the land-cover classes coming
from the initial source image.

The experimental results revealed sharper accuracy increases for the Strengths &
learning curves associated with the proposed strategy if compared weaknesses
to the baselines. Although the routine guides the sampling efforts

of the analyst, the latter still has to collect ground truth labels for

each new target image (supervised Domain Adaptation). This factor

limits the rapid application of the method at a large scale since end-

user intervention, even if minimal, is constantly required. Moreover, if

field campaign and image acquisition are not simultaneous, the col-

lected reference data could prove useless in applications with dynamic

ground conditions. Nonetheless, the iterative collection of target sam-

ples combined with a reduction of the influence of misleading source

samples prevents negative transfer effects. This means that as soon

as the new image starts to be sampled, even though the initial source

training set poorly represents the target domain, the systems is able

to converge to satisfactory classification performances.

® KERNEL-BASED FEATURE EXTRACTION FOR RELATIVE NORMALIZA-
TION:
Chapter 7 was devoted to finding meaningful projections of the data Summary
reducing the distance between the domains. We investigated the Fea-
ture Extraction paradigm, in particular examining a specific semisu-
pervised kernel-based technique developed for Domain Adaptation.
The key contribution here was the detailed study of the properties
of the method as well as the remote sensing scenarios in which its
application allows the best cross-image knowledge transfer.

The methodology falls in the category of unsupervised Domain Adap- Strengths &
tation approaches. This means that series of new images received weaknesses
by the operator can be projected to the mentioned subspace and
then classified with an already trained thematic classifier, opening
the way for a rapid processing of multiple images. The suitability of
such a solution is backed by the good quality of the final products of
the cross-image classification generally observed in the experiments.
However, this system allowing such a quick mapping is heavily rely-
ing on the relevance of the initial image. If in the source image the
spectral signatures of the land-cover classes are distorted to a great
extent, adaption can be undermined. Another drawback of the adop-



142

Summary

Strengths &
weaknesses

DISCUSSION

tion of this solution resides in the loss of the physical meaning of
the variables after the projection: the spectral bands are turned into
arbitrary features whose interpretation and usage for problems other
than classification can be difficult.

ANGULAR DATASET SHIFT & MODEL PORTABILITY IN MULTI-ANGLE
SEQUENCES!

The primal objective of Chapter 8 was to shed light on the distortions
caused by a change in the geometry of the acquisitions. By analyzing
sequences of images of the same area acquired in-track by the satel-
lite, we first focused on the physical factors controlling the imaging
process. A robust kernel-based measure of distance between prob-
ability distributions showed promise in assessing the dataset shift
induced by such phenomena. Subsequently, the portability of super-
vised classifiers across the sequence has been investigated. In this
respect, we observed the evolution of the classification accuracy in the
angular domain and related it to the shift highlighted with the pro-
posed statistical measure. The substantial agreement of these trends
with the underlying physical phenomena confirmed the benefits of
joining the efforts of the disciplines of Earth observation and machine
learning. The common denominator of the analyses mentioned above
was the evaluation of the radiometric normalization abilities of tradi-
tional techniques such as atmospheric compensation and Histogram
Matching.

Discussing now these normalization methods, it is important to note
that both of them have been extensively used in remote sensing as
they maintain the physical quantities conveyed by the images. Con-
cerning Histogram Matching, as previously remarked in the discussion
for the solution based on Feature Extraction, we point out that the
approach strongly depends on the relatedness of the two images to be
processed. Therefore, the setting of the present case study involving
a single scene certainly contributed in underestimating the nega-
tive transfer issues of this univariate matching (same thematic classes
with stable proportions on the ground). Conversely, a system based
on atmospheric compensation is unaffected by this type of problem
in the alignment phase, as the calibration is executed with respect
to an absolute reference, i.e. the surface reflectance. Nevertheless,
as the setting in which the cross-image classification takes place is
that of unsupervised Domain Adaptation, models trained only using
ground truth data from the source image could still underachieve in
the target domain. The large-scale extension of such normalization
strategies can be both reasonably accurate and relatively straightfor-
ward. Indeed, Histogram Matching is quickly performed and currently
developed semi-automatic atmospheric compensation routines require
the input of less and less prior knowledge by the user.
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® CROSS-IMAGE SYNTHESIS WITH DICTIONARIES:
In Chapter 9, we explored the framework of Dictionary Learning and Summary
assessed its potential for synthesizing pixels with more similar char-
acteristics across images. The investigated algorithm is based on a
sparse representation of the samples. It showed an encouraging per-
formance in finding a mapping matrix to convert the data space of a
given image into that of another, a transformation ultimately increas-
ing the cross-image portability of the classifiers.

One of the positive aspects of this approach is that it preserves the Strengths &
physical meaning of the data spaces being transformed. Indeed, the weaknesses
projection directly converts the spectral bands of an image into those
of another (e. g. keeping pixel values in surface reflectance units), and
this irrespective of the number of channels. This flexibility regarding
the dimension of the data spaces comes at the expense of a more strict
sampling requirement. Despite the fact that the cross-image classifi-
cation itself has been carried out only based on a training set from the
source image, in this preliminary phase of its development the pro-
cedure still requires labels in both domains to define the projection
(supervised Domain Adaptation). In this case as well, the pertinence of
the source domain is key, as a harmful knowledge transfer could hap-
pen in case of an extreme dataset shift. Such a situation is however
hardly reached in practice, since the algorithm has to be applied to co-
registered images. Thus, in its present form, the cross-image synthesis
strategy constitutes an appropriate solution to temporal map-update
problems (same scene to be classified in time) but not for land-cover
mapping efforts involving multiple spatially disjoint images. Nonethe-
less, it is a first step towards Domain Adaptation with sparse coding,
a new kind of reasoning that is becoming a major current in remote
sensing image classification.



144

Discovery of
new classes

From
cross-image to
Cross-sensor

DISCUSSION

Table 10.2: Comparison of the DA approaches investigated in the Thesis.

. Kernel-based Classic Cross-image
Adaptive . . N
. . Feature radiometric synthesis with
Active Learning . o . .
Extraction normalizations dictionaries

System
exclusively uses X \/ \/ X
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Handles
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transfer?

QR
>
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meaning?
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transfer?

Ease of
application at
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<
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>

Accuracy of
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10.3 FURTHER WORK AND CHALLENGES

The possible extensions of the developments presented in this Thesis are
numerous. They are mostly targeted at answering the needs of the remote
sensing community as regards the steadily increasing amount of data ac-
quired by the sensors. Thus, in the following we briefly recall the research
directions that are worth investigating further.

e Within the Active Learning framework, the refinement of the tech-
niques in terms of learning curves has reached a standstill both for
classic and adaptive strategies. A much more challenging topic is that
of discovering and handling new land-cover classes in the iterative
process. Attention could be paid to approaches favoring a sampling
heuristic based on a diversity criterion in the first iterations to com-
prehensively search the input space and then gradually turning to the
more conventional class boundary refinement objective.

e Another central aspect of adaptation that only recently started to
draw the attention of the scientists in Earth observation concerns
the ability to cope with images acquired by different sensors. If in
change detection this line of research is more mature, when dealing
with land-cover model portability much work is still needed. The fact
the images are not co-located makes the definition of such a cross-
sensor mapping more difficult. Although ambitious, this objective could
lead to unprecedented opportunities in terms of constant and spatially
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extensive monitoring efforts. Not having to always rely on acquisitions
by the same specific sensor will enable the user to flexibly re-use the
collected ground truth, minimizing thus his/her onerous involvement
in the mapping process.

Throughout this manuscript, all the approaches we explored had one
thing in common. During both the optional projection phase and the
cross-image classification step, the basic spatial unit we considered
was the pixel, even if in some cases neighborhood information has
been included. We believe that a key research question for the future
resides in the study of adaptation strategies working at the object
level, thereby replacing the traditional pixel-based strategies.

A complete understanding of the anqular effects impacting acquisi-
tions bearing different view angles is also still an open issue. In this
Thesis we made an attempt in this direction but, to paint the full
picture, more analyses are definitely required. For instance, small-
scale anisotropic reflectance behaviors that greatly modify the spec-
tral signature of certain materials, the BRDF effects, have yet to be
specifically investigated and properly compensated. To this end, aus-
picious results can be expected with scientific studies at the interface
of statistics and physics, two complementary disciplines playing a
central role in the development of the remote sensing technology.

The solutions proposed in this Thesis, as well as most of the works
proposed in the literature are actually tested on image subsets that
are often orders of magnitude smaller than the original acquisitions
collected by the sensors (e.g. a WorldView-2 panchromatic image
generally has a size of more than 30,000x 30,000 pixels). In this con-
text, even when working with single images, the sample selection
bias arising from small sampling regions has not to be underesti-
mated. Therefore, to pursue studies of the land-cover at a truly large
spatial scale, more development and validation efforts for the adap-
tation methodologies are clearly needed. With this objective in mind,
we believe complex approaches should be avoided in concrete appli-
cations, giving the priority to simpler solutions (e.g. linear models,
classic kernel-based classifiers, basic compensation strategies).
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CLASSIFICATION QUALITY MEASURES

Considering the special case of a classification task involving remote sensing
data, in this Appendix we present some useful measures taken as the gold
standard by the community when assessing the quality of the thematic maps
produced with a supervised classifier [Foody, 2002, 2004].

The starting point is the confusion matrix, which is the result of a cross-
tabulation of actual (observed ground truth) and predicted (by the classifier)
classes. This matrix that allows to subsequently derive the quality measures
is outlined in Tab. A1,

Table A1: Confusion matrix for a multi-class prediction with ¢ classes concerning
nee samples. PA: Producer’s Accuracy, UA: User’s Accuracy.

Actual class

1 2 . c Totals UA
1 n1 n1 e Ne  NM11/N1e
Predicted 2 N n N2e n22/N%e
class
c net Nee Nce Nee/Nee
Totals Ne1 Ne2 e Nec Nee
PA n11/net N22/Ne2 -+ Nec/Nec

A1 OVERALL MEASURES

The most common measure s the Overall Accuracy (OA) (ranging in [0, 1]
with best score 1), which is the sum of pixels correctly classified in each
class, ny;, divided by the total number of pixels involved in the prediction,
Nee:
C
> Nii
oA=50—

(A1)

n..

The Kappa statistic k (ranging in [—1,1] with best score 1), also referred
to as Cohen's Kappa coefficient of agreement [Cohen, 1960] provides a
more complete measure of the accuracy of the prediction. Indeed, contrary
to the previously presented OA which only considers the information in the
diagonal of the confusion matrix, this index makes use of the entries of the
whole table. An estimate of Kappa is provided by

K:PO_PC

: A2
s (A-2)
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where p, = ) . nii/nee is the observed proportion of correctly classified
pixels, i.e. the OA, and p. = Z[ nl-.n.,-/nz, is the proportion of correctly
classified pixels that is expected by chance. This metric may be interpreted
as a measure of the improvement ensured by the classifier at hand over a
random allocation the predicted labels. Moreover, when dealing with a large
imbalance in the actual class counts, Kappa is much better suited, with re-
spect to OA, to provide an unbiased measure of accuracy also appropriately
factoring in the errors committed on small classes.

Finally, when the test site where the ground truth has been collected is
the same, a direct comparison between two classifiers can be carried out
via a McNemar's test [Bradley, 1968]. This is a non-parametric test that is
based on the following standardized normal test statistic [Foody, 2004]:

, = M2= N (A3)

Vi o

The quantity nq2 indicates the number of pixels correctly predicted by clas-
sifier 1 while simultaneously being incorrectly predicted by classifier 2.
Conversely, ny1 represents the number of samples incorrectly predicted by
classifier 1 and correctly predicted by classifier 2. Under the null hypothesis
Hp stating that the two classifiers are equivalent (n12 = n21), the McNe-
mar's test z value follows a normal distribution. Thus, running a two-tailed
test with the standard a level of 5%, a value z > 1.96 indicates a statistically
significant superiority of classifier 1 over classifier 2.

A2 CLASS-SPECIFIC MEASURES

The associated individual class accuracies are named User's Accuracy (UA)
and Producer’s Accuracy (PA) (see last column and row of Tab A1, respec-
tively). On the one hand, UA accounts for the commission error (1 — UA),
i.e. the proportion of predicted pixels wrongly allocated to a given class by
the model. UA provides map users with accuracy information indicating the
quality of the thematic map. In fact, it is nothing but the probability that
a pixel classified in a given class actually represents that same class on
the ground. On the other hand, PA is complementary to the omission error
(1 — PA), that is the proportion of ground truth pixels wrongly assigned to
other classes. PA helps the map producer to evaluate and refine the map-
ping (prediction) process, as this measure denotes the probability that an
actual ground truth pixel has been correctly classified by the model.

An efficient way to provide a single class-specific indicator combining
UA and PA is represented by the F-measure, which is computed as follows

UA - PA
UA+PA -

Such a statistic, the harmonic mean of the two class-specific measures, is
usually employed in information retrieval as a means to combine precision
and recall [Powers, 2011], the equivalents of UA and PA in binary classifi-
cation problems.

F-measure = 2- (A4)



DATASETS USED IN THE THESIS

This Appendix describes the 5 remote sensing datasets that have been used
in the Thesis:

B.1 QuickBird images of Zurich

B.2 AVIRIS images of the Kennedy Space Center
B.3 ROSIS image of Pavia

B.4 WorldView-2 multi-angle sequence of Atlanta

B.5 WorldView-2 multi-angle sequence of Rio de Janeiro

We would like to thank Prof. Melba Crawford at Purdue University for mak-
ing the Kennedy Space Center AVIRIS data available. Prof. Paolo Gamba
from the University of Pavia is acknowledged for providing the Pavia RO-
SIS image. We also thank Dr. Nathan Longbotham and Dr. Fabio Pacifict
at DigitalGlobe for supplying and preprocessing the Atlanta and Rio de
Janeiro WorldView-2 imagery.

The Pavia ROSIS dataset and part of the Rio de Janeiro WorldView-2
sequence (5 angular acquisitions) have been distributed in the context of
the IEEE GRSS Data Fusion Contest of 2008 and 2011, respectively. In
this regard, we acknowledge the GRSS Image Analysis and Data Fusion
Technical Committee.
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DATASETS USED IN THE THESIS

B.1 QUICKBIRD IMAGES OF ZURICH

The Zurich dataset consists of two VHR QuickBird images of the city of
Zurich (Switzerland), representing two spatially distant neighborhoods. The
target image is a 474x482 pixels subset of an acquisition of August 2002
while the source image is a 301x296 pixels subset of an acquisition of
October 2006. Figures B.1(a) and (c) illustrate the two considered images.

The images present 4 multispectral VNIR bands and a PAN band covering
the region of the spectrum from 450 to 900 nm (see Tab. 2.1 on page 18).
The multispectral bands, originally possessing a spatial resolution of 2.4 m,
have been pansharpened with the Gram-Schmidt method [Brower and Laben,
2000] to reach a spatial resolution of 0.6 m.

The ground truth defined by visual inspection includes pixels from 4
land-cover classes characterizing both images: “buildings’, “roads’, “grass’,
‘vegetation”. An extra class “shadows” has been arbitrarily added, bringing
the total of classes to 5. Figures B.1(b) and (d) show the ground truth maps
for the source and target images, respectively. Table B.1 details the class
counts per image and presents a legend of the colors used in the maps.

The differences in marginal and class-conditional distributions between
the source and the target image are caused by three factors: 1) differences in
illumination conditions (sun and satellite elevations have changed), 2) sea-
sonal effects affecting vegetation growth and 3) varying materials composing
roofs and roads.



B.1 QUICKBIRD IMAGES OF ZURICH

(a) Source image: false color NIR composite (b) Source image: ground truth.
(RGB: QuickBird bands 4-3-2).

(c) Target image: false color NIR composite (d) Target image: ground truth.
(RGB: QuickBird bands 4-3-2).

Figure B.1: QuickBird images of the city of Zurich. The source image is of size
301x296 pixels. The target image is of size 474x482 pixels. Ground
truth: 5 thematic classes. For the legend refer to Tab. B.1.

Table B.1: Zurich dataset: names, number of labeled pixels per image and colors
for the land-cover classes.

Class name # source samples # target samples Color

buildings 10,729 15,897 .
roads 4,970 10,050 (|
shadows 3,159 8,551 I
trees 3,324 9,981 I
grass 6,062 5,041 /1

TOTAL 28,244 49,520
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DATASETS USED IN THE THESIS

B.2 AVIRIS IMAGES OF THE KENNEDY SPACE CENTER

The KSC dataset comprises two sub-regions of the same hyperspectral
acquisition that has been obtained over the Kennedy Space Center, Florida
(USA), on March 23 1996 [Rajan et al,, 2008]. Figures B.2(a) and (c) illustrate
these two 614x512 pixels subsets.

The image has been acquired with the airborne AVIRIS hyperspectral
instrument and counts 224 bands covering the region between 400 and
2500 nm. After the removal of water absorption and low SNR bands, the
dataset is composed of a total of 176 bands (indices of the original bands
kept: 5-101, 117-150, 173-217). The spatial resolution of the image is 18 m.

The retained ground truth only includes land-cover classes that are found
in both images. Figures B.2(b) and (d) depict the ground truth maps for the
source and target images, respectively. The list of these 10 classes, mainly
consisting of types of subtropical vegetation, along with details about the
class counts per image and a legend of the colors used in the maps is given
in Tab. B.2.

The spectra of the classes present a rather large variation across the two
retained areas, justifying the definition of distinct source and target domains.
Some of the classes have been defined as mixed land-covers. Therefore,
slight changes in the proportions of these end-members throughout the
image will cause a shift in the probability distributions.
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(a) Source image: false color NIR compos-
ite (RGB: AVIRIS bands 45-25-14).

(b) Source image: ground truth.

(c) Target image: false color NIR composite
(RGB: AVIRIS bands 45-25-14).

Figure B.2: AVIRIS images of the Kennedy Space Center. The both sub-regions
are of size 614x512 pixels. Ground truth: 10 thematic classes. For the

legend refer to Tab. B.2.

Table B.2: KSC dataset: names, number of labeled pixels per image and colors for

the land-cover classes.

(d) Target image: ground truth.

Class name # source samples  # target samples Color
scrub 761 422 [
willow swamp 243 180 [
cabbage palm hammock 256 431 [
cabbage palm/oak hammock 252 132 I
slash pine 161 166 I
oak/broadleaf hammock 229 274 ]
hardwood swamp 105 248 /7
graminoid marsh 431 453 [
salt marsh 419 156 [
water 927 1,392 L
TOTAL 3,784 3,854
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B.3 ROSIS IMAGE OF PAVIA

The Pavia dataset consists of a single image acquired by the airborne
ROSIS-03 hyperspectral sensor with a flight over the city center of Pavia
(Italy) operated by DLR [Licciardi et al, 2009] (see Fig. B.3(a)). From the
original 1400x512 scene, a source sub-region was defined on a patch of
172x123 pixels whereas a target sub-region was set to cover a separate
and larger 350350 pixels area.

Although the sensor acquires a total of 115 spectral bands covering a
region of the spectrum between 430 and 860 nm, due to the presence of
13 noisy channels, only 102 bands were retained for the analyses. The
associated spatial resolution is 1.3 m.

The captured scene is mainly representing an urban setting: 4 thematic
classes have been delineated throughout the image: “buildings’, “roads’,
‘shadows” and “vegetation”. Figure B.3(b) shows the ground truth map. De-
tails about the labeled samples located in the source and target sub-regions
are given in Tab. B.3. Note that the original dataset also includes the the-
matic class “water”, excluded here as not present across the entire image.

The different nature of the materials constituting roofs and roads as well
as the presence of various types of vegetation, cause a remarkable variation
across the image of the spectral signatures of these land-cover classes. In
this context, we could consider the two disjoint subsets of the scene as two
separate domains.



B.3 ROSIS IMAGE OF PAVIA 157

(b) Ground truth: 5 thematic classes (only 4 were used in the adaptation experiments as
“water” was excluded). For the legend refer to Tab. B.3.

Figure B.3: ROSIS image of the city center of Pavia. The sub-regions considered
as source (172x123 pixels patch on the right) and target (350x350
pixels patch on the left) images are indicated with white polygons in
(a) and with black polygons in (b).

Table B.3: Pavia dataset: names, number of labeled pixels per image sub-region
and colors for the land-cover classes.

Class name # source samples # target samples Color

buildings 1,465 17,501 [
roads 326 2,549 [
shadows 514 1,638 ]
vegetation 1,793 6,406 [
water - - [

TOTAL 4,098 28,094
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B.4 WORLDVIEW-2 MULTI-ANGLE SEQUENCE OF ATLANTA

The Atlanta dataset consists of a multi-angle in-track sequence collected
by WorldView-2 during a 2-minute time frame over the city center of At-
lanta, Georgia (USA), in December 2009. From this multi-anqular acquisi-
tion, we retained 13 images with an off-nadir angle varying from —33.2°
(i.e. 33.2°, looking southward from the satellite to the imaged area) to
+31.5° (i.e. 31.5° looking northward from the satellite to the imaged area).
Each image covers exactly the same area and has a size of 1907 x 1266
pixels (a subset of the complete scene). Figure B.4(a) illustrates the most
nadiral acquisition of the sequence, while Fig. B.5 reports the satellite el-
evations and azimuths along the collection track.

The images present 8 multispectral bands between 400 nm and 1050 nm.
In fact, WorldView-2 extends with 4 additional spectral channels (coastal,
yellow, red edge, NIR2) the standard 4 of the QuickBird sensor (blue, green,
red, NIR). The spatial resolution is 2 meters (see Tab. 2.1 on page 18).

Since the sequence has been collected over part of downtown Atlanta, a
set of classes commonly found in urban environments has been considered.
Hence, the ground truth included different kinds of vegetative cover, several
types of man-made objects and urban structures found across the entire
scene. The 9 ground-cover classes ultimately identified are listed in Tab. B.4
with the respective class counts and map legend colors.

The reference polygons could be propagated through the whole multi-
angular sequence by using true-orthorectified images obtained thanks to
a Digital Surface Model [Longbotham et al, 2012a]. However, as abrupt
changes in elevation (e.g. high buildings) could produce occlusion artifacts,
the survey has been carried out to collect samples in open areas with a
relatively small topographic variation. Figure B.4(b) reports the common
ground truth map valid for all the sequence.

Three main factors cause the observed angular dataset shift in this se-
quence. First, we remark an increased Rayleigh scattering at high off-nadir
angles, yielding hazy images in these angular regions of the sequence.
Second, small-scale BRDF effects are clearly visible for some specific sur-
faces (asphalt, grass, etc). Third, at a larger object scale, the solar ob-
servational cross-section causes remarkably different scattering/shadowing
behavior along the path. In this regard, starting from the northernmost ac-
quisition, note that images #1 (—33.2°) to #8 (4+9.5°) lie in the forward
solar scattering region. This means they have been acquired opposite the
sun with respect to the target area. The remaining images #9 (+12.2°) to
#13 (+31.5°) are instead in the backward scattering region, where the sun
and the satellite look at the imaged area from the same side (see Fig. B.5).
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(a) True color composite (RGB: bands 5-3-2) of the image acquired at

—85° off-nadir (most
nadiral image, L. e. image #7).
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(b) Ground truth: 9 thematic classes. For the legend refer to Tab. B.4.

Figure B.4: WorldView-2 images of the city center of Atlanta.
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Table B.4: Atlanta dataset: names, number of labeled pixels and colors for the land-
cover classes.

Class name # samples Color
water 313 [ ]
concrete 16,479 /T
asphalt 30,099 [
vehicles 1,759 .
soil 2,014 I
grass 27,561 1
buildings 6,283 [ ]
shadow 3,156 ]
trees 3,905 I
TOTAL 91,569

0° (N)

270 ‘oo

180°

Figure B.5: Atlanta dataset: ground observed azimuth (plotted angularly clockwise:
north = 0°, east = 90°, south = 180°, west = 270°) and elevation
(plotted radially from the center: ground nadir = 90°, ground hori-
zon = 0°) of the satellite for each acquisition in the sequence (black
crosses) as well as for the sun (yellow circle). Images are identified
as #1 (—33.2° off-nadir) to #13 (+31.5° off-nadir), starting from the
northernmost acquisition.
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B.5 WORLDVIEW-2 MULTI-ANGLE SEQUENCE OF RIO DE JANEIRO

The Rio de Janeiro dataset is an anqular in-track sequence acquired by
WorldView-2 over of the city center of Rio de Janeiro (Brazil), in January
2010. The sequence, obtained during a 5-minute collection period, consists
of 20 images with off-nadir angles going from —47.3° (i.e. 47.3° looking
southward from the satellite to the imaged area) to +47.5° (i.e. 47.5°, look-
ing northward from the satellite to the imaged area). The considered scene
is the same across all the acquisitions and is a subset of size 463x328 pix-
els of the imaged area. Figure B.6(a) pictures the most nadiral image of the
sequence. Figure B.7 shows the satellite elevations and related azimuths
along the collection track.

The images possess the same spectral channels and the same associated
spatial resolution of the Atlanta dataset presented in Appendix B.4: 8 bands
(400 nm to 1050 nm) at a spatial resolution of 2 m.

The imaged scene concerns an area just south of downtown Rio de Janetro.
We observe several large buildings, roads of varying size, community parks
as well as part of the bay. Table B.5 details the 5 land-cover classes, and
their colors used in the maps, which have been manually delineated on the
images by photo-interpretation. The corresponding class counts refer to the
image acquired at —6.1° off-nadir and can be considered as representative
for the entire sequence.

In fact, for this dataset, the images were not true-orthorectified, i. e. there
was not a perfect pixel-by-pixel superimposition throughout the sequence.
This required us to provide a separate ground truth for each acquisition,
though always including the same objects. Figure B.6(b) reports the ground
truth map for the image acquired at —6.1° off-nadir, the most nadiral acqui-
sitton.

As for the Atlanta dataset, the geometry of the acquisition and the related
angular effects are the only factors inducing the probability shift for these
images. However, the solar observational cross-section effects (third factor)
have changed. If compared to the Atlanta sequence, the Rio de Janeiro acqui-
sition took place with a different combination of satellite-sun positions. In
this case, the sun was almost perpendicular to the satellite flight path, caus-
ing a more symmetrical scattering/shadowing behavior along the sequence.
No clear distinction between forward or backward scattering regimes can
be made.
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(a) True color composite (RGB: bands 5-3-2) of the image acquired at —6.1°
off-nadir (most nadiral image, i.e. image #9).

1 L
N

el

(b) Ground truth: 5 thematic classes. It refers to the image acquired at —6.1°
off-nadir (most nadiral image, i. e. image #9). For the legend refer to Tab. B.5.

Figure B.6: WorldView-2 images of the city center of Rio de Janeiro.
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Table B.5: Rio de Janeiro dataset: names, number of labeled pixels and colors for
the land-cover classes (relative to the ground truth of the image acquired
at —6.1° off-nadir).

Class name # samples Color

water 13,532 [
grass 1,564 [
roads 2,047 [
trees 2,946 [
buildings 2,042 .
TOTAL 22,131

0°(N)

90°

180°

Figure B.7: Rio de Janeiro dataset: ground observed azimuth (plotted angularly
clockwise: north = 0°, east = 90°, south = 180°, west = 270°) and
elevation (plotted radially from the center: ground nadir = 90°, ground
horizon = 0°) of the satellite for each acquisition in the sequence (black
crosses) as well as for the sun (yellow circle). Images are identified
as #1 (—47.3° off-nadir) to #20 (4+47.6° off-nadir), starting from the
northernmost acquisition.
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