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Summary1

The representative elementary volume (REV) is a critically important concept in fractured2

rock investigations as it tells us at what scale the fractured domain can be represented by an3

anisotropic tensor as opposed to requiring the details of each individual fracture for modeling4

purposes. Whereas the REV size and corresponding tensor characteristics for the hydraulic5

conductivity (K) in fractured rock have been the subject of numerous previous investigations,6

no studies to date have focused on the electrical conductivity (σ). This is despite the fact7

that geoelectrical measurements are arguably the most popular means of geophysically in-8

vestigating fractured rock, typically via azimuthal resistivity surveying where the observed9

electrical anisotropy is commonly used to infer hydraulic characteristics. In this paper, we10

attempt to fill this void and present a systematic numerical study of the impacts of changes11

in fracture-network properties on the REV size and equivalent tensor characteristics for both12

the electrical and hydraulic conductivities. We employ a combined statistical and numerical13

approach where the size of the REV is estimated from the conductivity variability observed14

across multiple stochastic fracture-network realizations for various domain sizes. Two im-15

portant differences between fluid and electric current flow in fractured media are found to16
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lead to significant differences in the REV size and tensor characteristics for σ and K; these17

are the greater importance of the matrix in the electrical case and the single-power instead18

of cubic dependence of electric current flow upon aperture. Specifically, the REV for the19

electrical conductivity will always be smaller than that for the hydraulic conductivity, and20

the corresponding equivalent tensor will exhibit less anisotropy, often with notably different21

principal orientations. These findings are of key importance for the eventual interpretation of22

geoelectrical measurements in fractured rock, where we conclude that extreme caution must23

be taken when attempting to make the link to hydraulic properties.24

Keywords: electrical conductivity; hydraulic conductivity; representative elementary volume25

(REV); representative volume element (RVE); tensor; discrete-dual-porosity (DDP); discrete26

fracture network (DFN); resistivity; stochastic; geoelectrical27

1 Introduction28

Fractured rocks play a critically important role in a wide variety of geoscience problems29

including groundwater flow and contaminant transport, aquifer remediation, hydrocarbon ex-30

traction, geothermal resource exploitation, and the long-term underground storage of CO231

and nuclear waste (Carneiro, 2009; Follin et al., 2014; Geiger & Emmanuel, 2010; Kolditz32

& Clauser, 1998; Manna et al., 2017; Neuman, 2005; Rotter et al., 2008; Zhao et al., 2017).33

Numerous studies have been devoted to the development of methods for the identification34

and characterization of subsurface fractures and fracture networks, with the overall aim of35

improving conceptual and numerical models of flow and transport in fractured-rock environ-36

ments (Berkowitz, 2002; Bonnet et al., 2001; Davy et al., 2010; NAP, 2015). In this regard,37

applied geophysical methods have gained widespread interest, as many of these methods are38

highly sensitive to the presence of fractures and the corresponding measurements can be ac-39

quired quickly and non-invasively from the Earth’s surface and/or from boreholes. Examples40

include ground-penetrating radar (Dorn et al., 2012; Tsoflias et al., 2001), seismic (Her-41

wanger et al., 2004a; Pytharouli et al., 2011), electrical resistivity (Lane et al., 1995; Robert42

et al., 2012), induced polarization (Marescot et al., 2008; Schmutz et al., 2011), self potential43
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(DesRoches et al., 2017; Roubinet et al., 2016; Wishart et al., 2008), and electromagnetic44

methods (Donadille & Al-Ofi, 2012; Steelman et al., 2015).45

Amongst the multitude of geophysical techniques that have been applied to fractured-rock46

problems, the electrical resistivity (ER) method is of particular interest because: (i) numerous47

field, laboratory, and theoretical studies have demonstrated that geoelectrical data are signif-48

icantly affected by the presence and characteristics of fractures such as density, orientation,49

and aperture (Jinsong et al., 2009; Taylor & Fleming, 1988); (ii) ER measurements can be ac-50

quired using a variety of electrode configurations and spacings, thereby offering the potential51

to obtain information on subsurface properties over a wide range of spatial scales (Everett,52

2013; Telford et al., 1990); and (iii) strong analogies between fluid and electric current flow in53

fractured media suggest that geoelectrical data may contain important information regarding54

the corresponding hydrogeological properties (Brown, 1989; Van Siclen, 2002). As a result,55

ER studies in fractured rock have been widespread, and include the development and applica-56

tion of anisotropic tomographic methods (Greenhalgh et al., 2009; Herwanger et al., 2004a,b;57

Li & Spitzer, 2005; Pain et al., 2003); the use of azimuthal resistivity surveys to estimate58

predominant fracture orientations (Al Hagrey, 1994; Busby, 2000; Lane et al., 1995; Taylor59

& Fleming, 1988) along with, in many cases, properties of the hydraulic conductivity tensor60

(Boadu et al., 2005, 2008; Ritzi & Andolsek, 1992; Skinner & Heinson, 2004; Skjernaa &61

Jørgensen, 1994; Steinich & Marin, 1996; Yeboah-Forson & Whitman, 2014); and the acqui-62

sition of surface-based electrical resistivity tomography (ERT) profiles for the identification63

and characterization of fracture zones (Porsani et al., 2005; Robert et al., 2011, 2012; Sharma64

& Baranwal, 2005; Yadav & Singh, 2007).65

One concept that is absolutely critical when it comes to making meaningful use of geoelec-66

trical data in fractured-rock investigations is the representative elementary volume (REV).67

In materials engineering, the REV is typically defined as the minimum volume of heteroge-68

neous material that is large enough to be statistically representative of the composite with69

respect to a particular physical property (Kanit et al., 2003). In other words, at volume sizes70

greater than the REV, small-scale heterogeneities in the medium need not be explicitly taken71

into account because their effects can be adequately captured by a set of average continuum72

3



properties. With regard to geoelectrical measurements in fractured rock, the REV defines73

the scale beyond which the electrical conductivity of the fractured medium can be adequately74

described using a second-order tensor, thus avoiding the need to consider the detailed ef-75

fects of individual fractures on the passage of electric current. Knowledge about the REV is76

essential for understanding under what circumstances ERT forward modeling and inversion77

codes, which are based upon a discretized parameterization of the conductivity, can be ef-78

fectively utilized. Indeed, such codes inherently assume that the chosen model-cell size is at79

or beyond the scale at which conductivity can be effectively described by a scalar or tensor,80

which may or may not be valid. The notion of REV is also fundamental for understanding81

when and how bulk electrical properties can be related to those of the underlying fracture82

network (i.e., fracture densities, orientations, lengths, and apertures). Finally, it is essential83

to understand the nature of the REV for the electrical conductivity in fractured rock, and its84

relationship to the REV for the hydraulic conductivity, before conclusions can be made about85

subsurface hydrogeological properties based on geoelectrical measurements. As noted above,86

a number of researchers have taken the step of linking the results of azimuthal resistivity87

surveying to properties of the hydraulic conductivity tensor, with the justification that fluid88

and electric current will take similar paths through the fractured medium based on parallels89

between Ohm’s and Darcy’s laws. No study to date, however, has ever critically examined90

the validity of this approach in the context of realistic fracture networks.91

Within the hydrogeological community, the existence and properties of the REV for the92

hydraulic conductivity in fractured rock have been rather extensively investigated. Snow93

(1969) conducted an analytical study in which he derived the anisotropic permeability tensor94

for fractured media assuming sets of infinitely long parallel fractures having different ori-95

entations, apertures, and spacings. Using a 2D discrete-fracture-network (DFN) numerical96

modeling approach and assuming an impermeable matrix, Long et al. (1982) subsequently97

investigated the REV size and permeability tensor characteristics for a variety of fracture98

networks, where fracture positions, orientations, lengths, and apertures were drawn randomly99

from statistical distributions. More recent research has continued along these lines, examining100

through numerical DFN simulations how the REV size and permeability tensor are affected101
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by the statistical distribution of fracture parameters (Min et al., 2004; Wang & Kulatilake,102

2008) as well as correlations between parameters (Baghbanan & Jing, 2007). With respect to103

the electrical conductivity, on the other hand, there is a near complete lack of information in104

the literature on the existence and properties of an REV in fractured rock. While the effects of105

fractures on the equivalent conductivity beyond the REV scale have been examined for simple106

configurations (Berryman & Hoversten, 2013; Jinsong et al., 2009), no studies have attempted107

to quantify the REV size and conductivity tensor characteristics for realistic fracture networks.108

The primary reason for this has been the absence of tools for numerically modeling electric109

current flow in fractured media. Whereas fluid flow can be rather easily examined because110

the rock matrix is often ignored on the basis that it is effectively impervious (Cvetkovic, 2017;111

Maillot et al., 2016; Neuman, 2005), this is not the case for the electrical conductivity where112

the matrix typically plays an important role in the conduction of electric current (Beskardes113

& Weiss, 2018; Caballero Sanz et al., 2017; Roubinet & Irving, 2014; Roubinet et al., 2016).114

As a result, modeling approaches that explicitly account for both the fractures and matrix, as115

well as interactions between these domains, are required. Unfortunately the use of standard116

numerical methods, for example finite-difference, -element, or -volume techniques where the117

fractures and matrix are fully discretized (Dey & Morrison, 1979; Pidlisecky & Knight, 2008;118

Rücker et al., 2006), has not been computationally feasible in this regard due to the extremely119

high number of model elements involved.120

Recently, Roubinet & Irving (2014) presented a novel numerical modeling approach for121

electric current flow in 2D fractured media that is based on a semi-analytical discrete-dual-122

porosity formulation. For the first time, this methodology permits accurate computation of123

current flow through realistic and highly complex fracture networks with orders of magnitude124

less computational cost than standard numerical methods. Our goal in the current paper is125

to use this modeling approach to examine the REV size and tensor characteristics for the126

electrical conductivity in realistic fractured media, and to compare our findings with the cor-127

responding results obtained for the hydraulic conductivity. This is done in full generality with128

respect to the 2D intrinsic equivalent medium properties, and not in the context of a partic-129

ular field configuration or measurement setup. We examine the effects of changing fracture130
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orientations, apertures, and lengths, as well as imposing statistical correlation between aper-131

ture and length. In Section 2 we present the overall methodology behind our approach, which132

involves (i) the stochastic generation of 2D square DFNs for various domain sizes; (ii) running133

fluid and electric current flow simulations; (iii) determination of the mean and variance of the134

estimated 2D conductivity tensor components as a function of domain size; and (iv) estima-135

tion of the average tensorial properties of the medium and the REV size. An advantage of the136

combined numerical and statistical approach to REV estimation considered in this paper is137

that numerical simulations need not be performed at the REV scale in order to estimate the138

REV size. We then show in Section 3 the results of applying this procedure to 16 different139

test cases, which allows us to draw conclusions about how the REVs for the electrical and140

hydraulic conductivity compare and are affected by changes in the fracture distribution. This141

leads to some general discussion regarding the validity of inferring characteristics of the hy-142

draulic conductivity tensor from geoelectrical measurements, as well as implications for field143

measurements (Section 4).144

2 Methodology145

We use the combined numerical and statistical approach developed in Cailletaud et al. (1994)146

and Kanit et al. (2003) for our REV analysis, whereby the variance of the property of interest,147

quantified through the analysis of multiple stochastic realizations over several domain sizes,148

is used to establish a scaling relationship that permits definition of the REV in terms of a149

prescribed level of error. To this end, we generate random DFN realizations for different150

domain sizes based on chosen probability distributions for the fracture positions, orientations,151

lengths, and apertures. Numerical modeling of flow through the DFNs for two orthogonal152

sets of Dirichlet boundary conditions then allows estimation of the conductivity tensor com-153

ponents, whose mean values are used to determine the equivalent tensorial properties of the154

medium at and beyond the REV scale, and whose variability as a function of domain size is155

used to derive the scaling relationship required to estimate the size of the REV.156

In accordance with previous work (Long et al., 1982; Min et al., 2004; Baghbanan &157

Jing, 2007), we conduct our analysis in 2D in this paper. This has the strong advantages of158
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(i) being orders of magnitude more computationally efficient than a 3D analysis while at the159

same time allowing for meaningful general conclusions to be made; and (ii) permitting use of160

the modeling framework of Roubinet & Irving (2014) for the electric current flow problem,161

with no further developments required. Fractures in the 2D DFNs are represented as 1D162

linear elements having a constant aperture along their length, and are assumed to be filled163

with water. Although the latter is clearly a gross simplification of reality in the sense that164

is it well known that (i) aperture varies within fractures; (ii) fracture walls are rough; and165

(iii) fracture filling/alteration is common (Brown, 1989; Van Siclen, 2002), the aim of this166

study is to focus on the effects of the fracture-network rather than on details of the individual167

fractures. Indeed, all previous REV work has represented fractures using this simple parallel-168

plate model. The various steps involved in our analysis are described in detail below.169

2.1 DFN generation170

Fractures in this study are completely described by their center position, orientation, length,171

and aperture, for which we define probablility distributions in order to generate a large number172

of stochastic DFN realizations. To create one of such realizations for a particular domain size,173

we populate an initial large-scale (100 × 100 m) region with fractures, from which a central174

square sub-domain having the desired side length L is extracted (Figure 1a and 1b). Fracture175

centers are assumed to be uniformly distributed in the x and y directions throughout the176

domain (Li et al., 2009; Li & Zhang, 2010; Wang & Kulatilake, 2008), meaning that the177

center point (xc, yc) of each fracture can be obtained by drawing xc and yc from U [0, 100].178

We consider a density of fracture centers of 2 m−2 for all of the examples considered in this179

paper, which is comparable with previous research efforts based on the analysis of fractures180

in the field (Baghbanan & Jing, 2007; Min et al., 2004; Wang & Kulatilake, 2008) and leads181

to the generation of 20,000 fractures in the 100× 100 m region. The latter parameter was not182

varied in our study as it is already well understood and rather intuitive that increasing the183

fracture density will tend to proportionally decrease the REV size and increase the overall184

magnitude of the domain conductivity (Li et al., 2009; Li & Zhang, 2010; Long et al., 1982;185

Wang & Kulatilake, 2008). Further, the fracture density value chosen in this paper is not186
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expected to have an impact on the general findings and conclusions in Section 3.187

[Figure 1 about here.]188

Two fracture sets having different orientations are considered in each of the test cases189

examined in Section 3 (Li et al., 2009; Long et al., 1982; Wang & Kulatilake, 2008). The190

fractures in the domain are distributed evenly between these two sets, and the orientation191

angles of fractures within each set are described by a normal distribution with mean µθ and192

standard deviation σθ. Although other statistical distributions have been considered to model193

fracture orientations in previous REV studies (Baghbanan & Jing, 2007; Min et al., 2004),194

the normal distribution is the most common and straightforward choice (Li et al., 2009; Li &195

Zhang, 2010; Long et al., 1982; Wang & Kulatilake, 2008).196

Fracture lengths are assumed to follow a power-law distribution, truncated at the lower197

end, whose probability density function (PDF) is given by198

f(`) =


k`−a for ` ≥ `min

0 otherwise

, (1)199

200

where `min is the minimum permitted fracture length, a is the power-law exponent, and k is201

a normalization constant that ensures that the PDF integrates to unity. Use of a power-law202

distribution is arguably the most common means of describing fracture lengths in recent lit-203

erature (Baghbanan & Jing, 2007; de Dreuzy et al., 2001; Min et al., 2004), and is supported204

by a substantial volume of work on the analysis of fracture traces observed at the Earth’s205

surface as well as theoretical studies (Bonnet et al., 2001; Bour & Davy, 1997; Davy et al.,206

2010). The latter research showed that the exponent a typically ranges between 1 and 3, with207

higher values corresponding to fracture networks dominated by short fractures and lower val-208

ues describing networks where the connectivity is controlled by longer fractures. To generate209

random values for ` consistent with equation (1), we derive the associated cumulative dis-210

tribution function (CDF) and use the inverse transform sampling approach (Devroye, 1986).211
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The simulated value for the fracture length is obtained using212

` = `minX
1

1−a , (2)213
214

where X is a uniform random number drawn from U [0, 1].215

Finally, fracture apertures in our study are assumed to be either constant within each216

fracture set (Min et al., 2004; Wang & Kulatilake, 2008) or randomly distributed according217

to a truncated lognormal distribution (Baghbanan & Jing, 2007; Li et al., 2009; Li & Zhang,218

2010; Long et al., 1982). The latter PDF is given by219

f(b) =


k exp

(
− (ln b−µln b)

2

2σ2
ln b

)
for bmin ≤ b ≤ bmax

0 otherwise

, (3)220

221

where bmin and bmax are the minimum and maximum permitted aperture values, µln b and σln b222

are the mean and standard deviation of the natural logarithm of the aperture, and k is again223

a normalization constant. As before, the inverse transform sampling approach can be used224

with the corresponding CDF to generate random aperture values according to equation (3).225

The simulated values are obtained using (Baghbanan & Jing, 2007)226

b = exp
(√

2σln b erf −1 {X · (g(bmax)− g(bmin)) + g(bmin)}+ µln b

)
, (4)227

228

where X is again a random number drawn from U [0, 1], erf −1 is the inverse error function,229

and g(b) = erf {(ln b − µln b)/
√

2σln b} with erf the error function. Note that a wide body of230

research indicates that fracture aperture tends to be positively correlated with length (Bonnet231

et al., 2001; Hatton et al., 1994; Klimczak et al., 2010; Neuman, 2008; Olson, 2003; Renshaw &232

Park, 1997; Vermilye & Scholz, 1995). To simulate values from the probability distributions in233

equations (1) and (3) while taking into account correlation between these variables, we simply234

use the same uniform random deviate X to generate both values in equations (2) and (4),235

respectively (Baghbanan & Jing, 2007). Also note that values for the parameters controlling236

the fracture aperture distribution were chosen in our study to yield apertures within the237

9



range of those “typically” encountered in fractured-rock environments (Lapcevic et al., 1997;238

Singhal & Gupta, 2010).239

2.2 Fluid flow model240

To compute fluid flow through the different DFN realizations, we follow previous work and241

assume that the rock matrix can be effectively treated as impervious on the basis that its242

ability to transmit fluid is typically many orders of magnitude less than that of the fracture243

network (Cacas et al., 1990; Long et al., 1982; NAP, 2015). In this case, consideration of244

steady-state laminar flow of an incompressible fluid through a 1D parallel-plate smooth-walled245

fracture leads to the so-called cubic law for the fracture transmissivity T [m2 s−1] (Snow, 1969).246

T =
ρg

12µ
b3, (5)247

248

where g is the acceleration of gravity [m s−2], ρ and µ are the density [kg m−3] and dynamic249

viscosity [kg m−1 s−1] of the fluid, respectively, and b is the fracture aperture. To conduct250

our simulations, the DFN is first divided into fracture segments whose endpoints are formed251

by either (i) intersections between fractures and the domain boundaries; (ii) intersections252

between fractures themselves; or (iii) fracture extremities. The flow of water through each253

fracture segment is constant and determined solely by the product of the transmissivity and254

the negative hydraulic gradient, the latter of which is linear and given by the difference in255

hydraulic head between the segment endpoints divided by the length of the segment. This256

version of Darcy’s law, combined with the principle of mass conservation at each fracture257

intersection, are used to construct a linear system whose unknowns are the values of the258

hydraulic head at the fracture intersections (de Dreuzy et al., 2001; Gisladottir et al., 2016;259

Long et al., 1982). Taking into account the boundary conditions imposed on the domain260

borders, we solve the linear system and use the resulting hydraulic head values to determine261

the flow through each of the fractures.262
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2.3 Electric current flow model263

Computing the flow of electric current through the DFN realizations is significantly more264

complicated than the fluid-flow problem because the contribution of the rock matrix cannot265

be ignored. Indeed, the smaller contrast in conductivity between the fractures and matrix266

in this case means that we must not only account for current flow through the matrix, but267

also between the fractures and matrix, in addition to the current flow through the fracture268

network. To this end, we use the discrete-dual-porosity approach of Roubinet & Irving (2014)269

and refer the reader to this paper for details beyond the brief description given here. The270

equation that forms the basis for this approach, obtained by combining Ohm’s law with the271

principle of conservation of electric charge at the point scale, is the following:272

−∇ · (σ∇V ) = Q, (6)273
274

where σ is the electrical conductivity [S m−1], V is the electric potential [V], and Q is a source275

(positive) or sink (negative) term [C m−3 s−1] that is used to account for charge movement276

between the fractures and matrix based on differences in their potential values.277

To conduct the simulations, the matrix domain is divided into blocks at a chosen level278

of discretization and the DFN is again divided into fracture segments. This time, however,279

fracture-segment endpoints are defined by intersections between fractures and matrix-block280

boundaries in addition to the criteria given in Section 2.2. At the fracture-segment scale,281

equation (6) is used to derive an analytical expression for the 1D electric potential distribution282

along a segment, which depends on the potential values at the segment endpoints as well as283

on the potential value of the surrounding matrix block. In the simplified case of an insulating284

(zero conductivity) matrix, this expression reduces to a linear variation in potential between285

the endpoints, meaning that the electric current flow through the fracture can be obtained286

by multiplying the negative potential gradient with the electrical conductance G [S] of the287

fracture, given by:288

G = σfb, (7)289
290
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where σf is the fracture electrical conductivity. We shall see later that this fundamental dif-291

ference between electric current and fluid flow in an isolated fracture, namely the dependence292

of flow rate on aperture to the first power for electric current (equation (7)) versus aperture293

to the third power for fluid flow (equation (5)), contributes to significant differences between294

the REV size and tensor characteristics for the electrical and hydraulic conductivities.295

Similar to the fluid-flow case, the analytical expression for the electric potential along a296

fracture segment is combined with the principle of charge conservation at the fracture-segment297

junctions in order to construct a linear system. This system, which has more unknowns298

than equations due to the addition of the unknown potential values of the matrix blocks,299

is completed through the consideration of equation (6) at the matrix-block scale using a300

finite-volume-type approach. Taking into account the boundary conditions imposed on the301

domain borders, we solve the full linear system for the potential values at the fracture-segment302

endpoints and in the matrix blocks, which allows us to compute the flow of electric current303

through the fractured region.304

2.4 Estimation of 2D conductivity tensor components305

To estimate the hydraulic and electrical conductivity tensor components corresponding to306

a particular DFN realization using the numerical models for fluid and electric current flow307

described above, we consider two orthogonal sets of Dirichlet boundary conditions having308

different fixed potential values on one set of opposing sides and a linear variation between309

these values on the other sides (Baghbanan & Jing, 2007; Long et al., 1982; Min et al., 2004).310

These boundary conditions, illustrated in Figure 1c and 1d, have the effect of creating a linear311

potential gradient across the domain in the x and y directions, respectively. Assuming that312

the conductivity in the 2D domain can be represented by a second-order tensor, the resulting313

flux is given by314

q = −C∇φ, (8)315
316
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where q is the flux vector (either [m s−1] or [C m−2s−1]), φ is the potential (either [m] or [V]),317

and318

C =

Cxx Cxy

Cyx Cyy

 (9)319

320

is the conductivity tensor (either [m s−1] or [S m−1]).321

Taking the component of the flux through the domain in a particular direction having unit322

vector ûd and dividing by the magnitude of the potential gradient, we define323

Cd = −q · ûd
|∇φ|

, (10)324

325

where · denotes the scalar product. Substitution of equation (8) into (10) yields326

Cd = −(−C∇φ) · ûd
|∇φ|

= ûTdCûg, (11)327

328

where ûg is a unit vector in the direction of the potential gradient. It is clear from equation (11)329

that, using the boundary conditions illustrated in Figure 1c where the potential gradient is330

along the x direction, measurement of Cd in the x and y directions will yield estimates331

of conductivity tensor components Cxx and Cyx, respectively. Conversely, considering the332

boundary conditions illustrated in Figure 1d where ûg is along the y direction, measurement333

of Cd in the x and y directions will provide estimates of components Cxy and Cyy, respectively.334

For each considered square domain size, we estimate Cxx, Cxy, Cyx, and Cyy for multiple335

DFN realizations until stable estimates of the mean and variance of these tensor components336

across the realizations are obtained. Figure 2 shows an example of the progression of the337

mean and variance for the electrical conductivity as a function of the number of realizations338

considered, for a domain size of 12 × 12 m. The data presented in this figure correspond to339

one of the test cases investigated in Section 3. As could be expected, we see that the curves340

fluctuate quite significantly for low numbers of realizations, but then gradually approach fixed341

values as the number of samples increases. For this particular example, 100 generated DFNs342

appear to be sufficient to yield stable estimates of the mean and variance of the conductivity343
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tensor components. This number will tend to increase for smaller domain sizes, and decrease344

for larger domains, as it depends on how well the domain size represents the REV.345

[Figure 2 about here.]346

We next examine the stable mean and variance estimates as a function of domain size in347

order to assess how these values vary with changing scale, with the aim of identifying the348

equivalent conductivity tensor for the medium and ultimately the size of the REV. Figure 3349

shows an example of the values obtained for the electrical conductivity, again for one of the350

test cases investigated in Section 3, for domains having side lengths of L = 4, 8, 12, and 16 m.351

Note that the results shown in this figure are typical of our findings in each test case. Quite352

importantly, we see that with the exception of the smallest domain size (L = 4 m), the mean353

values for the tensor components are consistent, suggesting that they will not change as the354

domain gets larger and are thus representative of the medium’s large-scale effective behaviour.355

That is, although a single DFN realization may yield values of components Cxx, Cxy, Cyx,356

and Cyy that are far from the equivalent tensor values for the medium, and indeed which357

may not even correspond to an anisotropic conductivity tensor in the sense that Cxy 6= Cyx,358

the mean across multiple realizations will provide reasonable estimates of these components359

(Kanit et al., 2003). As a result, we use the mean tensor values for the largest domain size360

considered in our analysis (L = 16 m) to determine the large-scale tensorial properties of361

the fracture network corresponding to a chosen statistical distribution of fracture positions,362

orientations, lengths, and apertures. The eigenvalues and eigenvectors of the equivalent tensor363

matrix are used to determine the maximum and minimum conductivity values and principal364

directions, respectively (Bear, 2013). With regard to the variability of the estimated tensor365

components, we see in Figure 3 that the standard deviations decrease as the domain size366

increases, which is expected because larger domains will better represent the overall medium367

properties. As discussed in the next section, the trend in conductivity variability with domain368

size allows us to establish a scaling relationship that is used to estimate the size of the REV.369

[Figure 3 about here.]370
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2.5 Determination of the REV size371

Cailletaud et al. (1994) and Kanit et al. (2003) proposed a combined statistical and numerical372

approach to the REV estimation problem, whereby a scaling relationship for the variance373

of the parameter of interest is established based on numerical simulations in order to define374

the size of the REV in terms of a prescribed level of statistical error. Originally used by375

the authors to investigate the bulk thermal and elastic properties of random composites, the376

approach has since been applied to a variety of other problems, including examination of the377

elastic and electrical behaviour of multi-scale high-contrast materials (Willot & Jeulin, 2011),378

quantification of the matrix clay content of rocks at the mesoscale (Keller, 2015), and the379

upscaling of seismic P- and S-wave moduli in fractured media (Caspari et al., 2016). A key380

tenet of the approach holds that the notion of a single REV size for a heterogeneous material381

should be abandoned. Instead, it is argued that the size of the REV must be considered382

within a statistical framework as its value will depend upon the level of error in the large-383

scale equivalent properties deemed acceptable, the physical property being considered and, in384

the case where the goal is estimation of the minimum domain size required to determine the385

macroscopic properties of the medium, the number of samples or realizations at that domain386

size that are available.387

In our work, we wish to determine the minimum volume of fractured rock for which the388

electrical or hydraulic conductivity exhibited by that volume is representative of the equivalent389

tensor properties of the fractured domain, to within some level of error ε. To simplify our390

analysis, we do not examine the variability of each conductivity tensor component individually,391

but rather that of the first invariant of the conductivity tensor given by IC = Cxx + Cyy392

(Li et al., 2009; Li & Zhang, 2010). The strong advantage of working with the invariant is393

that it is independent of the chosen coordinate system. Therefore the results obtained will394

not depend upon the orientation of the fracture network with respect to the applied boundary395

conditions. Assuming that IC for a particular domain area S is a Gaussian distributed random396

variable with mean E{IC(S)} and variance Var{IC(S)}, a particular DFN realization at that397

domain size will have, with a 95% degree of confidence, an IC value lying within a distance ε398

of the mean when ε = 2
√

Var{IC(S)}. In terms of the relative error εr, this can be expressed399
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as400

εr =
2
√

Var{IC(S)}
E{IC(S)}

. (12)401

402

The REV for a chosen level of relative error εr will be the domain size that has a variance403

satisfying equation (12). In order to find that domain size, we require knowledge of how404

Var{IC(S)} changes as a function of S, which is obtained by fitting an assumed form of405

scaling relationship to the results of our numerical simulations on DFNs of various sizes.406

Based on previous work (Cailletaud et al., 1994; Kanit et al., 2003; Lantuejoul, 1991), we407

postulate that the following power-law scaling relationship applies to the first invariant of the408

hydraulic and electrical conductivity tensors:409

Var{IC(S)} = κS−α, (13)410
411

where κ and α are fitting parameters that depend on the nature of the fracture network and412

physical property being studied. For properties such as the volumetric average or volume413

fraction, which represent an additive combination of the small-scale medium heterogeneities,414

classical geostatistical theory predicts that α = 1 and that κ will be equal to the product of415

the medium’s integral range and the point-scale property variance (Chiles & Delfiner, 1999;416

Lantuejoul, 1991; Matheron, 1971). Properties like the electrical and hydraulic conductivity,417

however, are not additive meaning that, in general, α 6= 1. Although the form of equation (13)418

cannot be proven for the electrical and hydraulic conductivities in fractured rock, a number419

of empirical studies have shown the suitability of this relationship for similar non-additive420

physical quantities (Cailletaud et al., 1994; Kanit et al., 2003; Lantuejoul, 1991; Willot &421

Jeulin, 2011). Furthermore, all of the test cases examined in Section 3 suggest that use of the422

power-law relationship is appropriate.423

Substituting equation (13) into (12) and setting S = L2, we estimate the size of the REV424

in terms of the square side length L as follows:425

L =

(
2
√
κ

εr E{IC(S)}

)1/α

. (14)426

427
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To determine parameters κ and α, we (i) estimate the variance of IC from the results of428

our numerical flow simulations on multiple DFN realizations for each studied domain size;429

(ii) make a log-log plot of Var{IC(S)} versus S; and (iii) determine the slope and intercept of430

the corresponding least-squares best-fitting line through the points. As an example, Figure 4431

shows a log-log plot of the variance of IC versus domain area L2 for the electrical conductivity.432

Again, the results shown in this figure are typical of the different test cases considered in our433

study. We see that the points tend to fall along a straight line, whose slope and intercept434

allow us to estimate α and κ, respectively.435

[Figure 4 about here.]436

3 Results437

3.1 Test cases and analysis438

We now apply the analysis methodology presented in Section 2 to a total of 16 different test439

cases, where our goal is to examine how changes in the parameters governing the fracture440

distribution affect the REV size and equivalent tensor characteristics for the electrical and441

hydraulic conductivities. Table 1 summarizes each test case in terms of the angle, aperture,442

and length distributions considered for the two fracture sets. In Figure 5, we show example443

DFNs corresponding to each case for a 16 × 16 m domain size, where the colour of the lines444

is used to quantify the fracture aperture. Finally, Figure 6a and 6b show histograms of the445

two truncated log-normal probability distributions for the aperture considered in Cases 12,446

13, and 14, whereas Figure 6c and 6d show histograms of the fracture length distributions for447

power-law exponent values of a = 2.0 and a = 2.5, respectively.448

[Table 1 about here.]449

[Figure 5 about here.]450

[Figure 6 about here.]451

For the electrical conductivity, two scenarios are considered in our analysis. In the first452

scenario, which we believe to be most representative of real-world conditions, we assume a453
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rock matrix conductivity of σm = 10−4 S m−1 and a fracture or groundwater conductivity454

of σf = 10−1 S m−1 (Schön, 2015). Here, the matrix plays an important and normal role in455

the conduction of electric current through the rock as the ratio between the conductivities is456

σm/σf = 10−3 (Roubinet & Irving, 2014). In the second scenario, the matrix conductivity is457

decreased to a value of σm = 10−7 S m−1 such that the contribution of the matrix to electrical458

conduction through the rock is negligible. The goal with this scenario, where σm/σf = 10−6,459

is to have a test situation that allows us to assess the impact of the single power versus cubic460

dependence on aperture of the fracture conductance and transmissivity, respectively, as well461

as examine the role of the matrix on the REV size and equivalent tensor characteristics.462

In our analysis, square domain sizes of L = 4, 8, 12, and 16 m were considered for each test463

case to calibrate the scaling relationship for the tensor invariant in equation (14). A relative464

error of εr = 20% was considered in our estimation of the REV size (Li et al., 2009; Li &465

Zhang, 2010). The mean tensor components for the largest (16×16 m) domain size were used466

to estimate the equivalent conductivity tensor. The number of realizations needed to obtain467

stable mean and variance estimates of each tensor component was chosen as the point at which468

the cumulative values did not vary more than 5 % over the last 20 samples (Figure 2). For469

the fluid and electric current flow modeling, hydraulic head and electric potential differences470

of 1 m and 1 V were applied across each considered DFN (Figure 1c and 1d). For the electric471

current flow modeling, the rock matrix was discretized into square blocks of side length 2 m.472

Table 2 shows the results obtained for each test case for the electrical conductivity (σ)473

assuming σm/σf = 10−3, whereas Table 3 shows the results obtained assuming σm/σf = 10−6.474

The corresponding results for the hydraulic conductivity (K) are given in Table 4. In the tables475

we provide (i) the estimated REV size; (ii) the maximum and minimum principal values of476

the conductivity tensor; (iii) the corresponding conductivity anisotropy ratio; and (iv) the477

direction of maximum conductivity. Note that the direction of maximum conductivity is only478

given if the anisotropy is greater than 5%. Otherwise, the system is considered to be effectively479

isotropic with no preferred orientation. Below we discuss how all of these quantities compare480

between the electrical and hydraulic conductivities, as well as vary as we change details of the481

statistical distributions for the fracture orientations, apertures, and lengths.482
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[Table 2 about here.]483

[Table 3 about here.]484

[Table 4 about here.]485

3.2 Effect of changing angle between the fracture sets486

We first consider Cases 1, 2, and 3 from Table 1, whereby the angle between the two fracture487

sets is changed by varying the mean orientation angle of Fracture Set 2. Figure 7 shows the488

impact of this change on the REV size (Figure 7a), the anisotropy ratio of the equivalent489

conductivity tensor (Figure 7b), the direction of maximum conductivity (Figure 7c), and the490

maximum conductivity value (Figure 7d). Note that the maximum conductivities plotted in491

Figure 7d were normalized by the values obtained for Case 1 in order to better compare the492

relative changes between the hydraulic and electrical conductivities.493

[Figure 7 about here.]494

We see in Figure 7a that, in accordance with previous work (Wang & Kulatilake, 2008),495

the size of the REV for the hydraulic conductivity decreases as the angle between the two496

fracture sets increases from 30 to 90 degrees. The curve for the electrical conductivity with497

σm/σf = 10−6 is observed to exhibit exactly the same trend. This occurs because, as the498

range of fracture orientations in the medium increases, smaller domain sizes become able to499

support flow in all directions through the fracture network, thereby allowing those domain500

sizes to better represent the conductivity as an equivalent tensor. Indeed, in a fracture network501

where the angle between the two fracture sets is small, connectivity in all directions through502

the network will only be established for larger domain sizes because smaller domains will503

not allow sides of the network that are largely parallel to the fractures to be connected via504

the fractures. This implies a larger REV size. For the electrical conductivity scenario with505

σm/σf = 10−3, on the other hand, Figure 7a shows that the REV size is noticeably smaller and506

remains approximately constant as the angle between the fracture sets is increased. Quite507

importantly, the higher electrical conductivity of the matrix in this scenario has a strong508

homogenizing effect, meaning that the fractures are less critical for current flow through the509
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domain and the medium can thus be represented by an equivalent tensor at a 30-50% smaller510

scale. This strong reduction in the REV size for the σm/σf = 10−3 scenario, which we again511

believe to be more representative of realistic conditions than the σm/σf = 10−6 scenario in512

the sense that conduction through the rock matrix cannot be ignored, occurs in all of the513

16 test cases considered in our study (Tables 2 and 3). It has strong practical implications514

because it means that (i) the electrical conductivity can always be modeled as an equivalent515

tensor at a notably smaller scale than the hydraulic conductivity; and (ii) this tensor, for516

reasons of scale alone, is not likely to easily translate to the hydraulic conductivity.517

Regarding the anisotropy of the equivalent conductivity tensor, we see in Figure 7b that,518

as expected, the degree of anisotropy tends to decrease as the angle between the two fracture519

sets increases from 30 to 90 degrees, with the case of two orthogonal fracture sets being520

effectively isotropic (Wang & Kulatilake, 2008). This decrease is seen to be greatest for K521

and for the σm/σf = 10−6 scenario because the connectivity in these situations is controlled522

completely by the fractures. Because the apertures of Fracture Sets 1 and 2 are the same523

and there is an approximately equal number of fractures belonging to each set in the domain,524

the direction of maximum conductivity in all cases is seen to take the average of the mean525

orientations of these fracture sets (Figure 7c). The maximum conductivity in Figure 7d is526

observed to decrease slightly as the angles of Fracture Sets 1 and 2 diverge, with the changes527

being less pronounced when σm/σf = 10−3.528

3.3 Effect of changing fracture angle variability529

We next examine Cases 2 and 4, where the variability of the orientation angle of both fracture530

sets is increased by changing the standard deviation from 5 to 10 degrees, respectively. The531

average angle between the fracture sets in both cases is 60 degrees (Table 1). Figure 8532

shows the corresponding results where we see that, despite that fact that the orientation533

angle variability is doubled between Cases 2 and 4, there are minor changes in the REV534

size, equivalent tensor anisotropy ratio, direction of maximum conductivity, and maximum535

conductivity value for both the hydraulic and electrical conductivities. Although this result536

is surprising given the findings of Long et al. (1982) and Wang & Kulatilake (2008), who saw537
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a reduction in the REV size and degree of anisotropy for the permeability with an increase538

in fracture orientation variability, it likely occurs because the range of angles covered by the539

fracture network in Case 2 is already quite extensive, and thus not significantly changed when540

the spread of the orientation angle of each fracture set is increased. Indeed, a comparison541

of the example DFNs for Cases 2 and 4 suggests that the differences in fracture-network542

connectivity are rather minimal (Figure 5). Again, we observe in Figure 8a that the REV543

size is 42-46% smaller for the σm/σf = 10−3 scenario. The degree of anisotropy is also less544

for this scenario (Figure 8b) because of the homogenizing effect of the matrix conductivity.545

[Figure 8 about here.]546

3.4 Effect of changing fracture aperture547

In the next series of tests, we examine how changing the aperture of the fracture sets impacts548

the REV size and properties of the equivalent tensors for K and σ. We first consider Cases549

2 and 11, between which the aperture of Fracture Sets 1 and 2 is increased from 1 mm to550

1.5 mm (Table 1). Figure 9 shows the corresponding results. We see in Figure 9a that, for551

the hydraulic conductivity and for the electrical conductivity when σm/σf = 10−6, a uniform552

increase in the fracture aperture has no impact on the REV size. This is because the domain553

properties are controlled completely by the fractures in these two situations, and uniformly554

increasing the flow through all of the fractures by changing their aperture should not affect555

the scale at which the fracture network can be effectively described by an anisotropic tensor.556

It will, however, increase the overall magnitude of the tensor components, which is clearly557

shown in Figure 9d with the largest relative change exhibited by K because of the cubic558

dependence of fracture hydraulic transmissivity on aperture (equation (5)). For the electrical559

conductivity when σm/σf = 10−3, on the other hand, increasing the fracture aperture is seen560

to cause in a slight increase in the REV size. This occurs because the fractures account for a561

greater fraction of the total current flow through the rock when their aperture is larger, and562

thus the previously described homogenizing effect of the matrix conductivity, which again563

tends to decrease the REV size, is reduced. The lesser importance of matrix current flow564

with larger aperture also translates to a slight increase in the tensor anisotropy ratio for the565
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σm/σf = 10−3 scenario (Figure 9b).566

[Figure 9 about here.]567

Next we consider Cases 2, 8, 9, and 10, where we investigate the effects of increasing568

the aperture of Fracture Set 2 while keeping the aperture of Fracture Set 1 fixed at 1 mm.569

The average angle between the fracture sets is 60 degrees (Table 1). Figure 10 shows the570

results obtained for the REV size and equivalent conductivity tensor as a function of the571

aperture of Fracture Set 2. We see in Figure 10a that, as the aperture increases, the size572

of the REV also increases because the second fracture set gradually begins to dominate the573

flow response, making the medium behave more like one having only a single set of fractures.574

The increase in REV size is greatest for K because of the cubic dependence of hydraulic575

transmissivity on aperture, whereas for σm/σf = 10−6 only a small change is observed. For576

the electrical conductivity scenario where σm/σf = 10−3, the increase in REV size is slightly577

greater because the fractures carry a larger fraction of the total current flow compared to the578

matrix as the aperture of Fracture Set 2 is increased.579

[Figure 10 about here.]580

With regard to the equivalent conductivity tensor characteristics, the change in aperture581

of Fracture Set 2 is seen to have significant effects on the anisotropy ratio (Figure 10b),582

the direction of maximum conductivity (Figure 10c), and the maximum conductivity value583

(Figure 10d), with the changes for K being greater than those for σ, again because of the584

much stronger dependence of fluid flow upon aperture through the cubic law. In Figure 10b,585

we see that the anisotropy ratio for K first decreases as the aperture of Fracture Set 2 is586

increased from 1 mm to 1.1 mm, but then increases sharply as the aperture approaches 2 mm.587

This can be explained by the fact that, when the apertures of Fracture Sets 1 and 2 are equal588

(Case 2) there is already substantial anisotropy along a 30-degree orientation exhibited by589

the equivalent K tensor. As the aperture of Fracture Set 2, which has a mean orientation590

of 60 degrees, is increased (Case 8), the initial tendency is to reduce the existing anisotropy591

by stretching the tensor ellipse away from the direction of maximum conductivity. When the592

aperture is increased further, however, Fracture Set 2 eventually dominates the flow response593
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(Case 10), causing strong anisotropy along a different, 60-degree orientation. With regard to594

σ, the same general trend with increasing aperture is observed except that, because of the595

weaker dependence of electric current flow upon aperture compared to fluid flow, a 2 mm596

aperture for Fracture Set 2 (Case 10) is not yet large enough for this fracture set to dominate597

the flow response and cause anisotropy along the 60-degree orientation. As a result, we see598

only the system becoming more isotropic as the aperture of Fracture Set 2 is increased.599

In Figure 10c, we observe one of the most important results of our analysis, which is that600

the maximum principal direction of the equivalent tensor can be significantly different between601

the hydraulic and electrical conductivities when the aperture distribution between the fracture602

sets is not the same. When both fracture sets share the same 1-mm constant aperture, for603

example, the directions of maximum conductivity for K and σ are seen to be identical and604

equal to 30 degrees, the average value between the mean orientations of the two fracture sets.605

As the aperture of Fracture Set 2 is increased, however, the principal orientations between606

K and σ diverge because fluid flow through the domain is affected much more than electric607

current flow, meaning that the maximum principal direction of the K tensor moves more608

quickly towards the 60-degree orientation. This finding, which is admittedly rather intuitive,609

has significant implications for studies where researchers have attempted to infer principal610

groundwater flow directions from the results of azimuthal resistivity surveys in fractured rock611

(Ritzi & Andolsek, 1992; Skinner & Heinson, 2004; Skjernaa & Jørgensen, 1994; Steinich &612

Marin, 1996; Yeboah-Forson & Whitman, 2014). Specifically, our results indicate that only613

in very specific circumstances can the principal directions of the electrical conductivity tensor614

be expected to provide meaningful information regarding those of the hydraulic conductivity615

tensor. Further, the ratio and trends observed in the maximum and minimum principal616

conductivity values will, in general, vary significantly between K and σ (Figure 10b and 10d).617

Finally, we consider Cases 3, 5, 6, and 7, where we again increase only the aperture of618

Fracture Set 2, but this time considering an average angle between the fracture sets of 90619

degrees. Figure 11 shows the corresponding results for the REV size and equivalent conduc-620

tivity tensor characteristics. As we observed in Figure 10, the REV size for K is seen to621

increase with an increase in the aperture of Fracture Set 2 because this fracture set quickly622
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begins to dominate the flow response as a result of the cubic law. The changes in REV size623

for the σm/σf = 10−3 and σm/σf = 10−6 scenarios, on the other hand, are again rather624

negligible (Figure 11a). As there is no anisotropy when the apertures of the two fracture625

sets are equal (Case 3), the anisotropy ratio is seen to consistently increase as the aperture of626

Fracture Set 2 increases (Figure 11b), with the direction of maximum conductivity in all cases627

being approximately equal to 90 degrees, which is the mean orientation of the second fracture628

set (Figure 11c). In other words, making the aperture of Fracture Set 2 larger in this case629

immediately results in anisotropy along the 90-degree orientation, with the greatest increase630

in anisotropy being exhibited by K. Similarly, the maximum conductivity value is seen to631

increase most for K with an increase in the aperture of the second fracture set (Figure 11d),632

which again results from the greater sensitivity of fluid flow to fracture aperture as compared633

to electric current flow.634

[Figure 11 about here.]635

3.5 Effect of changing fracture aperture variability636

We now investigate how changing the variability of the aperture distribution of both fracture637

sets affects the REV size and equivalent tensor characteristics for the electrical and hydraulic638

conductivities. To this end, we examine Cases 2, 12, and 13, which involve a constant aper-639

ture and two truncated log-normal aperture distributions having different spreads (Table 1).640

The histograms for the log-normal distributions considered in Cases 12 and 13 are shown641

in Figure 6a and 6b, respectively, where we see that the choice of parameters for the mean642

and variance of the natural logarithm of the aperture are such that the peak value remains643

constant and equal to 1 mm, but the dispersion around this value changes. Figure 12 shows644

the corresponding results. In Figure 12a we observe that, as the spread of the aperture dis-645

tribution of both fracture sets increases, the REV size for K increases, whereas the REV646

sizes for the σm/σf = 10−3 and σm/σf = 10−6 scenarios exhibit minimal changes. Again,647

because of the strong dependence of hydraulic transmissivity on fracture aperture compared648

to the electrical conductance, the fluid flow behaviour of the network will be greatly influ-649

enced by randomly distributed, large-aperture fractures, which become more prevalent when650
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the fracture aperture spread is increased (Figure 5). To account for this increased variability,651

the domain size required to represent the flow response using an equivalent K tensor must652

increase (Baghbanan & Jing, 2007; Long et al., 1982). Note, however, that no meaningful653

changes in the anisotropy ratio and principal directions of the K and σ tensors are observed654

as the spread of the aperture distribution increases (Figure 12b and 12c). This is because the655

same aperture distribution was considered for the two fracture sets in Cases 2, 12, and 13,656

and there is no reason to expect that changes in this distribution would lead to changes in657

the medium anisotropic characteristics. Conversely, we see in Figure 12d that an increased658

variability in fracture aperture results in an increase in the overall conductivity magnitude,659

as the presence of a greater number of large-aperture fractures will increase the amount of660

fluid and electric current flow through the domain. This is most significant for K because of661

the cubic law.662

[Figure 12 about here.]663

3.6 Effect of correlation between aperture and length664

Our second-last test involves examination of the impact of correlation between fracture aper-665

ture and length on the REV size and equivalent tensor properties. As mentioned previously,666

there is significant empirical and theoretical evidence to support fracture apertures being667

positively correlated with their length. This prompted an investigation into the effects of668

correlation between these two variables on the REV size and tensor characteristics for the669

permeability (Baghbanan & Jing, 2007), but never before for the electrical conductivity. In670

this regard, we now consider Cases 12 and 14, which involve the same truncated log-normal671

distribution for the fracture aperture in the absence and presence of correlation between672

aperture and length, respectively. Figure 13 shows the results obtained, where correlation is673

indicated on the horizontal axis using a binary variable (0 = uncorrelated; 1 = correlated).674

We see in the figure that, as expected, correlation between aperture and length has no impact675

on the anisotropic characteristics of the equivalent K and σ tensors (Figure 13b and 13c).676

However, in accordance with Baghbanan & Jing (2007), it does lead to an increase in the REV677

size (Figure 13a) as well as the overall conductivity magnitudes (Figure 13d). The latter find-678
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ings are explained by the fact that correlation between aperture and length means that longer679

fractures in the domain will be associated with larger apertures (Figure 5), which greatly680

increases the probability that the fluid and electric current flow behaviour will be dominated681

by a small number of long fractures, as opposed to being more equally influenced by all of the682

fractures in the network. As a result, the size of the REV must increase to accommodate the683

increased variability in the flow response, with the change in REV size being greatest for K684

and for σm/σf = 10−6 where flow through the matrix is negligible. The overall conductivity685

magnitudes must also increase because flow through the domain will be facilitated by the686

long, large-aperture fractures, especially for K.687

[Figure 13 about here.]688

3.7 Effect of changing fracture length power-law exponent689

Finally, we examine the impact of the fracture length power-law exponent a from equation (1).690

To this end, we consider Cases 2, 15, and 16, where a is increased from 2.0 to 2.5 while keeping691

the other fracture-network parameters constant (Table 1). Figure 6c and 6d show histograms692

of the fracture length distribution for values of a = 2.0 and a = 2.5, respectively, where we693

see that increasing the power-law exponent results in a greater proportion of shorter fractures694

throughout the domain (see also Figure 5). The impact of this change on the REV size and695

equivalent K and σ tensor characteristics is shown in Figure 14. We observe in Figure 14a696

that, as the value of a increases and connectivity across the domain becomes dependent upon697

a smaller number of randomly distributed long fractures, the REV sizes for K and for the698

σm/σf = 10−6 scenario increase by a factor of approximately 5. As flow occurs purely through699

the fracture network, a larger domain size is required to accommodate the greater variability700

in flow behaviour and represent the network as an equivalent tensor quantity. Conversely, for701

the electrical conductivity when σm/σf = 10−3, there is only a slight increase in the REV size702

with increasing a value (Table 2) because the electric current flow through the matrix permits703

connections across the domain independently of the fracture network, thereby reducing the704

importance of the latter. With regard to the tensor anisotropy ratio, Figure 14b shows a705

gradual decrease with increasing power-law exponent, which likely results because the smaller706
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number of long fractures tends to reduce the directionality of the flow response. As expected,707

the direction of maximum conductivity is not affected by the change in power-law exponent708

(Figure 6c) and is equal, as before, to the average value of the mean orientations of the two709

fracture sets. Finally, in Figure 14d we see that increasing the fracture length power-law710

exponent has the effect of reducing the maximum principal conductivity value for both K711

and σ, as connectivity across the domain is notably reduced. Because of the contribution of712

the matrix, this reduction is less pronounced for the σm/σf = 10−3 scenario.713

[Figure 14 about here.]714

4 Discussion and conclusions715

We have presented in this paper a systematic analysis of the effects of changes in the statistical716

parameters governing fracture networks on the REV size and equivalent tensor characteristics717

for the electrical and hydraulic conductivities. Thanks to the recently developed DDP mod-718

eling approach of Roubinet & Irving (2014), electric current flow through arbitrarily complex719

fractured domains can be simulated efficiently and accurately, properly taking into account720

important contributions to current flow through the matrix as well as between the fractures721

and matrix. Groundwater flow, on the other hand, was simulated in our work using a stan-722

dard DFN methodology based on the usual assumption that matrix fluid flow is negligible due723

to the many-orders-of-magnitude difference between the hydraulic properties of the matrix724

and those of the fractures. One strong advantage of the combined statistical and numerical725

analysis approach considered in this paper, which builds on the seminal work of Cailletaud726

et al. (1994) and Kanit et al. (2003), is that numerical flow simulations need not be performed727

at the REV scale in order to estimate the REV size and equivalent tensor properties. That728

is, we can conduct the entire REV analysis using smaller, less computationally burdensome,729

domain sizes whose statistical characteristics can then be linked to those of the REV. The730

approach also has the advantage of explicitly treating the REV size as a stochastic quantity,731

whose estimated value depends upon the error in large-scale equivalent properties that one732

is willing to accept. Although these advantages do come at the cost of needing to define in733
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advance a scaling relationship for the conductivity variability, all of the results obtained in734

this paper suggest that our assumption of power-law scaling is appropriate.735

Two key differences between groundwater and electric current flow in fractured rock were736

seen to lead to significant differences in the REV size and tensor characteristics between the737

electrical and hydraulic conductivities. First, matrix flow must be considered in the electrical738

case, which tends to have a homogenizing effect on the flow response in the sense that, because739

the matrix is responsible for a significant fraction of the total current passing through the740

rock, the effect of the fractures will be less pronounced. Secondly, whereas the hydraulic741

transmissivity of a fracture varies with the cube of its aperture, the analogous electrical742

conductance varies only linearly with the aperture. As a result of these two differences we743

observed that: (i) the REV size and degree of anisotropy are consistently less for the electrical744

conductivity than for the hydraulic conductivity for realistic matrix-to-fracture conductivity745

ratios (e.g., the considered σm/σf = 10−3 scenario); (ii) changes in the angle, aperture,746

and length distributions of the fracture network have a stronger effect on K than on σ, in747

particular with regard to the aperture; and (iii) in the presence of more than one fracture748

set, the principal directions of the equivalent electrical conductivity tensor do not generally749

correspond with those of the equivalent hydraulic conductivity tensor, and in fact can vary by a750

significant amount. Consequently, attempting to make conclusions about the hydrogeological751

properties of fractured domains based on geoelectrical measurements, as has been attempted in752

many previous studies, must be done with great caution. It cannot, for example, be generally753

assumed that the degree and direction of electrical conductivity anisotropy, estimated from an754

azimuthal resistivity survey, will provide useful information on hydraulic anisotropy. Further,755

changes observed in σ across a domain cannot be interpreted in terms of changes in K, except756

in a highly qualitative manner. Finally, variations in fracture aperture that have a strong757

effect on fluid flow may have minimal influence on geoelectrical measurements, meaning that758

ER data will be of limited use to assess many important hydraulic characteristics. Note759

that, although our results were obtained for the DC resistivity, we expect them to be equally760

applicable to EM-based investigations, where directional properties of the conductivity at low761

frequencies have been interpreted hydrogeologically (Steelman et al., 2015).762
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It is important to emphasize that, for all of the analyses carried out in this paper, we763

considered boundary conditions corresponding to a linear potential gradient across the frac-764

tured domain, which are fully consistent with previous hydrogeological research aimed at765

assessing the intrinsic equivalent properties of the fracture network along with the REV size766

(Baghbanan & Jing, 2007; Long et al., 1982; Min et al., 2004; Wang & Kulatilake, 2008).767

Although such linear potential gradients are likely to exist away from point sources such as768

pumping or injection wells and current electrodes, boundary conditions in the vicinity of these769

sources will differ and therefore also the flow of water or electric current through the fracture770

network. As a result, an important topic of future research is the investigation of how the771

key differences between the hydraulic and electrical conductivities highlighted in this work are772

manifested in real-world field experiments to measure these properties, which typically involve773

pumping/injection experiments and the use of point electrodes, respectively. To this end, we774

are currently developing numerical modeling codes for the accurate simulation of azimuthal775

resistivity measurements in 3D fractured-rock environments.776

We also note that the numerical values for the REV size determined in this paper are777

not nearly as important as the trends in REV size observed as a function of changes in778

fracture-network properties, as well as how results compare between the hydraulic and elec-779

trical conductivities. Indeed, the estimated REV size depends on many factors, most notable780

of which are the fracture density and prescribed level of error in equivalent properties con-781

sidered to be acceptable. Further, we have not addressed in this paper the question of the782

existence of the REV, which may not occur for some fracture networks or may happen at a783

variety of different scales (Long et al., 1982). It should also be pointed out that, as much as784

we have considered the effects of changing a variety of fracture properties (i.e., orientation,785

aperture, length) as well as the matrix-to-fracture electrical conductivity ratio in this paper,786

it is the overall difference between the effective fracture network conductance, which depends787

on all of these factors, and the matrix conductance that will tend to control the homogenizing788

effects observed. Finally, as in other related DFN studies for the permeability, we have not789

examined in this paper the effects of aperture variability within a fracture and the impact790

of fracture filling or alteration. Initial investigations into these issues could be performed791
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with the considered DDP and DFN numerical modeling approaches by dividing individual792

fractures into sub-fractures having different properties. This is a topic of future work.793
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Figure 1: (a) Example discrete fracture network (DFN) generated over a large-scale square do-
main. (b) Extraction of central square sub-domain upon which fluid- and electric-current-flow
simulations are performed. (c) Dirichlet boundary conditions considered for measuring the
conductivity tensor components Cxx and Cyx. (d) Dirichlet boundary conditions considered
for measuring components Cyy and Cxy.
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Figure 2: Example showing the calculated mean and variance of the electrical conductivity
tensor components σxx, σxy, σyx, and σyy, plotted as a function of the number of considered
fracture-network realizations, for a domain size of 12× 12 m. The presented data correspond
to Case 12 from Table 1 with σm/σf = 10−6. See Section 3 for details.

38



L2 [m2]

101 102

σ
x
x
 [

S
/m

]
×10-4

2

2.5

3

3.5

4

4.5
(a)

L2 [m2]

101 102

σ
y
y
 [
S

/m
]

×10-4

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
(d)

L2 [m2]

101 102

σ
x
y
 [

S
/m

]

×10-4

0.6

0.8

1

1.2

1.4

1.6

1.8
(b)

L2 [m2]

101 102

σ
y
x
 [
S

/m
]

×10-4

0.6

0.8

1

1.2

1.4

1.6

1.8
(c)

Figure 3: Example showing the stabilized estimates of the mean and standard deviation of
the components of the electrical conductivity tensor, plotted as a function of domain area L2.
The presented data correspond to Case 12 from Table 1 with σm/σf = 10−6. See Section 3
for details.
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Figure 4: Example showing the variance of (σxx + σyy) plotted as a function of domain area
L2. The least-squares best-fitting straight line through the points (red) provides the scaling
relationship that is used to determine the REV size. The presented data correspond to Case 12
from Table 1 with σm/σf = 10−6. See Section 3 for details.
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Case 1 Case 2 Case 3 Case 4

Case 5 Case 6 Case 7 Case 8

Case 9 Case 10 Case 11 Case 12

Case 13 Case 14 Case 15 Case 16

b ≤ 1 mm;            1 < b ≤ 1.25 mm;            1.25 < b ≤ 1.75 mm;             b > 1.75 mm

Figure 5: Example discrete fracture networks corresponding to the different test cases de-
scribed in Table 1. Each square is 16× 16 m in size.

41



0 1 2 3

Fracture aperture [mm]

0

500

1000

1500

2000

F
re

q
u

e
n

c
y

(a)

0 1 2 3

Fracture aperture [mm]

0

200

400

600

800

1000

F
re

q
u

e
n

c
y

(b)

-0.5 0 0.5 1 1.5 2

log
10

(Fracture length [m])

0

500

1000

1500

F
re

q
u

e
n

c
y

(c)

-0.5 0 0.5 1 1.5 2

log
10

(Fracture length [m])

0

500

1000

1500

2000

F
re

q
u

e
n

c
y

(d)

Figure 6: Histograms of the truncated log-normal fracture aperture distribution for
(a) (µln b, σln b) = (−6.87, 0.2), and (b) (µln b, σln b) = (−6.75, 0.4), along with histograms
of the truncated power-law fracture length distribution for (c) a = 2.0, and (d) a = 2.5.
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Figure 7: Effect of changing the angle between the two fracture sets on (a) the estimated REV
size, (b) the tensor anisotropy ratio, (c) the direction of maximum conductivity; and (d) the
maximum conductivity value, normalized between data sets for comparison. Test cases 1, 2,
and 3 are considered (Table 1). Note that no principal direction is available when the angle
between the fracture sets is 90◦ because the system is effectively isotropic (Tables 2 and 3).
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Figure 8: Effect of increasing the standard deviation of the fracture orientation angle on
(a) the estimated REV size, (b) the tensor anisotropy ratio, (c) the direction of maximum
conductivity; and (d) the maximum conductivity value, normalized between data sets for
comparison. Test cases 2 and 4 are considered (Table 1).
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Figure 9: Effect of increasing the aperture of both fracture sets on (a) the estimated REV
size, (b) the tensor anisotropy ratio, (c) the direction of maximum conductivity; and (d) the
maximum conductivity value, normalized between data sets for comparison. Test cases 2 and
11 are considered (Table 1).
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Figure 10: Effect of increasing the aperture of the 60◦ fracture set on (a) the estimated REV
size, (b) the tensor anisotropy ratio, (c) the direction of maximum conductivity; and (d) the
maximum conductivity value, normalized between data sets for comparison. Test cases 2, 8, 9,
and 10 are considered (Table 1). Note that no principal direction is available for the electrical
conductivity when b2 = 2 mm because the system is effectively isotropic (Tables 2 and 3).
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Figure 11: Effect of increasing the aperture of the 90◦ fracture set on (a) the estimated REV
size, (b) the tensor anisotropy ratio, (c) the direction of maximum conductivity; and (d) the
maximum conductivity value, normalized between data sets for comparison. Test cases 3, 5,
6, and 7 are considered (Table 1).
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Figure 12: Effect of increasing the fracture-aperture variability on (a) the estimated REV
size, (b) the tensor anisotropy ratio, (c) the direction of maximum conductivity; and (d) the
maximum conductivity value, normalized between data sets for comparison. Test cases 2, 12,
and 13 are considered (Table 1).
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Figure 13: Effect of correlation between aperture and length on (a) the estimated REV
size, (b) the tensor anisotropy ratio, (c) the direction of maximum conductivity; and (d) the
maximum conductivity value, normalized between data sets for comparison. Test cases 12
and 14 are considered (Table 1). The presence of correlation is indicated on the horizontal
axis using a binary variable (0 = uncorrelated; 1 = correlated).
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Figure 14: Effect of increasing the fracture-length power-law exponent a on (a) the estimated
REV size, (b) the tensor anisotropy ratio, (c) the direction of maximum conductivity; and
(d) the maximum conductivity value, normalized between data sets for comparison. Test
cases 2, 15, and 16 are considered (Table 1).
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Table 1: Values considered in each test case for the orientation angle (θ), aperture (b), and
length power-law exponent (a) for Fracture Sets 1 and 2. N(µθ, σθ) refers to a normal dis-
tribution having mean orientation µθ and standard deviation σθ. TLN(µln b, σln b) refers to a
truncated log-normal distribution where µln b and σln b are the mean and standard deviation
of the natural logarithm of the aperture. The truncation limits for the aperture distribution
were set to bmin = 0.1 mm and bmax = 2.5 mm, whereas the lower limit for the fracture length
distribution was set to `min = 0.5 m. See Figure 6 for the corresponding histograms. The
right-most column indicates whether fracture aperture and length are correlated.

Case θ1 [◦] b1 [mm] a1 θ2 [◦] b2 [mm] a2 Correlated?

1 N(0,5) 1.0 2.00 N(30,5) 1.0 2.00 no
2 N(0,5) 1.0 2.00 N(60,5) 1.0 2.00 no
3 N(0,5) 1.0 2.00 N(90,5) 1.0 2.00 no
4 N(0,10) 1.0 2.00 N(60,10) 1.0 2.00 no
5 N(0,5) 1.0 2.00 N(90,5) 1.1 2.00 no
6 N(0,5) 1.0 2.00 N(90,5) 1.5 2.00 no
7 N(0,5) 1.0 2.00 N(90,5) 2.0 2.00 no
8 N(0,5) 1.0 2.00 N(60,5) 1.1 2.00 no
9 N(0,5) 1.0 2.00 N(60,5) 1.5 2.00 no
10 N(0,5) 1.0 2.00 N(60,5) 2.0 2.00 no
11 N(0,5) 1.5 2.00 N(60,5) 1.5 2.00 no
12 N(0,5) TLN(-6.87,0.2) 2.00 N(60,5) TLN(-6.87,0.2) 2.00 no
13 N(0,5) TLN(-6.75,0.4) 2.00 N(60,5) TLN(-6.75,0.4) 2.00 no
14 N(0,5) TLN(-6.87,0.2) 2.00 N(60,5) TLN(-6.87,0.2) 2.00 yes
15 N(0,5) 1.0 2.25 N(60,5) 1.0 2.25 no
16 N(0,5) 1.0 2.50 N(60,5) 1.0 2.50 no
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Table 2: Estimated REV size and equivalent tensor characteristics for the electrical conduc-
tivity σ when σm/σf = 10−3. Parameters σmax and σmin represent the principal values of the
conductivity tensor, whereas θp is the direction of maximum conductivity. The anisotropy
ratio is given by σmax/σmin. Note that θp is shown only for σmax/σmin ≥ 1.05.

Case REV size [m] σmax [10−4 S/m] σmin [10−4 S/m] σmax/σmin θp [◦]

1 10.21 6.66 2.88 2.32 14.8
2 10.84 5.98 4.72 1.27 31.1
3 11.56 5.41 5.20 1.04 —
4 10.20 6.00 4.78 1.25 31.4
5 11.59 5.68 5.22 1.09 91.1
6 11.52 6.73 5.27 1.28 91.2
7 11.72 7.96 5.28 1.52 90.7
8 11.03 6.06 4.95 1.22 33.5
9 11.15 6.35 5.78 1.10 40.6
10 11.76 6.80 6.71 1.01 —
11 11.65 7.61 5.85 1.30 31.6
12 11.06 6.13 4.81 1.28 29.7
13 11.54 6.62 5.12 1.29 29.9
14 13.36 7.60 5.86 1.30 31.3
15 11.74 3.48 2.80 1.24 30.3
16 11.47 2.39 2.04 1.17 29.8
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Table 3: Estimated REV size and equivalent tensor characteristics for the electrical conduc-
tivity σ when σm/σf = 10−6. Parameters σmax and σmin represent the principal values of the
conductivity tensor, whereas θp is the direction of maximum conductivity. The anisotropy
ratio is given by σmax/σmin. Note that θp is shown only for σmax/σmin ≥ 1.05.

Case REV size [m] σmax [10−4 S/m] σmin [10−4 S/m] σmax/σmin θp [◦]

1 20.45 3.74 0.62 6.09 15.5
2 18.55 2.97 1.89 1.57 31.6
3 16.34 2.47 2.41 1.03 —
4 18.97 2.94 1.90 1.55 32.3
5 16.13 2.71 2.42 1.12 94.3
6 15.94 3.65 2.46 1.48 91.1
7 16.26 4.78 2.49 1.92 90.6
8 18.50 3.04 2.05 1.48 33.7
9 18.66 3.31 2.76 1.20 40.2
10 18.68 3.65 3.61 1.01 —
11 18.56 4.43 2.87 1.54 31.8
12 16.78 3.11 1.95 1.59 30.6
13 17.79 3.56 2.21 1.61 30.8
14 22.03 4.62 2.92 1.58 31.3
15 41.78 1.26 0.81 1.56 31.2
16 104.87 0.47 0.33 1.43 33.2
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Table 4: Estimated REV size and equivalent tensor characteristics for the hydraulic con-
ductivity K. Parameters Kmax and Kmin represent the principal values of the conductivity
tensor, whereas θp is the direction of maximum conductivity. The anisotropy ratio is given
by Kmax/Kmin. Note that θp is shown only for Kmax/Kmin ≥ 1.05.

Case REV size [m] Kmax [10−3 m/s] Kmin [10−3 m/s] Kmax/Kmin θp [◦]

1 20.52 3.10 0.50 6.12 15.5
2 18.59 2.40 1.50 1.58 31.6
3 16.37 2.00 2.00 1.03 —
4 19.01 2.40 1.50 1.55 32.3
5 15.95 2.70 2.00 1.33 91.6
6 17.59 6.40 2.10 3.07 90.3
7 22.18 14.20 2.20 6.53 90.1
8 18.43 2.60 2.00 1.30 37.8
9 20.49 4.80 3.70 1.31 51.2
10 25.34 10.80 5.90 1.84 56.2
11 18.59 8.20 5.20 1.58 31.6
12 19.25 3.10 2.00 1.56 30.8
13 29.07 5.50 3.60 1.52 31.0
14 23.97 9.70 6.10 1.58 31.3
15 42.13 1.00 0.66 1.56 31.2
16 109.26 0.38 0.27 1.43 33.2
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