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Summary 

Implant-associated infections caused by Candida spp. are difficult to treat due to reduced 

antimicrobial susceptibility in biofilm. Antifungal susceptibility testing is important due to the 

increasing number of prosthetic infections caused by Candida spp. The aim of this thesis was to 

investigate innovative methods using calorimetry for microbial detection and antimicrobial 

susceptibility testing, as well as treatment activity in validated C. albicans foreign-body infection 

animal model (part 1). In addition, new materials with intrinsic antimicrobial activity (bioactive 

glass) were tested (part 2).  

 

The first part of the thesis describes a novel real-time method for evaluation of antifungals against 

yeast, based on measurements of the growth-related heat production by isothermal 

microcalorimetry. Current methods for evaluation of antifungal agents against yeast have several 

limitations, especially when combinations of antifungals are investigated. We therefore evaluated 

the activity of fluconazole, amphotericin B and two echinocandins (caspofungin and anidulafungin) 

against Candida spp. by microcalorimetry. The minimal heat inhibition concentration (MHIC) was 

defined as the lowest concentration inhibiting ≥50% (≥90% for amphotericin B) of the heat 

produced at 24 and 48h for planktonic and biofilm yeast, respectively. Agreement within two-fold 

dilutions between MHIC and MIC was 50% for fluconazole and 100% for caspofungin, 

anidulafungin and amphotericin B. As determined by microcalorimetry, echinocandins (especially 

anidulafungin) were the most active agents against planktonic Candida. Subsequently, 

antimicrobial treatment strategies for infections caused by Candida albicans in-vivo were 

investigated. Since C. albicans had not previously been tested in this animal model, we first 

established an infection profile and investigated the pharmacokinetics of antifungals. In untreated 

animals, planktonic Candida progressively decreased in cage fluid and was cleared in 8% to 24% 

of cage fluids, however, Candida biofilm persisted on all cages, i.e. no spontaneous cure of cage-

associated infections was observed. In accordance with in vitro experiments, echinocandins 

showed the highest activity against planktonic C. albicans. Against C. albicans biofilm, 

caspofungin showed the highest cure rate (25%), whereas cure rates of other antifungals ranged 

between 8% - 17%, demonstrating the difficulty of eradicating Candida biofilms on implants.  

 

The second part of the thesis investigates the activity of bioactive glass (BAG) S53P4 (volumes 1 

g and 2 g and sizes 0.5-0.8 mm and <45 µm) against Staphylococcus aureus, S. epidermidis, 

Escherichia coli, Enterococcus faecalis et Candida albicans by microcalorimetry. BAG is a 

surface-reactive glass-ceramic biomaterial which is used as implant material to repair and replace 

diseased or damaged bones. Besides binding chemically to the bone and being osteoconductive, 

this material has the property to inhibit the biofilm formation. BAG showed good activity against 

tested mircoorganisms, except for E. faecalis with granula 0.5-0.8 mm.  
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Résumé 

Les infections associées aux implants causées par Candida spp. sont difficiles à traiter à cause de 

la faible susceptibilité du biofilm aux antifongiques. Le test de susceptibilité aux antifongiques est  

important vu  l’augmentation des infections de prothèses dûes à Candida spp. Le but de cette thèse 

est d’étudier des nouvelles méthodes de détection des microorganismes par calorimétrie et de tester 

la susceptibilité ainsi que l’activité des antifongiques dans un modèle animal (partie 1). De plus, 

des nouveaux matériaux avec une activité antimicrobienne intrinsèque (bioactive glass) ont été 

testés (partie 2).  

 

La première partie de la thèse décrit une nouvelle méthode d’évaluation de l’effet des 

antifongiques en temps réel en se basant sur la chaleur produite lors de la croissance mesurée par 

microcalorimètre isothermique. Les méthodes actuelles visant à évaluer l’effet des antifongiques 

sont limitées, surtout lorsqu’il s’agit d’évaluer l’effet des combinaisons d’antifongiques. Nous 

avons évalué l’activité du fluconazole, de l’amphotericin B et des echinocandines (caspofungine et 

anidulafungine), sur différentes souches de Candida spp. La concentration minimale d’inhibition 

de chaleur (CMIC) a été définie comme étant la plus petite concentration inhibant  ≥50% (≥90% 

pour l’amphotericine B) de la chaleur produite à 24h et 48h pour la croissance planctonique et du 

biofilm. La concordance entre CMIC et la concentration minimale d’inhibition (CMI), avec 2 

dilutions de marge, était de 50% pour fluconazole et 100% pour les echinocandines et 

l’amphotericin B. Comme déterminé par microcalorimétrie, les echinocandines (surtout 

l’anidulafungine) ont montré une meilleure activité contre la croissance planctonique de Candida. 

Nous avons ensuite étudié les traitements antimicrobiens contre C. albicans in vivo. Étant donné 

l’absence d’études avec ce modèle animal avec C. albicans, nous avons d’abord établi un profil 

d’infection et étudié la pharmacocinétique des antifongiques. Chez les animaux non traités, 

Candida planctonique a montré une décroissance progressive dans le fluide des cages, tout en 

restant présent sous forme de biofilm. Pas de cure spontanée des cages infectées a été observée. En 

accord avec les expériences in vitro, les echinocandines ont montré une meilleure activité contre 

C. albicans planctonique. Contre le biofilm la caspofongine montre le plus haut taux de guérison 

(25%), contrairement aux autres antifongiques où le taux de guérison allait de 8% à 17%, 

démontrant ainsi la difficulté rencontrée dans l’éradication du biofilm à C. albicans.  

 

La deuxième partie étudie l’activité du bioactive glass (BAG) S53P4 (volumes 1 and 2 g et 

diamètres de 0.5-0.8 mm et <45 µm) contre Staphylococcus aureus, S. epidermidis, Escherichia 

coli, Enterococcus faecalis et C. albicans. BAG est un biomatériel en vitre-céramique à surface 

réactive utilisé en tant qu’implant pour réparer et remplacer les os endommagés ou fracturés. En 

plus d’avoir la capacité de se lier chimiquement à l’os et être ostéoconductif, ce matériel a la 

caractéristique d’inhiber la formation du biofilm. BAG a montré une bonne activité contre les 

microorganismes testés à l’exception de E. faecalis avec les granules de 0.5-0.8 mm de diamètre. 
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Chapter1. General introduction 

Fungal infection 

Fungal infections are on the rise as advances in modern medicine prolong the lives of severely ill 

patients. Candida spp., Aspergillus spp. and Cryptococcus neoformans are the most common 

agents of fungal infections and the mortality rate often remains higher than 50% (1). Candida is 

considered as being the most important cause of opportunistic mycoses, and is the fourth most 

common cause of nosocomial infections (2, 3).  

Candida is a commensal type of yeast well tolerated by healthy humans. It is found on the oral 

mucosa, on the skin, in the gastrointestinal tract and in the vaginal flora. However, it can become 

pathogenic and induce mycosis in diabetic people or whenever the immunosystem is deficient (e.g. 

in HIV infected patients).  

Candida is a polymorphic species, meaning that it can grow either as budding yeast or as 

filamentous cells (pseudohyphal or hyphal form), and can switch from one form to the other 

depending on environmental conditions such as temperature and pH. The primary mode of 

reproduction in C. albicans is by the budding of yeast cells. Mother cells give rise to daughter cells, 

which are released to repeat the budding cycle. 

In the past decades various risk factors for fungal infections have emerged, including the use of 

indwelling devices, transplantation procedures, immunosuppression,  prolonged intensive care unit 

stays and use of broad-range antibiotics suppressing normal bacterial flora, increasing the 

prevalence of fungal disease (4, 5). More than 90% of invasive infections due to Candida spp. are 

attributed to five species, C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei, and 

the list of species isolated from clinical specimens continues to grow each year (2, 6).  
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The evolving epidemiology of non-C. albicans species may reflects the increased use of antifungals 

for prophylaxis and the introduction of new antifungal agents in clinical use. C. glabrata, for 

example, may be less susceptible to fluconazole, the most inexpensive and readily available 

antifungal agent used to treat candidemia. Similarly to bacteria, fungi can attach to the implant 

surface and form biofilm, causing persistent and relapsing infections (7, 8). 

 

Fungal biofilm formation on medical devices 

In contrast to the vast literature describing bacterial biofilms, less attention has been given to 

medically important fungal biofilms. Among implant-associated biofilm infections, Candida is 

implicated in about 1-5%. These infections are difficult to treat, and usually requires removal of 

the implant and prolonged antifungal treatment (9-12). 

C. albicans biofilm formation proceeds mainly through three developmental phases: the early 

phase, the intermediate phase and the maturation phase. The early phase take place between 0 and 

~11h and it involves the adhesion of fungal cells to the substrate. The intermediate phase, between 

~12 and 30h, imply the coaggregation and the proliferation of blastospores creating communities 

and producing an extracellular matrix (ECM) rich in carbohydrates. The maturation phase, between 

~31and 72h, includes the formation of a thick ECM in which the fungal cells are completely 

embedded (13). 

In a study performed by Depprich et a.l comparing the prevalence of microorganisms on different 

materials C. albicans was demonstrated to be able to form biofilm on silicone but not on titanium. 

This biofilm formation was mainly due to the light roughness of the titanium surface (14). This 

study also revealed the formation of biofilm on the silicone interior, thus demonstrating the 

importance of the porosity of the biomaterial. Characteristics such as pores, fissures and structural 
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defects increase the surface area and provide an accommodation for microorganisms, supporting 

biofilm formation (8, 15). 

 

Antifungals 

Fungi are eukaryotic organism and, as being evolutionarily close to humans, there are limited 

numbers of targets which can be exploited for antifungal drug development. The first agent with 

antifungal activity, griseofulvin, was isolated in 1939, whereas the first azole and polyene 

antifungal agents were reported in 1944 and 1949, respectively. Although their discovery in the 

1940-50, it was only in the sixties that oral griseofulvin became available for clinical use (16). 

Serious fungal infections increased during the 1980s and 1990s with the increased use of 

immunosuppressive agents and due to the increased number of immunocompromised or severely 

ill individuals. The most common reason to immunosupression was the spread of human 

immunodeficiency virus (HIV) infection, followed by organ transplants, chemotherapy, and 

improved life-saving medical techniques necessitating indwelling devices (17). 

The consequent growing need for antifungal agents brought new drugs to the market and led during 

the1990s to new lipid formulations of amphotericin B with improved safety profiles (18). In 

addition, new classes of antifungal agents such as the echinocandins were studied (18, 19).  

Antifungals can be classified into different classes according to their mode of action. These classes 

comprise polyenes, acting on membrane function, allylamines and azoles, targeting specifically the 

biosynthesis of the major component of the fungal cell membrane, ergosterol (equivalent to 

cholesterol in mammalian cells) (Figure 1). Other classes of antifungals act on the biosynthesis of 

cell wall, such as the echinocandins or pradimicin, on the biosynthesis of nucleic acids, such as 5-

fluorocytosine, or they inhibits the activity of mitochondrial function, such as the histatins (16, 17, 
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20). Nowadays, the main classes of antifungals therapeutically used are polyenes, azoles and 

echinocandins. 

 

Figure1. Overview of the mechanisms of action of the antifungal classes, azoles (A), polyenes (B), flucytosine (C) and 

the echinocandins (D), used for treatment of Candida infections. From (20) 

 

Polyenes 

Since the discovery of the polyenes and their introduction in the 1950-60s, amphotericin B remains 

the “gold standard” of antifungal therapy. Amphotericin B binds ergosterol, the principal sterol in 

the fungal membrane, creating pores that compromise membrane integrity causing leakage of 

cellular components and death (21). 
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Nevertheless, the efficacy of polyenes is limited by their intrinsic toxicity. Therefore, lipid 

formulations of amphotericin B have subsequently been developed. 

Azoles 

Azoles, such as fluconazole, were developed in the 1980s. Azoles are synthetic fungistatic drugs, 

inhibiting the biosynthesis of ergosterol. They target the cytochrome P 450 14-α-lanosterol 

demethylase (encoded by ERG11 or CYP51) thus inhibiting its enzymatic activity. This enzyme 

also plays an important role in the cholesterol synthesis in mammals. Another target of azoles 

recently described is the enzyme Δ22-desaturase, which is a cytochrome P-450 involved in the last 

step of the biosynthesis of ergosterol. Azoles cause depletion of ergosterol, leading to accumulation 

of 14a- methylated sterols into the fungal cell, as well as the disruption of the structure of the 

membrane and several of its functions, such as nutrient transport and chitin synthesis. These 

antifungals are the most important agents used therapeutically in clinic due to their moderate toxic 

effects (16). Although the improved safety profile compared to amphotericin B, the major problem 

with azoles is the emergence of resistance given by the development of point mutation on the target 

enzyme as well as the over-expression of genes encoding efflux pumps (22-25). 

 

Resistance to azoles  

The appearance of resistance to antifungal drugs led to failure of treatment and persistence of fungal 

infection despite an appropriate antifungal drug therapy. While resistance to polyenes, such 

amphotericin B, has been rarely reported in yeast, resistance to azoles has been extensively reported 

since 1980. The fungistatic effect of azoles and their repeated use led to the increased appearance 

of resistance to these agents. As a consequence of the increasing number of HIV patients infected 

by Candida, the use of the corresponding agent has also been more frequent. The resistance to 
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azoles has been explained by three major reported mechanisms: 1. drug efflux transporters, 2. 

ergosterol biosynthesis pathway modifications and 3.the mediation by Erg11p gene.  

1. A large number of Candida clinical azole-resistance strains, especially C. albicans and C. 

glabrata, showed increased azole efflux which has been correlated to the upregulation of multidrug 

efflux transporter genes from two distinct families In the ATP binding cassette (ABC) transporters 

family (CDR1, CDR2 and CSNQ2), ATP is used as driving force for drug efflux, and in the Major 

Facilitator Superfamily (MFS), a proton gradient is used for drug efflux. Deletion of CDR1 in C. 

albicans leads to a hypersusceptibility to azoles and an accumulation of fluconazole (26, 27). 

2. Some azole-resistant strains showed to have specific alterations in the ergosterol biosynthesis 

pathway, often resulting in the absence of ergosterol. Some C. albicans resistant strains have been 

found to accumulate 14α-methyl-3,6-diol, which indicates a defect in the enzyme sterol Δ5,6 

desaturase encoded by the gene ERG3 (28). 

3. The final major mechanism is linked to the overproduction or Erg11p. Upregulation of ERG11 

plays a moderate role in C. albicans azole resistance, however, in clinical azole-resistant isolates 

three specific regions of Erg11p have been reported with amino acid substitutions close to the 

cytochrome P-450 active site (29). 

 

Echinocandins 

Echinocandins are the last new class of antifungal introduced to the market (i.e. caspofungin, 

micafungin and anidulafungin). This antifungal class has the particularity to be the first that acts 

against a specific component of the fungal organisms not present in mammalian cells, the cell wall, 

thus avoiding direct human cell toxicity (30). The echinocandins exhibit fungicidal activity against 

Candida spp., including azole-resistant species, but fungistatic activity against Aspergillus spp. 



 
 
14 

The echinocandins are non-competitive inhibitors of 1,3-β-D-glucan synthase (and, to a lesser 

extent, 1,6-β-D-glucan synthase), an enzyme complex within the fungal cell wall comprised of at 

least two subunits: Fks1p (encoded by the genes FKS1, FKS2 and FKS3) and Rho1p. FKS1 

transcription is linked to cell wall remodelling in fungi and FKS2 transcription is calcineurin 

dependent. Rho1p is a key regulatory protein and because of his interaction with multiple proteins, 

Rho1p is thought to be a key switch driving or arresting the synthesis of 1,3-D-glucan. Specifically, 

the echinocandins target the FKS1 gene product with Fks1p being the active site of the enzyme, 

although the precise echinocandin binding site remains unresolved. Fks1p inhibition is 

concentration dependent. Since 1,3-β-D-glucan is an integral component of the fungal cell wall, 

changes in its characteristics compromise osmotic stability resulting in cell lysis (31-33).  

 

Clinical relevance of antifungal susceptibility testing 

The main objective of all in vitro antimicrobial susceptibility testing, antibacterial, antiviral as well 

as antifungals, is to predict the outcome of the clinical administration of a tested agent on the 

organism causing the infection. As antibacterial testing, antifungal susceptibility testing aim to 

provide 1) an estimation of the activity of single or combined antimicrobial agents against the 

pathogen of interest; 2) a good correlation with the in vivo activity; 3) to detect the development of 

resistance; and 4) to test new antimicrobials and asses their spectrum of activity. 

The currently available international standard methods for susceptibility determination of yeast to 

antifungals agents have been developed by the Clinical Laboratory Standards Institute (CLSI) (34) 

and by the Antifungal Susceptibility Testing Subcommittee of EUCAST (EUCAST-AFST) (35). 

A microbroth dilution assay is recommended by both guidelines for the determination of the 

minimal inhibitory concentration (MIC). Furthermore, the two guidelines differ in the inoculum 
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size (0.5-2.5 x 103 vs 0.5-2.5 x 105 CFU/ml), the test culture media used (RPMI 1640 with 0.2% vs 

2% of glucose), the microtitration plates (U-shaped vs flat-bottom wells) and in the method of 

reading (visually versus photometrically). Moreover, the MIC is defined as the lowest 

concentration inhibiting the growth with amphotericin B by 100% vs 90%, with azoles and 

echinocandins by 50% for both (36). 

Several other commercial test assays have been developed to facilitate the antifungal susceptibility 

testing. E-test and disk diffusion testing have been developed for yeast and moulds producing easy-

to-read and sharp zones of inhibition (37, 38). Sensititre Yeast One is a colorimetric antifungal 

panel including Alamar-blue that converts into pink in the presence of growth and it is easy to 

interpret. Compared to the reference method (CLSI), Sensititre Yeast One has showed good 

agreement (39). 

Mostly, free-living cells (planktonic) in pure culture are used to assess the MIC. However, different 

factors have been identified that can affect the results of in vitro tests with antifungal agents. For 

example, the method used for the endpoint determination is complicated for a number of 

antifungals, especially the azoles, because of the often reported trailing phenomenon. In this case 

the fungi will initially growth even with high concentrations of the antifungal agent. Furthermore, 

planktonic results are rarely useful when biofilm is present.  Regarding the evaluation of biofilm 

susceptibility a colorimetric cell proliferation assay (XTT) using reduction of tetrazolium salt has 

been established for quantitative analysis of biofilm growth (40), however, the validity and 

reproducibility of this method has been questioned (40, 41). Therefore, other quantitative methods, 

such as the ATP bioluminescence assay or the incorporation of an isotope have been investigated 

(36), but none is universally accepted as the reference method for evaluating susceptibility of 

Candida biofilms. Furthermore, most of the models for the formation of microbial biofilm, are 

cumbersome, time-consuming, labor-intensive and need experienced personnel for interpretation. 
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These models include the use of catheter disks, plastic slides, cylindrical cellulose filters, modified 

devices, the Calgary biofilm device, etc. under static or dynamic conditions (42-46).  

An early detection of infections caused by antifungal specific resistant pathogens optimises the 

choice of treatment and the patient outcome. However, it is difficult to correlate in vitro 

susceptibility testing results with the human treatment outcome of an infection. The in vitro test 

does not take into account the dynamics of an in vivo infection. Factors such as the host immune 

response, drug pharmacokinetics and pharmacodynamics, drug interactions as well as the 

interaction with the host proteins are neglected. All this parameters can also influence the outcome 

of the treatment of a specific infection (47, 48). The accuracy between the in vitro and in vivo data 

has been summarized as the “90-60 rule”: “infections due to isolates that are susceptible to the 

agent being given respond to therapy approximately 90% of the time, whereas infections due to 

isolates that are resistant to the agent being given respond approximately 60% of the time” (47). 

Great efforts concerning standardisation have been made by both organisations, the CLSI and the 

EUCAST, establishing clinical breakpoints for in vitro antimicrobial susceptibility testing 

indicating the likely response to a given antimicrobial agent using the approved dosing regimen for 

that agent. Epidemiological cutoff values have also been established as a sensitive marker for the 

emergence of decreased susceptibility to the given agent discriminating non-wild type strains (with 

mutational or acquired resistance mechanisms) from wild-type. Nevertheless, given the differences 

between the two methods, breakpoints suggested by CLSI cannot be extrapolated to the EUCAST 

method and vice versa. Antifungal susceptibility testing can aid in the selection and optimization 

of antifungal treatment and due to the low number of antifungals on the market, having a good and 

rapid antifungal susceptibility testing is extremely important for surveillance of the emergence of 

resistance. 
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Calorimetry in microbiology 

Isothermal microcalorimetry is a highly sensitive non-invasive and non-destructive technique, 

measuring heat produced by microorganisms in the range of microwatt. The release of heat by 

microorganisms is proportional to their metabolism and growth rate and can be recorder in real 

time and plotted as heat flow (Watt) versus time. Measurements are performed at constant pressure 

and temperature as evocated by the name “isothermal”. The slope of the heat flow curve at each 

time point depends on the replication rate of the cells, while the area under the heat flow curve 

correspond to the total heat (Joule), which is proportional to the final number of cells (Figure 2) 

(49). 

 

Figure 2. Relation between the microcalorimetric measurements and their biological equivalents. The heat 

flow represents the activity (growth rate) of a microbial culture. The area under the heat-flow curve gives the total 

amount of heat produced, representing the final product resulting from microbial activity (total number of cell). 

Adapted from (49). 

 

Due to its high sensitivity and precision, the multi-channel batch calorimeters of heat-conduction 

type are the mostly commonly reported for clinical microbiology. The Thermal Activity Monitor 
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(TAM 48, TA Instruments, New Castle, DE, USA), shown in figure 3 is an example of a batch 

isothermal thermophile calorimeter allowing parallel measurements of different samples in 48 

independent channels with a detection sensitivity on the order of 0.2 µW. Considering that a single 

bacteria cell produces ~2 pW (1 pW for fungi) when active, only 105 bacteria are required to 

produce a detectable signal. A glass ampoule can contain 1-4 mL of liquid enabling the detectable 

concentration of active microorganisms between 2.5 x 104 and 1.0 x 105 bacteria/ml. This cell 

concentration would not be detectable using a spectrophotometer (i.e. measuring the turbidity at 

600nm) (50, 51). 

The calorimeter provides a continuous real-time electronic signal proportional to the temperature 

differential measure between the sample (microorganisms culture) and the heat sink reference, 

generally made of aluminium, within a well-defined temperature (see figure 3). 

 

Figure3.  

A. The isothermal 

micrcocalorimeter TAM 48 (TA 

Instruments) with 48 

independent channels.  

 

B. A schematic picture of a 

calorimetric channel including 

the heat sink (inert reference) and 

the sample (a 4 ml glass ampoule 

hermetically closed). The 

thermopile measures the 

difference in heat between the 

sample and the reference under a 

constant temperature. 
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The heat between the sample and the heat sink is transferred through a thermopile consisting of 

coupled Peltier elements. The Peltiers elements act as thermoelectric generators and convert the 

temperature difference between the sample and the reference into a voltage signal that is 

proportional to the heat. 

To increase the sensitivity and accuracy, most of the current isothermal microcalorimeters are “twin 

instruments”. The reaction vessel, including the sample and the heat sink, is inserted into a precise 

liquid thermostat (water or oil), adjustable between 15–150°C, ensuring a temperature stability of 

10-5 °C. The thermostat temperature in a microbiological setting is normally set at 37°C. 

Calorimetry samples are easy to prepare and they do not need specific preparation.  Samples are 

placed in sealed glass ampoules and inserted in one of the measuring channels. Heat production is 

monitored and recorded as long as there is a heat flow signal (from hours to days). After the heat 

measurement, samples can also be used for further analysis of interest. Nevertheless, isothermal 

microcalorimetry has a major drawback which is the non-specificity of the heat-flow signal related 

to the sum of all chemical and physical processes taking place into the ampoule. Simultaneous 

exothermic and endothermic processes are unspecifically recorded. Furthermore, since the samples 

are placed in sealed ampoules, chemical factors such as oxygen depletion and accumulation of 

metabolic waste products have to be take into account during the interpretation of the results (49).  

The potential of isothermal microcalorimetry is in the fast detection of microbial infections or 

contamination, which is of critical importance for the clinical diagnosis and administration of the 

appropriate treatment. Several studies have shown the potential of the isothermal microcalorimetry 

to detect growth of different pathogens within a few hours, as, for example, the contamination of 

donated blood platelets with Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus 

sanguinis, Escherichia coli, Propionibacterium acnes and Candida albicans (52), the urinary tract 
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infections (53) or mycobacterial (54). Since the microcalorimeter does not differentiate between 

growths of different microorganism, the use of selective growth media may allow the recovery and 

detection of specific microbes when present in the specimens.  

It is also possible to determine the minimal inhibitory concentration (MIC) for different 

antimicrobial agents and microorganisms within hours (55). In the presence of an active 

antimicrobial agent at concentration above the MIC, susceptible microorganism will be inhibited 

leading to absence of heat production. Contrarily, resistant microorganism will not be inhibited and 

heat will be produced. This will allow rapid detection of resistant microorganisms. The use of 

isothermal microcalorimetry for the differentiation of methicillin-susceptible from methicillin-

resistant Staphylococcus aureus within 5 h was reported (56), as well as determination of 

antimicrobial susceptibility of Escherichia Coli, S. aureus, Aspergillus spp. and non-Aspergillus 

molds (55, 57-59). In addition, isothermal miccrocalorimetry has proven to be an effective tool in 

detecting slow-growing bacteria, such as Mycobacterium tuberculosis which could be detected 

within hours using microcalorimetry (54). This is much faster than traditional methods that may 

need up to 60 days to detect growth of slow-growing mycobacteria. Anti-parasitic drugs have also 

being studied with calorimetry against Trypanosoma brucei rhodesiense and Plasmodium 

falciparum (60) as well as Schistosoma mansoni (61). 

One of the main advantages of microcalorimetry is that it can accommodate any type of sample. 

For biomedical material or biofilm studies this means that a solid sample, with or without 

previously formed biofilm, can be introduced into the microcalorimeter ampoule. This allows, on 

one side, to monitor the effect of additives used to improve strength or other properties of bone 

cements. On the other side, in presence of microorganisms, it allows to study the biofilm adherence 

on a determined substrate (15).  
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Although several studies have been performed to demonstrate the potential and benefits for clinical 

applications, calorimetry methods are not yet fully integrated into the microbiologic routine 

procedures. The current cost of multichannel calorimeters is, for instance, too high for cost-efficient 

clinical laboratory tests. However, the non-invasive and non-destructive character of calorimetry, 

as well as the simplicity in sample preparation, qualifies the isothermal multichannel calorimetry 

as a valuable tool for the evaluation of antimicrobial inhibitory profiles, including the evaluation 

of biofilm growth on surfaces (50). 

 

Prosthetic joint infections 

The increasing use of implanted devices consequently leads to an increase of implant-associated 

infections (62). The risk of infectious complications after joint replacement is estimated to be 1-

2%. In patients with primary joint replacement, the infection rate during the first 2 years is less 

than 1% in hip and shoulder prosthesis, less than 2% in knee prosthesis and less than 9% in elbow 

prosthesis. Prosthetic joint infections (PJIs) are difficult to treat and are associated with morbidity 

and elevated health care cost (2, 3). Implant-associated infections are typically caused by 

microorganisms growing in biofilms structures. Eradication of the embedded biofilm requires 

intensive antimicrobial therapy. Staphylococci are the most frequent infective agents, followed by 

streptococci, enterococci, gram-negative bacilli and Propionibacterium acnes. However, less 

prevalent organisms, such as fungi, are currently considered a difficult to treat organism, and the 

optimal eradication treatment is not yet defined. Prosthetic infections caused by fungal agents are 

considered to be rare, representing 1% of orthopaedic infections, and the optimal antifungal 

treatment against C. albicans biofilm has not been defined. In the biofilm form, fungi are up to 

1000-fold more resistant to antimicrobials than in their planktonic form (63). The most frequent 
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fungal agent is C. albicans, followed by C. parapsilosis and C. glabrata. Although fungal 

prosthetic joint infections are rare, they represent a diagnostic and therapeutic challenge.  

In contrast to bacterial infections, which can be locally treated by insertion of an antibiotic-loaded 

spacer, data on efficacy of local antifungal therapy is missing. No clear guidelines exist for the 

surgical management of fungal periprosthetic infections (64). Most patients with chronic infection 

following joint replacement require removal of the device and the standard treatment is a 2 stage-

revision with the use of a temporary spacer impregnated with antibiotics and antifungals allowing 

elution of the drugs directly into the infected surrounding tissue and maintaining the patient’s 

mobility between stages (65). Amphotericin B and fluconazole are the drug of choice for systemic 

treatments, nevertheless, in vitro studies of amphotericin B and fluconazole loaded cement have 

shown only poor elution characteristics for both agents (66, 67). Only a single in vivo study showed 

the efficacy of fluconazole impregnated cement beads in 2 cases in the treatment of periprosthetic 

hip infections (68). 

The exact mechanism of Candida prosthetic joint infection is not elucidated. As for bacterial 

prosthetic infections, 3 possible modes of infections have been described (69):  

1) The haematogenous route is the most frequent mode of infection by Candida. In this case the 

infection originates from microbes coming from a distant infection focus, such as from cutaneous 

infections, soft tissues infections, oral cavity, or infections of the urogenital or the respiratory tract, 

or even from infected catheters. Since the manifestations of the symptoms of such infections occur 

24 months after surgery, they are classified as “late infection”. Late infections are mainly caused 

by highly virulent microorganisms and present all symptoms of acute infections (70, 71). 

2) Direct inoculation after prosthesis implantation into a joint previously infected, or inoculation 

from the skin microflora at the time of implantation (perioperative).  
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3) Extension into the synovial space from adjacent infected tissues. 

The two last modes of infection constitute the most common cause of implant infection. The delay 

of the first symptoms occurs, in those cases, either within 3 months or between 3 and 24 months 

after surgery and such infections have been classified as “early” and “delayed” prosthetic infection 

respectively. In early prosthesis infections the microorganisms involved are generally highly 

virulent pathogens such as S. aureus and gram-negative bacilli. In the delayed infection, low 

virulent pathogens such as coagulase-negative staphylococci, including S. epidermidis or 

Propionibacterium acnes are implied. In this case the infection usually becomes symptomatic later 

than 3months after surgery (11, 72-74). 

The main problem with implants is that foreign surfaces represent good substrates for microbial 

adherence and biofilm formation. Elek and Conen showed that in the vicinity of foreign material 

100 colony forming unit (CFU) of S. aureus was sufficient to induce an abscess, which is more 

than 100’000-fold lower than in the absence of a foreign device (75). This observations were 

confirmed by Zimmerli et al. in an animal model of foreign body-associated infection, where 100 

CFU were sufficient to infect 95% of the subcutaneous cages (simulating the implants), whereas 

>107 CFU of S. aureus could not produce any abscess in the absence of a foreign-body device (76, 

77). 

 

Animal model of implant-associated infections 

The key advantage of studying biofilm infections using animal models is the presence of a 

physiological environment. Moreover, in vivo studies are particularly important for evaluation of 

the pharmacokinetics and pharmacodynamics of antimicrobial agents since different factors may 
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influence the interaction between the drug and the microorganism or its efficacy (77). Depending 

on the problem under study, different models of foreign-body infection have been used to solve the 

multiples problems associated with the foreign-body device (58, 78-81). Currently, animal models 

have been described based on catheter-associated urinary tract infections or infections of different 

materials implanted subcutaneously or intraperitoneally on mice, rats or guinea pigs. Nevertheless, 

the major disadvantage is linked to the high costs of the experimental animal and the laborious and 

sophisticated surgical technique required. An animal model for the study of the pathogenesis, the 

management and prevention of a device-related infection needs to reproduce the same 

characteristics of the human infection, such as not showing spontaneous healing, if it intends to be 

clinically relevant. In the case of a human device-associated infection, the model which best 

reproduces the clinical characteristics is the tissue-cage infection model using guinea pig developed 

by Zimmerli et al. (76, 82, 83). The guinea-pig tissue-cage infection model has the characteristics 

of being very similar to human device-associated infection. 

Foreign-body infections are convenient to study by inserting an implant which is consequently 

infected (locally or hematogenously). After a preferred time of infection, the device can be 

explanted and the presence of biofilm evaluated. Different methods are used to evaluate the 

presence of biofilm, such as examination by confocal scanning microscopy of microorganism cells 

and the extracellular matrix stained with specific dyes, or examination by scanning electron 

microscopy. 

 

The tissue cage infection model 

Male albino guinea pigs (Charles River, Sulzfeld, Germany) were kept in the Animal Facility of 

the University of Lausanne, Switzerland. The experiments were performed according to the 

regulations of Swiss veterinary law. Guinea pigs were weighted every week to ensure their well-
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being. Short-term studies (7-day infection) were performed in a foreign-body cage model with 

guinea pigs to evaluate the infection profile. Animals were anesthetized with a subcutaneous 

injection of ketamine and xylazine. Four sterile polytetrafluorethylene (Teflon) cages with 130 

regularly spaced perforations of 1 mm diameter (Angst-Pfister AG, Zürich, Switzerland) were 

subcutaneously implanted in flanks of the guinea pigs (450 – 550 g) under aseptic conditions, 

allowing accumulation of inflammatory fluid, Candida  inoculation and pharmacokinetic studies. 

After complete wound healing (approximately two weeks after implantation), sterility of the cages 

was confirmed by culturing aspirated cage fluid on blood agar plates and cages were infected by 

injection of a well-defined Candida inoculum. In general, the minimal infective dose needed to 

achieve a stable infection of the cage in guinea pigs is in the range of 102-103 CFU for staphylococci 

and of 104-106 with C. albicans. In rat or mouse models, the minimal infective dose is higher and 

immunosuppression may be needed to prevent spontaneous healing of the infection (84, 85). 

Contaminated cages were excluded from further studies. Sterile cages were used for the 

pharmacokinetic studies by aspirating the tissue-cage fluid after intraperitoneal injection of 

different doses of the drug. Fungal inoculation was performed only in initially sterile cages.  
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For evaluation of the treatment efficacy the tissue-cages are explanted after the end of therapy 

(Figure 4, F) and the cure rate is determined by dividing the number of culture-negative cages by 

the total number of cages in the treatment group. Additionally, the antifungal activity against 

planktonic Candida present in the fluid within the cage can be evaluated by aspirating cage fluid 

before, during and after treatment. 

Different treatment regimens for biofilm infections have been evaluated using tissue-cage infection 

models. When antibiotic are used, guinea pigs are limited by their intolerance to β-lactam and 

clindamycin, which both cause lethal diarrhea. Furthermore, guinea pigs only support short-term 

therapy up to 4 days. Rats are more suited for studying chronic infections and long-term therapy, 

but the infective dose needs to be increased to avoid spontaneous healing (85). 

  

Figure 4. Guinea-pig foreign-body 

implantation and explantation. 

A. Dunkin-Hartley Guinea pig.  

B. Tissue-cage (Teflon cylinders). 

C. Ventral position of the guinea pig 

before implantation. 

D. Subcutaneous insertion of the 

cages. 

E. Closing wound. 

F. Explantation of cages at the end 

of the experiment 
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Chapter2. AIM OF THE STUDY 

 

In this study, we investigated the potential of isothermal microcalorimetry for determination of 

planktonic and biofilm susceptibility testing of the most medically important Candida species. The 

microcalorimetry results were compared with conventional microbroth dilution testing and the 

XTT testing. A rapid and accurate reproducible susceptibility testing method may help guiding the 

choice of an optimal antifungal treatment improving the clinical outcome. Based on in vitro results 

the activity of the same antifungals was tested in vivo on planktonic and biofilm C. albicans in a 

foreign-body infection model using guinea pigs.  

 

The aim of the first part (chapter 3) was to investigate the activity of fluconazole, caspofungin, 

anidulafungin and amphotericin B against planktonic and biofilm Candida spp in vitro. 

The aim of the second part (chapter 4) was to investigate the same antifungals in vivo.  

First, we established an infection profile for different inocula of C. albicans. Second, we studied 

the pharmacokinetics and the pharmacodynamics of different antifungals and third, we investigated 

the activity of antifungals against planktonic and adherent C. albicans in vivo. To our knowledge, 

this is the first description of C. albicans infection and treatment in this model. 
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ABSTRACT 

The optimal treatment against Candida biofilms is not defined. We investigated the antifungal 

activity against planktonic and biofilm C. albicans in a foreign-body infection model. Teflon cages 

were subcutaneously implanted in guinea pigs, infected with C. albicans (ATCC 90028). Animals 

were treated intraperitoneally 12 h after infection for 4 days once daily with saline, fluconazole (16 

mg/kg), amphotericin B (2.5 mg/kg), caspofungin (2.5 mg/kg) or anidulafungin (20 mg/kg). Cage 

fluid was aspirated and planktonic Candida was quantified before, during and after treatment and 

the clearance rate from cage fluid was determined. Cages were removed and cultured to 

determine the biofilm cure rate. In untreated animals, planktonic Candida was cleared from cage 

fluid in 25% (infected with 4.5 x 103 CFU/cage), 8% (infected with 4.8 x 104 CFU/cage) and 0% 

(infected with 6.2 x 105 CFU/cage). Candida biofilm persisted on all explanted cages. Compared 

to untreated controls, fluconazole and amphotericin B did not reduce the number of planktonic C. 

albicans in cage fluid during and after treatment, whereas caspofungin reduced it to 0.22 and 0.0 

CFU/ml, respectively, and anidulafungin to 0.11 and 0.13 CFU/ml, respectively. Fluconazole cured 

2/12 cages (17%), amphotericin B and anidulafungin each 1/12 cages (8%) and caspofungin 3/12 

cages (25%). In summary, echinocandins showed superior activity against planktonic C. albicans 

than amphotericin B and fluconazole. Caspofungin showed the highest cure rate of C. albicans 

biofilm. However, no antifungal exceeded 25% cure rate, demonstrating the difficulty of eradicating 

Candida biofilms from implants. 
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INTRODUCTION 

Candida spp. is rarely causing prosthetic joint infections (PJI), representing about 1-3% of all 

infections, but are difficult to treat and are associated with high morbidity and healthcare cost (1, 

2). Usually a two-step exchange of the prosthesis with a long interval is applied since Candida is 

considered a difficult-to-treat microorganism in implant-associated infection. Little is known about 

the optimal antifungal treatment of Candida PJI. In vitro experiments suggest that microorganisms 

are considerably more resistant to antifungals than their planktonic counterparts (3). In a recent in 

vitro study, fluconazole activity against biofilm Candida was reduced by >1000-fold compared to 

planktonic counterparts, whereas echinocandins and amphotericin B mainly preserved their 

activity (Maiolo EM, Furustrand Tafin U, Borens O, Trampuz A, manuscript in revision AAC01815-

13).  

By using an established animal model of foreign-body infection, the pharmacokinetic and 

pharmacodynamic parameters can be studied in a physiological environment, including the 

interaction between the drug and the microorganism at the site of infection (4). In previous studies, 

antifungals were evaluated in animal models with different materials implanted subcutaneously or 

intraperitoneally in mice, rats or guinea pigs (5-11).  

In this study we investigated the activity of antifungal agents (fluconazole, amphotericin B, 

caspofungin and anidulafungin) against planktonic and biofilm C. albicans in a guinea pig foreign-

body infection model. The tissue cage infection model has been validated for testing the activity 

of antimicrobial agents against implant-associated infections in preclinical studies (12-15). To our 

knowledge, this is the first evaluation of antifungal treatment against C. albicans foreign-body 

infection in this model. 

(Part of the results of this study was presented at the 23rd European Congress of Clinical 

Microbiology and Infectious Diseases, Berlin, Germany, 27 to 30 April 2013 [E. Maiolo, U. 

Furustrand Tafin, A. Trampuz, abstr. P-1097] and at the 32nd meeting of the European Bone and 
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Joint Infection Society, Prague, Czech Republic, 12 to 14 September 2013 [E. Maiolo, U. 

Furustrand Tafin, O. Borens, A. Trampuz, oral presentation]. 

 

MATERIALS AND METHODS 

Study organism. C. albicans (ATCC 90028) was used for in vivo antifungal testing. The strain 

was stored at -80°C by use of a cryovial bead preservation system (Roth, Karlsruhe, Germany) at 

-80°C. C. albicans was cultured on Sabouraud dextrose agar (SDA) for 24 h at 37°C. The inoculum 

was prepared by McFarland and the exact quantity of organisms was determined by performing 

quantitative cultures. 

Antifungal agents. Fluconazole was obtained in liquid form (2000 μg/ml, Teva Pharma AG, 

Aesch, Switzerland). Amphotericin B (Sigma, St Louis, MO, USA) and caspofungin (Merck & Co., Inc. 

Whitehouse station, NJ, USA) were obtained in powder form and dissolved in sterile water. 

Anidulafungin was kindly provided in powder form by Pfizer Pharma AG (Ecalta, Zurich, 

Switzerland) and dissolved according to the manufacture instructions.  

In vitro antifungal susceptibility. The minimal inhibitory concentration (MIC) was determined by 

microbroth dilution. Antifungal susceptibility of planktonic C. albicans was determined by 

microbroth dilution method according to the EUCAST guidelines (16). 100 µl of a final 

concentration of 1-5 x 105 CFU/ml in RPMI-1640 (Roswell Park Memorial Institute) were added to 

100 µl of a serial two-fold dilutions of each antifungal previously prepared. Plates were 

subsequently incubated at 37°C for 24h and read by spectrophotometer at 530 nm. The MIC was 

defined as the lowest antifungal concentration inhibiting 50% of growth. Experiments were 

performed in triplicates 
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Animal model. A foreign-body infection model in guinea pig was used, as described 

previously (17). In brief, male albino guinea pigs (Charles River, Sulzfeld, Germany) were 

kept in the Animal Facility of the University of Lausanne, Switzerland. The experiments were 

performed according to the regulations of Swiss veterinary law. Guinea pigs were weighted 

every week to ensure their well-being. Animals were anesthetized with a subcutaneous 

injection of ketamine and xylazine. Four sterile polytetrafluorethylene (Teflon) cages (32 x 

10 mm) with 130 regularly spaced perforations of 1 mm diameter (Angst-Pfister AG, Zürich, 

Switzerland) were subcutaneously implanted in flanks of the guinea pigs (450 – 550 g) under 

aseptic conditions. Two weeks after implantation, cage fluid was aspirated to confirm 

sterility. Contaminated cages were excluded from further studies.  

Study of the infection profile. The tissue cage model has never been tested with Candida spp. 

in guinea pigs. Therefore, in the first experiment an infection profile was evaluated. Cages were 

infected by percutaneous inoculation of 200 µl of C. albicans containing 4.5 x 103 CFU/cage (low 

inoculum), 4.8 x 105 CFU/cage (intermediate inoculum) and 6.2 x 106 CFU/cage (high inoculum). 

The infection was confirmed by aspiration of the cage fluid and quantification of the culture on 

SDA plates. Planktonic Candida was quantified in aspirated cage fluid on day 1, 2, 3 and 6 (in 

CFU/ml), and clearance rate (in %) in cage fluid was determined. On day 6, the animals were 

sacrificed and the cages were aseptically removed and cultured in 5 ml Sabouraud dextrose broth 

(SDB) for 48 h to determine the spontaneous cure rate of Candida biofilm (in %). Aliquots of 100 

µl were spread on a Sabouraud plates and incubated at 37°C for additional 48 h to evaluate the 

biofilm presence. 

Pharmacokinetic studies. Cage fluid was aspirated in uninfected animals during 48 h (1, 2, 4, 8, 

24 and 48 h) following intraperitoneal administration of a single dose of fluconazole (8 and 16 

mg/kg), amphotericin B (0.62 and 1.25 mg/kg), caspofungin (1 and 2.5 mg/kg) and anidulafungin 
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(6 and 12 mg/kg). For each antifungal dose three guinea pigs were used (i.e. 12 cages). At each 

time point, 150 µl aliquots of cage fluid were aspirated from one cage from each animal (three 

replicates par time point and drug dose). Contaminated cages were excluded from further studies. 

The collected fluid was centrifuged (4500 rpm for 5min at 4°C) and the supernatant was stored at 

-20°C until further analysis. 

Pharmacokinetic parameters were calculated for each animal: Cmax was defined as the maximum 

concentration observed, Tmax was defined as the time needed to achieve the maximum 

concentration, Cmin24 was defined as the concentration measured at 24 h, Cmin48 was defined as 

the concentration measured at 48 h, AUC0-24 and AUC0-48 (area under the curve) were estimated 

by trapezoidal method after 24 h and 48 h, respectively. Variability of PK parameters was 

expressed as mean ± standard deviation. Antifungals concentration profiles were plotted with 

GraphPad Prism version 6.01, using mean of each sampling time per group, with errors bars 

representing standard deviation (SD). 

Pharmacokinetic analysis. Pharmacokinetic studies were performed using a liquid 

chromatography tandem mass spectrometry assay (LC tandem MS assay). Calibration curves 

were established with matrix-matched samples using blank guinea pigs samples spiked with 

relevant concentration of fluconazole, anidulafungin and caspofungin. This aimed at circumventing 

the matrix effect of complex biological fluids that potentially adversely affect the performance of 

the LC tandem MS assay.  

Antifungal treatment in animals. For treatment studies animals were infected with the low 

inoculum (2 x 104 CFU/ml, corresponding to 4 x 103 CFU/cage). Antifungal treatment started 12 h 

after infection. Cage fluids were aspirated and plated for quantitative analysis, followed by the 

antifungal treatment. Three animals, each animal holding 4 cages (i.e., 12 cages/treatment 

regimen), received one of the following treatment regimens: control group (no antifungal 

treatment); fluconazole (16 mg/kg); amphotericin B and caspofungin (2.5 mg/kg) and 
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anidulafungin (20 mg/kg). All antifungals were administered intraperitoneally every 24 h for 4 days. 

The antifungal dose was chosen based on pharmacokinetic studies performed in previously 

reported studies on rats, mice, guinea pigs and humans.  

Activity on planktonic and biofilm C. albicans in animals. To determine the activity of 

antifungals against C. albicans, cage fluid was aspirated before (to confirm the presence of 

infection), during and 10 days after treatment. The fungal counts were expressed as log10 CFU/ml 

cage fluid. To determine the activity against C. albicans biofilm, animals were sacrificed 10 days 

after treatment and the cages were explanted under aseptic conditions and incubated for 48 h in 

5 ml of SDB. After 48 h, 100 µl were spread on a blood agar plate and incubated at 37°C for 

additional 48 h and assessed for fungal growth.  

Statistical analysis. Comparisons were performed by using the Mann-Whitney U test for 

continuous variables. For all test differences were considered significant when P values were 

<0.05. Figures were plotted with GraphPad Prism (version 6.01) software (GraphPad Software, 

La Jolla, CA). 

 

RESULTS 

In vitro antifungal susceptibility.  The MIC values of C. albicans obtained by microbroth 

dilution were 0.25 µg/ml for fluconazole, 0.25 µg/ml for caspofungin and 0.03 µg/ml for 

anidulafungin.  

Infection profile.  Figure 1 represent planktonic C. albicans in cage fluid after infection with 

103 CFU/cage (A), 105 CFU/cage (B) and 106 CFU/cage (C). A spontaneous progressive reduction 

of the planktonic counts of Candida from tissue cage fluid was observed during 6 days with all 

inocula. On day 6 (just before explantation), C. albicans was cleared from 3/12 cage fluids (25%) 

with low inoculum of 103 CFU/cage and from 1/12 (8%) cage fluids with intermediate inoculum of 
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105 CFU/cage. No clearance was observed with the high inoculum of 106 CFU/cage. After 

explantation of the cages one week after infection, biofilm was detected in all 12 cages, proving 

the presence of biofilm. No sign of skin inflammation or perforation of the cage was seen during 

the infection profile.  

Pharmacokinetic studies.  Figure 2 shows the concentration-time profile in cage fluid after 

the administration of a single intraperitoneal dose in non-infected animals. Table 1 summarizes 

the calculated pharmacokinetic parameters. The Cmax of fluconazole after the administration of a 

single intraperitoneal dose of 8 and 16 mg/kg were 3.64 µg/ml and 9.07 µg/ml, respectively, which 

were achieved at ≈6.7 h after dosing. At 8 mg/kg, the fluconazole maximum concentration in the 

cage fluid reached 14X the MIC of the tested organism (0.25 µg/ml), whereas at 16 mg/kg it 

reached 36X the MIC. The fluconazole concentrations remained above the MIC for 24 h (Cmin24, 

1.14 and 2.90 µg/ml for doses of 8 and 16 mg/kg, respectively) and decreased below the MIC at 

48 h at 8 mg/kg (Cmin48, 0.20 µg/ml). 

The Cmax of caspofungin after the administration of a single intraperitoneal dose of 1 and 2.5 mg/kg 

were 0.32 µg/ml and 1.41 µg/ml, respectively, which were achieved at 24 h and 16 h, respectively. 

The maximum concentration in the cage fluid was above the MIC of C. albicans (0.25 µg/ml) at 

both doses. The maximum concentration reached 1 X and 2.8X the MIC at 24 h (Cmin24, 0.32 and 

1.40 µg/ml for doses of 1 and 2.5 mg/kg, respectively). Concentrations were below the MIC at 48 

h at 1 mg/kg (Cmin48, 0.15 µg/ml). 

The Cmax of anidulafungin after the administration of a single intraperitoneal dose of 6 and 12 

mg/kg were 0.15 µg/ml and 0.22 µg/ml respectively, which were achieved at 6.0 h and ≈13.3 h, 

respectively. At 6 mg/kg, the maximum concentration in the cage fluid reached 5X the MIC (0.03 

µg/ml). The maximum concentration reached 7X the MIC at 12 mg/kg. The anidulafungin 
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concentrations remained above the MIC for 48 h (Cmin48, 0.04 and 0.06 µg/ml for doses of 6 and 

12 mg/kg, respectively).  

Antifungal treatment in animals . Cage fluid sterility was confirmed prior to infection. At 

12 h after infection, the median (± SD) concentration of the yeast in the cage fluid was 1 x 103 

CFU/ml (2.73 ± 0.68 log10 CFU/ml) before treatment. In control animals receiving no drug, fungal 

counts in cage fluid were 2.22 ± 0.8 log10 and 0.70 ± 1.17 log10 CFU/ml after 4 and 14 days, 

respectively, which correspond to decrease of 0.51 and 2.03 log10 CFU/ml, respectively. No 

spontaneous cure of the cage-associated infection occurred in the untreated animals. 

Activity on planktonic and biofilm C. albicans  in animals. Before treatment, cage 

fluid contained (2.73 ± 0.68 log10 CFU/ml) 1 x 103 C. albicans/ml. Compared to untreated control, 

fluconazole and amphotericin B did not reduce planktonic C. albicans during and after treatment, 

whereas caspofungin reduced the numbers to 0.22 ± 0.51 and 0.0 CFU/ml and anidulafungin to 

0.11 ± 0.38 and 0.13 ± 0.46 CFU/ml cage fluid (Fig. 3). No spontaneous cure occurred in the 

untreated controls (Fig. 4), whereas fluconazole cured 2 of 12 cages (17%), amphotericin B and 

anidulafungin 1 of 12 cages (8%) and caspofungin 3 of 12 cages (25%). 

 

DISCUSSION 

The biofilm formation in Candida spp. is increasingly recognized as a significant clinical problem, 

especially in transplant, oncology and intensive care medicine (18). Implant-associated infections 

caused by yeasts are particularly characterized by high complexity and treatment challenges due 

to often concomitant immunosuppression of the patient, antifungal resistance and limited 

therapeutic options against Candida biofilms. Data on optimal antimicrobial and surgical 

management of implant-associated infections caused by Candida spp. are limited (19). In most of 

the cases, explantation of the device is performed, followed by long-term antifungal treatment. 
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However, the outcome is often characterized with relapses, persistent infection and need of 

multiple radical surgical interventions.  

Azoles, the most studied antifungal agents, especially fluconazole, demonstrated low activity 

against Candida biofilms (20-23). Sessile yeast cells could grow, proliferate and form biofilms after 

1 h of adherence despite the presence of high concentrations of fluconazole up to 1024 µg/ml 

(24). In a time-kill study, fluconazole showed lacking ability to eradicate Candida biofilm, whereas 

caspofungin and amphotericin B deoxycholate showed good activity over 48 h (25). In several 

studies echinocandins showed superior in vitro activity against Candida biofilms than azoles (26, 

27), as was also showed in a recent study using the ultra-sensitive microcalorimetry assay (Maiolo 

E et al., manuscript AAC01815-13, in revision). 

In this study, we therefore evaluated the in vivo activity of antifungals in an established foreign-

body model using guinea pigs, specifically against planktonic and biofilm C. albicans. Several 

interesting observations were made. During the study of the infection profile of C. albicans in 

untreated animals, a spontaneous decrease of the number of inoculated planktonic C. albicans in 

the cage fluid was observed. Particularly at low inoculum, some cage fluids cleared planktonic 

Candida from the cage fluid completely. However, when infected cages were explanted, all cage 

cultures grew Candida independently on their inoculum size (low, intermediate or high). This 

observation supports the hypothesis that Candida switch from planktonic into biofilm form when a 

foreign body is present in order to persist on the surface of the cages. Since there was no 

spontaneous cure of Candida biofilms, this model is suitable to test the activity of individual 

antifungals against biofilms. 

The pharmacokinetics of tested antifungals was characterized to determine the appropriate dosing 

and administration intervals. After 24 h of administration, the concentration of all four tested 

antifungals in the cage fluid was above the MIC of the test organism, whereas after 48 h with 
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fluconazole at 8 mg/kg and caspofungin at 1 mg/kg the concentrations in cage fluid were below 

the MIC. Therefore, the once-daily doing was chosen for further experiments.  

In treatment studies, fluconazole and amphotericin B did not reduce planktonic C. albicans in the 

cage fluid during and after treatment and showed limited anti-biofilm activity with cure rates from 

8% to 17%. In contrast, caspofungin and anidulafungin had a superior activity against planktonic 

Candida in the cage fluid. Against C. albicans biofilm, anidulafungin exhibited similar activity than 

amphotericin B (cure rate 8%), whereas caspofungin showed superior activity against C. albicans 

biofilm (cure rate 25%).  

The observed antifungal activity is in general lower than the one of antibacterial substances 

against S. aureus, E. coli, Enterococcus faecalis or P. acnes (12-15) using the same foreign-body 

infection model. This fact underlines that Candida remains a difficult-to-treat organisms and 

removal of a device with staged concept of re-implantation seems to be the rational treatment 

strategy. Other treatment strategies, such as novel antifungals, combination therapies or 

mechanical (e.g. sonication), biological (e.g. phages) or chemical (e.g. enzymes) biofilm removal 

strategies may improve the treatment outcome and make the retention and salvage of an infected 

prosthesis possible.  

In conclusion, caspofungin and anidulafungin showed superior activity against planktonic C. 

albicans compared to amphotericin B and fluconazole at physiological doses. No antifungal drug 

administered alone achieved cure rates above 25%, demonstrating the difficulty of eradicating 

Candida biofilms from implants. In further studies, higher doses of the antifungals, their 

combinations or addition of a non-pharmacological approach may improve the treatment outcome 

and can help planning rational clinical trials in implant-associated infections. 
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Figure 1. Infection profile, i.e. planktonic C. albicans in cage fluid after infection with 103 CFU/cage 

(A), 105 CFU/cage (B) and 106 CFU/cage (C). Horizontal lines represent means, numbers 

represent mean ± standard deviation values (in log10 CFU/ml cage fluid).  
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Figure2. Pharmacokinetic profile of fluconazole, caspofungin and anidulafungin in cage fluid after 

the administration of a single intraperitoneal dose of the drug in non-infected animals. The mean 

values of three measurements (except for caspofungin and anidulafungin 6 mg/kg, 2 

measurements were considered) at each time point are shown. Points represent means; error 

bars represent SDs. 
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Figure 3. Activity against planktonic C. albicans in cage fluid during (day 4) and after 

treatment (day 14). Animals were infected with 2 x 104 CFU/ml, corresponding to 4 x 103 

CFU/cage. Numbers above error bars represent mean log10 CFU/ml ± standard deviations (SD) 

of antifungal treatments (AMB= amphotericin B; FZL= fluconazole; CAS = caspofungin; AFG= 

anidulafungin).  
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Fig. 4. Treatment efficacy against biofilm C. albicans. Numbers in brackets are number of 

cured / number all cages, followed by the cure rate of biofilm Candida (in %). 
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Table 1. Pharmacokinetic parameters for the drugs tested in cage fluid after administration of a single intraperitoneal dose to non 

infected animals. 

 

Antifungal MIC 

(µg/ml) 

Dose 

(mg/kg) 

Cmax 

(µg/ml)a 

Cmin (µg/ml)a Tmax (h)a Cmin24h 

(µg/ml)a 

Cmin48h (µg/ml)a AUC0-24 

(h·µg/ml)a 

AUC0-48 

(h·µg/ml)a 

Fluconazole 0.25 
8 3.64 ± 0.10 0.20 ± 0.07 6.67 ± 2.31 1.14 ± 0.02 0.20 ± 0.07 62.80 ± 2.68 78.92 ± 2.58 

16 9.07 ± 1.14 0.49 ± 0.37 6.67 ± 2.31 2.90 ± 0.68 0.49 ± 0.37 146.10 ± 8.55 186.79 ± 3.02 

Caspofungin 0.25 
1 0.32 ± 0.01 0.15 ± 0.05 24 ± 0.00 0.32 ± 0.01 0.15 ± 0.05 4.54 ± 0.66 10.18 ± 0.21 

2.5 1.41 ± 0.23 0.46 ± 0.01 16 ± 11.31 1.40 ± 0.22 0.46 ± 0.01 25.43 ± 7.54 47.77 ± 10.23 

Anidulafungin 0.03 
6 0.15 ± 0.05 0.04 ± 0.01 6 ± 2.83 0.10 ± 0.04 0.04 ± 0.01 2.68 ± 1.07 4.35 ± 1.64 

12 0.22 ± 0.07 0.06 ± 0.01 13.33 ± 9.24 0.18 ± 0.10 0.06 ± 0.01 4.25 ± 1.50 7.11 ± 2.69 

aValues are means ± SDs from three animals. 
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Chapter5. General conclusions and outlook 

The development of reproducible reference methods for in vitro testing of antifungal agents against 

Candida spp. has been a significant step in the improvement of treatment efficacy. The importance 

of antifungal susceptibility testing is indeed continuously increasing by the emergence and spread 

of resistant strains. Several sibling genes implied in azoles resistance have been identified leading 

to a reduced susceptibility to these agents. Thus, studies on new agents and their activity are of 

great importance. Current biofilm tests are questioned regarding their validity and reproducibility. 

Most of the tests include a continuous handling and addition of reagents that could destroy the 

biofilm structure, therefore, a more easy-to perform method needs to be developed. 

Isothermal microcalorimetry is commonly used for analysis of chemical and biochemical reactions, 

either consuming or producing energy. During the last decade, the utility and advantages of 

isothermal microcalorimetry for highly sensitive detection of microbial growth was demonstrated 

for a range of microorganisms. In a clinical setting, microcalorimetry was shown to be useful for a 

rapid detection and discrimination between culture positivity and negativity of fluid samples. In 

Chapter 3 we demonstrated the potential of isothermal microcalorimetry as a novel method for 

antifungal susceptibility testing of Candida spp. Microcalorimetry showed the potential to be a 

suitable and precise method for performing antifungal susceptibility testing, as data is obtained 

continuously in real-time and the test interpretation is not based on subjective visual examination 

or by spectrophotometry. We demonstrated that fluconazole, echinocandins and amphotericin B 

affected the growth-related heat production of Candida spp. in different ways, depending on their 

fungistatic or fungicidal properties and phenomena, such as the paradoxical growth, could also be 

monitored. The MHIC was determined as the lowest concentration inhibiting ≥50% (≥90% for 

amphotericin B) of the heat produced at 24 h or 48 h for planktonic and biofilm growth, 
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respectively. For Candida spp., agreement within two 2-fold dilutions between MHIC (by 

microcalorimetry) and MIC (determined by EUCAST guideline) was 50% for fluconazole and 

100% for echinocandins and amphotericin B. In order to validate our biofilm assay, XTT testing 

for biofilm growth evaluation was included. The agreement within two fold dilutions between the 

MHIC and the XTT test at 24h was 75% for fluconazole and 100% for echinocandins and 

amphotericin B. As determined by microcalorimetry, echinocandins were the most active agents 

against planktonic Candida spp (MHIC 0.015-0.5 μg/mL). Echinocandins, especially 

anidulafungin, also showed to have a good activity against biofilm growth (MHIC 0.25-2 μg/mL).  

The conventional microbroth dilution method requires experienced personnel and especially in the 

case of CLSI the interpretation of susceptibility data is fairly subjective. Microcalorimetry, in 

contrast, offers an objective approach for data interpretation, based on heat production and change 

in the calorimetric curve, associated with the inhibition of growth. Considering the advantage of 

real-time growth monitoring, the microcalorimetric assay could be further optimized for a rapid 

detection of resistant isolates. Indeed, in a future study we will screen a strain collection of different 

azole-resistant Candida isolates, with the goal to establish a rapid and sensitive assay for detection 

of azole resistance, as was previously described for the differentiation between methicillin-

susceptible and methicillin resistant S. aureus and for the determination of susceptibility of 

Aspergillus species using the same methodology (Furustrand, 2012). Furthermore, we will evaluate 

the activity of antifungal combinations against Candida spp. by microcalorimetry and compare it 

with the standard in vitro methods used for synergy testing, the time-kill and the checkerboard 

microdilution methods.  

The use of porous glass beads for biofilm formation showed to be a practical and easy method for 

the evaluation of biofilm growth, without too much handling (which could alter the biofilm). The 
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addition of dyes or other agents, as in the case of the crystal violet staining (which gives a rough 

estimation of biofilm mass and differentiate between biotic and abiotic material but it does not give 

information about viability or activity) could also be avoided. In a future study we will test different 

materials, with the goal to establish a sensitive assay for detection of biofilm growth and inhibition 

by antifungals and by the material itself.  

Considering a future use of microcalorimetry in a clinical microbiological laboratory, several topics 

need to be taken into account. First, the currently used isothermal microcalorimeter is still too 

expensive, mainly due to the low production volume. In order to lower the cost of the instrument 

it needs to be simplified and adapted to the current microbiological test conditions. Second, the 

instrument needs to allow a semi- or fully automated processing of multiple samples enabling high-

throughput testing and biofilm testing. Promising developments in the calorimetric instrument field 

need to be performed as the high-throughput measurement calorimeter made by Torres in 2004. He 

presented a low-cost nano-calorimeter able to detect enthalpies of binding, enzymatic turnover and 

other chemical reactions in arrays of 96 positions. Adaptations in the development of high-

throughput biofilm research also need to be performed in order to meet these criteria. 

Based on in vitro results, we investigated the different treatment regimens in a guinea-pig model 

of foreign-body infections. Experimental conditions were assessed and optimized based on 

previous studies performed on mice, rats and guinea pigs found in the literature. A low inoculum 

and a short duration of infection (12h) were used for C. albicans, since treatment failure occurred 

when using high inoculum (106), 24 h of inoculation and low antifungal doses (data not shown). 

Infection profile experiments showed that a high inoculum is necessary to induce a persistent 

infection without spontaneous cure of planktonic yeast in cage fluid, nevertheless, antifungals 

showed no activity on planktonic cells in the cage fluid nor on the biofilm when using a high 
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inoculum. Since there was no spontaneous cure of Candida biofilms, this model is suitable to test 

the activity of individual antifungals against biofilms. However, using a low inoculum, an 

intermediate duration of infection and higher antifungal concentrations, a reduction of planktonic 

C. albicans was observed when echinocandins were used compared to other treatment regimens.  

We were able to confirm our in vitro findings in vivo by performing treatment studies. The best 

activity was shown with caspofungin and fluconazole with a cure rate of 25%. Pharmacokinetic 

analysis highlights the importance of giving a good treatment regimen in order to achieve a local 

antifungal concentration above the MIC, since sub-MIC concentration can cause to resistance. 

Considering the growing number of implant-associated infections, as well as the increasing 

prevalence of antimicrobial resistance, combination therapy could be an alternative, as well as new 

different treatment strategies for biofilm infections. Another approach could be the prevention of 

microbial attachment by manipulating the surface of the implant without influencing the host 

biocompatibility. Several studies are ongoing in this field trying to coat the implant surface with 

antimicrobials, embed the device and the spacers use in orthopedic surgery with antimicrobial 

substances, or by rendering the surrounding fluid less acid by ions release from the material leading 

to an inhibition of biofilm formation. Nevertheless, as already mentioned, sub-MIC concentration 

of the antimicrobial could lead to microorganism resistance.  In order to avoid the emergence of 

resistance, early inhibition of cellular attachment on the device and biofilm formation, or even 

enzymatic degradation of biofilm, when present, could represent new strategies to improve the 

eradication of the infection. 
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Chapter6. General introduction 

Since bacteria can exist as single cells (planktonic) or in sessile aggregates (biofilm), the primary 

bacterial adherence to the foreign-body surface starts with planktonic cells and is followed by an 

irreversible attachment and maturation in a complex three-dimensional structure known as biofilm 

(Figure 1). The definition of a bacterial biofilm, as for medical microbiology, is a “coherent cluster 

of bacterial cells imbedded in a matrix, which are more tolerant to most antimicrobials and the host 

defense, than planktonic bacterial cells” (1). Within the biofilm cells communicate through 

intercellular signaling described as “quorum sensing” (2), which leads to structural and functional 

heterogeneity of the biofilm. From the mature biofilm, planktonic bacteria detach and depending 

on their virulence could cause either a local or a systemic infection (3, 4).  

 

 

Figure 1. The biofilm life cycle. A biofilm starts to form when bacteria attach to a surface (1 min). An irreversible 

attachment (3 min) leads to the biofilm maturation through growth of the bacterial cells and production of the complex 

three-dimensional extracellular matrix (12 h to 3 days). Planktonic bacteria can detach and spread from the biofilm. 

(Adapted from K. Kasnot, Scientific American, 2001). 

The biofilm matrix composed by extracellular polymeric substances (EPS) constitutes an excellent 

survival mechanism for the pathogen, in which bacteria are protected from the host immune system 

and the most used antimicrobial agents (2, 5, 6). Moreover, depletion of metabolic substances 
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and/or waste product accumulation in biofilms causes microbes to enter a slow- or non-growing 

(stationary) state. The most common infecting microorganisms causing implant-associated 

infections are staphylococci, followed by coagulase negative staphylococci, etc.(7, 8). Table 1 

reports the most common pathogens isolated from prosthetic infections (9). 

 

Microorganism       Frequency (%) 

              

Staphylococcus aureus 

  

30-43 

 
Coagulase-negative staphylococci 

 

17-21 

 
Gram-negative bacilli 

  

5-13 

 
Polymicrobial 

   

5-14 

 
Anaerobes 

   

2-5 

 
Enterococci 

   

3-7 

 
Streptococci 

   

11-12 

 
Other/Unknown 

   

5-6 

 
              

 

Table 1. Frequency of most common identified microorganisms causing prosthetic joint associated infections. 

Adapted from (9)  

 

Rare are the infections associated with orthopedic devices like calcium phosphate (CaP) bone 

grafts, but when it occurs it represents a devastating complication with high morbidity and 

substantial costs  since implant-associated infections are typically caused by microorganisms 

growing in biofilms (10). The eradication of infection is often only possible by removal of the 

implant and long-term antimicrobial treatment (11). Determining the risk of infection as well as 
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the evaluation of efficient treatment options and outcome and the infections characteristics is of 

considerable clinical relevance. 

 

BONE GRAFT 

Bone grafting is a surgical procedure that replaces missing bone in order to repair bone fractures 

that are extremely complex, cause a significant health risk to the patient, or fail to heal properly. 

More than one million patients per year need a bone grafting surgery in order to repair a bone defect 

resulting from a bone disease or a trauma (12-14). Bone transplantation is performed about 10-

times more often than any other solid organ transplantation and is the most commonly performed. 

The use of bone graft is increasingly used in orthopedic surgery to fill bone defects or as 

antimicrobial delivery system (15), therefore, there is a high probability that infections associated 

with such devices could also increase. Bone has the ability to regenerate completely but to do so it 

requires a very small fracture space or some sort of scaffold. Bone grafts should have the 

characteristic of being completely reabsorbed and replaced as the natural bone heals over a few 

months.  

The main type of bone grafts are (16):  

1. Autologous (or autogenous) is a bone obtained from the patient’s own body, often from iliac 

crest or the proximal tibia. It is also the most preferred due to the less risk of graft rejection since 

the graft originated from the same individual receiving the graft. A negative aspect is that an 

additional surgical site is required, which could leads to additional post-operative pain and 

complications. 

 2. Allograft is a bone obtained from cadavers, usually sourced from a bone bank, implying that 

the allograft is harvested from another individual than the one receiving the graft.  
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3. Synthetic variants are artificial bones created with similar mechanical properties of the bone. 

They are often created from ceramics such as calcium phosphate, Bioglass and calcium phosphate 

(e.g. hydroxyapatite (HA), tricalcium phosphate or other biocompatible substances). A positive 

aspect is that the mechanical properties are comparable to bone. Furthermore, growth factors can 

be added to the materials or mixed with bone marrow in order to increase the biological activity. 

Infection and rejection of the graft is also less of a risk and no additional surgical site is required.   

 

Biological mechanisms 

The main biological mechanisms of bone grafts are the following: 

Osteoconduction. Osteoconduction occurs when the bone graft material serves as a scaffold for 

new bone growth. The bone graft material is used as a framework from osteoblast located in the 

margin of the defect bone. 

Osteoinduction. Osteoinduction occurs when osteoprogenitor cells are stimulated to differentiate 

into osteoblast which enables the new bone formation. 

Osteogenesis. In this case osteoblasts are originating from the bone graft material. Osteogenesis 

occurs when these osteoblast contribute to the growth of new bone in parallel with bone growth 

generated by the other mechanisms. 

Osteopromotion. Osteorpomotion occurs when osteoinduction is enhanced without having an 

osteoinductive property. 
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Nowadays, the use of synthetic bone graft substitutes is replacing the traditional golden standard 

of autogenous bone grafting (12, 17, 18). In surgery procedure like filling fracture defects, reunion 

of long-bone, total joint revision or spine fusion, synthetic bone grafts substitutes are expected to 

be a safer and effective option (19).  

 

BIOMATERIALS 

A biomaterial is a synthetic material to be used in intimate contact with living tissue. A more 

precise definition of a biomaterial was given in 1986, at the Consensus Conference of the European 

Society for Biomaterials, when a biomaterial was firstly defined as "a nonviable material used in a 

medical device, intended to interact with biological systems". A definition that evolved within 

years until the last given in 2011 as “material intended to interface with biological systems to 

evaluate, treat, augment or replace any tissue, organ or function of the body” (European society for 

biomaterials (ESB), 1976). 

The use of synthetic materials with the purpose to replace parts of the human body is old of ages. 

Gold dental prosthesis has been found in some Egyptian mummies. In the pre-Christian era the 

gold standard ‘biomaterials’ were copper and bronze. Those materials were subsequently causing 

problems because of their toxicity. The introduction of aseptic conditions in surgery in 1860 was 

a step forward in the improvement regarding the application of biomaterials. Since then, different 

materials were manufactured and used (as ivory or metallic prostheses, gold capsules, etc.).  

Polymethilmethacrilate (PMMA) began to be used in 1930 to anchor metallic prosthesis to bone 

and generate a permanent implant. One of the problems most encountered in orthopedic devices 
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is the biochemical compatibility at the interface between synthetic material and living tissue. 

Researchers are since then working to find stables and inert materials for devices.  

In the past, ceramics and glasses were also commonly used in a wide range of medical-related 

applications, as for example eye glasses, chemical and chirurgical glassware or even in dentistry. 

The use of ceramic components inside the body is relatively new and nowadays, bioceramics are 

widely used for different applications inside the human body (Figure 2) (20). 
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Figure2. Clincal uses of bioceramics. From (20). 
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BIOACTIVE GLASS 

“The human body rejects metallic and synthetic polymeric materials by forming scar tissue because 

living tissues are not composed of such materials. Bone contains a hydrated calcium phosphate 

component, hydroxyapatite and therefore if a material is able to form a HA layer in vivo it may not 

be rejected by the body” was the hypothesis at the basics of the bioactive glass discovery and 

production made by Professor Hench in 1968. 

Biocompatible tissue-bonding bioactive glasses (BAGs) are a group of synthetic silica-based 

bioactive materials with the unique bone bonding characteristic. This property was first discovered 

by Hench in the 1970s (21). The first bioactive glasses were composed of four-component system: 

SiO2,Na2O, CaO and P2O5, as found for example in bioglass 45S5 and S53P4 and the weight 

percentages of these oxides vary in different glasses (20). These glasses show a tendency to 

crystallization at high temperatures, therefore, to overcome this disadvantage, new bioactive 

glasses have been developed based on the Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2 system (22). By 

this way it is possible to manufacture the glasses into different shapes as microspheres, fibers and 

porous implants leading to an additional advantage for the clinical use. In this study the bioglass 

S53P4 was tested since it is commercially available for treatment of bone defects. 

 

Molecular mechanism  

The chemical surface reaction is initiated as soon as the bioactive glass is in contact with body 

fluids. Within the first hour ions are released (Na, Ca, P, Si) from the bioactive glass surface leading 

to an increasing of the pH and the osmotic pressure (Figure 3). After only one day the silica gel 

layer forms on granule surface through polycondensation of the hydrated silica groups. The Ca2+ 

and PO4
3+ precipitate from the extracellular fluids onto the Silica rich layer (19, 23). Within one 
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week CaP crystallizes to natural hydroxyapatite. The bioactive glass bonds to the bone and 

promotes the oesteointegration.  

 

 

Figure3. Surface reaction cascades. The release of ions (Na, Ca, P, Si) increases the pH and the osmotic pressure, 

takes place within 1 hour and leads to an inhibition of bacterial growth on granule surface. Silica gel layer forms on 

granule surface and CaP precipitate on the surface (1 day). Within one week CaP crytallizes to HA enabling bone 

bonding. (Adapted from the brochure of BonAlive) 

  

 

Compared with synthetic bioresorbable bioactive ceramics, such as HA, calcium phosphate and 

tricalciumphosphate, which are the most commonly used osteoconductive bone grafts substitutes 

(24, 25), silica-based bioactive glasses form themselves a group of bioceramics with unique 
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properties such as the osteopromotive ability, dissolution or more the inhibition of bacterial growth 

previously shown in vitro (Table 2). 

 

Table 2. Comparison of synthetic HA/TCP and bioactive glasses as bone graft substitutes. Adapted from (19). 

Nowadays BAGs are gaining use in both dental and orthopedic applications. Since the 1980s they 

have been applied in several surgeries such as the reconstruction of orbital floor fractures and 

defects of facial bones, in filling of frontal sinuses, in treatment of depressed tibial plateau fractures 

and  in treatment of osteomyelitis (26-31). BAG S53P4 has been shown to have an angiogenesis-

promoting properties and an antibacterial effect on some oral microorganisms as well as on a 

variety of clinically important aerobic and anaerobic pathogens (32-37). Several factors contribute 

to the antibacterial action of BAGs as the osmotic effects caused by the concentrations of ions 

dissolved from the glass and the increasing pH (20, 35). 
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ABSTRACT 

We tested the activity of bioactive glass (BAG) S53P4 on planktonic microorganisms using a highly 

sensitive assay measuring growth-related heat production (microcalorimetry). BAG was tested in 

different granule sizes (0.5-0.8 mm and <45 µm) and volumes (1 and 2 g).  

S. aureus (ATCC 29213), S. epidermidis (ATCC 35984), E. faecalis (ATCC 19433), E. coli (ATCC 

25922) and C. albicans (ATCC 90028) were tested. Test strains were added in sealed glass 

ampoules containing 2, 25 ml Müller Hinton broth with or without BAG and placed into the 

microcalorimetry at 37°C. The heat flow produced was recorded by microcalorimetry and the total 

heat analysed. The heat flow pick decreased with the addition of different volumes BAG 0.5-0.8 

mm, except for E. coli where a higher production of heat was detected. The heat flow pick 

decreased for all the microorganisms tested when <45 µm BAG was used.  

BAG <45 µm showed a better activity against all the microorganisms than BAG 0.5-0.8 mm, this 

phenomena was better shown when analysing the area under the curve and by taking into account 

the heat produced by the controls. Microcalorimetry allowed real-time evaluation of antibacterial 

activity of bioactive glass.  
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INTRODUCTION 

A new era in development of materials for use in medicine began in the 1970s, when Professor 

Larry Hench discovered glasses capable of forming interfacial bonding with bone. The 

compositions showing this special property were called bioactive glasses (1). Bioactive glasses 

(BAGs) are a group of surface reactive glass-ceramic biomaterial, which, thanks to their 

biocompatibility, are used as implant materials in the human body to repair and replace diseased 

or damaged bones. The composition of the first bioactive glass, named 45S5, was approved from 

the Food and Drug Administration (FDA), and after the invention of BAG 45S5, numerous glasses 

and glass ceramic with different composition have been developed and studied. 

Bioactive materials are synthetic osteoconductive bone substitutes able to bind chemically to the 

bone, with documented antibacterial and angiogenesis-promoting properties (2-6). The BAG used 

in this study is named S53P4 and it is composed of SiO2 (53%), Na2O (23%), CaO (20%), P2O5 

(4%), which are all naturally found in the human body. BAG S53P4 surface is activated by blood 

or physiological solutions. The first reaction that we can observe, when the glass is in contact with 

a solution, is the exchange of alkalis from the glass surface with H+ and H3O+ in the same solution. 

The siloxane bonds in the glass interface subsequently starts breaking, leading to loss of soluble 

silica in the form of Si(OH)4 in the solution. In the following step, the thickness of the silica rich 

layer is increased, thanks to the condensation and repolymerization of a SiO2 rich layer on the 

surface. The layer grows by incorporation of Ca2+ and PO2
4 ions from the solution: the CaP-layer 

mineralizes to natural hydroxyapatite, which will bond to the surrounding bone. The hydroxyapatite 

starts forming in a few hours, within 3-6 weeks osteogenic cells are organizing osteoid tissue 

between the granules and, in about 6-8 weeks, the lamellar bone is formed. On the other side, the 

presence of those ions can inhibit bacteria growth. Two principal mechanisms give rise to the 

bacterial growth inhibiting property and prevent the bacteria to attach on the surface: 1) the release 

of sodium (Na) and the subsequent formation of NaOH, increases slightly the pH (9-11) in the 

close vicinity of the surface of the glass. 2) the increasing of the osmotic pressure, which occures 
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when other ions, Ca, Si and P, are released (4). Several studies have been performed in vitro and 

in vivo to assess the best structrure fro the activity of the bioactive glass to satisfy the biological 

and medical need (6-13). 

The purpose of this study was to evaluate the activity of BAG S53P4 and different parameters 

(amount and size) on planktonic S.aureus, S. epidermidis, E. faecalis, E. coli and C. albicans and 

by microcalorimetry. 

 

MATERIALS AND METHODS 

Test strains. S. aureus (ATCC 29213), S. epidermidis (ATCC 35984), E. faecalis (ATCC 19433), 

E. coli (ATCC 25922) and C. albicans (ATCC 90028) were used. Stocks of each strain were 

maintained on cryovials (Roth, Karlsruhe, Germany) at -80°C. Bacteria were cultured on MH agar 

plates, Candida was cultured on Sabouraud dextrose agar (SAB) for 24 h at 37°C. Inoculum was 

prepared by McFarland and the exact inoculum was determined by quantitative cultures. The final 

concentration in the ampules, filled with 2,25 ml MH, was ~105 CFU/ml.  

Materials. The BAG S53P4 powders (BonAlive Biomaterials Ltd, Finland) were produced by 

Process Chemistry Center, Åbo Akademi University, Turku. Tested granules of BAG S53P4 used 

have two different sizes, 0.5-0.8 mm and <45 µm. The composition of this synthetic material is, by 

weight, SiO2 53%, Na2O 23%, CaO 20%, P2O5 4%. For each experiment we used 1 or 2 g of 

bioactive glass in each ampule. 

Evaluation of thermal growth characteristics. An isothermal microcalorimeter (TAM III, TA 

Instruments, Newcastle, DE), equipped with 48 calorimeters and a detection limit of heat 

production of 0.2 µW was used. The ampoules were air-tightly sealed and introduced into the 

microcalorimeter, first in the equilibration position and after 15 minutes in the measuring position. 

Temperature was set at 37°C and heat flow was recorded for 48 h. Calorimetric ampoules (4 ml 

total volume) containing 2,25 ml of MH media and 1 or 2 g BAG were inoculated with 106 CFU/ml. 
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For the negative control the ampoules were filled with 2,5 ml BHI and 1 or 2 g of BAG. The growth-

related heat production of tested bacterial strains was investigated. Heat flow in μW Joule was 

recorded and the total heat in J analysed. 

BAG were also analysed alone without microorganisms addition in order to analyse the heat 

produced by the BAGs. The activity of BAG after 24h were also analysed by leaving the different 

BAGs in MH for 24h before addition of the tested strain (S. aureus in this case). 

Data analysis. Microcalorimetry data analysis was accomplished using the manufacturer's 

software (TAM Assistant, TA Instruments, New Castle, DE). Figures were plotted using 

GraphPad Prism 6.01 (GraphPad Software, La Jolla, CA, USA).  
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RESULTS  

Evaluation of thermal growth characteristics . 

All the experiments were performed in duplicate by microcalorimetry, showing clear results in 

terms of heat production from microorganisms. In order to assess a correlation between the 

amount and sizes of BAG and the subsequent effect on the growth of the microorganisms, different 

sizes of granules (0.5-0.8 mm and <45 µm) and different amounts (1 and 2 g) have been tested. 

The effect of BAG on the growth of the different microorganisms analysed by microcalorimetry is 

shown in Figure 1 and 2. All the volumes and sizes of BAG used inhibited the growth of the tested 

microorganisms, except for E. coli with BAG 0.5-0.8 mm. Figure 1 and 2 also shown the total heat 

(considered as the area under the curve) obtained by microcalorimetry. The analysis of the total 

heat shown, for some experiments (Fig1. A, B, C, D and Fig2. C), that a higher heat is produced 

with 1 or 2 g of BAG compared to the growth control (without BAG). It also shown that, surprisingly, 

the BAG controls alone, in contact with the media, produced some heat (especially shown in 

Figure 4). Therefore, this phenomena was taken into account by subtracting for each experiment 

the heat flow produced by the controls (1 and 2 g), in order to consider only the heat produced by 

the microorganisms itself when added to the different BAG volumes (Fig.3 A and B). BAG 0.5-0.8 

mm had a good activity especially against S. aureus, S. epidermidis and C. albicans (Fig.3A), 

wherease BAG <45 µm shown a very good activity against all the microorganisms (Figure. 3B). In 

order to try to avoid the heat phenomena produced by the BAGs alone we left the different BAGs 

(0.5-0.8 mm and <45 µm; 1 and 2g) in contact with the media for 24h and added S. aureus 

afterwards. The results showed that the heat phenomenon is no more present and that the BAGs 

still have their antimicrobial activity against S. aureus (Fig. 5). 

DISCUSSION 

We examined the antibacterial effect of BAG S53P4 by microcalorimetry on different gram-

positive, such as S. aureus (coagulase-positive), S. epidermidis (coagulase-negative), E. faecalis, 
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on gram-negative bacteria, such as E. coli and a resistant strain, E. coli Bj HDE and on fungi, as 

C. albicans. We evaluated the activity of the glass on planktonic microorganisms by calorimeter, 

testing different parameters as the amount of glass and the size of glass. The tested strains are 

above the most common microorganisms involved in infections against which the glass could be 

used: osteomyelitis (14), tibial plateau fractures (15) and also benign bone tumors (16). Different 

aerobic (5) and anaerobic (4) bacteria have already been tested by flow cytometric (FCM) showing 

a better activity of BAG S53P4 compared to other type of BAGs. The good antibacterial activity of 

BAG S53P4 against planktonic bacteria, as gram+ and gram- is known. Nevertheless, this is the 

first study of BAG activity assessed with microcalorimetry and against fungi. The mechanism of 

action of the glass against microorganisms is due to the high pH and the osmotic pressure created 

in the media surrounding the BAG. Bacteria normally live with an optimal pH about neutral, 

nevertheless, the release of NaOH from the BAG lead to an acid pH around 9-11 (17). All the other 

released ions cause an increasing of the osmotic pressure, leading to the loss of water from the 

cell and perturbations of the membrane potential of the microorganism. 

In these experiments, we found a correspondence between the volumes of glass: the more glass 

we used the more and faster effect we had, especially when BAG <45 µm were used. We tested 

two different sizes of granules, 0.5-0.8 mm and <45 µm, and according to our results the smallest 

one had a better activity than the biggest one, as expected. This can be explained if we consider 

that from a smaller surface we have a faster and easier release of ions and if we consider that the 

smaller are the granules the bigger is the total surface area for a given volume. We also shown 

that BAG alone produced some heat and in order to take this phenomena into account when using 

microcalorimeters, it is suggested to subtract the heat produced by the controls alone or leave the 

granules for 24h alone with the media before adding the microorganisms of interest. 

In conclusion, this study demonstrates the effect of BAG against different species. These 

experiments show the good activity of BAG against S. epidermidis and C. albicans when using 

the larger diameter granules, and against the Gram – bacteria when using the smaller diameter 
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granules. The study also demonstrates the potential of microcalorimetry for real-time analysis. 

Several studies have previously shown the potential of the isothermal microcalorimetry to detect 

growth of different pathogens and determine the minimal hinibitory concentration (MIC) for 

different antimicrobial agents and microorganisms (18-20)  In this study, microcalorimetry allowed 

high precision real-time evaluation of bioactive glass activity against various microbial species. 

Further studies need to be performed against different species, including resistant and anaerobe 

species, against biofilm and combined with antimicrobial drugs in order to have a better overview 

on BAG S53P4 antibacterial activity and his efficacy. 
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Legend to figures 

Figure1. Heat flow (µW) and Total heat (J) for S. aureus (A), S. epidermidis (B), E. faecalis (C), 

E. coli (D) and C. albicans (E) in presence of BAG 0.5-0.8 mm. 

 

Figure2. Heat flow (µW) and Total heat (J) for S. aureus (A), S. epidermidis (B), E. faecalis (C), 

E. coli (D) and C. albicans (E) in presence of BAG <45 µm. 

 

Figure 3: Total heat (J) for different microorganisms in presence of BAG 0.5-0.8 (A) and <45 µm 

(B) when subtracting the heat produced by the control for each experiment. CG, control growth; 

1g, in presence if 1g of BAG; 2g, in presence of 2g of BAG. All the experiments where analysed 

at 24h except for C. albicans where 40h were considered. 

 

Figure 4: Thermodynamic activity of BAG with different sizes and volumes.  

2g 0.5-0.8 mm = adding 2g of BAG 0.5-0.8 mm of size. 1 or 2g <45 µm = adding 1 or 2g of BAG 

<45 µm of size.  

 

Figure 5. BAGs were put in MH for 24h before adding S. aureus. Experiments were performed in 

duplicate, 
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Fig. 1 
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Fig. 2 
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Fig. 3  
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Fig.4 

 

 

 

 

Fig.5 
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Chapter8. General conclusions and outlook 

Isothermal microcalorimetry is commonly used for analysis of chemical and biochemical reactions, 

either consuming or producing energy. During the last decade, the utility and advantages of 

isothermal microcalorimetry for highly sensitive detection of microbial growth was demonstrated 

for a range of microorganisms.  

In chapter 3, we demonstrated the potential of isothermal microcalorimetry, as a novel method for 

antifungal susceptibility testing of Candida spp. In chapter 8,we further evaluated our assay for 

studying the activity of BAG S53P4 against the most important infective microorganisms: gram-

positive bacteria, such as S. aureus (coagulase-positive), S. epidermidis (coagulase-negative) and 

E. faecalis, gram-negative bacteria, such as E. coli and a resistant strain of E. coli Bj HDE (results 

not shown) and fungi, as C. albicans. Due to the different reproduction rates of the microorganisms, 

microcalorimetry appears to be a suitable and precise approach for performing antifungal 

susceptibility testing and inhibition growth testing by other materials, since the test interpretation 

is not based on subjective visual examination or spectrophotometric reading and the data is 

obtained continuously in real-time (as heat-flow curve). Besides enabling microbial rapid growth 

detection, microcalorimetry allowed also the detection of the exothermic reaction of the bioactive 

material, not detected with common used susceptibility testing. 

The mechanism of action of the bioactive glass against microorganisms is due to the high pH and 

the osmotic pressure created in the media surrounding the material. Bacteria normally live with an 

optimal pH about neutral, nevertheless, the release of NaOH from the BAG lead to an acid pH 

around 9-11. All the other released ions cause an increasing of the osmotic pressure, leading to the 

loss of water from the cell and perturbations of the membrane potential of the microorganism. In 

these experiments, we tested two different sizes of granules, 0.5-0.8 mm and <45 µm, and 

according to our results the smallest one had a better activity than the biggest one. When smaller 
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particles are used, cation released from the surface during the reaction seems to be faster, 

therefore, higher values of pH are reached. Furthermore, the surface area increases for small 

particles than for higher diameter ones: the smaller are the granules the bigger is the total surface 

area for a given volume. With these experiments we also could show that bioactive glass alone 

produces heat. 

In summary, this study also demonstrated the good activity of bioactive glass against 

microorganisms growth and the potential of microcalorimetry for real-time analysis. Considering 

the advantage of real-time growth monitoring, the microcalorimetric assay could be further 

optimized for a rapid detection of resistant isolates or anaerobic bacterial. Indeed, in a future study 

we will screen the activity of bioactive glass S53P4 against different anaerobic strains. 

The work presented here represents only a small step towards the goal of understanding the 

interactions between bioactive glasses and microorganisms. Many possible directions can be taken 

as future developments. On one hand, some of the experiments here exposed could be try to be 

reproduced with other types of bioactive glasses, like, for example, bioactive glasses containing 

also other ions in their composition. Others bioactive glasses sizes and volumes could also be tested 

as well as the addition of antibiotics and antifungals, in this case the activity of the antimicrobials 

in a high pH environment should also be assessed. Characterization of the surface interaction sites 

with cells or proteins and simulated body fluids in order to have a higher similarity with the real 

biological situation in clinic, is indeed an interested area of study.  Furthermore, the in vivo activity 

of the bioactive glass will also be a very exciting area to explore; indeed, in a future study we will 

screen the activity of bioactive glass in cage fluids in a guinea-pig model. 
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