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ABSTRACT
In this paper, we propose a strategy for fusing clustering
obtained with different remote sensing sources. Dempster-
Shafer (DS) Theory is a powerful fusion method that allows
to combine classifications from different sources and handles
ignorance, imprecision and conflict between them. To do
so, it attributes evidences (weights) to different hypothesis
representing single or union of classes. We introduce a fully
unsupervised evidence assignment strategy exploiting the
entropy among cluster memberships. Ambiguous pixels get
heavier evidences for union of classes to better represent the
ignorance. On two multisource experiments, the proposed
Entropy-based Dempster-Shafer (EDS) performs best along
the different fusion methods when the single class accuracies
from each source are complementary and furthermore when
one of the sources shows low overall accuracy.

Index Terms— Dempster-Shafer, multisource fusion, un-
supervised, entropy, fuzzy C-Means, remote sensing

1. INTRODUCTION

Classification in remote sensing can provide thematic infor-
mation on large regions (e.g. spatial distribution of forest
against urban areas). Many sources exist nowadays, so that
often images from different sensors are available over the
same region at a similar time period. In the optical domain,
the images are redundant, but show complementarities that
can be exploited. In the last decade, the fusion of remote
sensing images has been intensely investigated, in particular
under the umbrella of pansharpening, which is the fusion
of high spatial resolution images (panchromatic) with multi-
spectral or hyperspectral images [1]. Fusion of different clas-
sifiers [2] or of classifications from multiple sources [3] have
also received wide attention in remote sensing. The comple-
mentarity between images with different spectral bands and
sensitivity can lead to better class discrimination and more
accurate classification maps after their fusion.

Multisource fusion can be performed at different levels
either at the pixel or features level or as a decision fusion

tool, thus combining several single source classifications
(post-classification) [4]. The Dempster-Shafer (DS) fusion
methodology is of the latter type. DS theory of evidence is
a powerful fusion method having the advantage of handling
ignorance, imprecision and conflict between the sources [5].
DS theory attributes evidences (weights) to a set of different
hypothesis, being single classes or union of classes. In case
of ambiguity, higher weights are given to the union of several
classes than on a single class. This potentially allows to un-
veil the ambiguity after the combination with another source.
The DS theory has been successfully applied to the segmen-
tation fusion of biomedical images [6] and the classification
fusion of remote sensing images [4], [7].

While the DS theory for fusion is well established, the
way of deriving the evidences from the classification varies
depending on the application. For instance, evidences can
also be assigned in a supervised way using a validation set, if
an accurate ground truth is available [8].

When unsupervised, the assignment of evidences to the
different hypothesis can be derived from Fuzzy C-Means
(FCM) class memberships [4]. The ambiguity among the
two highest memberships [9] and a threshold separating high
from low ambiguity situations [6] have been considered in the
past to assign evidences to unions of classes. However, and
for more than two classes, the ambiguity should be defined
in a continuous way and not only by considering two situa-
tions: low or high ambiguity. Moreover, it is difficult to set a
threshold which is common to all pixels, because ambiguity
can also vary locally.

In this context of unsupervised classification, or cluster-
ing, we propose a local assignment of DS evidences alleviat-
ing the aforementioned weaknesses.The ambiguity threshold
is replaced by an ambiguity factor weighting the evidences,
based on the entropy among the fuzzy memberships giving a
natural multiclass measure to assess uncertainty among sev-
eral classes [10].



2. FUZZY CLUSTERING

Let us consider the pixels xs(j) ∈ Rds

of two co-registered
images from different sensors s with associated labels y(j) =
Ci, 1 ≤ i ≤ N corresponding to the N different classes.
Fuzzy cluster memberships µij ∈ [0, 1] are obtained from the
Fuzzy C-Means (FCM) algorithm [4, 9, 6]. The clusters cen-
ters are matched before the fusion in order to remain coher-
ent among the sources. We observed that the FCM clustering
solutions were very stable regarding the initialization in our
experiments.

3. DEMPSTER-SHAFER THEORY FOR DATA
FUSION

The Dempster-Shafer theory has the advantage of consider-
ing imprecision and conflict between multisource informa-
tion. The different hypothesis considered in the DS theory
can even be union of classes. This can be seen as the ability of
representing ”mixed” pixel, resulting from a source unable to
distinguish certain classes. We are not considering the union
of classes as potential final classes, our goal being to end up
with N distinct classes. However the union of classes are
considered before fusion in ambiguous cases, potentially al-
lowing to determine the class after combination with the other
source.

3.1. Evidence representation

The evidences are the weights assigned to the hypothesis Hi,
corresponding to the single class and union of classes. The
evidences ms(Hi) for a source s follow these conditions:

0 ≤ ms(Hi) ≤ 1, ms(∅) = 0,

N∑
i=1

ms(Hi) = 1 (1)

which are similar to standard probabilities properties.

3.2. Evidence combination

The fusion of the set of evidences ms(Hi) from each source
(here s = 1, 2) is realized by the normalized orthogonal sum
of the masses (2).

m(Hi) =
1

1−K
∑

Hp∩Hq=Hi

m1(Hp) ·m2(Hq) (2)

K =
∑

Hp∩Hq=∅

m1(Hp) ·m2(Hq)

In other words, all the product of evidences between the
sources contributing to an hypothesis (Hi) are summed. Ta-
ble 1 allows a better visualization of which product of masses
contributes to which hypothesis (Hi = {Ci or ∅} inside the

PPPPPPPH2

H1
C1 C2 C3 C1 ∪ C2 C1 ∪ C3 C2 ∪ C3

C1 C1 ∅ ∅ C1 C1 ∅
C2 ∅ C2 ∅ C2 ∅ C2

C3 ∅ ∅ C3 ∅ C3 C3

C1 ∪ C2 C1 C2 ∅ - C1 C2

C1 ∪ C3 C1 ∅ C3 C1 - C3

C2 ∪ C3 ∅ C2 C3 C2 C3 -

Table 1. Intersection of the hypothesis Hi for three classes
and two different sources. Union of classes can unveil a single
class, e.g. C3 from C2 ∪ C3 and C1 ∪ C3.

table, since the union of classes are not considered as a possi-
ble final class).

3.3. Decision rule

In the literature, there are several decision rules such as max-
imum of plausability or credibility [7, 11]. The maximum of
credibility, equivalent to the maximum of evidence, is chosen
to result in labels being the most probable class [12].

y(j) = argmax
Ci
{m(Ci)(j), 1 ≤ i ≤ N} (3)

4. UNSUPERVISED EVIDENCE ASSIGNMENT

The unsupervised determination of evidences is based on the
fuzzy membership values without requiring any groundtruth
information. The union of classes allows to represent a cer-
tain ambiguity between classes. Depending on the ambiguity
among the membership values, a proportional weight will be
set on the evidences representing the corresponding union of
classes.

Previously, in order to weight accordingly the evidence
representing the union of the two classes k and l, the ambigu-
ity has been defined as the absolute difference among the two
highest membership k and l:

∣∣µkj − µlj

∣∣ [6, 9]. This was jus-
tified by the use of only gray level intensities of the images,
reducing the problem of ambiguity to a problem involving
maximally two clusters. The ambiguity was characterized as
high or low ambiguity are characterized a user-defined thresh-
old ε [6].

4.1. Ambiguity factor based on entropy

It is difficult to set a threshold on the ambiguity that is valid
for all pixels: such a threshold would not account for situa-
tions where the ambiguity is among several memberships and
be sensitive for ambiguity around ε. We propose an ambigu-
ity factor weighting the different evidences and avoiding the
recourse to a binary threshold. The ambiguity is based on the
entropy of the memberships distribution. The entropy reflects



the internal organization of the memberships: a flat distribu-
tion will have a high entropy, a peaked distribution will have
a low entropy. The ambiguity factor ρ(j) is defined as the
normalized entropy for pixel j:

ρ (j) =

∑N
i=1 µij ln(µij)

ρmax

where the maximal entropy is ρmax = ln(N), met when
all the memberships are equal: µij = 1/N .

4.2. Smooth evidence assignment

The different evidences for the single classes (4) and the union
of classes (5),(7) are weighted by the entropy-based ambigu-
ity factor ρ(j).
The evidences for the single classes are defined as

m(Ci)(j) = [1−mk̄(j)−mkl(j)−mk̄l(j)] · µij (4)

When the ambiguity is low, one membership is signif-
icantly more important and the others can be grouped in
mk̄(j), the evidence of the union of all memberships except
the highest membership, defined as

mk̄(j) = m(
N⋃
i=1
i6=k

Ci)(j) = (1−ρ (j)) ·
N∑
i=1
i6=k

µij ·(β−µij) (5)

with β = max
1≤k≤N

(µkj).

This evidence will be down-weighted in case of high am-
biguity among the class memberships since it would become
less relevant.

mkl(j) and mk̄l(j) are the evidences related to the two
highest memberships, corresponding to the classesCk andCl.
They are defined as follows

mkl(j) = m(Ck ∪ Cl)(j) = ρ (j) · α · (µkj + µlj)k 6=l (6)

mk̄l(j) = m(
N⋃
i=1

i6=k,i 6=l

Ci)(j) = ρ (j) · α ·
N∑
i=1

i6=k,i 6=l

µij (7)

where α = β − min
1≤k≤N

(µkj).

These evidences are made proportional to the ambiguity
factor. They will be down-weighted in the case of low (or no)
ambiguity between memberships, since they would become
less relevant and let mk̄(j) be more important.

Finally, the evidence conditions (1) are respected through
adequate normalization in eq. (4) of the single class evidences
(Ci). The mass of the union of all the classes is null under the
hypothesis that the clustering function avoid creating region
with overlapping of all classes. The union of more than the

LAND SPOT STAC SUM PROD ENT ADS EDS SDS
OA 76.83 74.18 77.59 78.41 78.85 78.17 78.49 78.83 78.90
κ 0.622 0.584 0.637 0.645 0.650 0.642 0.645 0.647 0.644
Water 0.856 0.763 0.841 0.829 0.832 0.827 0.831 0.830 0.824
Farm. 0.199 0.190 0.187 0.223 0.226 0.220 0.224 0.221 0.230
Veg. 0.760 0.805 0.813 0.811 0.814 0.810 0.811 0.811 0.769
Urban 0.809 0.779 0.814 0.820 0.824 0.817 0.820 0.824 0.828

Table 2. Average results for 3-fold cross-validation of the
“Geneva” images

IKON SPOT STAC SUM PROD ENT ADS EDS SDS
OA 52.52 71.15 72.61 72.07 71.92 72.16 73.17 73.69 74.96
κ 0.385 0.622 0.643 0.633 0.632 0.635 0.648 0.656 0.662
Water 0.154 0.940 0.661 0.886 0.870 0.880 0.897 0.874 0.767
Veg. 0.519 0.446 0.482 0.536 0.508 0.534 0.536 0.524 0.631
Farm. 0.130 0.006 0.395 0.071 0.142 0.122 0.170 0.193 0.009
Urban 0.765 0.922 0.952 0.905 0.909 0.905 0.907 0.904 0.880
Rice. 0.603 0.507 0.728 0.536 0.584 0.554 0.560 0.639 0.699

Table 3. Average results for 3-fold cross-validation of the
“Tana” images

two highest memberships could be taken into account, but this
would lead to an extensive number of evidences with very low
weights. Notice that our proposed assignment of evidences
boils down to the one presented in [6] if ρ(j) is set to 1 or 0,
in case of high or low ambiguity respectively.

5. EXPERIMENTS

The proposed Entropy-based Dempster-Shafer (EDS) fusion
scheme has been tested on two optical remote sensing cases:

The Geneva dataset consists in a SPOT image with a
spatial resolution of 20m and 3 spectral bands (Near in-
frared (NIR), Red (R) and Green (G) spectral channels), and
a Landsat TM image with a spatial resolution of 30m and
6 spectral bands (from 450 nm to 2350 nm), acquired over
Geneva, Switzerland, in 1990 and 1988 respectively. Images
are 512×512 pixels after co-registration on a 20m pixel grid.
A ground truth of 45311 samples is divided in four classes:
1. Water, 2. Farming, 3. Vegetation, 4. Urban (buildings,
ground). First row of Fig. 3 illustrates the images.

The Tana dataset consists in a SPOT image with a spatial
resolution of 2m50 and 3 spectral bands (NIR-R-G), and an
Ikonos image with a spatial resolution of 1m and the 3 visible
spectral bands (R-G-B), both taken in july 2006 over Antana-
narivo, Madagascar. Images are 2000×2000 pixels after co-
registration on a 2m50 pixel grid. A ground truth with 4243
samples collected and divided in five classes: 1. Water, 2.
Ricefield, 3. Vegetation (mango, eucalyptus, fir), 4. Farming,
5. Urban (buildings, ground). First row of Fig. 4 illustrates
the images.

The proposed EDS fusion method is compared with 1) the
Ambiguity threshold (ε = 0.15) Dempster-Shafer (ADS) [6],
2) the Supervised Dempster-Shafer (SDS) [8], 3) the clus-
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Fig. 1. κ results (3-fold cross-validation) for Geneva.
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Fig. 2. κ results (3-fold cross-validation) for Tana.

tering of the stacked sources (STAC) and 4) other standard
fusion methods including sum (SUM), product (PROD) or
entropy-weighted product of fuzzy memberships (ENT) [13].

Tables 2 and 3 summarize the overall accuracy (OA), Co-
hen’s Kappa (κ) and per class accuracies for the two datasets
averaged over a three-fold validation, one-fold for validation
of SDS and the remaining two-folds for testing the final clas-
sification. Figures 1 and 2 report the standard deviations for
the two datasets.

In Geneva, the classification results on the Landsat and
SPOT images show little complementarity between class ac-
curacies. The spatial difference (30m and 20m of spatial res-
olutions respectively) does not bring much complementarity.
The standard fusion methods show the same values of ac-
curacy than the unsupervised DS fusions, with the standard
product fusion giving the best accuracies. The lack of com-
plementarity between the source classes could not allow the
unsupervised DS entropy-based fusion to produce better re-
sults.

In Tana, the opposite is observed: the classification result
on the Ikonos image is much lower than on the SPOT image.
The Ikonos image has wavy water surfaces which makes the
clustering harder for this source and lead to poor results. In
both images the accuracy obtained for the class ”Farming” is
very low, inherently to its diversity (contains spectral signa-
tures corresponding to different types of crops).

The standard fusion methods are simply finding a trade-
off between the two clustering and result in slightly lower ac-
curacies compared to the clustering on the stacked spectral
bands.

The proposed EDS outperforms all the other fusion meth-
ods. We remember that contrarily to the ambiguity threshold
approach (ADS) [6], EDS does not need any pre-defined pa-
rameters. The supervised DS fusion method exaggerates the
tendencies, i.e the SDS fusion pushes up the classes having
a high value of accuracy in one of the images, leaving aside
some other classes with low accuracies. The unsupervised
methods (ADS and EDS) give more homogeneous accuracies

(a) LAND image (b) SPOT image

(c) FCM, LAND (0.622) (d) FCM, SPOT (0.584)

(e) SDS (0.644) (f) Proposed EDS (0.647)
ground truth: water vegetation farming urban ricefield

Fig. 3. Images and classification maps for the Geneva dataset
.

through the classes. This difference is mostly due to the lo-
cal assignment of evidences (per pixel) for the unsupervised
methods, whereas the supervised method assigns only global
(per class) evidences.

6. CONCLUSION

We propose an unsupervised assignment of Dempster-Shafer
evidences for the fusion of clustering from multiple sources,
generalizing the treatment of ambiguity. Instead of a user-
defined ambiguity threshold [6], our method defines an am-
biguity factor based on the local entropy among the cluster
memberships. Ambiguous pixels, representing the mixture
of classes, are given stronger evidences for union of classes.
This increases the possibility of unveiling the ambiguity be-
tween the classes thanks to the other source. Our Entropy-
based Dempster-Shafer fusion method (EDS) performs bet-



(a) IKONOS image (b) SPOT image

(c) FCM, IKONOS (0.385) (d) FCM, SPOT (0.622)

(e) SDS (0.662) (f) Proposed EDS (0.656)

Fig. 4. Images and classification maps for the Tana dataset (a
600× 600 subset only is shown)
.

ter than standard fusion methods and performs similarly as
other Dempster-Shafer fusion schemes. This confirms the
benefits of our fully unsupervised method, recalling that no
user-defined parameters are set. It performs particularly well
when the sources are complementary and one shows a much
lower overall accuracy.
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