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Abstract

The study of complex traits, those influenced by multiple genetic and environmental factors,
has long been a cornerstone of genetic research, where scientists have sought to untangle
this complexity. These traits include a vast array of human characteristics, from molecular
phenotypes to diseases.
The advent of Genome-Wide Association Studies (GWAS) following human genome sequencing
marked an essential moment in this pursuit. These studies, characterised by their large
sample size and examination of millions of genetic variants, have significantly advanced our
understanding of the genetic architecture underlying complex traits. GWAS have unearthed
numerous genetic markers associated with various traits, providing vital clues for further
exploration.

GWAS have not only identified genetic associations to complex traits, but have also helped re-
searchers explore the relationships between these traits. Understanding the causal relationships
among traits is essential due to its potential to improve medical practices and public health
interventions. In response, Mendelian Randomisation (MR) emerged as a genetically-informed
version of previous causal inference methods, such as Randomised Control Trials (RCTs).
MR uses genetic variants as instrumental variables to elucidate causal relationships between
traits, distinguishing true causation from mere correlation. As a statistical method, MR comes
with several assumptions that must hold for accurate estimation. However, validating some of
these assumptions can be challenging, potentially introducing bias in the estimation of causal
effects.

During my thesis, I investigated assumption violations that MR often faces, particularly in two
scenarios: (i) the presence of unmeasured heritable confounding factors introducing spurious
causal relationships and (ii) the heterogeneity of causal effects due to potential underlying
pleiotropic pathways or confounder mechanisms.
To address the first assumption violation, I developed an extension to the MR model known
as LHC-MR, which accounts for the presence of a Latent Heritable Confounder. LHC-MR is
applicable to association summary statistics of trait pairs, allowing simultaneous estimation of
bi-directional causal effects, direct heritabilities, and confounder effects on the pair.
For the second assumption violation, I proposed an approach, PWC-MR, that leverages
Phenome-Wide association data across several traits to perform informative Clustering of the
focal trait instruments. PWC-MR revealed that for body mass index (BMI), distinct clusters of
instruments exist with heterogeneous causal effects on educational attainment.
Lastly, I explored indirect genetic effects using individual-level genetic data of sibling pairs.
The aim was to estimate the causal effect of the parental environment/rearing on offspring
traits in later life, using MR.

In summary, this journey from the study of complex traits to the emergence of GWAS and MR
as tools for causal inference has reshaped our understanding of genetics. While MR offers great
promise, its often-violated assumptions necessitate careful consideration, and my work aimed
to address some of these challenges.





Résumé

L’étude des traits complexes, qui sont influencés par de multiples facteurs génétiques et environnemen-
taux, a toujours été un pilier de la recherche en génétique, où les scientifiques ont cherché à démêler cette
complexité. Ces traits englobent une vaste gamme de caractéristiques humaines, comme des phénotypes
moléculaires mais aussi certaines maladies courantes.
L’avènement des études d’association pangénomique (GWAS) à la suite du séquençage du génome
humain, a marqué un moment essentiel dans cette quête. Ces études, caractérisées par leur grande
taille d’échantillon et l’analyse de millions de variants génétiques, ont considérablement avancé notre
compréhension de l’architecture génétique des traits complexes, en permettant d’identifier de nombreux
marqueurs génétiques associés à divers traits, fournissant ainsi des indices essentiels pour de futures
explorations.

Les GWAS ont non seulement permis d’identifier des associations génétiques, mais elles ont également
aidé les chercheurs à explorer les relations entre ces traits. Il est essentiel de comprendre les relations
de cause à effet entre les traits pour pouvoir améliorer les pratiques médicales et les interventions de
santé publique. En réponse, la Randomisation Mendélienne (MR), version génétiquement informée des
méthodes précédentes d’inférence causale, telles que les Essais Contrôlés Randomisés, a émergé. La
MR utilise des variants génétiques en tant que variables instrumentales pour élucider les relations de
cause à effet entre les traits, distinguant ainsi véritable causalité et simple corrélation. C’est une méthode
statistique qui repose sur plusieurs hypothèses qui doivent être respectées afin d’obtenir une estimation
précise. Cependant, la validation de certaines de ces hypothèses peut s’avérer difficile et leur violation
peut introduire un biais dans l’estimation des effets de causalité.

Au cours de ma thèse, j’ai examiné les violations d’hypothèses auxquelles la MR est souvent confrontée,
en particulier dans deux scénarios : (i) la présence de facteurs confondants héréditaires non mesurés
introduisant des relations de causalité fallacieuses et (ii) l’hétérogénéité des effets de causalité due à
d’éventuels effets pléiotropiques ou à des facteurs confondants.
Concernant la première violation d’hypothèse, j’ai développé une extension du modèle MR appelée
LHC-MR, qui prend en compte la présence d’un facteur Confondant Héréditaire Latent. LHC-MR
utilise des statistiques synthétiques issues des GWAS pour étudier la relation entre deux traits, via
l’estimation simultanée d’effets de causalité bidirectionnels, d’héritabilités directes et des effets du
facteur confondant sur chacun des traits.
Pour aborder le deuxième scénario, j’ai proposé une approche, PWC-MR, qui permet d’effectuer un
regroupement informatif des instruments, sélectionnés pour leur association avec le facteur de risqué
d’intérêt, en exploitant des données d’association génétique avec plusieurs autres traits. PWC-MR a
révélé que, pour l’indice de masse corporelle (IMC), il existe des groupes distincts d’instruments avec
des effets de causalité hétérogènes sur le niveau d’éducation. Enfin, j’ai exploré les effets génétiques
indirects en utilisant des données génétiques d’individus issus d’une même fratrie. L’objectif était
d’utiliser la MR pour estimer l’effet de causalité de l’environnement parental sur les traits des enfants à
un stade ultérieur de leur vie.

En résumé, l’étude des traits complexes, depuis l’émergence des GWAS jusqu’à l’utilisation de la MR en
tant qu’outil pour l’inférence de causalité, a remodelé notre compréhension de la génétique. Bien que la
MR offre de grandes promesses, ses hypothèses souvent violées nécessitent une réflexion minutieuse, et
mon travail de doctorat a permis de proposer des solutions pour relever certains de ces défis.
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Trait, phenotype, and disease will
be used interchangeably in this
document
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The following document details the work I have accomplished
during my PhD studies under the supervision of Professor
Zoltán Kutalik. Titled “Robust Causal Inference Methods to Assess
Risk Factors for Common Diseases”, my thesis work focused on
improving methods for causal inference between pairs of traits,
such as risk factors and various diseases. My work on improv-
ing these methods was through developing more robust ways
to account for the various assumption violations that could
occur, and thus was not specific to any single trait pair and their
subsequent potential causal relationship.
However, understanding the various ways in which traits inter-
act with each other was imperative to comprehend the potential
sources of these violations and how to better account for, or
utilise them.

This introduction provides a summary of our current under-
standing of the genetics underlying many of our (complex)
traits, how these genetic-trait associations are typically esti-
mated, and the different sources of estimation bias that could
exist. Lastly, it discusses various methods to infer causality
between phenotypes, with an emphasis on one in particular
that uses genetic data.
The following chapters summarise my contributions to the
development of various method extensions aimed at making
causal inference more robust in the face of assumption viola-
tions. They also include ongoing work related to estimating
genetic effects that are not directly associated with the trait of
interest. The final chapter then discusses the relevance of these
findings, persistent challenges, and possible avenues for future
research.

�.� Genetics of complex traits

The common denominator amongst all living things is the
Deoxyribonucleic acid (DNA), a polymer consisting of two
polynucleotide chains that coil around each other to form a
double helix. Comprising approximately � billion nucleotide
pairs, the human DNA houses all the genetic instructions
necessary for growth, development, functioning, repair, and
reproduction.
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For a more detailed overview on
genetics, refer to Introduction to
Quantitative Genetics by Falconer
and Mackay [�], and Genetic archi-
tecture: the shape of the genetic con-
tribution to human traits and disease
by Timpson et al. [�]
�: Minor allele frequency (MAF): the
allele frequency of the less com-
mon allele. Minor alleles and their
frequencies can vary across popu-
lations, which is why large-scale
studies often report the allele fre-
quency of the genotyped allele,
termed the effect allele

Duality is a common aspect of the human genome, first seen
in the double strands that make up the DNA molecule, in the
nucleotide pairings (base-pairings of A-T or C-G) that glue
together the two strands, and in homologous chromosome
pairs, each inherited from a parent, resulting in �� autosomal
pairs and one sex pair.
The genome is composed of several crucial building blocks that
are called genes - segments of DNA that code for proteins.
Sections of the genome are referred to as loci, where a locus
can be of any length, ranging from a single nucleotide (� bp) up
to �� million base pairs (�� Mbp).

At any point in the genome, variations can arise due to mu-
tations, random mating, recombination between homologous
chromosomes during meiosis, or various other factors. If such
variations occur within a gene or its regulatory region, they
can lead to changes in the physical structure of the resulting
protein or alter the timing and location of protein production,
subsequently resulting in phenotypic variations.
Genetic mutations can take various forms, each with distinct
consequences. Point mutations involve changes in individual
base pairs, where a single nucleotide can be substituted, deleted,
or inserted. Chromosomal mutations, on the other hand, occur in
the form of numerical abnormalities, where there is an atypical
number of chromosomes, or as structural abnormalities.
The latter encompasses events such as inversion (where a seg-
ment is reversed), translocation (where a segment moves to
another location), as well as duplication (where a segment is
copied), and deletion (where a segment is lost), both of which
are also known as copy number variations. The number of dupli-
cation or deletion repeats varies between individuals.
While point mutations can result in subtle changes at the gene
level, chromosomal mutations and copy number variations can
have more extensive effects, impacting larger portions of an
individual’s genetic material.

A point-mutation is called a single-nucleotide variant (SNV),
and its two versions (one paternal and the other maternal)
are called alleles. An individual having different alleles in
their genome is said to be heterozygous at that locus, and an
individual having the same allele is said to be homozygous
in comparison. If both alleles are common in the population,
then the minor allele frequency (MAF)� of that variant is > 1%,
and the variant is called a single-nucleotide polymorphism
(SNP).

The Human Genome Project [�, �] (launched in ���� and
completed in ����) advanced genetic studies by producing the
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�: Haplotype: a DNA sequence
along a single chromosome with
variations that tend to be inherited
together

first sequence of the human genome (��% of it, accounting
for the advancements in genetic sequencing at the time), and
making every part of the draft human genome sequence pub-
licly available shortly after production. This international and
open collaboration led to several other projects that aimed at
publicly cataloguing genetic variations such as The HapMap
project [�] (����-����), that produced a haplotype� map of the
human genome to describe the common patterns of human
DNA sequence variation.
As sequencing technologies improved, increasingly larger cata-
logues were formed like the ���� Genomes Project [�, �] (����-
����) which sequenced the genomes of over �’��� unrelated
volunteers from �� populations around the world, allowing it to
better distinguish common variants and their allele frequencies
across different population.
Focus then shifted to exons, the coding regions of genes which
make up �% of the genome and that are translated into proteins.
The Exome Aggregation Consortium [�, �] (����-����) began
this initiative by sequencing the exomes of ��’��� individuals,
and was built upon by the Genome Aggregation Database
(gnomAD) [��] which also includes whole genome sequencing
information.

Figure �.�: Sequencing of genetic
variants. The �-billion base pair
genome contains about �� million
SNVs, with over �� million vari-
ants having MAF > 1%, as evi-
denced by projects like HapMap
and the ���� Genomes Project. Se-
quencing reads organised into con-
tigs are typically used in genome
assembly. GWAS use genotyping
arrays to analyse genetic variation
within a population. Further vari-
ant data can be imputed by infer-
ring LD structure from a reference
panel (see next section). Exon se-
quencing focuses on exons that
make up genes.

The final and complete human genome sequence [��] was
released by the Telomere to Telomere (T�T) consortium (����-
����), which addressed the remaining �% of the genome to
present a complete 3.055 billion base pair sequence.

The sequencing of the human genome led to many new dis-
coveries about the make up and architecture of our genome.
Contrary to previous beliefs, humans only have about ��’���
to ��’��� protein-coding genes, an estimate much lower than
those of other organisms such as plants and insects. The ����
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Recombination, also known as
crossing-over, is a fundamental
step in meiosis and plays a crucial
role in creating genetic diversity
among offspring
�: Phasing: the process of deter-
mining the specific combination
of alleles on each chromosome of
an individual within a pair of ho-
mologous chromosomes

�: Tag-SNP: a representative SNP
in a region of the genome that is
strongly linked to a group of SNPs
in a haplotype

�: Penetrance: the proportion of
people with a particular genetic
variant (or gene mutation) who
exhibit signs and symptoms of a
genetic disorder.

Genomes Project [�] showed that of the � billion base pairs of
the human genome, around �� million only (< 3%) are SNVs
and of those, only ⇠8 million have a frequency > 5%.
Furthermore, we learned that the human genome has a haplo-
type block structure [��] resulting from the recombination of
chromosome segments during meiosis, at specific sites in the
genome called recombination hot-spots. Consequently, phas-
ing� can be accurately performed in areas of low recombination
by using the genotyped data of multiple individuals and using
a probabilistic model to estimate the more likely haplotypes of
a given population [��].

We also learnt that SNPs on the same haplotype tag each other
well, since each of the two possible alleles for a particular SNP
can only belong to a limited number of haplotypes in that
region. This feature of the genome; whereby genotyping a set
of highly informative tag-SNPs� allows us to effectively encom-
pass a significant portion of adjacent genetic variations that are
not directly genotyped, has been very beneficial for designing
genotyping microarrays.
Since haplotypes are inherited as large segments of the genome
with few recombination events per chromosome and per gen-
eration, a SNP in a haplotype will be passed down to new
generations with the same set of neighbouring alleles found on
the original haplotype. If the alleles of two different loci are not
independent from each other, we say that the loci are in linkage
disequilibrium (LD) [��, ��].
In other words, if two SNPs are in LD, then by observing for
a certain haplotype the allele of the first SNP, we can more
accurately determine the allele of the second SNP compared to
only knowing the population allele frequency of the second SNP.
LD can be crudely measured using the Pearson’s correlation
coefficient between the allele frequencies of two different SNPs
on the same haplotype.

As we will soon see, traits can be classified based on their
measurement types, but in genetics, traits are also classified
based on the number of genes that influence them. Monogenic
traits, also known as Mendelian traits are influenced by a single
gene or locus, such as sickle cell anaemia or cystic fibrosis.
These monogenic traits of diseases follow a Mendelian pattern
of inheritance, where the responsible gene or genetic variant is
rare and highly penetrant�, hence their study and understanding
has been largely dependent on studying and sequencing large
family pedigrees.
In contrast polygenic phenotypes, such as eye colour and height,
are influenced by many genes and loci, and their association
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GWAS will be used hereinafter
to refer to both the singular and
plural term as opposed to other
text’s usage of GWASs for plural.

�: Allele dosage: the number of
copies of the effect allele (�,�,�)

Often, a linear model will still be
fitted to binary outcomes, as larger
case and control cohorts and a fo-
cus on variants with high MAF
allow a comparable performance
between linear and logistic regres-
sion models

study requires much larger sample sizes than family pedigrees
to achieve statistical power, due to the polygenicity and low
penetrance of the genetic variants involved. Complex traits, as
their names suggests, are not only polygenic but could also be
influenced by several environmental factors. The extent of the
genetic contribution to the variability of a trait in a population
is termed heritability, which is discussed in detail in the next
section.

The advancement of genetic sequencing and the efficient design
of genotyping microarrays have made our access to genetic
data easier, quicker, and cheaper. In turn, this enabled scien-
tists to investigate genome-wide common genetic variations
that impact complex traits without any predetermined assump-
tions, using association studies and large cohorts of (unrelated)
individuals.

�.� Genome Wide Association Studies

Genome wide associations studies (GWAS) quantify the sta-
tistical association between a genetic variant and an observed
phenotype [��]. Phenotypes can vary from being quantitative
traits like standing height or blood levels of cholesterol, qual-
itative traits like sex or disease status, or ordinal traits like
educational level or socio-economic status.
This association is beneficial for the study of possible biological
mechanisms affecting the phenotype and for the prediction of
phenotypes given genomic information. Future or downstream
benefits include causal inference, personalised medicine, cus-
tom intervention techniques, and ancestry inference among
others.

The association between each SNV and the phenotype of interest
is often estimated using a fixed effect linear regression model
as �, where the phenotype measure represents the outcome
., and the dosage� of the effect allele represents the predictor
-:

. = �- + & , where & ⇠ N(0, �2) (�.�)

The dosage effect of the SNV can be grouped into different
genotype models, such as the additive, dominant or recessive
model. Most frequently, the additive model - where each addi-
tional copy of the effect allele adds to the outcome association -
is used.
In the case of qualitative phenotypes, especially binary ones
like disease status, a fixed effect logistic regression model is
used with a case-control study design. Cohorts in this scenario
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�: Population structure: also known
as population stratification, is the
presence of a systematic difference
in allele frequencies between sub-
populations, often caused by non-
random mating between groups.
It is often affected by physical
separation, migration, population
bottlenecks and other similar ef-
fects

Z-score or t-statistic is a statistical
measure used to assess the signif-
icance of an association. It follows
a t-distribution under the null
hypothesis. However, with large
enough sample sizes and when
testing a single regression coef-
ficient, the t-distribution can be
well approximated by a standard
normal distribution. The square of
the t-statistic follows a chi-square
distribution with � degree of free-
dom: C2 ⇠ "2

�: Imputation: the process of infer-
ring or predicting missing genetic
information at specific positions
in an individual’s genome based
on patterns observed in reference
panels

consist of cases (affected individuals) and controls (healthy
individuals), and are often enriched for the former to increase
the statistical power in order to detect associations between
genetic markers and the disease.
Common covariates that are accounted for in GWAS to increase
the accuracy of the estimation and correct for confounder effects
include age, sex, and genetic principal components that reflect
population structure�. A fixed effect logistic regression model
with covariate  and probability of the binary outcome ? is
written as:

log
✓

?

1 � ?

◆
= �- + � (�.�)

Another method to account for population structure or re-
latedness, other than using fixed effect models with specific
covariates, is using mixed effect models. These models take
into account both fixed effects such as genetic variants, and
random effects such as population structure.

. = �- + � + D + & , where D ⇠ N(0, �2⌃)
with ⌃ representing a relatedness matrix

(�.�)

In this case, the association test between the genetic variant and
the outcome is calculated conditional on the genetic relation-
ship matrix (GRM). The GRM is estimated from genome-wide
SNV data and represents the covariance structure resulting from
genetic relatedness in the population. While the fixed-effect
models assume that all individuals in the study population are
unrelated and are drawn from a single homogeneous popula-
tion, mixed-effect models are particularly useful when dealing
with complex study populations that exhibit varying levels
of relatedness, hence accommodating a larger sample size, or
when analysing family-based or longitudinal data.

A GWAS (process illustrated in Figure �.�) returns three main
quantities for each variant:

I �̂, the effect size estimate for the effect allele
I SE of �̂, the uncertainty if the �̂ estimate
I P-value, the probability of getting an estimate as extreme

as what has been observed, if the null hypothesis (the
variant has an effect size of �) was true.

These summary test statistics are further supplemented by
other statistics such as the Z-score (�̂/(⇢), and are often joined
by variant information such as chromosome position, refer-
ence/effect and alternate/other alleles, allele frequencies in the
studied population, sample size, and INFO imputation score if
the variant is imputed�.
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Figure �.�: Individual-level geno-
type data to GWAS summary
statistics. �. Individual-level geno-
type data for M individuals across
K SNVs. Note that for SNV k there
is missing genotype data. �. As-
sociation summary statistic esti-
mated per SNV. By regressing phe-
notypic values on genotypic infor-
mation, we estimate the per al-
lele effect size and standard error.
�. Aggregated data, also called
GWAS summary statistics, listing
variant IDs, effect sizes, their stan-
dard errors, effect allele frequency,
sample size amongst other variant
information. Imputation scores
are reported for SNVs with miss-
ing genotypes that are imputed
using reference panels.

For an outlook on GWAS and its
progress, refer to �� years of GWAS
discovery: Realizing the promise by
Abdellaoui et al. [��]

Thanks to many international efforts aimed at recruiting cohort
volunteers, and collecting and documenting their data, GWAS
across many phenotypes can be carried out with their resulting
summary statistics shared publicly. One of the largest and
most well-known biobanks is the UK Biobank [��], which has
genetic and health information from over ���’��� participants.
It includes extensive phenotypic data, such as medical history,
lifestyle factors, and imaging data, making it valuable for a
wide range of research. Summary statistic of the UK Biobank
has been calculated and shared publicly to the benefit of many
researchers (including myself) by the Neale Lab [��].
Based in Iceland, deCODE Genetics [��] has collected genetic
and health data from a significant portion (> 50%) of the
adult Icelandic population. Focused on the Finnish population,
FinnGen [��] aims to collect genetic and health data from
���’��� participants. The project aims to advance understanding
of diseases and treatment responses by combining genetic data
with electronic health records. Other consortia have been made
to combine data from different worldwide cohorts focusing on
specific traits such as the Psychiatric Genomics Consortium [��]
that focuses on the genetics of psychiatric diseases, the GIANT
consortium [��] with various anthropometric traits and the
Global Lipids Genetics Consortium [��] that is dedicated to
the study of quantitative lipid traits to name a few.

Phenotype associations are often conceptualised across two
dimensions (illustrated in Figure �.�); allele frequency and
effect size or penetrance. GWAS findings, thus far, have been
associations of common variants with small to moderate effect
sizes. More rare variants are difficult to identify especially if
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Figure �.�: Schematic represen-
tation of allele frequency vs.
effect size. The proposed rela-
tionship between allele frequency
and effect size (or penetrance)
based on our genetic understand-
ing of complex traits and disease.
Most GWAS findings of complex
traits and common diseases corre-
spond to common variants with
relatively small effect sizes/low
penetrance. Detecting rare vari-
ants with low penetrance requires
large sample sizes to distinguish
these rare variants and to have
enough power to estimate their ef-
fects. Monogenic/mendelian dis-
eases on the other hand, have vari-
ants with high penetrance despite
being rare.
Adapted from Bush and Moore
[��].

they have low penetrance as larger sample sizes are required to
(i) observe these variants, and (ii) have enough statistical power
for their association. Conversely, some rare variants have large
penetrance/effect sizes and these are associated to Mendelian
disorders. It is unusual to find common variants with large
effects, however, some exceptions include the APOE� variant
of the APOE gene, where possessing one or two copies of
the APOE� allele significantly increases the risk of developing
Alzheimer’s disease.

In a Genome-Wide Association Study (GWAS), we estimate the
observed association for a single genetic variant, which is also
known as the marginal effect. This estimate reveals the rela-
tionship between a specific genetic variant and a phenotype of
interest, considering that variant in isolation, without account-
ing for other factors. On the other hand, the true causal effect
represents the authentic cause-and-effect relationship between
a genetic variant and a phenotype. It implies that changes in
the genetic variant directly lead to alterations in the phenotype.
However, establishing true causality is a rigorous process that
involves a combination of statistical evidence, biological knowl-
edge, and experimental validation.
Conversely, a joint model takes into account multiple genetic
variants simultaneously, often within the same genomic region
or pathway, and assesses their combined effects on the outcome,
providing a multivariable effect for each variant.

In cases where the genotyped variant in a GWAS is not in LD
with any other causal variant, the marginal effect is equal to the
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Phenotypic variance can be de-
composed into genetic variance, en-
vironmental variance, and their in-
teraction

The discrepancy between �2 ob-
served in family studies and
⌘

2
⌧,�(

, termed missing heritabil-
ity, can be attributed to mul-
tiple reasons including GWAS
neglecting non-additive effects
(gene-by-gene interactions, gene-
by-environment interactions), or
other genetic variation such as
rare variants or copy number vari-
ations

causal effect. This causal effect could be null if the genotyped
variant is not truly causal. On the contrary, if the genotyped
variant is in LD with other causal variants, the marginal effect
combines the causal effect of that SNP with the causal effects of
all other neighbouring variants, weighted by their LD score.
This situation presents a challenge when the SNP in question
is non-causal but is in LD with one or more causal variants. In
such cases, its marginal effect is estimated as non-zero, even
when there is no true association with the phenotype.
Similarly, for a genotyped SNP that is genuinely causal, its
marginal effect can be overestimated if it tags other causal SNPs
in the neighbouring region. In contrast, its multivariable effect is
more accurately estimated due to the nature of the joint model,
which considers the SNP in the context of other variables, such
as covariates or other genetic variants. It’s worth noting that
these joint models require more computational resources and
are, therefore, less commonly used.

Another feature of genetic architecture is heritability [��]. In a
particular population, heritability measures the proportion of
phenotypic variance that is explained by genetic variation be-
tween individuals (including additive and non-additive genetic
effects, such as dominant and epistatic effects). Heritability can
vary across populations and across time, as the roles of the
environment and genetics change.
Broad-sense heritability (�2), where both additive and domi-
nance genetic effects are considered in relation to phenotypic
variation, is typically estimated from twin or family studies.
Narrow sense heritability (⌘2), in contrast, is the phenotypic
variance explained by additive effects only. Furthermore, her-
itability estimated from GWAS top hits is often referred to as
⌘

2
⌧,�(

.

The two main methods to estimate narrow-sense heritability
using individual-level data are GCTA [��] and LDAK [��, ��].
These methods both model all SNVs simultaneously using lin-
ear mixed effect model to estimate the total explained variance.
They also both account for genetic relationships among individ-
uals: GCTA constructs a GRM to capture genetic relatedness
between individuals, while LDAK uses LD-pruned relatedness
matrices. However, they differ in that GCTA expects each SNP
to contribute equally to heritability, whereas LDAK assumes
that the expected heritability of each SNP to vary with LD
levels.
The most common method to estimate heritability from read-
ily available summary statistics is called LD-score regression
(LDSC) [��]. LDSC uses the patterns of LD among genetic vari-



�� � Introduction

ants within a population to estimate the overall heritability of a
trait. By fitting a regression model of the effect sizes of genetic
variants against their LD scores, LDSC provides an estimate
of the heritability of the trait based on the genetic architecture
captured in the summary statistics.

Figure �.�: Illustration of the ge-
netic correlation between traits
G and H. Here, the product of the
standardised effects/Z-score of
traits A and B (Y-axis) is regressed
onto the LD score (X-axis). The ge-
netic correlation can be derived
from the regression slope. The
yellow slope shows an example
of two positively correlated traits,
the dark blue slope shows an
example of anti-correlated traits,
and cyan, an example of uncorre-
lated traits.

Another concept that is fundamental in genetics is genetic cor-
relation (A⌧). It is a statistical measure that quantifies the degree
of shared genetic influences between two different phenotypes.
Consequently, it can provide insights into the underlying bio-
logical relationships between traits and can help us understand
the genetic architecture of complex traits and diseases.
It is often computed using GWAS summary statistics for both
traits, where the correlation coefficient between the effect sizes
of genetic variants associated with each trait is calculated.
LDSC [��] is also used to calculate genetic correlation by lever-
aging patterns of LD among genetic variants. More specifically,
using summary statistics of both traits, LDSC estimates A⌧ by
regressing the product of the observed effect sizes across vari-
ants for both traits, against their cross-trait LD score (see Figure
�.�). This helps to disentangle the shared genetic components
from other confounding factors of the two traits. It is important
to note that although a genetic correlation indicates a statisti-
cal association between traits at the genetic level, it does not
provide information about the specific genes involved or the
direction of causality between them.

In conclusion, the growing number of consortia, the existence of
semi-publicly accessible large-scale genetic data and biobanks,
as well as the increase in publicly available GWAS summary
statistics has made a variety of multi-trait analyses possible
and increased our understanding of the genetics of complex
traits.
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�: Assortative mating: a mating pat-
tern where individuals with simi-
lar phenotypes or genotypes mate
with one another more frequently
than would be expected under a
random mating pattern
��: Admixture: a phenomenon that
occurs when individuals from two
or more previously isolated pop-
ulations interbreed, resulting in
the introduction of new genetic
lineages into a population

�.� Biases in GWAS: how are they (thus
far) addressed?

GWAS are powerful tools for identifying genetic variants as-
sociated with complex traits and diseases. However, they can
be prone to various sources of bias that might lead to falsely
estimated association effects with misleading or inaccurate
downstream results.
These biases arise from multifaceted sources, spanning study
design, population characteristics, genotyping methods, and
statistical approaches. By understanding and accounting for
these biases, we can ensure the robustness and reliability of
GWAS findings while making informed interpretations of ge-
netic associations and downstream applications [��–��].

The most common source of bias is population stratification, as
previously mentioned, this occurs when the study population
has sub-populations with different genetic backgrounds either
due to non-random mating� or migration amongst other physi-
cal causes. If not accounted for properly, it can lead to spurious
associations between genetic variants and phenotypes. Popu-
lation admixture�� can cause false associations if not properly
controlled for. Furthermore, cryptic relatedness (when individ-
uals in the study are related to each other but this relationship
is not apparent) leading to shared genetic factors can cause
inflated association signals and false positive associations.
On the other hand, dynastic effects (or familial correlations),
occur when shared genetic and environmental factors within
families lead to correlations between relatives’ traits, which in
turn can lead to inflated effect sizes and false positive associa-
tions.
In case-control cohorts, unequal sample sizes or systematic
differences in the ascertainment between cases and controls
can lead to biased associations. Genotyping design also comes
with its sources of bias, such as non-random missing genotype
data, biased SNP selection, or simple genotyping errors.

Mitigating bias in GWAS requires a comprehensive approach,
from careful study design to meticulous data analysis. Some
techniques have been previously discussed, such as adjust-
ing for population substructure using principal component
analysis (PCA), or using linear mixed models to account for
relatedness or admixture.
However, there is increasing interest in methods that make
use of relatedness and shared genetic factors within families to
better understand genetic components and interactions. These
studies are known as family-based GWAS [��], and involve
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Trios consist of two parents and
an (affected) offspring

TDT provides a statistic, usually a
chi-square test, to assess the devi-
ation from expected transmission

FBAT calculates differences in al-
lele transmission from parents to
affected and unaffected offspring
within each family

��: Structural equation modelling
(SEM): a multivariate statistical
analysis technique that is used to
analyse structural relationships,
by modelling said relations be-
tween measured and latent vari-
ables, or between multiple latent
variables

recruiting and studying families, which typically include par-
ents, siblings, and sometimes extended relatives. These family
structures provide a platform to investigate genetic influences
within a shared genetic background.
Family members share a significant portion of their genetic
makeup due to inheritance (i.e. similar ancestry). This related-
ness enhances the method’s ability to identify (rare) genetic
variants associated with traits and diseases, as it reduces genetic
heterogeneity and the design inherently accounts for popula-
tion stratification.
Family based designs include parent-offspring trios, which
provide an opportunity to analyse the inheritance patterns
of genetic variants from parents to offspring and assess their
association with the trait, or sibling-pairs (sib-pair) analysis
that involves comparing the genetic similarity between siblings
who share the same parents. This method helps identify genetic
markers that segregate with a trait in affected sibling pairs.
Family-based studies however, tend to have smaller sample
sizes compared to population-based studies which can affect
their statistical power [��].

Common statistical methods used in family-based GWAS are
the Transmission Disequilibrium Test (TDT) and its extension,
the family-based association test (FBAT) [��, ��]. TDT is often
used in linkage analysis of parent-offspring trios (consisting of
affected offspring and their parents), where the co-segregation
of a chromosome region marked by SNPs with a trait is tested.
FBAT, on the other hand, is a more general family-based method
that can handle various family structures, including trios, sib-
ships, and extended pedigrees. It assesses the association be-
tween allele transmission and the trait of interest while account-
ing for within-family correlation and covariates.
Other family-based designs employ within-family tests to ei-
ther adjust for or leverage parental genotypes, such as using
structural equation modelling (SEM)�� to estimate maternal
and offspring genetic effects [��].

Despite the stated advantages of within-family designs, the
adoption of such approaches in contemporary genetic studies
has remained limited. This limitation largely stems from the
scarcity of genomic data gathered from families at a scale suffi-
cient for suitably powered analysis.
However, the advent of large-scale biobanks and extensive twin
studies has allowed researches to combine said data for exten-
sive analysis. For example, the largest within-sibship GWAS
conducted to date by Howe et al. [��] combined the data of
���’��� siblings from �� studies and estimated associations
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��: Direct genetic effect: direct effect
of inheriting a genetic variant or
a correlated variant on the expres-
sion of a specific trait
��: Indirect genetic effect: effects of
relative genotypes (via relative
phenotypes and shared environ-
ment) on the individual’s pheno-
type

across �� different phenotypes.
Typically, within-sibship GWAS model the outcome as a func-
tion of the genetic variants, the within-pair effect (captures
genetic variation that contributes to differences within sibling
pairs), the between-pair effect (similar, but between sibling pairs
instead), covariates and noise or shared environment variables.
In Howe et al., they extended the population based GWAS
model to include the mean genotype of siblings in each sibship
as a covariate to account for family structure, as shown below:
For individual 8 in sibship F with = siblings,

.8F ⇠ ⌧
⇠

8F
+ ⌧�

8
+ 0648F + B4G8F + %⇠18F + ... + %⇠208F

where ⌧
�

8
=
P
=

1 ⌧8F

=

, and ⌧
⇠

8F
= ⌧8F � ⌧�

8

(�.�)

⌧8F represents the genotype of sibling 8 in sibship F, and ⌧�
8

the mean family genotype for sibship F over = siblings.
By centring each individual’s genotype around the mean sib-
ship/family genotype (⌧⇠

8F
), the model estimates the direct

individual genetic effect�� as well as the indirect genetic ef-
fect�� independently.
Their findings suggested that GWAS results and downstream
analyses of behavioural phenotypes (e.g. educational attain-
ment, smoking) and some anthropometric phenotypes (e.g.
height, body mass index) are affected by demographic and
indirect genetic effects. However, most analyses of molecular
phenotypes, such as lipids, were not strongly affected.

Despite the fact that estimating direct genetic effects on traits is
the principal goal of GWAS, other sources of genetic associations
can be extremely informative for our understanding of the
complexity of traits and their interplay. Knowledge of indirect
genetic effects can be used to elucidate maternal effects, or the
extent to which diseases are mediated by our environments
[��, ��]. Thus, there is a need for family-based GWAS that also
provide estimates of indirect genetic effects, along the unbiased
direct ones.
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��: Confounder: a variable that in-
fluences both the dependent vari-
able and independent variable,
causing a spurious association be-
tween them

For a thorough review on causal
inference and MR, see Sanderson
et al. [��]

�.� Beyond association and correlation:
Causation

One of the main goals of epidemiology is the discovery and
study of risk factors that are causal for common complex
diseases affecting our public health. This is commonly done
through observational analysis, where you observe a certain
risk factor and study its effect on a disease or outcome of inter-
est. However, observational analyses are prone to bias as the
observed association between the risk factor and the outcome
can be caused by a confounder�� of this relationship or by
reverse causation from the outcome onto the risk factor, e.g.
lower lipids seem to increase cardiovascular disease when in
fact, cardiovascular medication (a consequence of the disease)
lowers lipid levels.
One way to overcome this bias is by introducing randomisation,
as is done in Randomised Control Trials (RCTs) [��]. RCTs are
the gold standard to estimate causality between trait pairs as
they randomly allocate trial participants to two or more groups
and introduce a suspected risk factor or intervention to one
(or more) group(s) while keeping the other as control. After
a follow up time of exposure, any measured difference in the
outcome between the groups is said to be solely caused by the
exposure or risk factor.
A disadvantage of RCTs however, is that they are time-consuming
by design, are often costly and could pose ethical challenges
[��]. So we turn to an alternative that has emerged from genetic
data, termed Mendelian Randomisation (MR) [��, ��]
MR parallels RCTs in the following way:

I Instead of a sample of trial participants, MR assumes that
a population is undergoing the experiment

I The randomisation of trial participants is replaced by the
random segregation of alleles during meiosis at concep-
tion

I The follow-up time of exposure in RCTs is represented
by the traits in the population that associate to different
alleles in individuals

I In MR, the measurement of the outcome difference be-
tween different groups is measured at any time point in
the population instead of at the end of the trial

I Similarly however, the two methods do estimate the sig-
nificant difference between the various exposure groups
and their outcomes

To give an example of an MR study, we turn to the Aldehyde
dehydrogenase � gene (ALDH�) located on chromosome ��. This
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gene encodes an enzyme that is of the major oxidative pathway
of alcohol metabolism, and a mutation in its sequence leads to
the inactivity of said enzyme. In turn, alcohol metabolism is
disrupted, leading to consequences of varying severity such as
facial flushing, nausea, and asthma bronchoconstriction. This
tends to reduce the alcohol drinking in the population with the
mutation, naturally creating a binary level of exposure: alcohol
consumption.
At a given time point we can measure the overall cardiovascular
health in the population (blood pressure, cholesterol levels)
and study if there is a strong difference in the disease status
between the two exposure groups, indicating a true causal
effect of alcohol consumption on cardiovascular health. From
several concordant studies of this example [��, ��], one MR
study revealed a causal effect of alcohol on cardiovascular
health, where a � SD increase in genetically predicted alcohol
consumption was associated with �.�-fold (��% CI [�.�-�.�])
higher risk of hypertension and �.�-fold (��% CI [�.�-�.�]) higher
risk of coronary artery disease [��].

MR is a statistical method that uses the genetic landscape
of the population to discover causal relationships between
modifiable traits and outcomes. It gets around the confounding
and reverse causality biases seen in observational analysis
by utilising genetic variants as instrumental variables (IVs)
that robustly associate with the exposure of interest, thus any
confounding occurring between the exposure and outcome
trait (e.g. sex, age, environmental factors) is independent of
the genetic variant, and there is no reverse causality from the
outcome trait back to the variant in the human germ line [��].
There are several assumptions required for unbiased MR casual
effect estimation [��], the principle three illustrated in Figure
�.� are:

I The relevance assumption, where the IV is robustly
associated to the exposure trait

I The exchangeability assumption, stating that there is no
confounder of the IV and the outcome trait pair (examples
include: population stratification, assortative mating)

I The exclusion restriction assumption, stating that there
is no pathway or association between the IV and the
outcome except through the exposure.

Other MR assumptions or considerations , principally used for
accurate effect estimation, include: effect homogeneity which
assumes either the association between the genetic IV and the
exposure is homogeneous across the population or that the
effect of the exposure on the outcome is; gene–environment
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equivalence which states that perturbing the exposure geneti-
cally or environmentally, should produce the same downstream
effect on an outcome; and effect linearity, where the effect of
the exposure on the outcome is assumed to be linear.

Figure �.�: Core assumptions of
Mendelian randomisation. Ge-
netic marker ⌧ representing an
IV has a direct effect on expo-
sure/risk factor- denoted as ✏. It
also has an effect on outcome/dis-
ease . through -. The measured
effect of ⌧ on. is denoted as �.*
represents potential confounding
factors such as population strati-
fication or sex. The dashed lines
illustrate potentially violated MR
assumptions. � represents the MR
causal effect.
Adapted from Bowden, Davey
Smith, and Burgess [��].

The simplest and most common way to estimate the causal
effect of an exposure trait on an outcome, is to use the Wald
Ratio method [��], given an IV that is robustly associated to
the exposure trait, and is not associated to the outcome except
through its association with the exposure.
The Wald ratio causality estimate (denoted by �̂ below) is calcu-
lated by dividing the coefficient from regressing the outcome
onto the IV 8 (effect size estimate from the association summary
data, �̂), by the coefficient of regressing the exposure onto the
same IV (✏̂).

�̂8 =
�̂8
✏̂8

, with (⇢ =
(⇢(�̂8)
✏̂8

(�.�)

For multiple IVs, you can obtain the overall causal effect by
performing an inverse variance weighted meta-analysis on
their individual Wald ratio estimates, this method is known
as IVW-MR [��]. It is important to ensure that the exposure
and outcome data are harmonised to ensure that the ✏̂ and �̂
association refer to the same alleles.

MR studies can be conducted either on individual level genetic
data or summary data commonly obtained from GWAS. Anal-
ysis conducted on individual level data offers more estimate
precision as the sample size increases, and is commonly known
as one-sample MR, as the genetic and phenotypic data of both
exposure and outcome come from a single cohort. Causal effect
estimates in one-sample MR are obtained from a two-stage
least square regression (�SLS), where robust IVs are selected
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Over-fitting refers to exagger-
ated/inflated results occurring
when MR studies are done within
the same GWAS from which the
genetic IVs are selected

and used to obtain a prediction of the exposure in the first
stage, followed by regressing the outcome onto the predicted
exposure in the second stage [��].
Similarly MR analysis conducted on summary statistics data
depend on the association accuracy between the IV and the
traits of interest, and are known as two-sample MR. Here,
GWAS summary statistics of the exposure and the outcome
come from distinct cohorts, but are assumed to be from the same
underlying population or similar populations. Furthermore, it
is assumed that there is no sample overlap between the two
cohorts to ensure lack of bias due to over-fitting [��, ��].
For the analysis performed in my thesis, I used GWAS sum-
mary data as they are more widely available for public use, and
thus will continue all MR explanation and analysis assuming
summary data is used.

The first MR assumption can be easily verified thanks to the
increasing number of GWAS studies and their ever-increasing
sample size, where SNPs with genome wide significant (GWS)
associations (%  5 ⇥ 10�8) to traits of interest can be selected
as IVs. However, if the sample used to select the GWS IVs is the
same from which the association summaries to the exposure are
obtained, this could exaggerate the true IV-exposure association
in what is termed as Winner’s curse, resulting in an under-
estimation of the causal effect in the case on non-overlapping
samples [��]. Employing a three-sample genome wide design,
where you would use a selection GWAS dataset for IV selection,
separate from the exposure GWAS dataset, thereby circumvent-
ing the Winner’s Curse issue is a valid approach. However,
summary statistics from such additional datasets are rarely
available.
When multiple SNPs are used as IVs, each with its own small
effect on the exposure, this can lead to weak instrument bias
[��], which increases in severity as the average variance of the
exposure explained by the IVs decreases. The resulting underes-
timation of the causal effect, also in the case of non-overlapping
samples, can be avoided through bias correction calculations,
using a two-sample approach and applying a �SLS regression,
or by ensuring that we use proper IVS by measuring instrument
strength using the F-statistic [��].
The F-statistic is related to the proportion of phenotypic variance
explained by the genetic variants, sample size, and number
of instruments. The bias can thus be reduced by increasing
the sample size or by excluding instruments that are not con-
tributing to the explanation of the phenotypic variance of the
exposure, both of which increase the F-statistic. As a rule of
thumb, an F-statistic of �� or higher is needed to run an analysis
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��: Pleiotropy: in its true biological
definition, it is the association of
a single variant to multiple traits.
However other types exist as seen
in Figure �.�, such as:
Vertical pleiotropy: occurs when
a genetic variant influences both
the exposure of interest and the
outcome being studied.
Horizontal/Correlated

pleiotropy: arises when a
genetic variant influences the
outcome through pathways
unrelated to the exposure, either
through LD with an instrument
directly affecting the outcome, or
by association to a latent heritable
variable or confounder of the
exposure and outcome traits.
Mediated pleiotropy: occurs
when a genetic variant affects a
trait, which in turn influences
another trait that affects the
outcome.

with no weak instrument bias.
It is worth noting that both these types of biases are affected by
the degree of sample overlap; when using overlapping samples,
the causal effect estimate will be biased towards the observa-
tional correlation instead. Although these sources of bias have
previously been studied independently, a recent study has pro-
posed a new two-sample MR framework, termed MRlap, that
simultaneously takes into account weak instrument bias and
winner’s curse, while accounting for potential sample overlap
and its effect as a modifier of these biases, to obtain a corrected
causal effect estimate [��].

Unfortunately, the second and third assumptions are difficult to
verify, however, they can sometimes be disproved. Any attempt
and subsequent failure to disprove them can be interpreted as
validation of these conditions.
Although, as stated earlier, MR attempts to overcome possible
confounding seen between trait-pairs in observational analysis
by using genetic variants as instruments for the exposure trait
they associate to, it can still be prone to confounding between
the outcome and the IV instead. Sources of this confounding
vary between population stratification, assortative mating, and
dynastic effects and are difficult to correct for with the current
MR methods.
Similarly, the third assumption can be violated by pleiotropy��,
where genetic instruments are associated to multiple traits [��].
This phenomenon can be seen in many GWAS, where a single
variant is often associated with multiple phenotypes. However,
in the context of MR, certain types of pleiotropy can violate the
assumptions and introduce a correlation between the trait pair,
that is often falsely interpreted as causation as seen in Figure
�.�. There are multiple MR methods and extensions that aim to
overcome this source of bias, including two developed over the
course of my studies.

An important assumption of IVW-MR is that the genetic in-
struments are independent of each other, which can be verified
using LD based clumping of IVs. Second, IVW assumes bal-
anced pleiotropy, meaning that it has zero mean and satisfies the
Instrument Strength Independent of Direct Effect (InSIDE)
assumption where the direct pleiotropic effects of the genetic
variants on the outcome are distributed independently of the
genetic associations with the exposure [��].

Numerous MR extensions, some outlined in Table �.�, have
been developed to address the diverse forms of pleiotropy, each
grounded in distinct assumptions regarding the causal nature of
this pleiotropy. These extensions mainly rely on three strategies:
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excluding outliers, modifying outliers, and accommodating
specific forms of pleiotropy.
Outlier removal estimation involves recognising and eliminat-
ing individual genetic variants whose sole causal effect esti-
mate falls beyond the expected range based on estimates from
other variants, thus mitigating their impact on the final total
causal effect. Common methods that employ outlier removal
include weighted median [��] (allows for balanced/sparse
pleiotropy) and weighted mode [��] (allows for some direc-
tional pleiotropy).
Outlier adjustment methods identify outlier variants, and then
make adjustments either to the effect estimate of that genetic
variant or to the weighting of the estimate from that vari-
ant, reducing its influence on the overall estimation outcome.
Such methods include MR-RAPS [��] (allows for balanced
pleiotropy) and MR-CAUSE [��], MR-PRESSO [��] or MR-
TRYX [��] (allow for directional pleiotropy).

Figure �.�: The different types
of pleiotropy. ⌧ represents an in-
strumental variable with a direct
effect on exposure/risk factor -.
It can also have an effect on out-
come/disease . through ⇠, a la-
tent heritable trait shown in red.*
represents potential confounding
factors such as population stratifi-
cation or sex. The dashed arrows il-
lustrate potential relationships be-
tween traits, whereas red arrows
illustrate relationships that will
bias the causal effect estimation
between - and ..

The last category of pleiotropy-robust methods for summary-
data MR estimation encompasses approaches that permit most
or all of the genetic variants used in the estimation to exhibit
pleiotropic effects on the outcome while imposing additional
constraints on these pleiotropic effects. Such an extension that
handles directional pleiotropy (when the mean of the pleiotropic
distribution is non-zero) is called MR-Egger [��]. The MR-Egger
regression model estimates both the causal effect and a measure
of directional pleiotropy. Another example is MultiVariable
MR (MVMR) [��, ��].
MVMR is an extension that simultaneously estimates the causal
effect of several exposure traits on a single outcome conditional
on each other. It accounts for horizontal pleiotropy by adjusting
the causal effect estimate of one trait based on several other
candidate pleiotropic traits, thus it is able to discern between
risk factors, determining which ones are causal and which
ones are merely correlated, mediating, or confounding factors.
However, MVMR is limited by its assumption that all pleiotropic
traits are known and are fitted in the model.
Furthermore, MVMR utilises the IVs of all fitted exposures
together, and thus a conditional F-statistic for each exposure
ought to be calculated to ensure that the IVs being used will
not affect the results through weak instrument bias [��].

Other MR extensions include non-linear MR methods that esti-
mate the non-linear relationship between exposure-outcome
pairs (e.g. LACE [��] and polyMR [��]) and multiple-outcome
methods (e.g. MR� [��]), that are designed for multiple out-
comes, in order to identify exposures that cause more than one
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outcome or exposures that have effects on distinct responses.

Table �.�: Table of some MR methods and extensions that handle various assumption violations by relaxing
the targeted assumption. PWC-MR and LHC-MR are discussed further in the next chapter.

Method Action Relaxed MR assumption

Wald ratio (both individual- and summary-level data), Basic MR None
IVW, �SLS regression (individual-level data)

MR-RAPS, NOME adjustment [��] Weak instrument robust methods �st: allows for weak instruments

Weighted median Variant selection/Outlier removal �rd: allows for balanced/sparse pleiotropy

Weighted mode, Steiger filtering [��], MR-LASSO [��], Variant selection/Outlier removal �rd: allows for some directional pleiotropy
MR-Clust [��], PWC-MR [��] and effect heterogeneity

MR-TRYX, MR-RAPS, MR-CAUSE, LHC-MR [��], Variant/Outlier adjustment �rd: allows for some directional/balanced
MR-PRESSO pleiotropy

MR-Egger, MVMR Estimation adjustment �rd: allows for some directional pleiotropy

As the field of MR continues to evolve, I hoped to contribute,
with my thesis work shown in the following chapters, to the de-
velopment of new methods that aid in utilising or overcoming
MR assumption violations.
My main focuses were on (i) violations of the third assumption,
whether in the form of horizontal/correlated pleiotropy that
I tackled in Chapter �, or in the form of causal effect hetero-
geneity as shown in Chapter �, and (ii) violations the second
assumption in the form of dynastic effects. Although, there is
a dearth in family-based GWAS data, we attempted to better
understand and study dynastic causal effects using indirect
genetic effects estimated from first-degree relatives, explored
in Chapter �. These chapters along with Chapter � also detail
additional works and contributions that originated through
either external or internal collaborations.
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�.� Accounting for latent heritable
confounding in Mendelian
Randomisation

The article, Simultaneous estimation of bi-directional causal effects
and heritable confounding from GWAS summary statistics (Darrous,
Mounier, and Kutalik (����) - see Appendix A), proposed a
Latent Heritable Confounder MR (LHC-MR) method that can
overcome some limitations of other MR extensions, including
the under-exploitation of genome-wide markers, and sensitivity
to the presence of a heritable confounder of the exposure-
outcome relationship.

LHC-MR extends the typical MR model by accounting for the
presence of a LHC with effects on the exposure and outcome
traits. This is done through a structural equation model (SEM)
that models the bi-directional causal effects between the two
traits (- and .), and the confounder (*) effect on each.
LHC-MR optimises the likelihood function associated with
the SEM, taking as input observed genome-wide association
summary statistics for - and ., in order to simultaneously
estimate the bi-directional causal effect, the confounder effect,
the heritability and polygenicity of each trait, as well as several
other trait characteristics. As the method uses all genome-wide
markers instead of GWS instruments, LHC-MR is not affected
by winner’s curse nor weak instrument bias. LHC-MR also
accounts for the LD structure amongst the variants as well as
sample overlap, and can be viewed as the integration of LDSC
and classical MR.

ARTICLE

Simultaneous estimation of bi-directional causal
effects and heritable confounding from GWAS
summary statistics
Liza Darrous 1,2,4, Ninon Mounier 1,2,4 & Zoltán Kutalik 1,2,3✉

Mendelian Randomisation (MR) is an increasingly popular approach that estimates the causal

effect of risk factors on complex human traits. While it has seen several extensions that relax

its basic assumptions, most suffer from two major limitations; their under-exploitation of

genome-wide markers, and sensitivity to the presence of a heritable confounder of the

exposure-outcome relationship. To overcome these limitations, we propose a Latent Heri-

table Confounder MR (LHC-MR) method applicable to association summary statistics, which

estimates bi-directional causal effects, direct heritabilities, and confounder effects while

accounting for sample overlap. We demonstrate that LHC-MR outperforms several existing

MR methods in a wide range of simulation settings and apply it to summary statistics of 13

complex traits. Besides several concordant results with other MR methods, LHC-MR unravels

new mechanisms (how disease diagnosis might lead to improved lifestyle) and reveals new

causal effects (e.g. HDL cholesterol being protective against high systolic blood pressure),

hidden from standard MR methods due to a heritable confounder of opposite effect direction.

https://doi.org/10.1038/s41467-021-26970-w OPEN
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Figure �.�: The manuscript Simul-
taneous estimation of bi-directional
causal effects and heritable confound-
ing from GWAS summary statistics
and its supplementary materials
can be found on Nature communi-
cations here, or in Appendix A.
This work was selected as one of
SIB’s remarkable outputs for ����.

We compared the performance of LHC-MR against various stan-
dard and robust MR methods in multiple simulation scenarios
where we violated standard MR assumptions, as well as our
own (e.g. presence of multiple confounders despite modelling
only one, normality assumption of SNP effects).
In the majority of scenarios, LHC-MR estimated causal effects
with less bias and variance than other MR methods, even in the
presence of a heritable confounder. Furthermore, LHC-MR was
also immune to the presence of a reverse causal effect with an
opposite effect sign, or the presence of more than one discordant
or concordant confounders.

https://www.nature.com/articles/s41467-021-26970-w
https://www.sib.swiss/about/news/10904-sib-remarkable-outputs-2021
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We then applied LHC-MR to �� complex traits, estimating their
pairwise bi-directional causal effects using summary statistics
from the UK Biobank and other large consortia. Comparing
our findings to those of other MR methods, we found a gen-
eral agreement in causal effect estimates when both methods
showed significant estimates.
Moreover, LHC-MR found additional significant estimates be-
tween traits pairs, as expected considering its use of genome-
wide instruments. We also identified significant confounding ef-
fects between �� trait pairs, including HDL cholesterol levels and
systolic blood pressure (SBP). In this case, LHC-MR estimated
a causal effect of HDL on SBP equal to -�.�� (% = 5.38 ⇥ 10�05)
with a significant positive confounder acting on the two traits,
concordant with observational studies [��, ��], whereas the
standard MR methods showed a non-significant (attenuated)
negative effect.
Lastly, LHC-MR decomposes the observed genetic correlation
into bi-directional causal effect-driven and confounder-driven
contributions. Our findings showed that the total genetic corre-
lation estimates derived from LHC-MR were highly consistent
with those obtained using LDSC, where most seem to be driven
by bi-directional causal effects.

Figure �.�: Illustration of causal
effects estimated from SNP-
outcome and SNP-exposure as-
sociations. The regression of the
SNP-outcome association �̂, onto
the SNP-exposure association ✏̂ re-
veals in reality two separate SNP
clusters, in the presence of a her-
itable confounder: those truly as-
sociated with the exposure with
an effect on the outcome shown
in light blue and having a causal
effect �, and those that are primar-
ily associated with the confounder
having an effect equivalent to the
ratio of the confounder’s effect
on outcome to exposure (@H/@G).
Running standard IVW would re-
sult in an underestimated causal
effect represented by the slope
of the dashed grey line, taking
into account all SNPs. LHC-MR
aims to disentangle these separate
slopes/effects.

As all methods do, LHC-MR has its limitations, some of which
are: it provides biased causal effect estimates if the summary
statistics used are affected by population stratification and
dynastic effects (biases common to population-based GWAS).
Also, LHC-MR’s model is unidentifiable, meaning that the
true causal slope (�) is sometimes indistinguishable from the
confounder-associated slope (@H/@G), as explained in Figure
�.�. Thus two distinct sets of parameter estimates fit the input
data equally well, especially if the alternate set of parameter
estimates calculated fall within the parameter ranges specified.
However, biological considerations and other pointers can aid
in the choosing of the more likely set of estimates with the true
causal effect.

LHC-MR is the fruit of two and a half years of labour, where
its modelling has evolved several times over this course. This
is in large thanks to reviewers’ comments and the continuous
discussions with peers and the greater scientific community.
Our understanding of a plausible genetic structure, the varied
aspects of pleiotropy, and our ever-evolving understanding of
the interplay among these factors have significantly influenced
the assumptions we make in our modelling.

This project was conceived and designed by Zoltán Kutalik (orig-
inally as a Master thesis project undertaken by Liza Darrous).
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The mathematical and statistical derivations were performed
by Zoltán Kutalik, and they were translated from Matlab to
R by Liza Darrous. Liza Darrous and Ninon Mounier also
contributed to the development of the approach, and to the
implementation of the research. All three authors contributed to
the analysis of the results and to the writing of the manuscript.

�.� R package: lhcMR

As the methodology behind LHC-MR is not trait-specific, creat-
ing an R package that allows others to implement the method
on any trait-pair they wish to investigate was a clear outcome
of the project. The code for the R package lhcMR can be found
on Github here.

As mentioned previously, lhcMR only requires the summary
statistics of the traits being studied as input. We provide two
additional files to be used as input; (i) the LD scores and re-
gression weights of �’���’��� common, high-quality SNPs, and
(ii) the spike and slab distribution approximation of the local
LD pattern using �’��� SNPs left and right of each of the �.��
million focal SNPs.
Since LHC-MR uses the R packages TwoSampleMR [��] to es-
timate standard MR causal effects, and GenomicSEM [��] to
estimate trait heritabilities, these packages and their required
files should also be installed.

There are three main functions in lhcMR:

I merge_sumstats() reads in the summary statistics of the
trait-pair and the LD score files, and merges the data into
a single data frame with harmonised SNPs.

I calculate_SP()uses the previously generated data frame
to smartly generate starting points using TwoSampleMR
and GenomicSEM, for the parameter estimation in the
trait-pair analysis done in the next step.

I lhc_mr() uses the input data frame and the stating points
to optimise the likelihood function and estimate param-
eters such as the bidirectional causal effect, confounder
effect and trait heritability, as well as their standard errors
using block jackknife.

I am the main author of this R package with guidance and
testing provided by Ninon Mounier and Zoltán Kutalik.

https://github.com/LizaDarrous/lhcMR
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�.� Estimating the causal effect of
stratified physical activity on
cognitive functioning
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Genetic insights into the causal 
relationship between physical 
activity and cognitive functioning
Boris Cheval 1,2,16*, Liza Darrous 3,4,16*, Karmel W. Choi 5, Yann C. Klimentidis 6, 
David A. Raichlen 7,8, Gene E. Alexander 10,11,12,9, Stéphane Cullati 13,  
Zoltán Kutalik 3,4,17* & Matthieu P. Boisgontier 14,15,17*

Physical activity and cognitive functioning are strongly intertwined. However, the causal relationships 
underlying this association are still unclear. Physical activity can enhance brain functions, but healthy 
cognition may also promote engagement in physical activity. Here, we assessed the bidirectional 
relationships between physical activity and general cognitive functioning using Latent Heritable 
Confounder Mendelian Randomization (LHC-MR). Association data were drawn from two large-scale 
genome-wide association studies (UK Biobank and COGENT) on accelerometer-measured moderate, 
vigorous, and average physical activity (N = 91,084) and cognitive functioning (N = 257,841). After 
Bonferroni correction, we observed significant LHC-MR associations suggesting that increased 
fraction of both moderate (b = 0.32,  CI95% = [0.17,0.47], P = 2.89e − 05) and vigorous physical activity 
(b = 0.22,  CI95% = [0.06,0.37], P = 0.007) lead to increased cognitive functioning. In contrast, we found 
no evidence of a causal effect of average physical activity on cognitive functioning, and no evidence 
of a reverse causal effect (cognitive functioning on any physical activity measures). These findings 
provide new evidence supporting a beneficial role of moderate and vigorous physical activity (MVPA) 
on cognitive functioning.

Multiple cross-sectional and longitudinal studies have shown that physical activity and cognitive functioning are 
strongly intertwined and decline through the course of  life1–5. However, the evidence of causality of this relation-
ship remains unclear. Previous results have shown that physical activity can improve cognitive  functioning6–12, 
but recent studies have also suggested that well-functioning cognitive skills can in!uence engagement in physical 
 activity1,13–20.

Several mechanisms could explain how physical activity, especially at moderate intensities, enhances general 
cognitive  functioning12,21–27. For example, physical activity can increase brain plasticity, angiogenesis, synap-
togenesis, and neurogenesis primarily through the upregulation of growth factors (e.g., brain-derived neuro-
trophic factor; BDNF)23,24,26. In addition, the repetitive activation of higher-order brain functions (e.g., planning, 
inhibition, and reasoning) required to engage in physical activity may contribute to the improvement of these 
 functions27,28. In turn, other mechanisms could explain how cognitive functioning may a"ect physical activity. 
For example, cognitive functioning may be required to counteract the automatic attraction to e"ort minimization 
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Figure �.�: The manuscript Ge-
netic insights into the causal relation-
ship between physical activity and
cognitive functioning can be found
on Scientific Reports - Nature here,
or in Appendix B.

An application of LHC-MR to investigate the causal relation-
ship between various levels of physical activity and cognitive
functioning was the result of a collaboration between us, Boris
Cheval from the University of Geneva and Matthieu Boisgontier
from the University of Ottawa.
Since the relationship between these two traits is unclear -
physical activity can enhance cognitive functions, but healthy
cognition may also encourage engagement in physical activity -
estimating the bidirectional causal effect while accounting for
potential confounding using LHC-MR was undertaken in the
manuscript Genetic insights into the causal relationship between
physical activity and cognitive functioning (Cheval, Darrous et al.
(����) - see Appendix B).

To run the analysis, we used association summary statistics
of accelerometer-based average physical activity and cognitive
functioning from two large consortia; COGENT [��] and UK
Biobank [��]. We also ran our own GWAS to obtain association
summary statistics of stratified measures of accelerometer based
physical activity (moderate and vigorous) from individual level
data of the UK Biobank.

LHC-MR findings suggested that moderate (�.��, % = 2.89 ⇥
10�05) and vigorous physical activity (�.��, % = 0.007) lead to
increased cognitive functioning, in line with previous findings
of observational analysis [��–��].
However, LHC-MR found no evidence of a causal effect of
average physical activity on cognitive functioning, and no
evidence of a reverse causal effect (cognitive functioning on
any physical activity measures). In comparison, standard MR
methods found no significant causal effects between any trait
pair in either direction, which may be primarily due to the
fact that standard MR methods use only GWS SNPs as IVs,
and that all physical activity measures had no GWS SNPs that
could be used for the analysis (threshold was instead lowered
to 6.33 ⇥ 10�5) .
The findings highlight the essential role of engaging in moderate
and vigorous physical activity to maintain or enhance overall
cognitive function, which health policies and interventions can
benefit from.

I contributed to this research by running the statistical analysis
(GWAS, LHC-MR, standard MR methods), and writing of the

https://www.nature.com/articles/s41598-023-32150-1


�.� Estimating the causal effect of stratified physical activity on cognitive functioning ��

manuscript (wherever relevant to causal inference, LHC-MR,
or MR).





Chapter � �
�.� PheWAS-based clus-

tering of Mendelian
Randomisation instru-
ments . . . . . . . . . . ��

�.� Application: clustering
of obesity, a composite
trait . . . . . . . . . . . . ��

�.� PheWAS-based clustering of
Mendelian Randomisation
instruments

PheWAS-based clustering of Mendelian Randomisation1

instruments reveals distinct mechanism-specific causal e↵ects2

between obesity and educational attainment3

Liza Darrous
1,2,3,†

, Gibran Hemani
4,5

, George Davey Smith
4,5

, and Zoltán Kutalik
1,2,3,†

4

1University Center for Primary Care and Public Health, University of Lausanne, Switzerland5

2Swiss Institute of Bioinformatics, Lausanne, Switzerland6

3Department of Computational Biology, University of Lausanne, Lausanne, Switzerland7

4Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of8

Bristol, Bristol, United Kingdom9

5Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom10

†Correspondence should be addressed to darrous.liza@gmail.com or zoltan.kutalik@unil.ch11

Abstract12

Mendelian Randomisation (MR) is a statistical method that estimates causal e↵ects be-13

tween risk factors and common complex diseases using genetic instruments. Heritable con-14

founders, pleiotropy and heterogeneous causal e↵ects violate MR assumptions and can lead15

to biases. To tackle these, we propose an approach employing a PheWAS-based clustering16

of the MR instruments (PWC-MR). We apply this method to revisit the surprisingly large17

apparent causal e↵ect of body mass index (BMI) on educational attainment (EDU): b↵ =18

-0.19 [-0.22, -0.16].19

As a first step of PWC-MR, we clustered 324 BMI-associated genetic instruments based20

on their association profile across 407 traits in the UK Biobank, which yielded six distinct21

groups. The subsequent cluster-specific MR revealed heterogeneous causal e↵ect estimates22

on EDU. A cluster strongly enriched for traits related to socio-economic position yielded23

the largest BMI-on-EDU causal e↵ect estimate (b↵ = -0.49 [-0.56, -0.42]) whereas a cluster24

enriched for primary impact on body-mass had the smallest estimate (b↵ = -0.09 [-0.13, -25

0.05]). Several follow-up analyses confirmed these findings: (i) within-sibling MR results (b↵26

= -0.05 [-0.09, -0.01]); (ii) MR for childhood BMI on EDU (b↵ = -0.03 [-0.06, -0.002]); (iii)27

step-wise multivariable MR (MVMR) (b↵ = -0.06 [-0.09, -0.04]) where time spent watching28

television and past tobacco smoking (two proxies for potential confounders) were jointly29

modelled.30

Through a detailed examination of the BMI-EDU causal relationship we demonstrated the31

utility of our PWC-MR approach in revealing distinct pleiotropic pathways and confounder32

mechanisms.33
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Figure �.�: The manuscript
PheWAS-based clustering of
Mendelian Randomisation instru-
ments reveals distinct mechanism-
specific causal effects between obesity
and educational attainment and
its supplementary materials can
be found on medRxiv here. A
revised version of the manuscript
is found in Appendix C.
This manuscript has been sub-
mitted to Nature Communications,
where it is under a second round
of revision.

The article, PheWAS-based clustering of Mendelian Randomisa-
tion instruments reveals distinct mechanism-specific causal effects
between obesity and educational attainment (Darrous, Hemani,
Davey Smith, and Kutalik (����) - see Appendix C), aims to
investigate the mechanisms underlying heterogeneous causal
effect estimates. The MR assumption of homogeneous causal
effects can be violated when various underlying processes con-
tribute to how a complex trait affects an outcome. Here, we
seek to identify these mechanisms, whether they are different
pleiotropic pathways or confounding effects, and estimate their
contributions to the overall exposure effect.
Originally, we were motivated by the surprisingly large and
negative causal effect of body mass index (BMI) on educa-
tional attainment (EDU) to investigate potential sources of bias
between the trait-pair.
In addition to the improbability of BMI (a later-in-life measured
trait) affecting EDU (an early-life trait), causal estimates from
the Howe et al. within-sibship GWAS study [��] revealed a
significantly attenuated causal effect of BMI on EDU compared
to that obtained using population GWAS estimates of unrelated
samples, which further motivated our investigation.

In order to discover the various possible pleiotropic pathways
of BMI, we performed informative K-means clustering on the
GWS BMI-associated SNPs using their association to ⇠400 other
traits (from PheWAS data), in an approach we termed PWC-MR.
This resulted in � clusters of BMI SNPs, each distinctly enriched
for different traits and highlighting the complexity of BMI and
its highly pleiotropic nature.
One cluster was strongly enriched for lean-mass traits such as
‘Trunk predicted mass’ and ‘Arm fat-free mass’, while another
cluster was strongly enriched for socioeconomic position (SEP)
related traits such as ‘Age completed full time education’ and
‘Average total household income before tax’. Other clusters were
enriched for food supplements, a mix of height-, blood-, and
lung capacity measurement-related traits, or mixed traits (with

https://www.medrxiv.org/content/10.1101/2023.04.06.23288264v1
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lower enrichment ratios).

Comparing the causal effect estimate of each cluster of BMI
SNPs on EDU, to the overall causal effect obtained from all BMI
SNPs revealed significantly heterogeneous estimates ranging
from -�.� to -�.��.
The results further revealed that the cluster with the most neg-
ative causal effect was the one enriched for SEP-related traits,
whereas the cluster with the smallest causal effect was that en-
riched for lean-mass and body related traits. We hypothesised
that the SEP-related cluster was an example of correlated
pleiotropy between BMI and EDU, and was thus biasing the
true causal effect estimate towards it.

Figure �.�: A simplified graph
representation of a systematic
confounder search. Around ���
traits were each used as an ex-
posure (represented by T), and
their bi-directional causal effect es-
timate on BMI and on EDU were
separately estimated. Traits with
significant causal effects on both
BMI and EDU were labelled as
putative confounder traits.

We verified our findings by running several post-hoc analysis;
the first was to re-run the clustering and subsequent causal
inference on a trait that is proxying childhood BMI (under the
assumption that adult SEP is less associated with childhood
traits). We discovered � clusters in this case, none of which
were strongly enriched for SEP-related traits, although one was
enriched for body measurement-related traits. The causal effect
estimates from the clusters were not significantly heterogeneous
from the estimate obtained using all SNPs, which itself was
significantly lower than that obtained using all adult BMI SNPs
(�0.03, % = 0.04).
Secondly, using bi-directional MR, we used each of⇠400 various
traits as exposure and estimated its causal effect on BMI as the
outcome once, and on EDU as the outcome another time (as
seen in Figure �.�). In doing so, we were able to find putative
confounder traits by selecting those that had an effect on both
BMI and EDU. Out of �� such confounder traits, � survived
stepwise-MVMR selection and were arguably associated with
SEP: ‘Time spent watching TV’, ‘Past tobacco smoking’, and
‘Muesli eating’. Their causal effect on EDU was simultaneously
estimated with BMI using MVMR, revealing an attenuated con-
ditional effect of BMI on EDU (�0.05, % = 2.07⇥10�5) matching
those of our previous findings. We ran sensitivity analyses
and compared our method against that of other clustering MR
methods such as MR-Clust.

The advantages that PWC-MR offer include (i) not requiring
within-family based association summary statistics which are
scarcely available, (ii) not requiring association summary statis-
tics of early traits which are also not widely available, and (iii)
revealing heterogeneous causal effect estimates, some of which
could be reflecting confounder effects.

This project originated from our investigation into discordant
genetic correlation and causal effect estimates between traits.
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We found this discordance larger when using population-based
GWAS compared to within-sibship GWAS.
Specifically, BMI and EDU had a A⌧ value of -�.�� (% = 6.3 ⇥
10�99) using population based GWAS, whereas using sib-ship
GWAS, this correlation was no longer significant (�.��, % = 0.38).
This prompted us to investigate the BMI-EDU relationship more
closely, with respect to unbiased sib-ship association estimates
and subsequent attenuated causal effects.
The project was conceived and designed by Liza Darrous and
Zoltán Kutalik. Statistical analyses were suggested by Zoltán
Kutalik and trials were carried out by Liza Darrous (SVD, K-
means clustering) and Zoltán Kutalik (Fuzzy clustering). The
manuscript was written by Liza Darrous with the help of Zoltán
Kutalik, and valuable input for the project and the manuscript
was provided by co-authors Gibran Hemani, and George Davey
Smith.

�.� Application: clustering of obesity, a
composite trait

Following the suggestion of George Davey Smith, we ran ad-
ditional analysis to investigate the findings of PWC-MR when
using the components of a composite trait as exposure/trait of
interest.
In Sulc et al. [��], they performed a PCA using �� anthropo-
metric traits from the UK Biobank to obtain distinct orthogonal
components of obesity, each representing different features of
the human body shape. They also showed that these body-shape
related measures can be summarised by the first four principal
components influencing body size, adiposity, abdominal fat
deposition, and lean mass respectively.

Therefore, we re-ran PWC-MR on each of the first four obesity
PCs. By selecting the GWS SNPs for each PC, we performed
informative K-means clustering and enrichment analysis using
PheWAS data of ⇠400 traits, the results of which can be seen in
Figure �.�.
We followed with causal inference analysis on EDU by running
IVW on each of the SNP-clusters of the � PCs as well as on all
their GWS SNPs respectively (see Figure �.�).

Our findings revealed the following:

I PC�, affecting body size, clustered into � groups, � of
which were strongly and distinctly enriched for body
impedance, food substrates, lung capacity measures, and
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Fortified wine intake
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Figure �.�: Heat map of the trait enrichment ratios in each cluster for PCs of the obesity composite trait. a
PC� representing body size clustered into � groups. b PC� representing adiposity clustered into � groups. c PC�
representing abdominal fat clustered into � groups. d PC� representing lean mass clustered into � groups. The
darker the colour, the stronger the enrichment ratio (ER).
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SEP-related traits like job type and qualifications respec-
tively. The causal effect estimates of the clusters were sig-
nificantly heterogeneous (Q-test of ��.��,% = 1.40⇥10�11),
with the cluster that was strongly enriched for SEP-proxy
traits having the largest negative causal effect on EDU
(-�.��, % = 2.01 ⇥ 10�13). Cluster �, which was enriched
for body impedance traits had an attenuated causal effect
on EDU of -�.�� (% = 0.030).

I PC�, influencing adiposity, clustered into � groups in-
stead. However, most clusters were not very strongly
enriched. Clusters � and � were enriched for SEP-proxy
traits, whereas cluster � was enriched for fat-free mass-
related traits. Unsurprisingly, the causal effect estimates
for all clusters on EDU were heterogeneous (��.��, % =
6.46 ⇥ 10�12), and the clusters that were enriched for SEP-
proxy traits had the largest negative causal effects (-�.��,
% = 2.47⇥10�16, and -�.��, % = 9.78⇥1��16 respectively).

I PC� with its effect on abdominal fat clustered into � clus-
ters, one of which was strongly enriched for fat-free and
body mass related traits. There was little enrichment for
SEP-proxy traits overall, but some was found in cluster �.
Consequently, the causal effect estimates of these clusters
were not significantly heterogeneous (�.��, % = 0.16), and
the overall causal effect on EDU was -�.�� (% = 0.054).

I Lastly, the clustering of PC�, which represented lean mass,
resulted in � clusters. One of which was strongly enriched
for body measurement and fat related traits, another
was enriched for a mix of lung measurements, height,
and blood traits. Similarly to PC�, there was very little
enrichment for SEP-proxy traits, and the causal effects
estimated were not heterogeneous (��.��, % = 0.11). The
overall causal effect on EDU was non-significant (�.���,
% = 0.23).

These findings support our main analysis and results [��] in
that SEP-proxy traits, that are strongly enriched for in PC� and
PC�, seem to confound the BMI-EDU relationship, inducing an
overestimated causal effect that may actually be much smaller,
or even non-existent.
They also compliment the findings of Sulc et al. [��], where the
decomposition of obesity into various components sheds light
onto which are more likely to be disease-causing or associated
with various life styles.
Their findings showed that PC� (body size) and PC� (adipos-
ity), which explained ��.�% and ��.�% of the total variance
respectively, increased the risk of many diseases, especially
obesity-related ones. An increase of one standard deviation
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Figure �.�: IVW causal effect es-
timates of all GWS SNPs as well
as cluster-specific SNPs for each
PC of the obesity composite trait.
a Causal effect estimate of PC�
representing body size on EDU. b
Causal effect estimate of PC� rep-
resenting adiposity on EDU.
c Causal effect estimate of PC� rep-
resenting abdominal fat on EDU.
d Causal effect estimate of PC�
representing lean mass on EDU.
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(SD) of PC� increased the absolute risk of diabetes by �.�%
(��% CI: �.�–�.�), whereas a � SD increase of PC� had a �.�%
risk increase. Similarly, these two also had a decreasing effect
on lifestyle factors; PC� slightly reduced SES, and PC� had a
similar yet more pronounced effect on SES, as well as links
to decreased income, fluid intelligence score, education, and
physical activity.
In contract, PC� (predisposition to abdominal fat deposition)
and PC� (lean mass), which explained �.�% of the variance
combined, had no significant causal effects on traits such as SES,
job-type nor education. PC� however, did have a detrimental
effect on diabetes (� SD increase resulted in �.�% increase of
absolute risk).

By taking advantage of the orthogonality of PCs and comparing
their effects, we can better understand and dissect the causes of
obesity-related diseases and lifestyle consequences.
These specific components with their contrasting homogeneous
and heterogeneous causal effects, as seen in our results, can
help pinpoint mechanisms through which particular sub-types
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of obesity, rather than broad measures like BMI, can influence
traits such as educational attainment.
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�.� Ongoing: Estimating
family-to-offspring causal effects from
genetic data of first-degree relatives

GWAS have recently shifted focus onto estimating direct genetic
effects using family-based cohorts. This shift was necessitated
by the recognition of bias inherent in population-based GWAS,
such as the presence of confounding factors (population strat-
ification, dynastic effect, or assortative mating) and cryptic
relatedness which can introduce spurious associations between
genetic variants and traits. These biases can lead to false-positive
or inflated results, and hinder the accurate identification of true
causal genetic variants.

By focusing on individuals within families, shared genetic and
environmental factors that often confound population-based
studies can be controlled for. Family-based designs inherently
account for shared genetic ancestry and provide a more con-
trolled setting to tease apart the direct effects of genetic variants
from extraneous influences, thus reducing the risk of false
positives and enhancing the reliability of GWAS findings.

However, while past studies investigated direct genetic effects
of complex trait, we were interested in estimating the indirect
effects, also known as parental/family effects, that arise when
the genetics of an individual affect the trait of a family member.
While unbiased direct genetic effect estimates are valuable
for understanding complex traits, estimating indirect effects
is equally important for comprehending the influence of the
environment or rearing factors on these traits.

Figure �.�: MR representation of
estimating the causal effect of
parental rearing environment on
offspring phenotype (�), using
unstransmitted parental/indirect
effects.

Thus, to estimate the parental environment-to-offspring causal
effects using MR, as seen in Figure �.�, we first estimated these
untransmitted effects by modelling both direct and indirect
effects jointly using genetic data of first-degree relatives.
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Relatedness here is equivalent to
kinship⇥2, where the kinship co-
efficient is a simple measure of
relatedness, estimated from the
GRM of the study
IBS� stands for identical by state
zero, and is a measure of lack of
genetic similarity

Although estimating indirect genetic effects of parents on off-
spring are of most interest, because they are likely to be the
largest, indirect genetic effects of siblings or more distal relatives
are also important, as these family relationships are more likely
to be found in large cohorts.

�.� Methods

In order to estimate both the direct and the family genetic
effects (indirect effects), we used individual level data of first-
degree relatives, specifically siblings, from the UK Biobank. We
filtered our individuals to be of white British origin based on
self-identified ethnicity, and still consenting to participate in
UK Biobank research.
To select siblings, we filtered for ID pairs that satisfied the
following criteria: 0.3534 � Relatedness  0.707 and IBS��
0.0012. For these subset of individuals, we extracted phenotypic,
covariate and additional information such as their age, sex,
first �� PCs, and missing rate (for quality assurance). For our
preliminary analysis, we chose to focus on two traits: BMI
and EDU, where we re-coded EDU to include educational
attainment of tertiary level (college or university degree).
For ease of analysis, we limited the individuals to unique sibling
pairs with no duplicate IDs in either index or related individuals.
This left us with ⇠170300 unique sibling pairs.

Figure �.�: Graph representa-
tion of direct and indirect ef-
fects of parental genotype onto
offspring genotype and sub-
sequently, phenotype. ⌧? rep-
resents the parental genotype,
where a single allele is inherited
by the index individual’s geno-
type (⌧8). In this scenario, the
other allele is inherited by the sib-
ling (⌧9). This untransmitted ef-
fect, which we aim to estimate,
is hypothesised to act via a rear-
ing/environmental effect on the
offspring phenotype.

Given ⌧8 and ⌧9 , representing the genotype of an index in-
dividual i and the genotype of their sibling j respectively, we
first attempted to obtain the untransmitted effect of the index
individual, denoted as ⌧8D , by regressing the genotype of the
sibling onto the genotype of the index individual, and obtaining
the regression residual from:

⌧9 ⇠ ⌧8

where the regression coefficient is 0.5, thus the residual is:

⌧8D = ⌧9 � 0.5 ⇥ ⌧8

Visualising this process in Figure �.�, we see that with respect
to the effect allele T, the dosage among siblings could differ
depending on parental allele transmission. We have shown
this in the three separate scenarios, where the parents are
heterozygous AT carriers, and the siblings vary from being
homozygous AA or TT, to heterozygous AT. It is important to
note that the parental allele dosage is unknown to us, and thus
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we can only estimate what the untransmitted allele dosage can
be from sibling data, instead of having precise knowledge.

Figure �.�: Illustration of allele transmission from parents to offspring Three scenarios are shown of differing
allele transmission leading to different allele status for sibling �. Consequently, the allele dosage differs, and so
does the estimated untransmitted allele with respect to sibling �.

When both siblings are homozygous AA, then the estimated
untransmitted allele dosage with respect to sibling � is �, despite
the fact that the T allele is untransmitted from both parents.
In scenario �, sibling � is heterozygous, and so the estimated
untransmitted allele dosage is �. Lastly, when sibling � is ho-
mozygous T in the third scenario, then the dosage is �.

Given this estimate of untransmitted allele, we then estimated
both the direct and indirect effects by regressing the index
individual’s phenotype, .8 , jointly onto its own genotype ⌧8 ,
the untransmitted dosage (obtained as the regression residual
⌧8D in the first step), and various covariates:

.8 ⇠ ⌧8 + ⌧8D + 0648 + 0642
8
+ B4G8 + %⇠18 + ... + %⇠408

The regression was performed per SNV, across all sibling pairs.
To speed up this process, the regression was parallelised over
genome chunks that were created and stored in an initial step
for the filtered subset of first-degree relatives.
Due to the bi-directional relationship between sibling pairs
with respect to indirect effects inherited from the parents, the
association effect can be estimated twice, once for each sibling
in the pair acting as the index individual; as shown below for
individual 9 in sibship 8 � 9:

.9 ⇠ ⌧9 + ⌧9D + 0649+0642
9
+ B4G9 + %⇠19 + ... + %⇠409

where ⌧9D = ⌧8 � 0.5 ⇥ ⌧9

This resulted in a doubling of the sample size for sibling pairs,
leaving us with a total sample size of ⇠340600.
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We then meta-analysed the estimates from sibling pairs (with
each sibling acting as index individual once) by using a meta-
analysis approach that accounts for relatedness of overlap-
ping/correlated subjects in the two studies. This method uses
the covariance structure between the two "studies" to adjust
the weighting of the coefficients (see equations �-� in Lin and
Sullivan [��]).

In order to verify our effect estimates, we performed quality
control that included trait heritability estimation using LDSC,
and GWAS visualisation (QQ-plot and Manhattan plot).
We then calculated the genetic correlation of the indirect effects
of our two traits of interest across ⇠190 other UK Biobank traits.
These traits were selected from ⇠1480 UK Biobank traits for be-
ing continuous or ordinal in nature, and filtered for right-specific
traits when there was either left or right-side measurements
for the same trait. We also contrasted our findings to genetic
correlations of population-based GWAS association estimates,
and within-sibship GWAS association estimates (representing
unbiased direct effects) of our two focal traits to the same ⇠200
other traits.
Within-sibship GWAS effects for both BMI and EDU came from
Howe et al. [��]. However, to reduce bias given that our indirect
effects were estimated using individual level data from the UK
Biobank data, we used external and large GWAS for both EDU
(Okbay et al. [��]) and BMI (Yengo et al. [��]) for the genetic
correlation estimation.

Lastly, in order to test our hypothesis of whether parental/-
family traits act indirectly on offspring traits by proxying a
rearing environment, we estimated the causal effect of over
��� parental traits on indirect offspring EDU and BMI. Those
with a nominally significant causal effect were then used in a
stepwise-MVMR in order to estimate their conditional causal
effect on the two offspring traits.
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�.� Results

After running the GWAS twice for each sibling pair (N =
⇠340600), we meta-analysed the direct and indirect effect esti-
mates for both BMI and EDU across ⇠8.6 million SNPs. The
heritability of the indirect effects for EDU and BMI were modest;
�.�� (SE = �.��) and �.�� (SE = �.��) respectively. As seen in
Supplementary Figure �.�, there were no GWS hits for either
trait.

Our comparisons of the genetic correlation for both BMI and
EDU - coming from three different sources of GWAS: population-
based GWAS, within-sibship GWAS, sibling meta-analysed
indirect effects - across ⇠190 other traits are shown in Supple-
mentary Figure �.�.
We notice that the genetic correlation of population-based and
within-sibship BMI or EDU GWAS across various traits such as
BMI, impedance, and alcohol intake frequency is nearly iden-
tical. Only sixteen traits show a significant genetic correlation
with the indirect BMI effect estimates, while �� traits exhibit
a significant genetic correlation with the indirect EDU effect
estimates..

Some patterns we observe (highlighted in Figure �.�) include the
lack of genetic correlation between parental (population-based)
and offspring (sibling meta-analysed indirect effect) obesity.
The A⌧ of both parental BMI and body fat percentage with
indirect BMI effects are non-significant. Conversely, healthy
parental dietary habits (increased dried fruit/cereal intake,
reduced beef/pork/poultry intake) is inversely correlated with
offspring BMI.

BMI EDU
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Figure �.�: Forest plot of the genetic correlation of both BMI and EDU across �� other selected traits. Effects of
BMI and EDU come from � different sources of GWAS: population-based, within-sibship, sibling meta-analysed
indirect effects (res_sib). The effects of the other traits all come from population-based GWAS. ��% confidence
intervals are shown as error bars. Points that are not filled indicate a non-significant genetic correlation estimate.
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In contrast to BMI, parental and offspring education share
extensive genetic basis (A⌧ = 0.74, % = 5.25 ⇥ 10�4). However,
this is not the case for fluid intelligence; EDU indirect effects
had no significant genetic correlation (A⌧ = �0.02, % = 0.92).
While parental jobs involving physical labour are anticorrelated
to offspring EDU, parental longevity is strongly positively
correlated to offspring EDU: ‘Father’s age at death’ had a
A⌧ = 1.33 (% = 2.16 ⇥ 10�4), ‘Mother’s age at death’ had a
A⌧ = 1.26 (% = 2.74 ⇥ 10�4).

For our second analysis, we ran univariate MR using over ⇠150
traits representing parental effects as exposures and measured
their causal effect on the untransmitted BMI/EDU offspring
effects.
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Figure �.�: Nominally significant IVW causal effect estimates of various traits on both untransmitted BMI and
EDU (meta-analysed sibling effects).

As seen in Figure �.�, there were �� traits with nominally signif-
icant causal effect on offspring BMI, which ranged from dietary
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intake, body measurements and SEP-proxy traits. Poultry intake
had the largest positive causal effect, compared to the arguably
healthier dried fruit intake which had a negative causal effect
on offspring BMI.
MR revealed that there is no parent-to-offspring transmission of
BMI (causal effect of parental BMI is negligible), rather parental
dietary habits and SEP-related traits are the most likely drivers
of offspring obesity.
This was further supported when stepwise-MVMR was run
using all these �� traits as exposures and offspring BMI as
outcome. The results in Table �.� show that ‘Average total house-
hold income before tax’ (SEP-proxy trait) has a negative causal
effect on offspring obesity: �0.10, % = 7.87 ⇥ 10�4.

Table �.�: Stepwise-MVMR causal effect estimates on offspring BMI. One parental trait that survives stepwise-
MVMR has its causal effect on untransmitted BMI estimated using MVMR.

Exposure F-statistic �̂ SE P

Average total household income before tax ��.�� -�.���� �.���� �.��E-��

Similarly, �� traits ranging from dietary intake, body measure-
ments, SEP-proxy traits and a mix of lung and blood measure-
ments had nominally significant causal effects on offspring
EDU. Running stepwise-MVMR on these traits as exposures
and offspring EDU as outcome (see Table �.�), revealed that
both parental BMI (�0.04, % = 2.5⇥10�6) and fluid intelligence
score (0.19, % = 6.24 ⇥ 10�5) have a significant causal effect on
offspring EDU.

Table �.�: Stepwise MVMR causal effect estimates on offspring EDU. Two parental traits that survive stepwise-
MVMR have their conditional causal effect on untransmitted EDU estimated using MVMR.

Exposure Conditional F-statistic �̂ SE P

Body mass index (BMI) ��.� -�.���� �.���� �.��E-��

Fluid intelligence score �.�� �.���� �.���� �.��E-��
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�.� Discussion

In this study, we estimated the untransmitted genetic effects of
two traits, BMI and EDU, using genetic data from first-degree
relatives in order to investigate potential family-to-offspring
causal effects.
Our motivation stemmed from the findings of PWC-MR, which
suggested a potential confounder influencing both BMI and
EDU, possibly of parental origin. Consequently, our primary
interest was in estimating parental effects on offspring, and to
do so, we needed to first estimate these untransmitted effects.

Initially, we explored methods to distinguish direct and indirect
effects, with a focus on estimating the indirect effects as a mea-
sure of rearing/environmental factors in the family. We first
tried GWAS-by-subtraction using GenomicSEM [��], given that
the data available to us was population based (encompassing
both direct and indirect effects) and within-sibship GWAS (in-
direct effects). However, the input traits (population-based and
within-sibship-based GWAS summary statistics of the same
trait) were too genetically correlated to reveal a latent trait
representing the indirect effect. Instead, we took inspiration
from Howe et al. [��], and decided to model our own GWAS
using sibling data from the UK Biobank to obtain estimates of
indirect effects instead.
In order to ensure that the family component of the GWAS
model is not correlated to the index individual’s genotype, we
instead used a two-step GWAS model, where we i) subtract
the genotype of the index sibling from the other sibling, ii)
use the residual as a variable in our GWAS model to represent
untransmitted/indirect genetic effects from the parent to the
index individual (offspring).
Our estimates showed low heritability for our two focal traits,
as expected due to their hypothesised role as primarily environ-
mentally determined rearing behaviours.

These indirect effect estimates, which were fed into genetic
correlation and causal inference analyses, shed light onto i)
whether traits such as BMI and EDU are entirely genetically
inherited, and if not ii) how the rearing environment plays a
role in shaping an offspring’s BMI and educational attainment.
Our results highlight that a high socioeconomic environment
and healthy parental diet have a favourable effect on offspring
BMI, whereas sedentary habits, such as excessive TV watching,
tend to decrease the offspring’s educational attainment.

Our work is preliminary in nature, and despite its valuable
insight into the significance of environmental and rearing factors



�.� Discussion ��

in understanding "heritable" traits, like other scientific methods,
it has its limitations:

I Our sample size of near �� thousand pairs, is relatively
small. However, this limitation arises from the scarcity
of available sibling or family-based cohorts with easy
open access. For future analyses, we aim to incorporate
family-specific data from sources such as the Estonian
biobank and the MoBa study.

I We can attempt to expand our sample beyond just sibling
pairs, by incorporating parents, cousins, uncles and aunts
as first-, second- and third-degree relatives.
However, the more relatives we add, the noisier our es-
timates may become. This is not surprising, given the
small sample sizes of these relatives, and that the further
away from the index individual that you get, the less
likely it is that you are truly estimating the untransmitted
effect between the parent of the index individual and
themselves. For example, an aunt’s genotype has a ��%
chance of being shared with the parent (its sibling), which
means there is only a ��% probability of being truly un-
transmitted between the parent and the index offspring.
A possible way to account for this would be to weigh
these estimates in relation to their (transmission) distance
from the index individual.

I Although we attempt to estimate the untransmitted ef-
fect by comparing and subtracting the genotype of two
siblings, we cannot definitively confirm whether the es-
timated indirect effect accurately represents the truly
untransmitted allele.
For a more accurate estimation, we would need to em-
ploy knowledge gained by haplotypes and their phasing,
in order to precisely identify parental alleles that were
untransmitted and estimate their indirect effects on off-
springs.

I In our step-wise MVMR analysis, the conditional F-
statistic for the most likely environmental traits through
which parental rearing acts, is less than the typically
accepted value of ��. However, this lower value may
represent a compromise between two sources of biases:
weak instrument bias vs. bias due to omitting relevant
confounders.

This ongoing project was originally conceived and designed by
Zoltán Kutalik and Gibran Hemani. Statistical analyses were
proposed by Zoltán Kutalik, Gibran Hemani and Liza Darrous
and carried out by Liza Darrous.
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�.� Minor contributions to other

publications

Ojavee et al. [��] investigated how genetic effects of age-at-
menopause can change across time by running a marginal Cox
age-specific mixed proportional hazards (CAMP) model. Their
results show that ��% of ��� associations show a form of age-
specificity, and they were able to replicate their �� novel findings
in an independent cohort. To test whether these stratified age-
at-menopause effects have a causal effect on various traits such
as BMI, cholesterol, stroke and educational attainment, I ran
bi-directional standard MR methods.

Additionally, I made contributions to the following manuscripts,
Sulc et al. [��] and Porcu et al. [��], by providing input on the
conceptual framework and analyses, and conducting thorough
proofreading.
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In the introduction of this work, I provided an overview of hu-
man genetics and its recent advancements, focusing on genome-
wide association studies of various traits and of exceedingly
larger cohorts.
GWAS have led to the discovery of thousands of genetic variants
associated with various diseases, including common complex
diseases like diabetes, heart disease, and certain cancers. These
associations could point to specific genes or biological path-
ways implicated in disease susceptibility. Knowledge of these
associations helps researchers understand the underlying mech-
anisms of diseases, which in turn, can lead to the development
of targeted therapies.
Beyond diseases, GWAS have also shed light on the genetic
underpinnings of various complex traits, including traits re-
lated to behaviour, cognition, and physical characteristics. This
has enhanced our understanding of the genetic basis of human
phenotypic diversity, and further allowed us to investigate how
complex traits are linked to each other.
During my research, I aimed to investigate causal relationships
that risk factors may have with common complex diseases by us-
ing a statistical method called Mendelian Randomisation (MR).
MR uses genetic variants as instrumental variables for the ex-
posure that they associate with, and leverages the principles of
Mendelian inheritance to estimate causal effects on an outcome
of interest, in the presence of unobserved confounding.

�.� The golden thread: confounding

The common theme in my research has been the study of model
violations biasing causal inference, and how to account for
them. Sources of model violations with respect to MR can take
many forms such as reverse causality, non-linear relationship,
over fitting, and population stratification. However, my work
focused on two specific types of violation: correlated pleiotropy
and effect heterogeneity.
I first tackled correlated pleiotropy in the form of heritable
confounding, by accounting for its presence in a typical MR
framework through LHC-MR. We developed a structural equa-
tion (mixed effect) model that accounted for the presence of
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a latent heritable confounder of an exposure-outcome rela-
tionship, in order to estimate unbiased bi-directional causal
effects between the two traits. LHC-MR had an advantage over
standard MR methods, in that it used whole-genome SNPs
instead of GWS SNPs only. This allowed it to have more power
to detect causal relationships between traits otherwise missed
by standard MR methods, as well as detect the presence of
latent heritable confounders of trait pairs.
LHC-MR however, was limited by certain assumptions about
the genetic architecture of traits (two-component Gaussian mix-
ture of effect sizes), and that of a single general confounder
of the exposure-outcome relationship. Indeed, for some trait
pairs, we found a significant effect of the confounder on either
the exposure or the outcome alone, hinting at a more complex
genetic architecture for that trait than a two-component Gaus-
sian mixture of effects. Any potential latent confounder might
have been missed in this case, if it had a small effect on the trait
pair.

Furthermore, although we attempted to identify potential traits
that fit as confounders for some of our trait pairs, we could
not accurately distinguish if there was a single confounder trait
or multiple, with either concordant or discordant effects on
the trait pair. While simulations we conducted revealed more
accurate causal effect estimation between trait pairs with two
confounders (either discordant or concordant) when compared
to standard MR, LHC-MR itself could not identify the specific
potential confounders.
Lastly, we also assumed that the correlation (across markers)
between the direct effect of a genetic variant on the exposure,
outcome and latent confounder is zero, i.e. the effects on each are
independent. This assumption caused LHC-MR to be incapable
of detecting parental/dynastic effects as potential confounders
of possible trait pairs, as dynastic effects are correlated/share
genetic markers with the exposure or outcome trait.

Given the above-mentioned limitations, we then attempted to
extended LHC-MR’s concept of classifying SNPs into those
with a direct effect on an exposure and those that act through a
confounder, to classifying SNPs into multiple different groups
based on their association profile across several other traits.
Generally, MR has presented bias stemming from heterogeneous
causal effects through various distinct pathways, and bias
due to confounding of the instrument-outcome association
as distinct mechanisms. In this study, we aimed at softening
the homogeneous causal effect assumption of MR, by utilising
an approach based on pheWAS-based clustering which can
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categorise instruments into distinct groups based on their
association profile across several other traits, independently of
their causal effect on any single trait. Some of these groups may
represent different exposure subtypes or mechanisms through
which the exposure exerts its effect, while others can include
IVs primarily associated with confounding factors.

Using PWC-MR, we investigated BMI as an exposure and
grouped its GWS SNPs based on their association to ⇠400 UK
Biobank traits using K-means clustering.
This revealed � SNP clusters, some of which were enriched
for distinct traits that highlighted the mechanisms through
which BMI can be modulated; body-related measurement traits,
food supplements/nutrients, and SEP-related traits. Estimating
the individual causal effects of each cluster on EDU revealed
significantly heterogeneous causal effect estimates. This varia-
tion in estimates reinforced our suspicion that the MR causal
estimate of BMI on EDU tends to be overestimated when us-
ing population-based estimates of SNP effect sizes, primarily
because of the presence of confounding factors.

Our findings have two significant implications: �) The cluster
of IVs related to lean mass suggests that the causal effect of
BMI on EDU is nearly negligible, �) we have also uncovered
that IVs related to SEP indicate a substantial negative impact of
BMI on EDU. One likely explanation for the observed bias is
dynastic effect via parental SEP traits acting as confounders on
both offspring adult EDU and adult BMI.
This hypothesis is supported by the findings of Howe et al.
[��], where assortative mating, dynastic effects and population
stratification were all accounted for in their sib-design, and
their within-sibship GWAS effects revealed a non-significant
MR causal effect of BMI on EDU: -�.�� (��% CI: -�.��, -�.��).

Despite our best efforts to be impartial when it came to pheWAS
based clustering, by obtaining BMI SNP associations with as
many traits as possible, while still filtering out traits that were
strongly correlated with the exposure BMI to avoid redundancy
and self causation, our method still has its limitations.
Our ability to create informative clusters of IVs is constrained by
the availability of traits that have PheWAS data. This limitation
could result in an inability to identify key pathways, potentially
causing us to overlook clusters that represent significant sub-
groups related to mediators, sub-phenotypes, or confounding
factors.

Another potential limitation pertains to our use of only GWS
SNPs as exposure-IVS for clustering. This differs from the
approach employed in LHC-MR, where genome-wide SNPs
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are utilised as input. It would be interesting to test the possible
clustering difference when leveraging information from more
IVs, by decrementing the threshold used to filter for exposure-
associated IVs. We would still need to ensure that the SNPs
are primarily exposure-associated, by performing a trait-wide
variant of Steiger-filtering.
However, we would also need to find a balance between the
number of IVs used for clustering, and the potential to increase
noise when IVs with smaller associations are used, or those
with false positive exposure-associations.

PWC-MR was a logical continuation of LHC-MR, whereby
we attempted to biologically interpret the pleiotropic effects
observed between pairs of traits by considering the influence of
potential confounding traits.
However, moving forward, we could benefit immensely from
the secondary analysis carried out in PWC-MR; where we
systematically searched for several candidate confounder traits
and measured their causal effect on EDU conditionally on each
other and on our focal exposure trait, BMI, using MultiVariable
MR.

�.� Moving forward: MVMR and its
caveats

In an ideal scenario, we would preselect known confounder
traits and have sufficiently large sample sizes for selecting
strongly associated IVs to be used in a MVMR, enabling us to
properly disentangle confounding from the causal effects be-
tween our focal trait pair. There would be no need for additional

Figure �.�: A simplified multi-
variable Mendelian randomisa-
tion (MVMR) model with two
exposures. ⌧ represents a group
of IVs, each associated with at
least one of the two exposures. The
line between the first exposure -1,
and the second -2 is bidirectional
and dashed as no assumptions are
made about this relationship in
the estimation of their respective
causal effects, �1 and �2, on the
outcome (.). Confounders*1 and
*2 are assumed to be unknown.
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The causal effect of an exposure
on an outcome, including any ef-
fect through potential mediators,
is known as the total effect. This
can be decomposed into direct ef-
fect of the exposure on the out-
come, and indirect effect of the ex-
posure on the outcome operating
through the mediators included
in the model

MR analysis such as outlier removal, instrument clustering, or
modelling of latent heritable confounder(s).

MVMR is a powerful method with the potential to provide
valuable insights into causal relationships. It allows us to ac-
count for confounding and mediating variables, while assessing
the causal effects of multiple exposures simultaneously and
conditionally, as seen in Figure �.�.
Burgess and Thompson [��] show how MVMR can be im-
plemented as an extension of IVW, using GWAS summary
estimates of the association between SNP 9 and the outcome
�̂9 , the first exposure ˆ✏1, 9 , and the second exposure ˆ✏2, 9 . This is
done by regressing the effect of each SNP on the outcome (�̂),
on the effect of each SNP on each exposure (✏̂), i.e. by fitting
the following model:

�̂9 = �1 ˆ✏1, 9 + �2 ˆ✏2, 9 + & 9

Weighted by the inverse variance of �̂9 , and where & 9 is a random
error term for each SNP.

Whether -2’s relationship towards -1 was that of a confounder
or a collider (in this case, both -1 and . would have an effect
on -2), the direct effect of -1 on. estimated by MVMR is equal
to the total effect of -1 on . estimated through standard MR
using IVs that are strictly associated to -1.
However, if -2 was a mediator of -1, a complication arises,
whereby the direct effect estimated by MVMR is not equal to the
total effect of -1 on . (�1 + ��2, where � is the mediation effect
of -1 on -2) estimated by standard MR using -1-associated
IVs. In this scenario, the mediation effect could in theory be
estimated as the difference between the total and the direct effect
of -1 on .; given that the exclusion restriction assumption is
valid, and there are no IVs acting on the outcome except through
-1.

The benefit of MVMR has been demonstrated in several studies,
where it helped in :

I investigating the causal relationships between multiple
lipid traits (e.g., LDL cholesterol, HDL cholesterol, triglyc-
erides) and cardiovascular disease outcomes. MVMR
studies [��, ��] have helped clarify the role of different
lipid components in heart disease risk, contrasting results
from observational analysis.

I exploring the causal effects of obesity-related traits (e.g.,
body mass index, waist-to-hip ratio) on circulating lipopro-
tein, lipid, and metabolite levels. Here, MVMR [��]
showed that excess adiposity likely raises atherogenic
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lipid and metabolite levels exclusively via adiposity stored
centrally.

I separating the effects of early- and later-life adiposity
on disease risk. MVMR studies [��–��] suggested that
childhood body size does not directly influence outcomes
such as coronary artery disease and type � diabetes, but
rather only has an effect via adulthood body size.

However, we have yet to reach an ideal scenario and thus MVMR
has its own limitations and assumptions. These include exten-
sions of the three core assumptions of standard MR (accounting
for multiple exposures), and its success in revealing true di-
rect causal effects can be limited by factors such as pleiotropy,
measurement error, sample size, the presence of unmeasured
confounders, and others as detailed below:

I Assumption of no pleiotropy: MVMR analysis assumes
that the genetic variants used as instruments are not
pleiotropic, meaning that they do not affect the outcome
through pathways other than the exposure of interest. In
other words, all traits that are potentially involved with
the outcome should be used as exposures.

I Limited statistical power: MVMR analysis requires a large
sample size to achieve sufficient statistical power to detect
multiple causal effects. However, the number of genetic
variants available as instruments for each exposure may
be limited, reducing the statistical power of the analysis.

I Limited ability to control for confounding: MVMR analy-
sis can only control for measured confounders that are
included in the analysis. Unmeasured confounders may
still bias the estimates of the causal effect if they are also
associated with the IVs.

I Directionality and interactions: MVMR assumes clear
directionality and linear relationships between exposures
and outcomes. If the relationships are bidirectional, non-
linear, or involve feedback loops, MVMR may not provide
valid estimates.

I Assumption of no measurement error: MVMR analysis
assumes that the genetic variants used as instruments
are not subject to measurement error. However, this as-
sumption may not hold true in some cases, leading to
regression dilution bias.

To perform an MVMR analysis, it is essential to have a mini-
mum number of genetic instruments equal to the number of
exposures to be instrumented in the model. It is also beneficial,
as per the first assumption, to include as many (pleiotropic)
traits as possible.
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However, a delicate balance between selecting strongly associ-
ated IVs and relevant exposures needs to be achieved. The more
exposures we include, the more IVs are selected. However, if
these exposures are not all related, there is a possibility that
some IVs will have strong(er) effects on select exposures, and
weak effects on the unrelated exposures. To reduce the noise that
arises from using IVs with small effects on secondary exposures,
we could implement instrument shrinkage, where we shrink
the effects of IVs on traits that fall below a certain threshold
to zero. Another challenge faced is the clumping method used
to choose between correlated IVs that are considered primary
SNPs for different exposures.

Furthermore, we can test the association strength of the instru-
ments of each exposure, conditionally, in the presence of other
exposures in the model by calculating the conditional F-statistic
[��]. This statistic provides an indicator of the strength of an
exposure’s IVs relative to the sample size and the number of
IVs. A common threshold is an F-statistic greater than ��, which
is considered indicative of strong instruments (average bias of
the MVMR estimates is ��%).
Researchers can use the conditional F-statistic to guide their
selection of IVs that are strong instruments for a particular
exposure, allowing for more robust MVMR analyses.

However, the conditional F-statistic can also be used for trait
selection when having a focal exposure trait and multiple other
secondary pleiotropic traits. The conditional F-statistic of the
focal trait calculated based on different inclusion-combinations
of secondary traits in the model will vary; generally, the more
traits included in the model, the lower the value for the focal trait
is, due to added noise. When this value falls below a selected
threshold, it indicates that the secondary traits included, which
could be either mediators or even the true focal exposure,
are tagging the selected focal exposure equally well. Thus,
including too many such traits, could cause the MVMR to
underestimate the true and direct causal effect of our focal trait
on the outcome.

All of these considerations were taken into account when con-
ducting our MVMR analysis in PWC-MR. We even implemented
an additional trait filtering step by running step-wise MVMR
inspired by the bGWAS package [��].
This was done by first running univariate MR between all the
candidate exposure traits and the outcome. Then, the exposure
traits with significant causal effects were added to the MVMR
model in a stepwise manner, ensuring that each addition was
significant with an estimate P-value below a pre-specified thresh-
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old. Finally an MVMR model was run with all the surviving
traits included, and the focal exposure trait among them.

�.� Future works: Using haplotype data
for indirect genetic effect estimation

As discussed in Section �.�, one of the limitations we face when
estimating indirect effects using individual level genetic data
of siblings, was the inability to verify that the indirect effect
estimated is that of the truly untransmitted allele or not.
We see in Figure �.�, two examples of this limitation, where the
true inheritance of alleles between parents and two siblings, is
shown. Both scenarios demonstrate how the estimated untrans-
mitted allele dosage obtained from the sibling genotypes is not
accurate when it comes to the true dosage of untransmitted
parental alleles. In our previous analysis, we were arbitrarily
associating the phenotype of each sibling with an average of the
possible untransmitted allele dosage given the different possible
transmission scenarios, without knowing the true underlying
one.
However, a more accurate estimation can be obtained if we lever-
age the information gained from haplotype phasing to precisely
identify the unstransmitted allele from parent to offspring, and
correctly associate it with the phenotype.

Figure �.�: Graph representation
of transmitted and untransmit-
ted parental alleles onto siblings.
a shows scenario �, where the T
allele of sibling � is inherited from
parent �, leaving the A allele to be
untransmitted. b shows scenario
� where the A allele of parent � is
inherited by sibling �, leaving the
T allele to be untransmitted.

Haplotype phasing is the process of determining the specific
combination of alleles that are inherited together on a single
chromosome from one parent. With pedigree phasing, we infer
the haplotypes of individuals within a family based on their
familial relationships and genetic data (see the top panel of
Figure �.�). When a trio (parents and offspring) is available, the
genetic data from parents and their offspring can be used to
directly infer the haplotypes of each parent, and thereby phase
the offspring’s haplotypes.
However, other family members and their genetic relation-
ships can also contribute to phasing; siblings, cousins, and
other extended family members can provide information about
shared haplotypes and genetic linkages. Interestingly, the pro-
cess of pedigree phasing can be flipped, in what is known as
reverse-pedigree phasing, to infer the set of transmitted and
untransmitted alleles (bottom panel of Figure �.�).
Reverse-pedigree phasing uses the genotype of the offspring
as a reference to phase the genotype of the parents and then
extract the set of untransmitted alleles of each.
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However, in the case where parental genomes are not available,
we can use sibling pairs to identify untransmitted alleles by
mapping IBD segments. Shared IBD segments are transmitted
from either of the parents, however segments that are not shared
between the siblings indicate untransmitted alleles from one
parent, with respect to a specific sibling, as seen in Figure �.�.
In this scenario, with sibling � as reference, we can determine
which alleles were untransmitted by observing the regions that
are not shared between the siblings in sibling � (shown in grey).
These regions could be diploid for some alleles, meaning that
neither alleles on either chromosomes are shared with sibling
�. This makes it difficult to predict the untransmitted allele for
sibling �.
The regions could be haploid, meaning one allele in that locus
is known and shared with sibling �. In this case, the missing
allele can be predicted using population allele frequency and
regarded as the untransmitted allele of sibling �.

Figure �.�: Graphical representa-
tion of pedigree haplotype phas-
ing and reverse pedigree haplo-
type phasing. Top panel shows
haplotype phasing of offspring
genomes using parental genomes.
Bottom panel shows reverse hap-
lotype phasing using offspring
genome to extract untransmitted
alleles from the parents (high-
lighted in red and blue). Adapted
from Robin Hofmeister.

The same technique of IBD mapping followed by allele in-
ference can be used for second degree relatives (aunt/uncle,
niece/nephew etc...) to determine the untransmitted alleles
of individuals. However, given the one degree of separation
with respect to the index individual’s parent (aunt/uncle to
parent), the estimates ought to be weighed by half, since there is
a ��% chance that the suspected untransmitted allele is shared
between the parent and the relative.
Similarly, for third degree relatives, i.e. first cousins. An ad-
ditional step in this scenario would be to determine the chro-
mosome that belongs to the same family as that of the index
individual, in order to then identify the haplotype inherited
from common ancestor by IBD mapping. This is then followed
by the same weighting scheme.

Once the untransmitted alleles of the index individual (⌧8D) are
identified, we can repeat our previous analysis of estimating
the indirect effects on an individuals phenotype (.8).

.8 ⇠ ⌧8 + Miu + 0648 + 0642
8
+ B4G8 + %⇠18 + ... + %⇠408

Future work can also benefit from obtaining a larger sample
size of relatives, by incorporating data from biobanks such as
the Estonian biobank, and the MoBa study in addition to the
UK Biobank.
Furthermore, although we began the analysis using two focal
traits; BMI and EDU, we can estimate the indirect effects of
other traits which are suspected of having an indirect or envi-
ronmental component, such as age at first birth.
Our investigation into the causal relationship that parental/-
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family effects have on offspring traits (estimated untransmitted
effects) can also benefit from curating more traits to be used
as exposures in MR. This can include food-liking traits[��], or
more specific SEP-proxy and social traits.

Figure �.�: Graphical represen-
tation of IBD mapping between
sibling pairs. Chromosomal areas
in grey are not shared between ei-
ther sibling. Taking sibling � as
reference, grey areas on either
chromosome for sibling � that are
not shared could be either diploid
for unknown alleles or haploid.
Adapted from Robin Hofmeister.

�.� Conclusion

In summary, the field of statistical genetics has undergone
significant changes in recent years. There has been a notable
increase in the number of GWAS studies, accompanied by much
larger sample sizes. This shift has fundamentally improved our
capacity to understand the genetic foundations of complex
traits. It has also enhanced the accuracy of our genetic analyses,
allowing us to gain a deeper understanding of the genetic
factors contributing to various traits, and the interplay amongst
these traits.

Moreover, Mendelian Randomisation (MR) has emerged as a
powerful tool for causal inference, surpassing the limitations
of traditional observational studies and randomised control
trials. MR has not only provided a framework for causal anal-
ysis but has also evolved through multiple innovative exten-
sions tackling its various assumption violations, including two
such methods presented in this thesis, LHC-MR and PWC-MR,
which enabled us to explore pleiotropic effects and potential
confounders while improving the estimation of causal effects
between traits.
While MR can be applied to virtually any pair of traits, the true
value of the results emerges when we consider the broader
biological context. It’s imperative to ask questions about the
relationship between these traits: Are there potential mediators
that link them? Could unaccounted confounding factors dis-
tort our causal estimates? Is there any potential collider bias
emerging due to the data collection or pre-processing methods
used?
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To better understand the complex web of cause-and-effect re-
lationships, including what influences them and what might
introduce biases, we can use Multivariable MR (MVMR). By
extending beyond exposure-outcome pairs and incorporating
multiple traits or trait components as exposures, MVMR allows
us to disentangle true causal effects from the influence of con-
founders or mediators within a network of traits, providing us
with a more holistic view on complex biological relationships.

In recent years, there has been a growing recognition within
the scientific community regarding the advantages of incorpo-
rating family-based designs into GWAS. One of the primary
advantages is the ability to obtain direct genetic effects, which
can produce unbiased estimations of heritability and causal
effects. Furthermore, family-based designs provide a unique
opportunity to investigate indirect genetic effects. These effects
capture the influence of one individual’s genetics on the traits of
another individual, often within a family context. For instance,
researchers can explore how parental genetic factors play a role
in shaping the traits of their offspring. This extends beyond the
direct transmission of genetic information to encompass the
complex interplay of genetic, environmental, and behavioural
factors within families.

In conclusion, the convergence of several key factors – the
rapid expansion of GWAS, the adaptable nature of MR and its
innovative extensions, and the rigorous scrutiny of confounders
and trait relationships in genetic investigations – has ushered the
field of statistical genetics into an era of unparalleled exploration.
These strides in genetic research provide a pathway towards a
more precise and comprehensive understanding of the genetic
(and environmental) underpinnings of complex traits and their
causal associations.
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Figure �.�: QQ-plot and Manhattan plot for untransmitted BMI and EDU effects (meta-analysed sibling effects).
a QQ-plot of GWAS P-values. b Manhattan plot of selected SNPs with �;>610(%) � 2.
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Figure �.�: Forest plot of the genetic correlation of both BMI and EDU across ⇠190 other traits. The effects of both BMI and EDU
come from � different sources of GWAS: population-based, within-sibship, sibling meta-analysed indirect effects. The effects of other
traits all come from population-based GWAS. ��% confidence intervals are shown as error bars. Points that are not filled indicate a
non-significant genetic correlation estimate.



Appendix A: Simultaneous estimation of
bi-directional causal effects and heritable
confounding from GWAS summary
statistics

This article is presented in chapter �.�.
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Mendelian Randomisation (MR) is an increasingly popular approach that estimates the causal

effect of risk factors on complex human traits. While it has seen several extensions that relax

its basic assumptions, most suffer from two major limitations; their under-exploitation of

genome-wide markers, and sensitivity to the presence of a heritable confounder of the

exposure-outcome relationship. To overcome these limitations, we propose a Latent Heri-

table Confounder MR (LHC-MR) method applicable to association summary statistics, which

estimates bi-directional causal effects, direct heritabilities, and confounder effects while

accounting for sample overlap. We demonstrate that LHC-MR outperforms several existing

MR methods in a wide range of simulation settings and apply it to summary statistics of 13

complex traits. Besides several concordant results with other MR methods, LHC-MR unravels

new mechanisms (how disease diagnosis might lead to improved lifestyle) and reveals new

causal effects (e.g. HDL cholesterol being protective against high systolic blood pressure),

hidden from standard MR methods due to a heritable confounder of opposite effect direction.
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The identification of frequent risk factors and the quantifi-
cation of their impact on common diseases is a principal
quest for public health policy makers. Epidemiological

studies aim to address this issue, but they are most often based on
observational data due to their abundance over the years. Despite
major methodological advances, a large majority of such studies
have inherent limitations and suffer from confounding and
reverse causation1,2. For these reasons, many of the reported
associations found in classical epidemiological studies are mere
correlates of disease risk, rather than causal factors directly
involved in disease progression. Due to this, additional evidence is
required before developing public health interventions in a bid to
reduce the future burden of diseases. While well-designed and
carefully conducted randomised control trials (RCTs) remain the
gold standard for causal inference, they are exceedingly expensive,
time-consuming, may not be feasible for ethical reasons, and have
high failure rates3,4.

Mendelian randomisation (MR), a natural genetic counterpart
to RCTs, is an instrumental variable (IV) technique used to infer
the strength of a causal relationship between a risk factor (X) and
an outcome (Y)5. To do so, it uses genetic variants (G) as
instruments and relies on three major assumptions (see Supple-
mentary Fig. 1): (1) Relevance—G is robustly associated with the
exposure. (2) Exchangeability—G is not associated with any
confounder of the exposure-outcome relationship. (3) Exclusion
restriction—G is independent of the outcome conditional on the
exposure and all confounders of the exposure-outcome relation-
ship (i.e. the only path between the instrument and the outcome
is via the exposure).

The advantage of the MR approach is that for most heritable
exposures, dozens (if not hundreds) of genetic instruments are
known to date thanks to well-powered genome-wide association
studies (GWASs). Each instrument can provide a causal effect
estimate, which can be combined with others, by using an inverse
variance-weighting (IVW) scheme (e.g. Burgess et al.6). However,
the last assumption is particularly problematic, because genetic
variants tend to be pleiotropic, i.e. exert effect on multiple traits
independently. Still, it can be shown that if the instrument
strength is independent of the direct effect on the outcome
(InSIDE assumption) and the direct effects are on average zero,
IVW-based methods will still yield consistent estimates. Methods,
such as MR-Egger7, produce consistent estimates even if direct
effects are allowed to have a non-zero offset. The third assump-
tion can be further reduced to assuming that >50% of the
instruments (or in terms of their weight) are valid (median-based

estimators8) or that zero-pleiotropy instruments are the most
frequent (mode-based estimators9).

The InSIDE assumption (i.e. horizontal pleiotropic effects
(G→ Y) are independent of the direct effect (G→ X)) is rea-
sonable if the pleiotropic path G→ Y does not branch off to X.
However, if there is such a branching off, the variable repre-
senting the split is a confounder of the X− Y relationship and we
fall back on the violation of the second assumption (exchange-
ability), making it the most problematic. Therefore, in this paper,
we extend the standard MR model to incorporate the presence of
a latent (i.e. unmeasured) heritable confounder (U) and estimate
its contribution to traits X and Y, while simultaneously estimating
the bi-directional causal effect between the two traits. Standard
MR methods are vulnerable to such heritable confounders, since
any genetic marker directly associated with the confounder may
be selected as an instrument for the exposure. However, such
instruments will have a direct effect on the outcome that is cor-
related to their instrument strength, violating the InSIDE
assumption and biasing the causal effect estimate.

In this paper, we first introduce the extended MR model and
derive the likelihood function for the observed genome-wide
summary statistics (for X and Y). We then test and compare the
method against conventional and more advanced (such as
CAUSE10 and MR-RAPS11) MR approaches through extensive
simulation settings, including several violations of the model
assumptions. Finally, the approach is applied to association
summary statistics (based on the UK Biobank and meta-analysis
studies) of 13 complex traits to re-assess all pairwise bi-
directional causal relationships between them.

Results
Overview of the method. We set up a structural equation model
(SEM) (Fig. 1) and derived how its parameters are linked to
genome-wide association summary statistics of two studied
complex traits. We then maximised the resulting likelihood
function in order to estimate bi-directional causal effects between
them (for details see Methods), in addition to inferring direct
heritabilities for X and Y, confounder effects, cross-trait and
individual trait LD-score intercepts and the polygenicity for X
and Y. All SNPs associated with the heritable confounder (U) are
indirectly associated with X and Y with effects that are propor-
tional (ratio qy/qx). SNPs that are directly associated with X (and
not with U) are also associated with Y with proportional effects
(ratio 1/αx→y). Finally, SNPs that are directly Y-associated are
also X-associated with a proportionality ratio of 1/αy→x. These
three groups of SNPs are illustrated on the βx-vs-βy scatter plot
(Supplementary Fig. 2). In simple terms, the aim of our method is
to identify the different clusters, estimate the slopes and distin-
guish which corresponds to the causal- and confounder effects. In
this paper, we focus on the properties of the maximum likelihood
estimates (MLEs) (and their variances) for the bi-directional
causal effects arising from our SEM.

Simulation results. We started off with a realistic simulation
setting of 234,000 SNPs on chromosome 10 (LD patterns used
from the UK10K panel) and 50,000 samples for both traits. Traits
X, Y and confounder U had average polygenicity (πx= 5 × 10−3,
πy= 1 × 10−2, πu= 5 × 10−2), with substantial direct heritability
for X and Y (h2x ¼ 0:25; h2y ¼ 0:2), mild confounding on X and Y

(tx= 0.16, ty= 0.11, where tx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2u " q2x

q
and ty ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2u " q2y

q
),

and a causal effect between X and Y (αx→y= 0.3, αy→x= 0). Note
that with these settings, SNPs associated with U would violate the
InSIDE assumption but might still be used by conventional MR
methods. Under this standard setting, there were no genome-

Fig. 1 Schematic representation of the extended structural equation
model (SEM). X and Y are two complex traits under scrutiny with a latent
(heritable) confounder U with causal effects qx and qy on them. G
represents genetic variants, with effects γx, γy and γu, respectively. Traits X
and Y have causal effects on each other, which are denoted by αx→y and
αy→x.
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wide significant SNPs for standard MR methods, and estimates
derived using SNPs with a p-value < 5 × 10−6 showed a down-
ward bias for all MR methods (Fig. 2a). MR-RAPS using filtered
SNPs (p-value < 5 × 10−4) was similarly downward biased
whereas MR-RAPS using the entire set of SNPs was upward
biased with the least amount of variance compared to all methods
including LHC-MR. LHC-MR in this scenario slightly over-
estimated the causal effect in comparison but had the smallest
RMSE after MR-RAPS (0.13 vs 0.06, Supplementary Data 1).

We ran all our simulation scenarios with a smaller and a larger
sample size (50,000 and 500,000) and observed that the relative
performance of the methods were in some cases sample size
specific. Smaller sample sizes often meant that standard MR
methods had little to no IVs reaching genome-wide (GW)
significance and hence we were forced to use IVs from less
stringent thresholds ( < 5 × 10−4 and < 5 × 10−6). Therefore, the
causal effects were estimated with a substantial downward bias
due to weak instrument bias (and winner’s curse). LHC-MR in
these cases was able to estimate the causal effect with less bias but
with a larger variance compared to most standard MR methods—
still outperforming them in terms of RMSE in most settings. In
the larger sample size setting, standard MR methods had IVs for
every threshold cutoff. However, a pattern also observed with
smaller sample sizes—but to a lesser extent—emerged, where the
causal estimates of some methods changed (either in mean or in
variance, most noticeably observed in weighted median and
IVW) as the threshold became more stringent. This is of
particular concern and highlights that while in this simulation
setting the 5 × 10−8 threshold may have optimally cancelled out
the different biases for IVW (downward bias due to winner’s
curse and weak instrument bias, upward bias due to genetic
confounding), its estimate remains strongly setting-dependent.
LHC-MR performed reasonably well, exhibiting lower RMSE
than most other methods, except for IVW and MR-RAPS for the
5 × 10−4 threshold (Supplementary Fig. 4a). However, we
observed that the performance of MR-RAPs is particularly setting
and threshold dependent.

Furthermore, unequal sample sizes for the two traits showed an
underestimation of the causal effects for almost all MR methods,
while LHC-MR remained the most accurate in the case where nx
(50,000) was smaller than ny (500,000). However, the perfor-
mances in the reverse scenario, where nx was larger in size, were
akin to the large sample size standard setting, where only IVW
and filtered MR-RAPS (<5 × 10−4) showed superior performance
to LHC-MR both in terms of bias and variance (see Supplemen-
tary Fig. 5).

When testing scenarios in the absence of a causal or a
confounder effect (imitating the classical MR assumptions), with
a smaller causal effect (αx→y= 0.1), or with both forward- and
reverse causal effects, we note that LHC-MR outperforms the
standard MR methods as well as MR-RAPS in all these scenarios.

When there was no causal effect (αx→y= 0), LHC-MR had the
smallest bias out of all the methods in both sample sizes (0.004 in
both, Supplementary Fig. 6a and Supplementary Fig. 7a). The
variance of the LHC-MR estimates in the larger sample size was
much lower (0.0001 vs 0.01), similarly the other methods had a
smaller variance in the larger sample size and had more clearly
seen upward biased estimates. The increased upward bias of
standard MR methods is due to the fact that confounder-
associated SNPs could only be detected in the larger sample size
and those lead to positive bias (due to the concordant effect of the
confounder on the two traits). Note that the variances of standard
MR methods are low simply because, in these settings, we were
forced to lower the instrument selection threshold, hence
artificially included many (potentially invalid) instruments, which
lowers the estimator variance while increasing bias. MR-RAPS

greatly overestimates the causal effects when the sample size is
larger.

In the absence of a confounder effect, there is not much of a
difference between the two sample sizes; standard MR methods
have a large variance and are downward biased, LHC-MR is less
biased compared to them but MR-RAPS performs best with the
least bias and variance when all the SNPs are used as instruments
(Supplementary Fig. 6b and Supplementary Fig. 7b). Trying a
smaller causal effect led to an upward bias for all MR methods
including both filterings of MR-RAPS in the larger sample size.
Alternately, when nx= ny= 50, 000, the MR methods are down-
ward biased (Supplementary Figs. 6c and 7c). Lastly, when a
(negative) reverse causal effect is introduced, all MR methods and
MR-RAPS are negatively biased in their estimation of the causal
effect (see Fig. 2b). LHC-MR has a much smaller bias for the
forward causal effect estimate in this case, and a generally small
bias for the reverse causal effect in both sample sizes (0.05 for
n= 50, 000 and 0.03 for n= 500, 000, Supplementary Fig. 4b).

Increasing the indirect genetic effects, by intensifying the
contribution of the confounder to X and Y (tx= 0.41, ty= 0.27),
led to a general overestimation of the causal effects by all methods
including LHC-MR, though more drastically seen in standard MR
methods and MR-RAPS in the larger sample size, when there is
sufficient power to pick up these confounder-associated SNPs. The
causal effect estimates of standard MR methods in the smaller
sample size were much less affected by the presence of a strong
confounder compared to LHC-MR and MR-RAPS (Supplementary
Fig. 8). The reason for this is that the confounder-associated SNPs
remain undetectable at lower sample size and hence instruments
will not violate the classical MR assumptions.

Further testing the effects of the confounder trait on the causal
estimation, we tested the impact of confounders with opposite
effects on X and Y. We observe a major underestimation of the
causal effects for standard MR methods as well as MR-RAPS,
whereas LHC-MR performs better for both sample sizes
(RMSE= 0.01 and 0.1 for larger and smaller n respectively), see
Fig. 2c and Supplementary Fig. 4c.

Our LHC-MR method is influenced by the unlikely scenario of
extreme polygenicity for traits X, Y and U, and it suffers from
increased bias and variance regardless of sample size (see
Supplementary Fig. 9). Standard MR methods as well as filtered
MR-RAPS underestimated the causal effect when n= 50, 000. Some
also underestimated αx→y when n= 500, 000, with the exception of
IVW, Mode and filtered MR-RAPS, that outperformed the rest.
Decreasing the proportion of confounder-associated SNPs to 1%
only, does not seem to affect our method and shows similar results
to the standard setting (Supplementary Fig. 10).

Furthermore, we simulated summary statistics, where (contrary
to our modelling assumptions) the X− Y relationship has two
confounders, U1 and U2. When the ratio of the causal effects of
these two confounders on X and Y (qð1Þy =qð1Þx and qð2Þy =qð2Þx ,
respectively) agreed in sign, the corresponding causal effects of
standard MR methods were overestimated in the larger sample
size and, conversely, underestimated in the smaller sample size
(Supplementary Figs. 11a and 12a). LHC-MR and weighted
median performed better however in the larger sample size and
had a bias of 0.03 and 0.07, respectively. However, when the signs
were opposite (qð1Þx ¼ 0:3; qð1Þy ¼ 0:2 for U1 and qð2Þx ¼ 0:3; qð2Þy ¼
%0:2 for U2), conventional MR methods and MR-RAPS in this
case almost all underestimated the causal effect regardless of
sample size. LHC-MR outperformed them both in the larger
sample size (bias of 0.007) and in the smaller sample size (bias of
−0.003), see Supplementary Figs. 11b and 12b.

Finally, we explored how sensitive our method is to different
violations of our modelling assumptions. First, we simulated
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Fig. 2 Simulation results under various scenarios. These modified Sina-boxplots represent the distribution of parameter estimates from 50 different data
generations under various conditions. For each generation, standard MR methods as well as our LHC-MR were used to estimate a causal effect. In the
boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker is
the largest dataset estimate smaller than 1.5×inter-quartile range above the third quartile. The lower whisker is defined analogously. The true values of
the parameters used in the data generations are represented by the blue dots/lines. a Estimation under standard settings (πx ¼ 5 ´ 10%3; πy ¼ 1 ´ 10%2;

πu ¼ 5 ´ 10%2; h2x ¼ 0:25; h2y ¼ 0:2; h2u ¼ 0:3; tx ¼ 0:16; ty ¼ 0:11). b Addition of a reverse causal effect αy→x=−0.2. c Confounder with opposite causal
effects on X and Y (tx= 0.16, ty=−0.11).
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summary statistics when the underlying non-zero effects come
from a non-Gaussian distribution. Interestingly, we observed that,
for the smaller sample size, the variance of the causal effect
estimate was dependent on the kurtosis for most MR methods.
LHC-MR estimations yielded slightly more pronounced upward
bias than IVW, while still exhibiting the lowest RMSE among all
methods (Fig. 3a). Similar results are seen in the larger sample
size with smaller variance for all methods under all degrees of
kurtosis except for IVW, which showed a better performance
than LHC-MR (Supplementary Fig. 13a). Second, we simulated
effect sizes coming from a three-component Gaussian mixture
distribution (null/small/large effects), instead of the classical
spike-and-slab assumption of our model. The smaller sample size
estimates mirror those of the standard setting with n also equal to
50,000 (see Fig. 3b). However, in the larger sample size, LHC-MR
overestimates the causal effect. This bias could be due to the
merging of true effect estimates with confounder effect leading to
an overestimation of αx→y (Supplementary Fig. 13b). MR-Egger,
IVW and filtered MR-RAPS have the smallest RMSE in this case.

Comparing CAUSE and LHC-MR. When running CAUSE on data
simulated using the LHC-MR model framework in order to esti-
mate a causal effect (γ in their notation), we investigated three
different scenarios, each with multiple data generations: one where
the underlying model has a shared factor/confounder with effect
on both exposure and outcome only, another where the underlying
model has a causal effect of 0.3 only, a third where the underlying
model has both a causal effect and a shared factor. The data
generated using the LHC-MR model was done under the standard
settings (πx= 5 × 10−3, πy= 1 × 10−2, πu= 5 × 10−2, h2x ¼ 0:25;
h2y ¼ 0:2; h2u ¼ 0:3, tx= 0.16, ty= 0.11, αx→y= 0.3, αy→x= 0, m=
234, 000, nx= ny= 50, 000). For each setting, 50 different replica-
tions were investigated.

In the case of an underlying shared effect only, CAUSE preferred
the sharing model 100% of the time, and thus there was no causal
estimation, however it underestimated both η and q. When there
was an underlying causal effect only, CAUSE preferred the causal
model only 4% of the times, where it slightly underestimated the
causal effect (bγ ¼ 0:241). Although the true values of η and q are
null in this scenario, the sharing model returned estimates for these
two parameters overestimating them both (probably driven by their
priors), as seen in Supplementary Fig. 14. In the third case, and in
the presence of both, CAUSE preferred the sharing model in 48 of
the 50 simulations, yet it underestimated η (corresponding to ty/tx
for our model) but overestimated q (t2x=ðt

2
x þ h2xÞ in our model)

(mean of 0.566 and 0.222, respectively, where the true values are
0.667 and 0.097) showing a similar estimation pattern to the second
case. Interestingly, for the larger sample size, CAUSE selects the
correct model 100% of the time, but still underestimates γ, as shown
in Supplementary Fig. 15.

In the reverse situation, where data was generated using the
CAUSE framework (with parameters h1= h2= 0.25,m= 97,
450,N1=N2= 50, 000) and LHC-MR was used to estimate the
causal effect, we saw the following results (see Supplementary
Fig. 16). First, when we generated data in the absence of causal
effect (γ ¼ 0; η ¼

ffiffiffiffiffiffiffiffiffi
0:05

p
; q ¼ 0:1), CAUSE does extremely well

in estimating a null causal effect 100% of the time. Standard MR
methods yield a slight overestimation of the (null) causal
effect with varying degrees of variance, whereas LHC-MR shows
both a greater variance and an upward bias—still leading to
a causal effect compatible with zero. Second, in the absence
of a confounder combined with non-zero causal effect
(γ¼

ffiffiffiffiffiffiffiffiffi
0:05

p
¼ 0:22; η ¼ 0; q ¼ 0), CAUSE underestimates the

causal effect (bγ ¼ 0:18) compared to LHC-MR which overestimates
the causal effect: the mean of the estimates was 0.38 (over the

50 runs). Finally, in the presence of both a confounder and a causal
effect (γ ¼

ffiffiffiffiffiffiffiffiffi
0:05

p
; η ¼

ffiffiffiffiffiffiffiffiffi
0:05

p
; q ¼ 0:1), CAUSE slightly under-

estimates the causal effect (bγ ¼ 0:20), whereas LHC-MR over-
estimates the effects and shows estimates reaching the boundaries
11 out of 50 times (mean of the converged bγ ¼ 0:39 over the 39
data simulations, see Supplementary Fig. 16c)— indicating that
this setting of the CAUSE model is not compatible with the
LHC-MR model framework. Interestingly, classical MR meth-
ods outperform CAUSE in this case. Note that in the interest of
run time we used less SNPs (than usual) for parameter
estimations. The analysis of the three separate scenarios was
repeated for a larger sample size of 500, 000 (Supplementary
Fig. 17), with more favourable results for LHC-MR. In the
absence of a causal effect, we had similar results to the smaller
sample size, whereas in the absence of a shared effect, LHC-MR
estimates the causal effect accurately with a mean of 0.22,
CAUSE underestimates it and the rest of the MR methods are
less biased. In the presence of both causal and shared factor,
CAUSE recovers the causal effect. IVW, unlike the other MR
methods and CAUSE, is more affected by the presence of the
confounder, while LHC-MR exhibits upward bias with a mean
estimate of 0.27.

Application to association summary statistics of complex
traits. We applied our LHC-MR and other MR methods to
estimate all pairwise causal effects between 13 complex traits (156
causal relationships in both directions). Our results are presented
as a heatmap in Fig. 4 (and are detailed in Supplementary Data 2).
Further, we calculated the alternate set of estimated parameters
that naturally results from our model (for reference see Section
The observed association summary statistics and Supplementary
Methods 1.4). Among trait pairs for which the exposure had
sufficient heritability (>2.5%), the alternate parameters of 102
trait pairs were within the possible ranges mentioned in methods
(i.e. the confounder and the exposure are interchangeable).
However, for all of these pairs, the alternative parameter optima
lead to lower direct- than indirect heritability, which we deem
unrealistic. Therefore, we report only the primary set of estimated
optimal parameters in the main results and provide the alter-
native parameters in the Supplementary Data 3. The comparison
of the results obtained by LHC-MR and standard MR methods is
detailed below and more extensively in Supplementary Data 4–5.
In summary, LHC-MR provided reliable causal effect estimates
for 132 out of 156 exposure traits (i.e. those exposures had an
estimated total heritability greater than 2.5%). These estimates
were compared to five different MR methods. Seventy-four causal
relationships were deemed significant by LHC-MR. Furthermore,
for 117 out of those 132 comparable causal relationships, our
LHC-MR causal effect estimates were concordant (not sig-
nificantly different) with at least two out of five standard MR
methods’ estimates.

By simply comparing the significance status and the direction
of the causal effects between the methods, we see that LHC-MR
agrees in sign and significance (or the lack there of) with at least 3
MR methods 77 times. For 31 relationships, LHC-MR results lead
to different conclusions than those of standard MR methods. For
28 of those, LHC-MR identified a causal effect missed by all
standard MR methods. For the other three, we observed a
disagreement in sign: LDL has a negative effect on BMI according
to weighted mode and weighted median, whereas we show a
positive effect, HDL and LDL show a negative bi-directional
causal effect for weighted mode but a positive bi-directional effect
with LHC-MR. Despite the conflicting evidence for the causal
relationship of LDL on BMI, studies have shown that the
relationship between them is non-linear12, possibly explaining the
discrepancy between the results.
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LHC-MR agreed with most MR estimates and confirmed many
previous findings, such as increased BMI leading to elevated
blood pressure13,14, diabetes mellitus15,16 (DM), myocardial
infarction17 (MI) and coronary artery disease18 (CAD).

Furthermore, we confirmed previous results19 that diabetes
increases SBP (α̂x!y ¼ 0:39 % P ¼ 1:70 ´ 10%9).

Interestingly, it revealed that higher BMI increases smoking
intensity, concordant with other studies20,21. It also showed the

Fig. 3 Simulation results under various scenarios. These modified Sina-boxlots represent the distribution of parameter estimates from 50 different data
generations under various conditions. For each generation, standard MR methods as well as our LHC-MR were used to estimate a causal effect. In the
boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker is
the largest dataset estimate smaller than 1.5×inter-quartile range above the third quartile. The lower whisker is defined analogously. The true values of the
parameters used in the data generations are represented by the blue dots/lines. a The different coloured boxplots represent the underlying non-normal
distribution used in the simulation of the three γx, γy, γu vectors associated to their respective traits. The Pearson distributions had the same zero mean and
skewness, however their kurtosis ranged between 2 and 10, including the kurtosis of 3, which corresponds to a normal distribution assumed by our model.
The standard MR results reported had IVs selected with a p-value threshold of 5 × 10−6. b Addition of a third component for exposure X, while decreasing
the strength of U. True parameter values are in colour, blue and red for each component (πx1 ¼ 1 ´ 10%4; πx2 ¼ 1 ´ 10%2; h2x1 ¼ 0:15; h2x2 ¼ 0:1).
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protective effect of education against a range of diseases (e.g.
CAD and diabetes22,23) and risk factors such as smoking24,25, in
agreement with previous observational and MR studies. Probably
reflecting lifestyle change recommendations by medical doctors
upon disease diagnosis, statin use is greatly increased when being
diagnosed with CAD, (systolic) hypertension, dislipidemia and
diabetes as is shown by both LHC-MR and standard MR
methods.

Furthermore, causal effects of height on CAD, DM and SBP
have been previously examined in large MR studies26,27. LHC-MR,
agreeing with these claims, did not find significant evidence to
support the effect of height on DM, but did find a significant
protective effect on CAD and SBP. However, unlike the first two,
the relationship between height and SBP also revealed the existence
of a confounder with causal effects 0.14 (P= 9.2 × 10−11) and
0.11 (P= 3.39 × 10−8) on height and SBP respectively. Another
example of a trait pair for which LHC-MR found an opposite sign
confounder effect is HDL and its protective effect on SBP. The
confounder had a positive effect ratio of ty/tx= 0.84, opposing the
negative causal effect of α̂x!y ¼ %0:13 supported by observational
studies28. This causal effect was not found by any other MR
method.

It is important to note that while the effects of parental
exposures on offspring outcomes can be seen as genetic
confounding, LHC-MR would not be able to distinguish parental
and offspring causal effects, because the LHC-MR model assumes

that there is no correlation between the genetic effects on the
exposure and the genetic effects on the confounder (which is not
the case for parental vs offspring traits). Thus, LHC-MR causal
effect estimates are just as likely to reflect parental effects as any
other MR method29. This may be the case, for example, for the
detrimental effect of increased (parental) BMI on education
(supported by longitudinal studies30), the positive effect of
(parental) height on birth weight31, or on education32. There are
also some associations identified only by LHC-MR that might
reflect parental effects: the negative causal effect of CAD on
education or on birth weight, the positive impact of HDL on birth
weight, or DM reducing height. All these pair associations
uniquely found by LHC-MR are examples of LHC-MR’s use of
whole-genome SNPs instead of GW-significant SNPs only, as our
estimates are of larger magnitude than those found by standard
MR. Interestingly, for the CAD→ birth weight relationship, LHC-
MR revealed a confounder of opposite causal effects, which could
have masked/mitigated the causal effect of standard MR methods.

A systematic comparison between IVW and LHC-MR has
shown generally good agreement between the two methods,
which is illustrated in Fig. 5. To identify discrepancies between
our causal estimates and those of the standard MR results, we
grouped the estimates into several categories, either non-
significant p-value for both or either, significant with an agreeing
sign for the causal estimate, or significant with a disagreeing sign.
The diagonal (seen in Fig. 5) representing the agreement in

Fig. 4 Heatmap representing the bi-directional causal relationship between the 13 UK Biobank traits. The causal effect estimates in coloured tiles all
have a significant p-value surviving Bonferroni multiple testing correction with a threshold of 3.2 × 10−4. We did not report an estimated causal effect for
exposures with an estimated total heritability less than 2.5%. White tiles show an absence of a significant causal effect estimate. BMI: Body Mass Index,
BWeight: Birth Weight, CAD: Coronary Artery Disease, DM: Diabetes Mellitus, Edu: Years of Education, HDL: High-Density Lipoprotein, LDL: Low-Density
Lipoprotein, MI: Myocardial Infarction, PSmoke: # of Cigarettes Previously Smoked, SBP: Systolic Blood Pressure, SHeight: Standing Height, SVstat:
Medication-Simvastatin.
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significance status and sign between the two methods, is heavily
populated. On the other hand, 34 pairs have causal links that are
significantly non-zero according to LHC-MR, but are non-
significant for IVW, while the opposite is true for seven pairs. We
believe that many of these seven pairs may be false positives, since
four of them are picked up by no other MR method, two are
confirmed by only one other method and the last one by two
methods. Further comparisons of significance between LHC-MR
estimates and the remaining standard MR methods can be found
in Supplementary Table 2.

LHC-MR identified a confounder for 16 trait pairs out of the
possible 78. In order to support these findings, we used
EpiGraphDB33,34 to systematically identify those potential
confounders. EpiGraphDB could identify reliable confounders
for ten out of the 16 trait pairs. Notably, for the birth
weight–diabetes pair, the average epigraph confounder-effect
ratio (r3/r1) clearly agreed in sign with our ty/tx ratio, indicating
that the characteristics of the confounder(s) evidenced by LHC-
MR agree with those found in an exhaustive confounder search,
and are mainly obesity-related traits (Supplementary Fig. 18a).
Six other trait pairs showed mixed signs of different confounders,
indicating the possibility of having heterogeneous confounders
(Supplementary Fig. 18b-e). Finally, three trait pairs showed a
disagreement between our estimated confounder-effect ratio and
the bulk of those found by epighraphDB as seen in Supplemen-
tary Fig. 18f-j. However, at least one of the top ten potential
confounders showed effects that are in agreement with our ratio
for each of these pairs. Note that since the reported causal effects
of the confounders on X and Y reported in EpiGraphDB are not

necessarily on the same scale, we do not expect the magnitudes
to agree.

As described in the methods (Eq. (32)), genetic correlation can be
computed from our estimated model parameters. To verify that the
fitted LHC-MRmodel leads to a genetic correlation similar to the one
obtained from LD-score regression35 (LDSC), we compared whether
the two approaches produce similar genetic correlation estimates. We
did this by taking the estimated parameters obtained from the 200
block jackknife to estimate the genetic correlations between traits
(and their standard errors), and plotted them against LD-score
regression values as seen in Fig. 6. As expected, we observe an overall
good agreement between the estimates of the two methods, with only
six trait pairs differing in sign. Of these six, only 2 were nominally
significantly different between the two methods (LDL→Asthma and
LDL→DM). Further decomposition of the genetic covariance into
heritable confounder-led or causal effect-led covariance revealed that
most of the genetic covariance between traits can be attributed to bi-
directional causal effects. A reason for this could be that confounders
would need to have very strong effects to substantially contribute to
the genetic correlation (≈tx ⋅ ty) compared to the bi-directional causal
effects ('α2x!y " h

2
x þ α2y!x " h

2
y).

As for the comparison of LHC-MR against CAUSE for real
trait pairs, we ran CAUSE on all 156 trait pairs (bi-directional),
and extracted the parameter estimates that corresponded to the
methods winning model. The p-value threshold was corrected for
multiple testing and was equivalent to 0.05/156. Based on that
threshold, the p-value that compared between the causal and the
sharing model of CAUSE was used to choose one of the two.
Then the parameters estimated from the winning model, γ (only

Fig. 5 A scatter plot of the causal effect estimates between LHC-MR and IVW. To improve visibility, non-significant estimates by both methods are
placed at the origin, while significant causal estimates by both methods appear on the diagonal with 95% CI error bars. Pairs with an absolute value
difference > 0.1 are labelled.
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for causal model), η and q, were compared to their counterparts
in LHC-MR. A visual comparison of LHC-MR’s causal estimates
and those of CAUSE can be seen in Supplementary Fig. 19.

Whenever the causal effect estimates were significant both for
CAUSE and LHC-MR (30 causal relationships), they always
agreed in sign (Supplementary Table 3) with a high Pearson
correlation of 0.592. Calculating the correlation for their estimates
regardless of significance yielded a smaller value of 0.377. When
compared to the causal effect estimate from IVW, LHC-MR was
strongly correlated (0.585), whereas CAUSE had a slightly weaker
correlation (0.471) using all estimates.

Similarly, the significant confounder-effect ratio of LHC-MR
(ty/tx) can be compared to the significant confounder-effect
estimate of CAUSE (η) when a sharing model is chosen. These 12
confounding quantities by CAUSE and LHC-MR disagreed in
sign for all but one trait pair (Height→MI), with a Pearson
correlation compatible with zero (−0.357 (95% CI [−0.77,
0.27])).

Discussion
We have developed a structural equation (mixed-effects) model to
account for a latent heritable confounder (U) of an exposure
(X)–outcome (Y) relationship in order to estimate bi-directional
causal effects between the two traits (X and Y). The method,
termed LHC-MR, fits this model to association summary statistics
of genome-wide genetic markers to estimate various global
characteristics of these traits, including bi-directional causal
effects, confounder effects, direct heritabilities, polygenicities and
population stratification.

We first demonstrated through simulations that in most sce-
narios, the method produces causal effect estimates with sub-
stantially less bias and variance (in the larger sample size) than
other MR tools. The direction and magnitude of the bias of

classical MR approaches varied across scenarios and sample sizes.
This bias was mainly influenced by two often opposite forces:
downward bias resulting from winner’s curse and weak instru-
ments, and upward bias due to a positive confounder of the X− Y
relationship, evident in the larger sample size. In the scenario
lacking a confounder (thus respecting all MR assumptions), MR
methods were distinctly underestimating the causal effect, except
for LHC-MR and to a better extent MR-RAPS. However, under
standard settings with an added small heritable confounder and
no reverse causality present, all classical MR methods still slightly
underestimated the causal effect in the smaller sample size, except
for the MR-RAPS estimate which was now overestimated. For the
same standard setting scenario but in a larger sample size where
confounder effects were more detectable, IVW had an estimation
that was close to the true causal value chosen (αx→y= 0.3) due to
the opposite biases cancelling out. However, when the causal
effect was set to be smaller (αx→y= 0.1), the estimates of IVW
became biased. More substantial violations of classical MR
assumptions, such as the presence of negative-effect confounder
or a negative reverse causal effect, led to more substantial biases
that impacted all methods (including MR-RAPS) except LHC-
MR.

Interestingly, in the smaller sample size, standard MR methods
showed a slight decreasing trend in the variance of the causal
effect estimate as the kurtosis of the underlying effect size dis-
tribution went up from 2 to 10. On the other hand, LHC-MR did
not show a similar trend with growing kurtosis, and estimated the
causal effect with a smaller bias. As confounder causal effects (qx,
qy) increased, classical MR methods (except weighted ones) were
prone to produce overestimated causal effects with at least twice
the bias than that of LHC-MR, especially in the large sample size
where the confounder-associated SNPs make it to the set of GW-
significant instruments for all methods. Furthermore, mode-
based estimators were robust to the presence of two concordant
confounders, yet their bias was still 10-fold higher than LHC-
MR’s, and they did not perform as well in the presence of dis-
cordant confounders. In summary, LHC-MR was robust to a wide
range of violations of the classical MR assumptions and was less
impacted than standard MR methods. Thus it outperformed all
MR methods in virtually all tested scenarios, many of which
violated even its own modelling assumptions.

We then applied our method to summary statistics of 13
complex traits from large studies, including the UK Biobank. We
observed a general trend in our results (in agreement with epi-
demiological studies) that higher BMI and LDL are risk factors
for most diseases such as diabetes and CAD. We also note the
protective effect HDL has on these same diseases. Moreover, we
observe many disease traits increasing the intake of lipid-lowering
medication (simvastatin), reflecting the recommendation/treat-
ment of medical personnel following the diagnosis.

LHC-MR can have discordant results compared to other MR
methods for many possible reasons. The positive causal effect of
smoking on MI, diabetes on asthma, the protective impact of
higher birth weight on asthma, or higher education on smoking
intensity, all of which were missed by standard MR could reflect
the increased power of LHC-MR with its use of full-genome SNPs
as opposed to genome-wide significant SNPs of classical MR
approaches.

Estimates from classical MR methods could also be impacted
by sample overlap between the exposure and outcome datasets,
whereas LHC-MR takes this into account. However, when using
large sample sizes, the bias due to sample overlap is expected to be
very small, and therefore not sufficient to explain any discrepancy
in the results36. Another possible reason for the discrepancy
between our findings and those of standard MR methods is the
presence of a significant heritable confounder found by LHC-MR

Fig. 6 Scatter plot comparing the genetic correlation for each trait
obtained from LDSC against the value calculated using parameter
estimates from the LHC-MR model. LHC-MR calculated genetic
correlations from 200 parameter estimates generated during the block-
jackknife procedure, where the mean values of these 200 estimates are
shown here. A 95% CI for both method-calculation is shown for each point,
and pairs with an absolute value difference > 0.2 are labelled. Values from
both methods are reported in Supplementary Data 6.
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with opposite effect to the estimated causal effect between the
pair. These two opposite forces lead to association summary
statistics that may be compatible with reduced (or even null)
causal effect when the confounder is ignored. Possible examples
of this scenario can be observed when (parental) traits, e.g. dia-
betes and CAD, act on birth weight. These pairs have a con-
founder of opposite effects, possibly related to (parental) obesity.
Similarly, standard MR methods show little evidence for a causal
effect of SBP on height, while our LHC-MR estimate is −0.37
(P= 4.81 × 10−8) which most probably reflects parental (mater-
nal) effects as seen in previous studies37,38. The protective effect
of HDL on SBP is another example where a confounder of
opposite sign to that of the causal effect allows it to be uniquely
found by LHC-MR. LHC-MR assumes no genetic correlation
between the confounder and the direct effects on the exposure,
which may be violated when the confounder is the same trait as
the exposure, but in the parent. Such parental effects can mislead
most MR methods39, including ours, and hence we may observe
biased results for traits such as BMI→ education and HDL→
birth weight.

Sixteen trait pairs showed a strong confounder effect, in the form
of significant tx and ty estimates. These pairs were investigated for the
presence of confounders using EpiGraphDB, and 10 of them
returned possible confounders. The bulk of such pairs returned
confounders with both agreeing and disagreeing effect directions
on X and Y, making it difficult to pinpoint a group of concordant
and dominant confounders. However, for the birth weight-DM pair,
where LHC-MR identifies a negative reverse causal effect and a
confounder with effects tx= 0.10(P= 6.77 × 10−8) and ty= 0.15
(P= 3.13 × 10−7) on birth weight and DM respectively, EpigraphDB
confirmed several confounders related to body fat distribution and
weight that matched in sign with our estimated confounder effect
(Supplementary Fig. 18a). Note that EpiGraphDB causal estimates
are not necessarily on the scale of SD outcome difference upon 1 SD
exposure change scale, hence they are not directly comparable with
the ty/tx ratio, but are rather indicative of the sign of the causal effect
ratio of the confounder. Furthermore, if EpigraphDB does not find a
causal relationship between the trait pair in either directions, then it
does not return any possible confounders of the two, a reason why
only 10 out of 16 confounder-associated trait pairs returned any hits.

Lastly, our comparison of the genetic correlations calculated
from our estimated parameters against those calculated from LD-
score regression showed good concordance, confirming that the
detailed genetic architecture proposed by our model is compatible
with the observed genetic covariance. The major difference
between the genetic correlation obtained by LD-score regression
vs LHC-MR is that our model approximates all existing con-
founders by a single latent variable, which may be inaccurate
when multiple ones exist with highly variable ty/tx ratios. Fur-
thermore, LHC-MR decomposed the observed genetic correlation
into confounder and bi-directional causality driven components,
revealing that most genetic correlations are primarily driven by
bi-directional causal effects. Note that we have much higher
statistical power to detect situations when the confounder effects
are of opposite sign compared to the causal effects, because
opposing genetic components are more distinct.

To our knowledge only two recent papers use similar models
and genome-wide summary statistics. The LCV approach40 is a
special case of our model, where the causal effects are not
included in the model, but they estimate the confounder effect
mixed with the causal effect to estimate a quantity of genetic
causality proportion (GCP). In agreement with others10,41, we
would not interpret non-zero GCP as evidence for causal effect.
Moreover, in other simulation settings, LCV has shown very low
power to detect causal effects (by rejecting GCP= 0) (Fig S15 in
Howey et al.42). Another very recent approach, CAUSE10,

proposes a structural equation mixed effect model similar to ours.
However, there are several differences between LHC-MR and
CAUSE: (a) we allow for bi-directional causal effects and model
them simultaneously, while CAUSE is fitted twice for each
direction of causal effect; (b) they first use an adaptive shrinkage
method to integrate out the multivariable SNP effects and then go
on to estimate other model parameters, while we fit all parameters
at once; (c) CAUSE estimates the correlation parameter empiri-
cally; (d) we assume that direct effects come from a two-
component Gaussian mixture, while they allow for larger number
of components; (e) their likelihood function does not explicitly
model the shift between univariate vs multivariate effects (i.e. the
LD); (f) CAUSE adds a prior distribution for the causal/con-
founder effects and the proportion πu, while LHC-MR does not;
(g) to calculate the significance of the causal effect they estimate
the difference in the expected log point-wise posterior density and
its variance through importance sampling, whereas we use a
simple block-jackknife method. Because of point (a), the CAUSE
model can be viewed as a special case of ours when there is no
reverse causal effect. We have the advantage of fitting all para-
meters simultaneously, while they only approximate this proce-
dure. Although they allow for more than a two-component
Gaussian mixture, for most traits with realistic sample sizes we do
not have enough power to distinguish whether two or more
components fit the data better. Therefore, we believe that a two-
component Gaussian is a reasonable simplification. Due to the
more complicated approach described in points (e-g), CAUSE is
computationally more intense than LHC-MR, taking up to 1.25
CPU-hours in contrast to our 2.5 CPU-minute run time for a
single starting point optimisation (which is massively
parallelisable).

When we compared the performance of CAUSE and LHC-MR,
we found that for large sample sizes both LHC-MR and CAUSE
performed well not only when applied to data simulated by their
own model, but also by the model of the other method. For
smaller sample sizes, both methods performed poorly when
applied to data generated by the other model. However, LHC-MR
was less biased when applied to data generated by its own model
than CAUSE was on data simulated based on its own model,
where it provided rather conservative estimates. This is somewhat
expected, since the primary aim of CAUSE is model selection and
it is less geared towards parameter estimation, especially for
settings where both sharing and causal effects are present (leading
to very broad estimates). Also, CAUSE parameter estimates have
shown to be somewhat sensitive to the choice of the prior.

Finally, when applying both LHC-MR and CAUSE to 156
complex trait pairs, we observed that the causal effects are rea-
sonably well correlated (0.38 for all estimates, 0.59 for significant
estimates) and agree in sign for trait pairs deemed significantly
causal by either or both methods. In addition, LHC-MR causal
estimates were more similar to those of IVW than the estimates
provided by CAUSE. Surprisingly, when a confounding factor
was identified by both methods, the confounder effects (LHC-MR
ty/tx ratio and CAUSE η parameter) were uncorrelated. There are
two possible explanations for this: (i) CAUSE may confuse/merge
the confounder with the reverse causal effect, since it does not
explicitly model the latter one. (ii) The two models assume dif-
ferent marginal effect size distributions, hence when multiple
heterogeneous confounders exist, one method may detect one of
the confounders, while the other method picks up the other
confounder, depending on which has more similar genetic
architecture to the assumed one.

Our approach has its own limitations, which we list below. Like
any MR method, LHC-MR provides biased causal effect estimates
if the input summary statistics are flawed (e.g. not corrected for
complex population stratification, parental/dynasty effects). As
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mentioned in the Methods section, our model is strictly-speaking
unidentifiable and two distinct sets of parameters fit the data
equally well, if the alternate set of parameters fall within the
parameter ranges. As opposed to classical MR methods that give a
single (biased) causal effect estimate, ours can detect and calculate
the competing model. Due to biological considerations, from
these competing models, we chose the one which yielded larger
direct heritability than confounder-driven (indirect) heritability.
Additional pointers to decide which parameter optimum we
choose can be to pick the one with smaller magnitude of causal
effects (large causal effects are unrealistic) or pick the one that
includes causal effects that agree better with those of other MR
methods.

LHC-MR is not an optimal solution for traits whose genetic
architecture substantially deviates from a two-component Gaus-
sian mixture of effect sizes. Also, for traits with low heritability
(<2.5%), it is particularly important to compare the causal effect
estimates to those from standard MR methods as results from
LHC-MR may be less robust. In addition, trait pairs with multiple
confounders with heterogeneous effect ratios can violate the
single confounder assumption of the LHC model and can lead to
biased causal effect estimates. Finally, LHC-MR, like other
methods, is not immune to parental effects that are correlated
with offspring effects. In such cases, the parental effect is grouped
with the exposure (due to their strong genetic correlation) and
not viewed as a confounder of the exposure-outcome relationship.

Methods
The underlying structural equation model. Let X and Y denote continuous
random variables representing two complex traits. Let us assume (for simplicity)
that there is one heritable confounder U of these traits. To simplify notation we
assume that E(X)= E(Y)= E(U)= 0 and Var(X)= Var(Y)= Var(U)= 1. The
genome-wide sequence data for M sequence variants is denoted by G= (G1,
G2,…,GM). The aim of our work is to dissect the effects of the heritable con-
founding factor U from the bi-directional causal effects of these two traits (X and
Y). For this we consider a model (see Fig. 1) defined by the following equations:

X ¼ qx " U þ αy!xY þ G " γx þ ex with ex ( N ð0; ν2xÞ ð1Þ

Y ¼ qy " U þ αx!yX þ G " γy þ ey with ey ( N ð0; ν2yÞ ð2Þ

U ¼ G " γu þ eu with eu ( N ð0; ν2uÞ ð3Þ

where γx ; γy ; γu 2 RM denote the (true multivariable) direct effect of all M genetic
variants on X, Y and U, respectively. All error terms (ex, ey and eu) are assumed to
be independent of each other and normally distributed with variances ν2x ; ν

2
y and

ν2u , respectively.
Note that we do not include in the model reverse causal effects on the

confounder (X→U and Y→U). The reason for this is the following: Let sx and sy
denote those causal effect of X and Y on U. We can see that by reparameterising the
original model to α0 :¼ αx!y þ sx " qy , α

0 :¼ αy!x þ sy " qx and
q0x :¼ qx=ð1% qx " sxÞ, q

0
y :¼ qy=ð1% qy " syÞ, the genetic effects produced by the

extended model with reverse causal effects on U and the simpler model (Fig. 1)
with the updated parameters are indistinguishable. Thus these extra parameters are
not identifiable and the reparameterisation means that αx→y and αy→x in our model
represent the total causal effects, some of which may be mediated by U.

Note that the model cannot be represented by classical directed acyclic graphs,
as the bi-directional causal effects could form a cycle. However, the equations can
be reorganised to avoid recursive formulation as follows:

X ¼ qx " U þ αy!x " qy " U þ αx!yX þ G " γy þ ey
" #

þ G " γx þ ex ð4Þ

Y ¼ qy " U þ αx!y " qx " U þ αy!xY þ G " γx þ ex
" #

þ G " γy þ ey ð5Þ

U ¼ G " γu þ eu ð6Þ

Regrouping the terms gives

ð1% αy!xαx!yÞ " X ¼ ðqx þ αy!x " qyÞ " U þ αy!xðG " γyÞ þ G " γx þ ðex þ αy!x " eyÞ

ð7Þ

ð1% αx!yαy!xÞ " Y ¼ ðqy þ αx!y " qxÞ " U þ αx!yðG " γxÞ þ G " γy þ ðey þ αx!y " exÞ ð8Þ

U ¼ G " γu þ eu ð9Þ

Substituting U into the first two equations yields

X ¼
qx þ αy!x " qy
1% αy!xαx!y

" ðG " γuÞ þ
αy!x

1% αy!xαx!y
ðG " γyÞ þ

1
1% αy!xαx!y

ðG " γxÞ þ ϵx ð10Þ

Y ¼
qy þ αx!y " qx
1% αx!yαy!x

" ðG " γuÞ þ
αx!y

1% αx!yαy!x
ðG " γxÞ þ

1
1% αx!yαy!x

ðG " γyÞ þ ϵy ð11Þ

with

ϵx :¼
ex þ αy!x " ey þ ðqx þ αy!x " qyÞ " eu

1% αy!xαx!y
( N ð0; ixÞ ð12Þ

ϵy :¼
ey þ αx!y " ex þ ðqy þ αx!y " qxÞ " eu

1% αx!yαy!x
( N ð0; iyÞ ð13Þ

where ix :¼ ðν2x þ α2y!xν
2
y þ ðqx þ αy!xqyÞν

2
uÞ=ð1% αy!xαx!yÞ

2 and

iy :¼ ðν2y þ α2x!yν
2
x þ ðqy þ αx!yqxÞν

2
uÞ=ð1% αx!yαy!xÞ

2. Note that ix is
equivalent to the LD-score regression intercept43.

We model the genetic architecture of these direct effects with a spike-and-slab
distribution, assuming that only 0 ≤ πx, πy, πu ≤ 1 proportion of the genome have a
direct effect on X, Y,U, respectively, and these direct effects come from a Gaussian
distribution. Namely,

γx ¼ ζx ) κx with κx ( N ð0; σ2x " IÞ and ζx ( Bmð1; πxÞ ð14Þ

γy ¼ ζy ) κy with κy ( N ð0; σ2y " IÞ and ζy ( Bmð1; πyÞ ð15Þ

γu ¼ ζu ) κu with κu ( N ð0; σ2u " IÞ and ζu ( Bmð1; πuÞ ð16Þ

Here,⊙ denotes element-wise multiplication and Bmð1; qÞ the m dimensional
independent Bernoulli distribution. Further, we assume that all κx, κy, κus are
independent of each other and so are all ζx, ζy, ζus. We can refer to h2x :¼
M " πx " σ2x as the direct heritability of X, i.e. independent of the genetic basis of U
and Y. Similar notation is adapted for U (h2u :¼ M " πu " σ2u) and Y
(h2y :¼ M " πy " σ2y). Note that when qx= 0 and qy ≠ 0 (or vice versa), this means
that there is no confounder U present, but the genetic architecture of Y (or X) can
be better described by a three-component Gaussian mixture distribution.

We assume that the correlation (across markers) between the direct effects of a
genetic variant on X, Y and U is zero, i.e. cov(γx, γy)= cov(γx, γu)= cov(γu, γy)= 0.
Note that this assumption still allows for a potential correlation between the total
effect of G on X and its horizontal pleiotropic effect on Y, but only due to the
confounder U and through the reverse causal effect Y→ X. As we argued above,
this is a reasonable assumption, since the most plausible reason (apart from
outcome-dependent sampling, which is out of the scope of this paper) for the
violation of the InSIDE assumption may be one or more heritable confounder(s).

For simplicity, we also assume that the set of genetic variants with direct effects
on each trait overlap only randomly, i.e. the fraction of the genome directly
associated with both X and Y is πx ⋅ πy, etc. This assumption is in line with recent
observation that the bulk of observed pleiotropy can be explained by extreme
polygenicity with random overlap between trait loci44. Note that uncorrelated
effects (e.g. cov(γx, γy)= 0) do not ensure that the active variant sets overlap
randomly, this is a slightly stronger assumption.

The observed association summary statistics. Let us now assume that we
observe univariable association summary statistics for these two traits from two
(potentially overlapping) finite samples Nx and Ny of size nx, ny, respectively. In the
following, we will derive observed summary statistics in sample Nx and then we will
repeat the analogous exercise for sample Ny. Let the realisations of X, Y and U be
denoted by x; y and u 2 Rnx . The genome-wide genetic data are represented by
Gx 2 Rnx ´M and the genetic data for a single nucleotide polymorphism (SNP) k
tested for association is gk 2 Rnx . Note the distinction between the k-th column of
Gx, which is the k-th sequence variant, in contrast to gk , which is the k-th SNP
tested for association in the GWAS. We assume that all SNP genotypes have been
standardised to have zero mean and unit variance. The marginal effect size estimate
for SNP k of trait X can then be written as bβ

x

k ¼ g 0k " x=nx , which is a special case of
univariable standard normal linear regression when both the outcome and the
predictor is standardised to have zero mean and unit variance43. Note that x0

denotes the transpose of the column vector x. This can be further transformed as

bβ
x

k ¼ g 0k " x=nx

¼
qx þ αy!x " qy
1% αy!xαx!y

" g 0k " Gx " γu=nx þ
αy!x

1% αy!xαx!y
" g 0k " Gx " γy=nx

þ
1

1% αy!xαx!y
" g 0k " Gx " γx=nx þ g 0k " ϵx=nx

ð17Þ

By denoting the linkage disequilibrium (LD) between variant k and all markers in
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the genome with ρk ¼ G0
x " gk=nx we get

bβ
x

k ¼
qx þ αy!x " qy
1% αy!xαx!y

" ρ0k " γu þ
αy!x

1% αy!xαx!y
" ρ0k " γy þ

1
1% αy!xαx!y

" ρ0k " γx þ ηxk

ð18Þ

with ηxk :¼ g 0k " ϵx=nx ( N ð0; ix=nxÞ. Given the above-defined genetic effect size
distribution the equation becomes

bβ
x

k ¼
qx þ αy!x " qy
1% αy!xαy!x

" ρ0k " ðζu ) κuÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
zðuÞk

þ
αy!x

1% αy!xαx!y
" ρ0k " ðζy ) κyÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

zðyÞk

þ
1

1% αy!xαx!y
" ρ0k " ðζx ) κxÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

zðxÞk

þηxk

¼
qx þ αy!x " qy
1% αy!xαx!y

" zðuÞk þ
αy!x

1% αy!xαx!y
" zðyÞk þ

1
1% αy!xαx!y

zðxÞk þ ηxk

ð19Þ

Similarly, assuming that the LD structures (ρk) in the two samples are comparable,
for bβ

y

k estimated in the other sample (Ny) we obtain

bβ
y

k ¼
αx!y " qx þ qy
1% αx!yαy!x

" zðuÞk þ
αx!y

1% αx!yαy!x
" zðxÞk þ

1
1% αx!yαy!x

zðyÞk þ ηyk ð20Þ

with ηyk ( N ð0; iy=nyÞ.
Therefore, the joint effect size estimates can be written as

bβ
x

k

bβ
y

k

 !
¼

1
1% αx!yαy!x

ðαy!x " qy þ qxÞ
ðαx!y " qx þ qyÞ

 !
zðuÞk þ

1

αx!y

 !
zðxÞk þ

αy!x

1

% &
zðyÞk

 !
þ

ηxk
ηyk

% &

ð21Þ

Following the same rational as the cross-trait LD-score regression45, the noise term
distribution is readily obtained

ηxk
ηyk

% &
( N

0

0

% &
;

ix=nx
nx\y
nx "ny

" rx;y
nx\y
nx "ny

" rx;y iy=ny

0

@

1

A

0

@

1

A ð22Þ

where rx,y is the observational correlation between variables X and Y and nx∩y is the
size of the overlapping samples for X and Y. Since both nx∩y and rx,y cannot be
estimated, we simply denote ix;y :¼ rx;y "

nx\yffiffiffiffiffiffiffiffi
nx "ny

p as the only estimated parameter

and parameterise the covariance term as
ix;yffiffiffiffiffiffiffiffi
nx "ny

p . Note that ix,y is the cross-trait LD-

score regression intercept.
While the bivariate probability density function (PDF) of these summary

statistics cannot be obtained analytically, we could derive its characteristic function
(see Supplementary Methods 1.1), which is the product of some transformed
version of the characteristic functions of zðxÞk ; zðuÞk ; zðyÞk and ðηxk ; η

y
kÞ, yielding

φ bβ
x

k ;
bβ
y

k

" #ðv;wÞ ¼ E exp i " v " bβ
x

k þ w " bβ
y

k

"" #h i

¼ φzðuÞk

v " ðαy!x " qy þ qxÞ þ w " ðαx!y " qx þ qyÞ
1% αx!yαy!x

 !

´ φzðxÞk

v þ αx!y " w
1% αx!yαy!x

 !
" φzðyÞk

wþ αy!x " v
1% αx!yαy!x

 !
" φ ηxk ;η

y
kð Þðv;wÞ

ð23Þ

Approximating the local correlations of SNP k (ρk) by a spike and slab distribution,
parameterised by the fraction of non-zero correlations (πk) and the variance of the
non-zero correlations (σ2k), allows the derivation of a closed form expressions of
φzðuÞk

, φzðxÞk
and φzðyÞk

.

Derivation of the likelihood function. Given that the characteristic function can
be analytically derived, we used the inversion theorem (for characteristic functions)

to obtain the joint distribution of bβ
x

k ;
bβ
y

k

" #
as

f bβ
x

k ;
bβ
y

k

" #ðx; yÞ ¼ 1
2π

% &2

"
Z 1

%1

Z 1

%1
expð%i " ðx " v þ y " wÞÞ " φ bβ

x

k ;
bβ
y

k

" #ðv;wÞ dv dw

ð24Þ

This integral can be efficiently computed by the Fast Fourier Transformation (FFT,
see ref. 46 and references within. Detailed derivation is found in Supplementary
Methods 1.2). To speed up computation, we bin SNPs according to their πk and σk
values which characterise the local LD distribution for each SNP k (10 × 10 bins
with equidistant centres - see Supplementary Methods 1.3) and for SNPs in the
same bin the PDF function is evaluated over a fine grid (27 × 27 combinations)
using the FFT.

To reduce the number of parameters we define tx:= σu ⋅ qx and ty:= σu ⋅ qy since
σu and qx are separately not identifiable, but only their product is. Extensive

simulations have shown that πu is unidentifiable, and hence is set to an arbitrary
value of 0.1. For improved interpretability, we slightly reparameterise the likelihood
function by using h2x :¼ πx "M " σ2x ; h

2
y :¼ πy "M " σ2y . Since different SNPs are

correlated we have to estimate the over-counting of each SNP. We choose the same
strategy as LD-score regression43 and weigh each SNP by the inverse of its
restricted LD score, i.e. wk ¼ 1=∑m0

j¼1 r
2
jk , where rjk is the correlation between

GWAS SNPs k and j. The log-likelihood function is, thus, of the form

log L θj
bβ
x

bβ
y

 ! ! !
/ ∑

K

k¼1
wk " f k bβ

x

k ;
bβ
y

k

" #
ð25Þ

where f k bβ
x

k ;
bβ
y

k

" #
is the log-likelihood function value for SNP k. Parameters

{nx, ny,m, σk=1,…,K, πk=1,…,K} are known and the other 11 parameters

θ ¼ fπx ; πy ; h
2
x ; h

2
y ; tx ; ty ; αx!y ; αy!x; ix ; iy ; ix;yg

are to be estimated from the observed association summary statistics. In order to
further speed up computation, we estimate the 11 parameters in two separate steps:
we first estimate for each trait the parameters πx, ix and πy, iy (SNP polygenicity and
LD-score intercept) and the total heritability (unlike the direct heritability obtained
by the full-model of LHC-MR) by using a simplified model with only the trait of
interest, without a second trait or confounder, e.g. we fit only πx ; h

2
x and ix using bβ

x

and assume that πx and ix do not change when two traits are taken into account.
Note that πx may change slightly (decreasing from the total to direct polygenicity),
but its value has little impact on the likelihood function. The estimates from the
first step are then fixed for the parameter estimation of trait pairs in the second
step. Since only πx, ix and πy, iy are fixed, the remaining parameters to estimate are
now:

θ ¼ fh2x; h
2
y ; tx ; ty ; αx!y ; αy!x ; ix;yg

It is key to note that our approach does not aim to estimate individual (direct or
indirect) SNP effects, as these are handled as random effects. By replacing U
with−U we swap the signs of both tx and ty, therefore these parameters are unique
only if the sign of one of them is fixed. Thus, we will have the following restrictions
on the parameter ranges: h2x ; h

2
y ; tx are in [0, 1], ty, αx→y, αy→x, ix,y are in [− 1, 1].

Likelihood maximisation and standard error calculation. Our method, termed
Latent Heritable Confounder Mendelian Randomisation (LHC-MR), maximises
this likelihood function to obtain the MLE. Due to the complexity of the likelihood
surface, we initialise the maximisation using 50 different starting points, where they
come from a uniform distribution within the parameter-specific ranges mentioned
above. We then choose parameter estimates corresponding to the highest like-
lihood of the 50 runs. Run time depends on the number of iterations during the
maximisation procedure, and is linear with respect to the number of SNPs. It takes
~0.25 CPU-minute to fit the complete model to 50,000 SNPs with a single
starting point.

Given the particular nature of the underlying directed graph, two different sets
of parameters lead to an identical fit of the data, resulting in two global optima. The
reason for this is the difficulty in distinguishing the ratio of the confounder effects
(ty/tx) from the causal effect (αx→y), as illustrated in Supplementary Fig. 2 by the
slopes belonging to different SNP-clusters. More rigorously, it can be show that if
{hx, hy, αx→y, αy→x, tx, ty} is an optimum, then so will be fh0x ; h

0
y ; α

0
x!y ; α

0
y!x ; t

0
x ; t

0
yg,

where

h0x ¼ tx þ ty " αy!x ð26Þ

h0y ¼ hy ð27Þ

α0 ¼
αx!y þ w

1þ αy!x " w
ð28Þ

α0 ¼ αy!x ð29Þ

t0x ¼ hx " ð1þ αy!x " wÞ ð30Þ

t0y ¼ %hx " w ð31Þ

with w= ty/tx (for further derivations, see Supplementary Methods 1.4). This
allows us to directly obtain both optima, even if the optimisation only revealed one
of them. It happens very often that one of these parameter sets are outside of the
allowed ranges and hence can be automatically excluded. If not, we keep track of
both parameter estimates maximising the likelihood function. Note that, we call the
one for which the direct heritability is larger than the indirect one, i.e. h2x > t2x , the
primary solution. We show that for real data application this solution is far more
plausible than the alternative optimum. Finally, note that such bimodality can be
observed at different levels: (i) For one given data generation, using multiple
starting points leads to different optima; (ii) LHC-MR applied to multiple different
data generations for a fixed parameter setting can yield different optima. Both of
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these situations are signs of the same underlying phenomenon and most often co-
occur.

We implemented the block-jackknife procedure that is also used by LD-score
regression to calculate the standard errors. For this we split the genome into 200
jackknife blocks and compute MLE in a leave-one-block-out fashion yielding
bθ
ð%iÞ

; i ¼ 1; ¼ ; 200 estimates. The variance of the full SNP MLE is then defined as

VarðbθÞ :¼ m%m"ð1=200Þ
m"ð1=200Þ " 1

200%1∑
200
i¼1 ðbθ

ð%iÞ
% bθÞ

2
¼ ∑200

i¼1 ðbθ
ð%iÞ

% bθÞ
2
.

Decomposition of genetic correlation. Given the starting equations for X and Y
(Eqs. (2)–(3)) we can calculate their genetic correlation as the ratio between their
genetic covariance and variance (calculated from their heritabilities) as such:

corrðδx ; δyÞ ¼
ðtx þ αy!xtyÞðty þ αx!ytxÞ þ αy!xh

2
y þ αx!yh

2
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtx þ αy!xtyÞ
2 þ α2y!xh

2
y þ h2x

" #
ðtyþαx!ytxÞ

2 þ α2x!yh
2
xþh2y

" #r

ð32Þ

The full details of the derivation is found in Supplementary Methods 1.5. Using our
estimated parameters, we first calculate the correlation based on Eq. (32) and then
compare them to those obtained by LD-score regression.

Simulation settings. First, we tested LHC-MR using realistic parameter settings
with a mild violation of the classical MR assumptions. These standard parameter
settings consisted of simulating m= 234,000 SNPs for two non-overlapping cohorts
of equal size (for simplicity) of nx= ny= 50,000 for each trait. X, Y and U were
simulated with moderate polygenicity (πx= 5 × 10−3, πy= 1 × 10−2, πu= 5 × 10−2),
and considerable direct heritability (h2x ¼ 0:25; h2y ¼ 0:2; h2u ¼ 0:3). U had a con-
founding effect on the two traits as such, qx= 0.3, qy= 0.2 (resulting in tx= 0.16,
ty= 0.11), and X had a direct causal effect on Y (αx→y= 0.3), while the reverse
causal effect from Y to X was set to null. Note that in this setting the total heritability
of each of these traits is principally driven by direct effects and less than 10% of the
total heritability is through a confounder and in case of Y less than an additional 8%
of its total heritability is through X.It is important to note that for each tested
parameter setting, we generated 50 different datasets, and each data generation
underwent a likelihood maximisation of Eq. (25) using 50 starting points, and
produced estimated parameters corresponding to the highest likelihood (simplified
schema in Supplementary Fig. 3).

In the following simulations, we changed various parameters of these standard
settings to test the robustness of the method. We explored how increased sample
size (nx= ny= 500, 000) or differences in sample sizes
((nx, ny)= (50, 000, 500, 000) and (nx, ny)= (500, 000, 50, 000)) influence causal
effect estimates of LHC-MR and other MR methods. We also simulated data with
no causal effect (or with no confounder) and then examined how LHC-MR
estimates those parameters. Next, we varied our causal effects between the two
traits by lowering αx→y to 0.1, and in another setting by introducing a reverse
causal effect (αy→x=−0.1). In addition, we tried to create extremely unfavourable
conditions for all MR analyses by varying the confounding effects. We did this in
several ways: (i) increasing qx and qy (qx= 0.75, qy= 0.50), (ii) having a confounder
with causal effects of opposite signs on X and Y (qx= 0.3, qy=−0.2). We also
drastically increased the proportion of SNPs with non-zero effect on traits X, Y and
U (πx, πy and πu = 0.1, 0.15, 0.2 respectively). We also simulated data whereby the
confounder has lower (πu= 0.01) polygenicity than the two focal traits.

Finally, we explored various violations of the assumptions of our model (see
Methods Section). First, we introduced two confounders in the simulated data,
once with causal effects on X and Y that were concordant
(tð1Þx ¼ 0:16; tð1Þy ¼ 0:11; tð2Þx ¼ 0:22; tð2Þy ¼ 0:16) in sign, and another with
discordant effects (tð1Þx ¼ 0:16; tð1Þy ¼ 0:11; tð2Þx ¼ 0:22; tð2Þy ¼ %0:16), while still
fitting the model with only one U. Second, we breached the assumption that the
non-zero effects come from a Gaussian distribution. By design, the first three
moments of the direct effects are fixed: they have zero mean, their variance is
defined by the direct heritabilities and they must have zero skewness because the
effect size distribution has to be symmetrical. Therefore, to violate the normality
assumption, we varied the kurtosis (2, 3, 5 and 10) of the distribution drawn from
the Pearson’s distribution family. Third, we tested the assumption of the direct
effects on our traits coming from a two-component Gaussian mixture by
introducing a third component and observing how the estimates were effected.
In this simulation scenario we introduced a large effect third component for X
while decreasing the polygenicity of U (πx1 ¼ 1 ´ 10%4; πx2 ¼ 1 ´ 10%2; h2x1 ¼ 0:15;
h2x2 ¼ 0:1; πu ¼ 1 ´ 10%2).

Application to real summary statistics. Once we demonstrated favourable per-
formance of our method on simulated data, we went on to apply LHC-MR to
summary statics obtained from the UK Biobank and other meta-analytic studies
(Supplementary Table 1) in order to estimate pairwise bi-directional causal effect
between 13 complex traits. The traits varied between conventional risk factors
(such as low education, high body mass index (BMI), dislipidemia) and diseases
(including diabetes and coronary artery disease among others). SNPs with impu-
tation quality greater than 0.99, and minor allele frequency (MAF) greater than

0.5% were selected. Moreover, SNPs found within the human leukocyte antigen
(HLA) region on chromosome 6 were removed due to the abundance of SNPs
associated with autoimmune and infectious diseases as well as the complicated LD
structure present in that region. For traits with total heritability below 2.5%, the
outgoing causal effect estimates were ignored since instrumenting such barely
heritable traits is questionable.

In order to perform LHC-MR between trait pairs, a set of overlapping SNPs was
used as input for each pair. The effects of these overlapping SNPs were then aligned
to the same effect allele in both traits. To decrease computation time further (while
only minimally reducing power), we selected every 10th QC-filtered SNP as input
for the analysis. We calculated regression weights using the UK10K panel, which
may be sub-optimal for summary statistics not coming from the UK Biobank, but
we have previously shown47 that estimating LD in a ten-times larger dataset
(UK10K) outweighs the benefit of using smaller, but possibly better-matched
European panel (1000 Genomes48).

We also ran IVW for each trait pair in both directions to estimate bi-directional
causal effects as well as LD-score regression to get the cross-trait intercept term.
We then added uniformly distributed (~U(−0.1, 0.1)) noise to these pre-estimated
parameters to generate starting points for the second step of the likelihood
optimisation. These closer-to-target starting points did not change the optimisation
results, simply sped up the likelihood maximisation and increased the chances to
converge to the same (primary) optimum. The LHC-MR procedure was run for
each pair of traits 100 times, each using a different set of randomly generated
starting points within the ranges of their respective parameters. For the
optimisation of the likelihood function (Eq. (25)), we used the R function ‘optim’
from the ‘stats’ R package49. Once we fitted this complete model estimating 11
parameters in two steps fix ; iy ; πx ; πy ; h

2
x ; h

2
y ; tx ; ty ; αx!y ; αy!x; ixyg, we then ran

block jackknife to obtain the SE of the parameters estimated in the second step:
fh2x ; h

2
y ; tx ; ty ; αx!y ; αy!x ; ixyg.

To support the existence of the confounders identified by LHC-MR, we used
EpiGraphDB33,34 to systematically identify those potential confounders. The
database provided for each potential confounder of a causal relationship, a causal
effect on trait X and Y (r1, and r3 in their notation), the sign of the ratio of which
(sign(r3/r1)) was compared to the sign of the LHC-MR estimated ty/tx values
representing the strength of the confounder acting on the two traits. We restricted
our comparison to the sign only, since the r1, r3 values reported in EpiGraphDB
are not necessarily on the same scale.

Comparison against conventional MR methods and CAUSE. We compared the
causal parameter estimates of the LHC-MR method to those of five conventional
MR approaches (MR-Egger, weighted median, IVW, mode MR and weighted mode
MR) using a Z-test50. The ‘TwoSampleMR’ R package51 was used to get the causal
estimates for all the pairwise traits as well as their standard errors from the above-
mentioned MR methods. The same set of genome-wide SNPs that were used by
LHC-MR, were used as input for the package. SNPs associated with the exposure
were selected to various degrees (for simulation we selected SNPs over a range of
thresholds: absolute p-value < 5 × 10−4 to < 5 × 10−8), and SNPs more strongly
associated with the outcome than with the exposure (p-value < 0.05 in one-sided t-
test) were removed. The default package settings for the clumping of SNPs
(r2= 0.001) were used and the analysis was run with no further changes. We tested
the agreement between the significance and direction of our estimates and that of
standard MR methods, with the focus being on finding differences in statistical
conclusions regarding causal effect sizes.

We compared our causal estimates from all our simulation settings to the causal
estimates obtained by running MR-RAPS11 also using the ‘TwoSampleMR’ R
package, once by using the entire set of SNPs, and another by filtering for SNPs
with a significance threshold of <5 × 10−4. We also compared both our simulation
as well as real data results against those of CAUSE10. We first generated simulated
data under the LHC model and used them as input to estimate the causal effect
using CAUSE. We then generated simulated data using the CAUSE framework and
inputted them into LHC-MR (as well as standard MR methods) to estimate the
causal parameters. Lastly, we compared causal estimates obtained for the 78 trait
pairs (156 bi-directional causal effects) from LHC-MR to those obtained when
running CAUSE.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The origin of the summary statistics data used is referenced in Supplementary Table 1.
The UK Biobank summary statistics data used in this study came from the Neale Lab52,
and can be downloaded from http://www.nealelab.is/uk-biobank. Data on coronary
artery disease53 have been contributed by the CARDIoGRAMplusC4D and UK Biobank
CardioMetabolic Consortium CHD working group who used the UK Biobank Resource
(application number 9922). Data have been downloaded from http://
www.cardiogramplusc4d.org/data-downloads/. The computed local LD scores described
in Supplementary Methods 1.3 can be downloaded from https://wp.unil.ch/sgg/lhc-mr/.
We also used EpiGraphDB, an analytical platform and database to support data mining
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in epidemiology, to preform Phenome-wide MR search. Access to EpigraphDB is free
and may be done through their web application https://epigraphdb.org or their R package
https://github.com/MRCIEU/epigraphdb-r.

Code availability
The source code54 for this work can be found on https://github.com/LizaDarrous/LHC-
MR_v2/(https://doi.org/10.5281/zenodo.5534639), it has also been developed into an R
package that can be downloaded from https://github.com/LizaDarrous/lhcMR.
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Supplementary Methods

1.1 Characteristic functions of z(u)
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The bivariate probability density function (PDF) of these summary statistics cannot be obtained
analytically, but in the following we demonstrate that the characteristic function can be derived.
Let us first compute the characteristic function of this two-dimensional random variable, know-
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In the following we will work out each of the characteristic functions on the right hand side.

It is reasonable to assume that linkage disequilibrium (LD) fades o↵ beyond 1Mb distance. Thus,
without loss of generality we can assume that non-zero LD does not extend beyond m0 markers
around the focal variant. Hence we can assume that the length of ⇢k is m0 and only consider
�x,�y and �u to be of length m0 instead of m. Let us first approximate the distribution of ⇢k

values following a spike and slab Gaussian mixture, i.e. proportion ⇡k of the m0 SNPs have
non-zero LD, coming from a Gaussian distribution N (0, �2

k) and the remaining (1�⇡k) fraction
of the LD values is zero. In mathematical notation

⇢k = rk � k with rk ⇠ N (0, �2

k · I) and k ⇠ Bm0(1, ⇡k)

Therefore z(u)

k can be written of the form
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The PDF of the product of two zero-mean Gaussians (rk and ⇣u) is a modified Bessel function
of the second kind of order zero (K0(!)) [1], more precisely

f(rk�⇣u)j
(t) =

1/⇡

�u · �k
· K0

✓
|t|

�u · �k

◆
(3)



and its characteristic function [2, 3] is

'0(t) = E(exp(i · t · (rk � ⇣u)j)) =
1q

�2
u · �2

k · t2 + 1
(4)

Next, the characteristic function of the product of (rk�⇣u)j and a Bernoulli distributed (k,u)j
is

'1(t) = E (exp (i · t · (rk � ⇣u)j) · (k,u)j))

= ⇡k · ⇡u · E(exp(i · t · (rk � ⇣u)j)) + (1 � ⇡k · ⇡u) · E(exp(i · t · 0))

= ⇡k · ⇡u · '0(t) + (1 � ⇡k · ⇡u)

=
⇡k · ⇡uq

�2
u · �2

k · t2 + 1
+ (1 � ⇡k · ⇡u) (5)

Hence the characteristic function of the sum of m0 independent random variables is the product
of them, we have

'
z
(u)
k

(t) =

0

@ ⇡k · ⇡uq
�2
u · �2

k · t2 + 1
+ (1 � ⇡k · ⇡u)

1

A
m0

(6)

Finally, we apply a first order Taylor series approximation (around 1) of the log of the charac-
teristic function in order to speed up computation and improve numerical accuracy

log('
z
(u)
k

(t)) = m0 · log

0

@ ⇡k · ⇡uq
�2
u · �2

k · t2 + 1
+ (1 � ⇡k · ⇡u)

1

A

= m0 · log

0

@1 � ⇡k · ⇡u ·

0

@1 � 1q
�2
u · �2

k · t2 + 1

1

A

1

A

⇡ �m0 · ⇡k · ⇡u ·

0

@1 � 1q
�2
u · �2

k · t2 + 1

1

A (7)

Analogously, the approximation of the logarithm of the characteristic functions of z(x)

k and z(y)
k

is

log('
z
(x)
k

(t)) ⇡ �m0 · ⇡k · ⇡x ·

0

@1 � 1q
�2
x · �2

k · t2 + 1

1

A (8)

log('
z
(y)
k

(t)) ⇡ �m0 · ⇡k · ⇡y ·

0

@1 � 1q
�2
y · �2

k · t2 + 1

1

A (9)

Since the characteristic function of a centred multivariate Gaussian with variance-covariance
matrix ⌃ is exp(�(1/2) · t0 · ⌃ · t) we have

log
⇣
'(⌘xk ,⌘

y
k)

(v, w)
⌘

= �1

2
·
✓

ix
nx

· v2 + 2 · ix,yp
nx · ny

· v · w +
iy
ny

· w2

◆
(10)
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1.2 From characteristic function to probability density function

The final form of the logarithm of the joint characteristic function of the transformed summary
statistics is

log
⇣
'(b�x

k ,
b�y
k)

(v, w)
⌘

= log

✓
'
z
(x)
k

✓
v + ↵x!yw

1 � ↵x!y↵y!x

◆◆
+ log

✓
'
z
(y)
k

✓
w + ↵y!xv

1 � ↵x!y↵y!x

◆◆

+ log

✓
'
z
(u)
k

✓
v · (↵y!x · qy + qx) + w · (↵x!y · qx + qy

1 � ↵x!y↵y!x
)

◆◆

+ log
⇣
'(⌘xk ,⌘

y
k)

(v, w)
⌘

⇡ �m0 · ⇡k · ⇡x ·

0

BB@1 � 1r
�2
x·�2

k·(v+↵x!yw)2

(1�↵x!y↵y!x)2
+ 1

1

CCA (11)

� m0 · ⇡k · ⇡y ·

0

BB@1 � 1r
�2
y ·�2

k·(w+↵y!xv)2

(1�↵x!y↵y!x)2
+ 1

1

CCA

� m0 · ⇡k · ⇡u ·

0

BB@1 � 1r
�2
u·�2

k·(v·(↵y!x·qy+qx)+w·(↵x!y ·qx+qy))
2

(1�↵x!y↵y!x)2
+ 1

1

CCA

� 1

2
·
✓

ix
nx

· v2 + 2 · ix,yp
nx · ny

· v · w +
iy
ny

· w2

◆

Using the inversion theorem for characteristic functions we can express the joint distribution of⇣
b�x
k , b�y

k

⌘
as

f(b�x
k ,

b�y
k)

(x, y) =

✓
1

2⇡

◆
2

·
Z 1

�1

Z 1

�1
exp(�i · (x · v + y · w)) · '(b�x

k ,
b�y
k)

(v, w) dv dw (12)

This integral can be e�ciently computed by Fast Fourier Transformation (FFT, see [4] and
references within). To speed up computation, we bin SNPs according to their ⇡k and �k values
(10 ⇥ 10 bins with equidistant centres) and for SNPs in the same bin the PDF function is
evaluated over a fine grid (27 ⇥ 27 combinations) using the FFT.

Note that any derivative of the likelihood function can be readily calculated as a FFT of the
derivative of the characteristic function, i.e.

@

@✓
f(b�x

k ,
b�y
k)

(x, y) =

✓
1

2⇡

◆
2

·
Z 1

�1

Z 1

�1
exp(�i · (x · v + y · w)) · @

@✓
'(b�x

k ,
b�y
k)

(v, w) dv dw (13)

1.3 Computation of the LD scores

We first took 4,773,627 SNPs with info (imputation certainty measure) � 0.99 present in the
association summary files from the second round of GWAS by the Neale lab[5]. This set was
restricted to 4,650,107 common, high-quality SNPs, defined as being present in both UK10K
and UK Biobank, having MAF > 1% in both data sets, non-significant (Pdiff > 0.05) allele
frequency di↵erence between UK Biobank and UK10K and residing outside the HLA region
(chr6:28.5-33.5Mb). For these SNPs, LD scores and regression weights were computed based on

3



3,781 individuals from the UK10K study[6]. To estimate the local LD distribution for each SNP
(k), characterised by ⇡k, �2

k, we fitted a two-component Gaussian mixture distribution to the
observed local correlations (focal SNP +/� 2’500 markers with MAF� 0.5% in the UK10K):
(1) one Gaussian component corresponding to zero correlations, reflecting only measurement
noise (whose variance is proportional to the inverse of the reference panel size) and (2) a sec-
ond component with zero mean and a larger variance than the first component (encompassing
measurement noise plus non-zero LD).

1.4 Likelihood function identifiability

The likelihood function is symmetric around U , but for simplicity we will consider the general
case where the variables of U and X are flipped, although the same can be said for the variables
of U and Y . The likelihood function is partially identifiable such that there exists for any given
model parameters, another model with di↵erent parameters but with the exact same likelihood
function.

Proof: given that the SNPs e↵ects between trait X and the confounder U are flipped, the new
parameters follow the following structure:

h0
x = tx + ty · ↵y!x (14)

h0
y = hy (15)

↵0
y!x = ↵y!x (16)

↵0
x!y =

qx · ↵x!y + qy
qx + qy · ↵y!x

=
qx(↵x!y + qy

qx
)

qx(1 + qy
qx

· ↵y!x)

=
↵x!y + qy

qx

1 + qy
qx

· ↵y!x
(17)

through inverse transformation,

↵x!y =
↵0
x!y +

q0y
q0x

1 +
q0y
q0x

· ↵y!x

(18)

Plugging in ↵0
x!y in the above equation, and simplifying ty

tx by w and ty0

tx0 by w0 to get the
confounding ratio:

↵x!y =
↵0
x!y + w0

1 + w0 · ↵y!x

↵x!y + ↵x!y · w0 · ↵y!x = ↵0
x!y + w0

↵x!y � ↵0
x!y = w0 � ↵x!y · w0 · ↵y!x

↵x!y � ↵0
x!y = w0(1 � ↵x!y · ↵y!x)

w0 =
↵x!y � ↵0

x!y

1 � ↵x!y · ↵y!x
(19)
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inserting the complete form of ↵0
x!y,

w0 =
↵x!y �

↵x!y+
qy
qx

1+
qy
qx

·↵y!x

1 � ↵x!y · ↵y!x

=
↵x!y(1 + w · ↵y!x) � w � ↵x!y

(1 � ↵x!y · ↵y!x)(1 + w · ↵y!x)

=
↵x!y · w · ↵y!x � w

(1 � ↵x!y · ↵y!x)(1 + w · ↵y!x)

=
w(↵x!y · ↵y!x � 1)

(1 � ↵x!y · ↵y!x)(1 + w · ↵y!x)

=
�w

1 + w · ↵y!x
(20)

In order to obtain t0y and t0x, we use the equations of h0
x, ↵0

x!y and by using the inverse trans-
formation of ↵0

y!x = ↵y!x, ↵x!y as well as w0 as follows:

t0y =
�t0x · w

1 + w · ↵y!x
(21)

hx = t0x + t0y · ↵y!x

= t0x +
�t0x · w

1 + w · ↵y!x
· ↵y!x

=
t0x + t0x · w · ↵y!x � t0x · w · ↵y!x

1 + w · ↵y!x

=
t0x

1 + w · ↵y!x
(22)

t0x = hx(1 + w · ↵y!x) (23)

Replacing t0x in hx to get t0y:

t0y = hx · w (24)

Under these two models with equal likelihood, there are three slopes obtained from the ob-
served data: two are the correlation of e↵ect sizes (↵x!y and 1/↵y!x), where one of them is
greater than, and the other is within the parameter bounds. The third is the correlation of the

confounder
↵x!y+

qy
qx

1+
qy
qx

·↵y!x
.

More often than not, only one slope is recovered within the boundaries of the parameters set
for LHC-MR. However, given the now known re-parameterisation, the second (and if found,
third) slope can be simply calculated if not found by the likelihood function minimisation. It
is reasonable to assume that the direct heritability of each trait is larger than the indirect
heritability, hence we report parameter sets where h2

x > t2x or h2
y > t2y.
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1.5 Decomposition of genetic correlation

Given the starting equations for X and Y we can calculate their genetic correlation. Denoting
the total (multivariate) genetic e↵ect for X and Y as �x and �y, we can express them as
follows

�x = qx · �u + ↵y!x�y + �x (25)

�y = qy · �u + ↵x!y�x + �y (26)

Substituting the second equation to the first yields

�x = qx · �u + ↵y!x(qy · �u + ↵x!y�x + �y) + �x

= (qx + ↵y!xqy) · �u + (↵y!x↵x!y)�x + ↵y!x�y + �x (27)

= ((qx + ↵y!xqy) · �u + ↵y!x�y + �x) /(1 � ↵y!x↵x!y)

Similarly,

�y = ((qy + ↵x!yqx) · �u + ↵x!y�x + �y) /(1 � ↵y!x↵x!y) (28)

Thus the genetic covariance is

E[�x · �y] = ((qx + ↵y!xqy) · �u + ↵y!x�y + �x) ((qy + ↵x!yqx) · �u + ↵x!y�x + �y) /(1 � ↵y!x↵x!y)
2

=
�
(qx + ↵y!xqy)(qy + ↵x!yqx)h

2

u + ↵y!xh
2

y + ↵x!yh
2

x

�
/(1 � ↵y!x↵x!y)

2

=
�
(tx + ↵y!xty)(ty + ↵x!ytx) + ↵y!xh

2

y + ↵x!yh
2

x

�
/(1 � ↵y!x↵x!y)

2 (29)

and the heritabilities are

E[�2x] =
�
(tx + ↵y!xty)

2 + ↵2

y!xh
2

y + h2

x

�
/(1 � ↵y!x↵x!y)

2 (30)

E[�2y] =
�
(ty + ↵x!ytx)

2 + ↵2

x!yh
2

x + h2

y

�
/(1 � ↵y!x↵x!y)

2 (31)

Therefore the genetic correlation takes the form

corr(�x, �y) =
(tx + ↵y!xty)(ty + ↵x!ytx) + ↵y!xh2

y + ↵x!yh2
xq�

(tx + ↵y!xty)2 + ↵2
y!xh

2
y + h2

x

� �
(ty + ↵x!ytx)2 + ↵2

x!yh
2
x + h2

y

� (32)

These values can be compared to those obtained by LD score regression.
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Supplementary Figures

(1)

(2)⇥

(3)

⇥

G X Y

U

Supplementary Figure 1: Basic assumptions of Mendelian randomisation. (1) Relevance – genetic data,

denoted by G, is robustly associated with the exposure. (2) Exchangeability – G is not associated with any confounder of

the exposure-outcome relationship. (3) Exclusion restriction – G is independent of the outcome conditional on the exposure

and all confounders of the exposure-outcome relationship (i.e. the only path between the instrument and the outcome is

via the exposure).
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Supplementary Figure 2: An illustration of a scatter plot showing simulated observed SNP e↵ects on

traits X and Y , coloured by the strongest e↵ect between the three vectors �x, �y , �u. SNPs in grey are those with

no e↵ect on any of the traits. This illustration shows the distinct clusters that could arise in the presence of a confounder.

The dark blue cluster of SNPs represents those that are not in violation of any of the MR assumption, and hence its slope

reflects the true causal e↵ect of X on Y , while the red cluster of SNPs are those associated with the confounder. The

steeper slope of the red cluster of SNPs causes a typical regression line - shown in grey - that represents the causal e↵ect

(estimated using conventional MR methods) to be overestimated.
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Starting points 2  mLL and optimised parameters
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mLL
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}Smallest
mLL

} 50 estimated
parameters

Supplementary Figure 3: A schema showing the workflow of the simulation results. For a single set of

parameter settings, 50 di↵erent data generations of GWAS summary statistics are created for trait X and Y . The summary

statistics of a single data generation, as well as the sample size, SNP number and SNP-based LD structure are used in

the likelihood optimisation function that is run with 100 di↵erent random starting points in order to explore the likelihood

surface. A single maximum likelihood and its corresponding estimated parameters are selected to represent the estimates

of that data generation. And this is repeated for the other generations. The results for several data generation are often

represented in boxplots throughout the paper.
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Supplementary Figure 4: Simulation results under various scenarios. These modified Sina-boxplot represent

the distribution of parameter estimates from 50 di↵erent data generations under various conditions. For each generation,

standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect. In the boxplots, the lower and upper

hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker

is the largest dataset estimate smaller than 1.5⇤inter-quartile range above the third quartile. The lower whisker is defined

analogously. The true values of the parameters used in the data generations are represented by the blue dots/lines. a

Estimation under standard settings (⇡x = 5 ⇥ 10
�3,⇡y = 1 ⇥ 10

�2,⇡u = 5 ⇥ 10
�2, h2

x = 0.25, h2
y = 0.2, h2

u = 0.3, tx =

0.16, ty = 0.11). b Addition of a reverse causal e↵ect ↵y!x = �0.2. c Confounder with opposite causal e↵ects on X and

Y (tx = 0.16, ty = �0.11). 11



Supplementary Figure 5: Simulation results showing varying sample sizes for the two exposure and

outcome samples. Modified Sina-boxplots representing the distribution of parameter estimates from 50 di↵erent data

generations. For each generation, standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect. In

the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds to the

median, whereas the upper whisker is the largest dataset estimate smaller than 1.5⇤inter-quartile range above the third

quartile. The lower whisker is defined analogously. The true values of the parameters used in the data generations are

represented by the blue dots/lines. In this figure, samples sizes for the two traits di↵er as such nx = 500,000 and ny =

50,000 for a, and nx = 50,000 and ny = 500,000 for b.
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Supplementary Figure 6: Simulation results under various scenarios. These modified Sina-boxplots represent

the distribution of parameter estimates from 50 di↵erent data generations under various conditions. For each generation,

standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect. In the boxplots, the lower and upper

hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker

is the largest dataset estimate smaller than 1.5⇤inter-quartile range above the third quartile. The lower whisker is defined

analogously. The true values of the parameters used in the data generations are represented by the blue dots/lines. a The

data simulated had no causal e↵ect in either direction. b The data simulated had no confounder e↵ect with ⇡u, tx, and

ty = 0. c This model had a small causal e↵ect of ↵x!y = 0.1.
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Supplementary Figure 7: Simulation results under various scenarios. These modified Sina-boxplots represent

the distribution of parameter estimates from 50 di↵erent data generations under various conditions. For each generation,

standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect. In the boxplots, the lower and upper

hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker

is the largest dataset estimate smaller than 1.5⇤inter-quartile range above the third quartile. The lower whisker is defined

analogously. The true values of the parameters used in the data generations are represented by the blue dots/lines. a The

data simulated had no causal e↵ect in either direction. b The data simulated had no confounder e↵ect with ⇡u, tx, and

ty = 0. c This model had a small causal e↵ect of ↵x!y = 0.1.
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Supplementary Figure 8: Simulation results under various scenarios. These modified Sina-boxplots represent

the distribution of parameter estimates from 50 di↵erent data generations under various conditions. For each generation,

standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect. In the boxplots, the lower and upper

hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker

is the largest dataset estimate smaller than 1.5⇤inter-quartile range above the third quartile. The lower whisker is defined

analogously. The true values of the parameters used in the data generations are represented by the blue dots/lines. a The

data simulated shows the increased e↵ect of U on X and Y through tx = 0.41, ty = 0.27 instead of the standard setting

tx = 0.16, ty = 0.11. b This panel show the same thing but with a larger sample size of nx = ny = 500, 000
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Supplementary Figure 9: Simulation results where there is an increased polygenicity for all traits.

Modified Sina-boxplots representing the distribution of parameter estimates from 50 di↵erent data generations. For each

generation, standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect. In the boxplots, the

lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas

the upper whisker is the largest dataset estimate smaller than 1.5⇤inter-quartile range above the third quartile. The lower

whisker is defined analogously. The true values of the parameters used in the data generations are represented by the blue

dots/lines. The proportion of e↵ective SNPs that make up the spike-and-slab distributions of the � vectors in this setting

is 10%, 15%, and20% for traits X,Y and U respectively. a Results for smaller sample size of nx = ny = 50, 000. b Results

for larger sample size of nx = ny = 500, 000.
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Supplementary Figure 10: Simulation results where the polygenicity of the confounder is reduced.

Modified Sina-boxplots representing the distribution of parameter estimates from 50 di↵erent data generations. For each

generation, standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect. In the boxplots, the lower

and upper hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper

whisker is the largest dataset estimate smaller than 1.5⇤inter-quartile range above the third quartile. The lower whisker is

defined analogously. The true values of the parameters used in the data generations are represented by the blue dots/lines.

In this figure, the polygenicity for U is decreased in the form of lower ⇡u = 0.01. a Results for smaller sample size of

nx = ny = 50, 000. b Results for larger sample size of nx = ny = 500, 000.
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Supplementary Figure 11: Simulation results where there are two underlying confounders, once with

concordant and another with discordant e↵ects on the exposure-outcome pair. Modified Sina-boxplots represent-

ing the distribution of parameter estimates from 50 di↵erent data generations. For each generation, standard MR methods

as well as our LHC-MR were used to estimate a causal e↵ect. In the boxplots, the lower and upper hinges correspond to the

first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker is the largest dataset estimate

smaller than 1.5⇤inter-quartile range above the third quartile. The lower whisker is defined analogously. The true values

of the parameters used in the data generations are represented by the blue dots/lines. a The underlying data generations

have two concordant heritable confounders U1 and U2 with positive e↵ects on traits X and Y . b The data generations have

two discordant heritable confounders with t
(1)
x = 0.16, t

(1)
y = 0.11 shown as blue dots and t

(2)
x = 0.22, t

(2)
y = �0.16 shown

as red dots.
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Supplementary Figure 12: Simulation results where there are two underlying confounders, once with

concordant and another with discordant e↵ects on the exposure-outcome pair. Modified Sina-boxplots represent-

ing the distribution of parameter estimates from 50 di↵erent data generations. For each generation, standard MR methods

as well as our LHC-MR were used to estimate a causal e↵ect. In the boxplots, the lower and upper hinges correspond to the

first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker is the largest dataset estimate

smaller than 1.5⇤inter-quartile range above the third quartile. The lower whisker is defined analogously. The true values

of the parameters used in the data generations are represented by the blue dots/lines. a The underlying data generations

have two concordant heritable confounders U1 and U2 with positive e↵ects on traits X and Y . b The data generations have

two discordant heritable confounders with t
(1)
x = 0.16, t

(1)
y = 0.11 shown as blue dots and t

(2)
x = 0.22, t

(2)
y = �0.16 shown

as red dots.
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Supplementary Figure 13: Simulation results under various scenarios. These modified Sina-boxplots

represent the distribution of parameter estimates from 50 di↵erent data generations under various conditions. For each

generation, standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect. In the boxplots, the

lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas

the upper whisker is the largest dataset estimate smaller than 1.5⇤inter-quartile range above the third quartile. The lower

whisker is defined analogously. The true values of the parameters used in the data generations are represented by the blue

dots/lines. a The di↵erent coloured boxplots represent the underlying non-normal distribution used in the simulation of the

three �x, �x, �u vectors associated to their respective traits. The Pearson distributions had the same 0 mean and skewness,

however their kurtosis ranged between 2 and 10, including the kurtosis of 3, which corresponds to a normal distribution

assumed by our model. The standard MR results reported had IVs selected with a p-value threshold of 5⇥10
�6

. b Addition

of a third component for exposure X, while decreasing the strength of U . True parameter values are in colour, blue and

red for each component (⇡x1 = 1 ⇥ 10
�4,⇡x2 = 1 ⇥ 10

�2, h2
x1 = 0.15, h2

x2 = 0.1).
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Supplementary Figure 14: Running CAUSE on LHC-MR simulated data under the standard settings.

Boxplots of the parameter estimation of CAUSE on LHC-simulated data (nx = ny = 50, 000), with 50 di↵erent data

generations under three di↵erent scenarios: presence of a shared factor only, presence of a causal e↵ect only, presence of

both. In the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds

to the median, whereas the upper whisker is the largest dataset estimate smaller than 1.5⇤inter-quartile range above the

third quartile. The lower whisker is defined analogously. CAUSE returns two possible models with a respective p-value,

the sharing and the causal model, where the causal mode is the significant of the two. When only an underlying shared

factor was present in the simulated data, CAUSE had no significant causal estimates. With a true underlying causal e↵ect,

or when both an underlying causal e↵ect and a shared factor was present, the causal model was significant only 4% of the

simulations.
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Supplementary Figure 15: Running CAUSE on LHC-MR simulated data under the standard settings.

Boxplots of the parameter estimation of CAUSE on LHC-simulated data (nx = ny = 500, 000), with 50 di↵erent data

generations under three di↵erent scenarios: presence of a shared factor only, presence of a causal e↵ect only, presence of

both. In the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds

to the median, whereas the upper whisker is the largest dataset estimate smaller than 1.5⇤inter-quartile range above the

third quartile. The lower whisker is defined analogously. CAUSE returns two possible models with a respective p-value,

the sharing and the causal model, where the causal mode is the significant of the two. When only an underlying shared

factor was present in the simulated data, CAUSE had no significant causal estimates. With a true underlying causal e↵ect,

or when both an underlying causal e↵ect and a shared factor was present, the causal model was significant 100% of the

simulations.

22



Supplementary Figure 16: Running LHC-MR on CAUSE simulated data under various scenarios.

Modified Sina-boxplots representing the distribution of parameter estimates from LHC-MR of 50 di↵erent data generations

using the CAUSE framework. For each generation, standard MR methods, CAUSE as well as our LHC-MR were used to

estimate a causal e↵ect. In the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle

bar corresponds to the median, whereas the upper whisker is the largest dataset estimate smaller than 1.5⇤inter-quartile

range above the third quartile. The lower whisker is defined analogously. The true values of the parameters used in the

data generations are represented by the blue dots/lines. a CAUSE data was generated with no causal e↵ect but with a

shared factor with an ⌘ value of ⇠ 0.22. CAUSE chooses a sharing model 100% of the time with no estimate for a causal

e↵ect. b CAUSE is simulated with causal e↵ect but with no shared factor. c CAUSE is simulated with both a causal e↵ect

and a shared factor.
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Supplementary Figure 17: Running LHC-MR on CAUSE simulated data under various scenarios.

Modified Sina-boxplots representing the distribution of parameter estimates from LHC-MR of 50 di↵erent data generations

using the CAUSE framework. For each generation, standard MR methods, CAUSE as well as our LHC-MR were used to

estimate a causal e↵ect. In the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle

bar corresponds to the median, whereas the upper whisker is the largest dataset estimate smaller than 1.5⇤inter-quartile

range above the third quartile. The lower whisker is defined analogously. The true values of the parameters used in the

data generations are represented by the blue dots/lines. a CAUSE data was generated with no causal e↵ect but with a

shared factor with an ⌘ value of ⇠ 0.22. b CAUSE is simulated with causal e↵ect but with no shared factor. c CAUSE is

simulated with both a causal e↵ect and a shared factor. LHC-MR seems to exhibit a bimodal e↵ect at first glance, but the

two peaks are not connected.
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Supplementary Figure 19: A scatter plot of the causal e↵ect estimates between LHC-MR and CAUSE.

To improve visibility, non-significant estimates by both methods are placed at the origin, while significant estimates by both

methods appear on the diagonal with 95% CI error bars for LHC-MR causal estimates, and 95% credible interval error bars

for CAUSE estimates. Labelled pairs are those with an estimate di↵erence greater than 0.1.
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Supplementary Tables

UKBB ID / Data Origin Trait Name Abbreviation Sample Size PMID

845 Age completed full time education Edu 240,547 25826379
21001 irnt Body mass index (BMI) BMI 359,983 25826379

2443 Diabetes diagnosed by doctor DM 360,192 25826379
20002 1075 Non-cancer illness code, self-reported: heart attack/myocardial infarction MI 361,141 25826379
20002 1111 Non-cancer illness code, self-reported: asthma Asthma 361,141 25826379

2887 Number of cigarettes previously smoked daily PSmoke 84,456 25826379
20022 irnt Birth weight BWeight 205,475 25826379

50 irnt Standing height SHeight 360,388 25826379
4080 Systolic blood pressure, automated reading SBP 340,159 25826379

20003 1140861958 Treatment/medication code: simvastatin SVstat 361,141 25826379
30780 irnt LDL Cholesterol LDL 343,621 25826379
30760 irnt HDL Cholesterol HDL 315,133 25826379

UKBB + CARDIoGRAMplusC4D Coronary Artery Disease CAD 380,831 29212778

Supplementary Table 1: Details of the origin study of each trait, its abbreviation used in this paper,

the sample size of the study for that trait, as well as the PubMed article ID.
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Supplementary Table 2: Cross tables between LHC-MR and various standard MR methods comparing

the significance and sign of each respective causal estimate. f shows a cross table between the two-least correlated

MR methods in terms of their estimates.
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Pair ↵x!y p-value � IVW ↵x!y p-value

BMI-Asthma 0.1290 4.99E-14 0.02 (0.01, 0.02) 0.0593 1.00E-08
BMI-DM 0.2958 1.07E-99 0.04 (0.03, 0.04) 0.2447 2.25E-140
BMI-SBP 0.1878 5.55E-09 0.13 (0.11, 0.14) 0.1547 1.11E-24
BMI-SVstat 0.1670 2.08E-91 0.03 (0.03, 0.03) 0.1570 4.26E-63
BMI-MI 0.1396 1.67E-41 0.01 (0.01, 0.01) 0.1027 9.16E-32
BWeight-SHeight 0.4748 9.60E-18 0.34 (0.29, 0.39) 0.2959 8.01E-10
SHeight-BWeight 0.1806 1.93E-53 0.24 (0.22, 0.25) 0.1803 7.21E-86
SBP-DM 0.1437 3.17E-07 0.02 (0.01, 0.02) 0.0697 3.69E-07
DM-SVstat 0.3147 4.11E-12 0.39 (0.33, 0.46) 0.2524 1.28E-16
SHeight-Edu 0.0715 8.42E-09 0.08 (0.07, 0.09) 0.0643 2.28E-21
SBP-SVstat 0.2089 4.84E-26 0.04 (0.04, 0.05) 0.1853 1.46E-52
Edu-HDL 0.4037 5.25E-12 0.22 (0.17, 0.27) 0.2848 4.06E-08
BMI-CAD 0.2373 2.37E-64 0.28 (0.25, 0.32) 0.1800 2.42E-53
CAD-DM 0.1920 5.92E-13 0.01 (0.01, 0.01) 0.0659 0.002455431
DM-CAD 0.4283 5.60E-19 1.95 (1.26, 2.64) 0.1796 4.15E-05
SBP-CAD 0.2807 2.86E-46 0.45 (0.39, 0.51) 0.2500 9.77E-24
CAD-SVstat 0.2491 8.82E-44 0.03 (0.03, 0.04) 0.3077 1.15E-25
CAD-MI 0.4634 0 0.02 (0.02, 0.02) 0.4191 3.07E-285
LDL-CAD 0.3402 1.17E-45 0.31 (0.24, 0.38) 0.2014 8.56E-27
BMI-Edu -0.2241 3.74E-14 -0.12 (-0.14, -0.11) -0.1892 6.15E-35
SHeight-BMI -0.1278 1.40E-22 -0.13 (-0.14, -0.11) -0.0854 9.01E-23
SBP-BWeight -0.2565 9.85E-08 -0.13 (-0.16, -0.1) -0.1646 1.20E-11
SBP-SHeight -0.3657 4.81E-08 -0.12 (-0.15, -0.1) -0.0967 0.004422636
SHeight-SBP -0.0759 5.74E-05 -0.08 (-0.09, -0.07) -0.0652 1.25E-15
SHeight-SVstat -0.0465 4.76E-09 -0.01 (-0.02, -0.01) -0.0328 6.78E-12
BMI-HDL -0.3760 3.54E-56 -0.28 (-0.29, -0.26) -0.3630 3.17E-111
SHeight-LDL -0.0716 4.26E-09 -0.04 (-0.05, -0.02) -0.0298 5.07E-06
BWeight-CAD -0.1745 2.05E-06 -0.21 (-0.28, -0.14) -0.0978 2.83E-05
SHeight-CAD -0.0802 3.72E-20 -0.15 (-0.18, -0.12) -0.0482 2.18E-12
HDL-CAD -0.1729 7.00E-31 -0.26 (-0.3, -0.21) -0.0778 5.45E-10

Supplementary Table 3: Table comparing the causal estimates of LHC-MR, CAUSE, and IVW for

trait pairs that had a significant causal e↵ect in LHC-MR and CAUSE. The column showing the gamma (causal

e↵ect) estimate of the CAUSE method also reports its 95% credible intervals. A complete table for all the studied pairs is

found in the Supplementary Data 4.
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Appendix B: Genetic insights into the
causal relationship between physical
activity and cognitive functioning

This article is presented in chapter �.�.
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Genetic insights into the causal 
relationship between physical 
activity and cognitive functioning
Boris Cheval 1,2,16*, Liza Darrous 3,4,16*, Karmel W. Choi 5, Yann C. Klimentidis 6, 
David A. Raichlen 7,8, Gene E. Alexander 10,11,12,9, Stéphane Cullati 13,  
Zoltán Kutalik 3,4,17* & Matthieu P. Boisgontier 14,15,17*

Physical activity and cognitive functioning are strongly intertwined. However, the causal relationships 
underlying this association are still unclear. Physical activity can enhance brain functions, but healthy 
cognition may also promote engagement in physical activity. Here, we assessed the bidirectional 
relationships between physical activity and general cognitive functioning using Latent Heritable 
Confounder Mendelian Randomization (LHC-MR). Association data were drawn from two large-scale 
genome-wide association studies (UK Biobank and COGENT) on accelerometer-measured moderate, 
vigorous, and average physical activity (N = 91,084) and cognitive functioning (N = 257,841). After 
Bonferroni correction, we observed significant LHC-MR associations suggesting that increased 
fraction of both moderate (b = 0.32,  CI95% = [0.17,0.47], P = 2.89e − 05) and vigorous physical activity 
(b = 0.22,  CI95% = [0.06,0.37], P = 0.007) lead to increased cognitive functioning. In contrast, we found 
no evidence of a causal effect of average physical activity on cognitive functioning, and no evidence 
of a reverse causal effect (cognitive functioning on any physical activity measures). These findings 
provide new evidence supporting a beneficial role of moderate and vigorous physical activity (MVPA) 
on cognitive functioning.

Multiple cross-sectional and longitudinal studies have shown that physical activity and cognitive functioning are 
strongly intertwined and decline through the course of  life1–5. However, the evidence of causality of this relation-
ship remains unclear. Previous results have shown that physical activity can improve cognitive  functioning6–12, 
but recent studies have also suggested that well-functioning cognitive skills can in!uence engagement in physical 
 activity1,13–20.

Several mechanisms could explain how physical activity, especially at moderate intensities, enhances general 
cognitive  functioning12,21–27. For example, physical activity can increase brain plasticity, angiogenesis, synap-
togenesis, and neurogenesis primarily through the upregulation of growth factors (e.g., brain-derived neuro-
trophic factor; BDNF)23,24,26. In addition, the repetitive activation of higher-order brain functions (e.g., planning, 
inhibition, and reasoning) required to engage in physical activity may contribute to the improvement of these 
 functions27,28. In turn, other mechanisms could explain how cognitive functioning may a"ect physical activity. 
For example, cognitive functioning may be required to counteract the automatic attraction to e"ort minimization 
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and thereby in!uence a person’s ability to engage in physically active  behavior20,29–31. Of note, these mechanisms 
are not mutually exclusive and could therefore lead to bidirectionally reinforcing relationships (i.e., positive 
feedback loop) between physical activity and cognitive  functioning32. #us, there is a mechanistic explanation 
theoretically supporting the associations between moderate physical activity and cognitive function.

Although these studies point to a potential mutually bene$cial interplay between physical activity and cogni-
tive functioning across the lifespan, these $ndings mainly stem from observational designs and analytical meth-
ods that cannot fully rule out the in!uence of social, behavioral, and genetic  confounders32. While randomized 
controlled trials minimizing these potential confounds have been  conducted33, they were typically based on 
small sample sizes (n < 100) that can bias the  estimations33. Critically, these trials only investigated the e"ect of 
physical activity on cognitive functioning, not the opposite. Accordingly, current evidence on the causal asso-
ciation between physical activity and cognitive functioning and on whether this association is one or two-way 
could be considered weak. Because Mendelian Randomization (MR) is less vulnerable to confounding or reverse 
causation than conventional approaches in observational  studies34,35, this method is particularly appropriate to 
address this knowledge gap.

MR is an epidemiological method in which the randomized inheritance of genetic variation is considered as a 
natural experiment to estimate the potential causal e"ect of a modi$able risk factor (exposure) on health-related 
outcomes in an observational  design34,35. MR draws on the assumption that genetic variants associated with the 
exposure, because they are randomly allocated at conception, are less associated with other risk factors that may 
be confounders of the association between the exposure and the outcome, and are immune to reverse causality 
since diseases or health-related outcomes have no reverse e"ect on genetic variants. Accordingly, if an exposure 
(e.g., physical activity) causally a"ects an outcome (e.g., cognitive function), the genetic variants that in!uence 
this exposure is expected to a"ect the outcome to a proportional degree if no separate pathway exists by which 
these genetic variants can a"ect the  outcome32. In other words, genetic variants associated with an exposure of 
interest can serve as instruments (or proxies) for estimating the causal association with an outcome (see Fig. 1 
for the conceptual illustration of the MR method).

We used a newly-developed MR method showing improved power to simultaneously estimate the bidirec-
tional causal e"ects between physical activity and cognitive  functioning36. In a two-sample MR design, genetic 
instruments can be obtained from summary statistics of nonoverlapping large-scale genome-wide association 
studies (GWAS). #at is, the genetic instruments for the exposure and the genetic instruments for the outcome 
can be obtained from separate  studies37. #is is an outstanding advantage for estimating the causal relationships 
between two traits (e.g., cognitive functioning and physical activity) because a trait does not necessarily need 
to be assessed in both  samples37. Here, the causal estimates were modeled based on recently available sum-
mary statistics from large-scale GWAS of accelerometer-measured physical  activity38, and general cognitive 
 functioning39,40.

#e current study focused on general cognitive functioning estimated from a battery of neuropsychologi-
cal tests (e.g., N-Back working memory task, Stroop Test, Wechsler Adult Intelligence Scale)41,42. Although the 
in!uence of physical activity on di"erent types of cognitive functions may di"er, cognitive tests measuring these 
di"erent functions yield highly correlated results in a given individual, making the assessment of general cogni-
tive functioning highly  relevant40.

Since it has been suggested that the intensity of physical activity can be an important consideration, with 
moderate intensity having greater bene$cial e"ects than vigorous  intensity43–47, we assessed whether the causal 
e"ect estimates on cognitive functioning were dependent on physical activity intensity (i.e., moderate vs. vigor-
ous vs. average). However, if a stronger e"ect on cognitive function could be expected for moderate physical 
activity, recent studies showed that high-intensity exercise can also impact the above-mentioned mechanisms 
such as increased  BDNF48–50. Here, consistent with existing literature using UK Biobank  data38,51, the fraction 

Figure 1.  Conceptual illustration of the Mendelian Randomization (MR) method. #e causal association of 
interest is between the exposure (e.g., physical activity) and the outcome (e.g., cognitive function). Relevance 
assumption states that the genetic instruments are strongly associated with the exposure but are not associated 
with the confounders. #e exclusion restriction assumption states that the genetic instruments are only 
indirectly associated with the outcome via the exposure. #us, the solid paths are expected to exist, while the 
dashed paths are expected to be nonsigni$cant according to the core MR assumptions.
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of accelerations > 100 milli-gravities (mg) and < 425 mg was used to estimate moderate physical activity, and the 
fraction of accelerations ≥ 425 mg was used to estimate vigorous physical activity. Of note, as existing literature 
suggests reciprocal associations between physical activity and cognitive function, we applied bidirectional MR 
to examine the causal link from physical activity to cognitive function and from cognitive function to physical 
activity.

Methods
Data sources and instruments. #is study used de-identi$ed GWAS summary statistics from original 
studies that were approved by relevant ethics committees. #e current study was approved by the Ethics Com-
mittee of Geneva Canton, Switzerland (CCER-2019–00,065). #e available summary-level data were based on 
257,841 samples for general cognitive functioning and 91,084 samples for accelerometer-based physical activity. 
Participants’ age ranged from 40 to 69 years in the UK Biobank and from 8 to 96 years in the COGENT consor-
tium.

Physical activity. Accelerometer-measured physical activity was assessed based on summary statistics from a 
recent  GWAS38, analyzing accelerometer-based physical activity data from the UK Biobank. In the UK Biobank, 
about 100,000 participants wore a wrist-worn triaxial accelerometer (Axivity AX3) that was set up to record 
data for seven days. Individuals with less than 3 days (72 h) of data or not having data in each 1-h period of the 
24-h cycle or for whom the accelerometer could not be calibrated were excluded. Data for non-wear segments, 
de$ned as consecutive stationary episodes ≥ 60 min where all three axes had a standard deviation < 13 mg, were 
imputed. #e details of data collection and processing can be found  elsewhere52. We examined three measures 
derived from the three to seven days of accelerometer wear: the average acceleration in mg that includes accel-
eration > 0 mg, the fraction of accelerations > 100 mg and < 425 mg to estimate moderate physical activity, and 
the fraction of accelerations ≥ 425 mg to estimate vigorous physical  activity38. As previous  reported51, 425 mg 
cut-o" was chosen because it corresponds to vigorous intensity (6 METS). #e GWAS for average physical 
activity (nmax = 91,084) identi$ed 2 independent genome-wide signi$cant SNPs (P < 5e − 09), with an SNP-based 
heritability of ~ 14%.

As for the other two physical activity measures, the fractions of accelerations corresponding to moderate and 
vigorous physical activity were obtained by running new GWAS on the decomposed acceleration data from UK 
Biobank using the BGENIE  so'ware53. #e phenotype for moderate physical activity was limited to accelera-
tion magnitudes ranging from 100 to < 425 mg, whereas vigorous physical activity was limited to acceleration 
magnitudes ranging from 425 to 2000 mg. #ese acceleration fractions were adjusted for age, sex, and the $rst 
40 principal components (PC), and the analyzed individuals were restricted to unrelated white-British. #e two 
datasets of average physical activity summary statistics, alongside the moderate and vigorous physical activity 
summary statistics, were used in Latent Heritable Confounder Mendelian Randomization (LHC-MR) to inves-
tigate the possible bidirectional e"ect that exists between these physical activity traits and cognitive functioning.

General cognitive functioning. General cognitive functioning was assessed based on summary statistics 
from a recent GWAS combining cognitive and genetic data from the UK Biobank and the COGENT consor-
tium (N = 257,841)39. #e phenotypes of these cohorts are well-suited to meta-analysis because their pairwise 
genetic correlation has been shown to be  high40. In the UK Biobank (nmax = 222,543) participants were asked 
to complete 13 multiple-choice questions that assessed verbal and numerical reasoning. For verbal reason-
ing, a typical question was “bud is to !ower what child is to …?”, and possible answers presented to the par-
ticipants are “Grow”, “Develop”, “Improve”, “Adult”, or “Old”. For numerical reasoning, a typical question was 
“150…137…125…114…104… what comes next?” with possible answers being “96”, “95”, “94”, “93”, or “92”39. 
#e verbal and numerical reasoning score was based on the number of questions answered correctly within a 
two-minute time limit. Each respondent took the test up to four times. #is test was designed as a measure of 
!uid intelligence. #e phenotype consists of the mean of the standardized score across the measurement occa-
sions for a given participant. In the COGENT consortium (nmax = 35,298), general cognitive function is statisti-
cally derived from a principal components analysis of individual scores on a neuropsychological test battery, 
such as the Verbal or spatial N-Back working memory task, Stroop Test, the Trail Making Test, or the Wechsler 
Adult Intelligence  Scale41. Details on the test battery are available in the supplementary material of Davies et al.42. 
Of note, Davies et al.42 demonstrated that two general cognitive function components extracted from di"er-
ent sets of cognitive tests on the same participants exhibit a high correlation, addressing the fact that di"erent 
cohorts relied on di"erent cognitive tests. #us, the phenotype estimates overall cognitive functioning and is 
relatively invariant to the battery used and speci$c cognitive abilities  assessed54,55. #ese COGENT data used to 
assess general cognitive functioning were also used in another GWAS  study40. #e GWAS identi$ed 226 inde-
pendent genome-wide signi$cant SNPs, with a SNP-based heritability of ~ 20%.

Statistical analysis. MR is a statistical approach for causal inference that can overcome the weaknesses of 
traditional observational  studies34,35. MR-based e"ect estimates rely on three main  assumptions56, stating that 
genetic instruments (i) are strongly associated with the exposure (relevance assumption), (ii) are independent of 
confounding factors of the exposure-outcome relationship (independence assumption), and (iii) are not associ-
ated to the outcome conditional on the exposure and potential confounders (exclusion restriction assumption). 
Well-powered GWAS o"er multiple genetic instruments that are strongly associated with exposures of interest 
(cognitive functioning or physical activity in our case), which validates the relevance assumption. Each of these 
genetic variants (instruments) provides a causal e"ect estimate of the exposure on the outcome, which can be 
in turn combined through meta-analysis using inverse-variance weighting (IVW) to obtain an overall estimate. 
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#e second and third assumptions are less easily validated and can be violated in the case of a heritable con-
founder a"ecting the exposure-outcome relationship and biasing the causal estimate. Such confounders can 
give rise to instruments with proportional e"ects on the exposure and outcome, hence violating the Instrument 
Strength Independent of Direct E"ect (InSIDE) assumption requiring the independence of the exposure and 
direct outcome e"ects. #ere have been several extensions to the common IVW method of MR analysis, includ-
ing MR-Egger, which allows for directional pleiotropy of the instruments and attempts to correct the causal 
regression estimate. Other extensions, such as the median and mode-based estimators, assume that at least half 
of or the most “frequent” genetic instruments are valid/non-pleiotropic. However, despite these extensions and 
relaxed assumptions, all these classical MR methods are notably underpowered and still su"er from two major 
limitations. First, they only use a subset of markers as instruments (genome-wide signi$cant markers), which 
o'en dilutes the true relationship between traits. Second, they ignore the presence of a potential latent heritable 
confounder of the exposure-outcome relationship (e.g., body mass index, educational attainment, level of physi-
cal activity at work, or material deprivation).

LHC-MR also uses GWAS summary statistics 36, but importantly, this new method appropriately uses 
genome-wide genetic markers to estimate bidirectional causal e"ects, direct heritability, and confounder e"ects 
while accounting for sample overlap. LHC-MR can be viewed as an extension of the linkage disequilibrium score 
regression (LDSC) 57, designed to estimate trait heritability, in that it models all genetic marker e"ects as random, 
but additionally estimates bidirectional causal e"ect, as well as other parameters. LHC-MR extends the standard 
two-sample MR by modeling a latent (unmeasured) heritable confounder that has an e"ect on the exposure and 
outcome traits. #is allows LHC-MR to di"erentiate SNPs based on their co-association to a pair of traits and 
distinguish heritable confounding that leads to genetic correlation from actual causation. #us, the unbiased 
bidirectional causal e"ect between these two traits are estimated simultaneously along with the confounder e"ect 
on each trait (Fig. 2a, b). #e LHC-MR framework, with its multiple pathways through which SNPs can have 
an e"ect on the traits, as well as its allowance for null e"ects, make LHC-MR more precise at estimating causal 
e"ects compared to standard MR methods (i.e., MR egger, weighted median, inverse variance weighted, simple 
mode, and weighted mode).

#e likelihood function for LHC-MR, which is derived from the mixture of di"erent pathways through which 
the genome-wide SNPs can have an e"ect (acting on either the exposure, the outcome, the confounder, or the 
combinations of these three), is then optimized given random starting values for the parameters it can estimate. 
#e optimization of the likelihood function then yields the maximum likelihood estimate (MLE) value for a set 
of estimated parameters, including the bidirectional causal e"ect between the exposure and the outcome as well 
as the strength of the confounder e"ect on each of those two traits. #e standard errors of each of the parameters 
estimated using LHC-MR were obtained by implementing a block jackknife procedure where the SNP e"ects are 
split into blocks, and the MLE is computed again in a leave-one-block-out fashion. #e variance of the estimates 
can then be computed from the results of the various MLE optimizations. Furthermore, the causal estimates 
obtained from LHC-MR are on the scale of 1 standard deviation (SD) outcome di"erence upon a 1 SD exposure 
change due to the use of standardized summary statistics for the two traits.

A sensitivity analysis in which the model was further adjusted for baseline self-reported level of physical 
activity at work, walking or standing at work, and the Townsend Deprivation Index was conducted.

Ethical approval. #is study was approved by the Ethics Committee of Geneva Canton, Switzerland 
(CCER-2019–00,065).

Results
#ree measures derived from accelerometer wear were used as a proxy for physical activity: average, moder-
ate, and vigorous physical activity. #ese three measures were used in LHC-MR to investigate the possible 
bidirectional causal e"ects between them and cognitive functioning. #e model tested was adjusted for age, 

Figure 2.  Visual representation of the model in Latent Heritable Confounder Mendelian Randomization 
(LHC-MR). G = Genetic instruments; CF = general cognitive functioning; (a) For moderate physical activity 
(ModPA); (b) For vigorous physical activity (VigPA); U = Latent heritable confounder;  h2 = direct heritability. Each 
$gure includes the bidirectional causal e"ects between the two traits as well as the confounder e"ects on each 
of them. Coe(cients are beta values. P-values are indicated in brackets. #e models were adjusted for age, sex, 
genotyping chip, $rst ten genomic principal components, center, and season (month) of wearing an accelerometer.
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sex, genotyping chip, $rst ten genomic principal components (PC), center, and season (month) of wearing 
accelerometer. #e Bonferroni correction was used to control for familywise error rates, yielding an α = 0.05 / 
(2 directions × 3 tests) = 0.008.

Average physical activity and general cognitive functioning. LHC-MR applied to summary statis-
tics belonging to model 1 showed no evidence for a potential causal e"ect of average physical activity on cogni-
tive functioning (b = 0.245,  CI95% = [− 0.01,0.50], P = 0.065) (Table 1, Fig. 3) and no evidence for the reverse causal 
e"ect (b = − 0.145,  CI95%. = [− 0.26,− 0.03], P = 0.013 [α = 0.008]). Similarly, standard MR methods such as IVW, 
MR Egger, weighted median, simple mode, and weighted mode yielded non-signi$cant causal estimates in either 
direction (Table 2), using 129 genome-wide signi$cant single nucleotide polymorphisms (SNPs) as instruments 
for cognitive functioning and 6 SNPs for average acceleration.

Table 1.  Latent Heritable Confounder Mendelian Randomization (LHC-MR) results for the association 
between accelerometer-measured physical activity and general cognitive functioning. Notes. Parameters 
estimates and their P-values were obtained from the LHC-MR optimized model with the maximum likelihood. 
Bidirectional associations from cognitive functioning to physical activity and from physical activity to 
cognitive functioning are reported. t = e"ect of the confounder. Bonferroni corrected α = 0.008.

Parameter

Cognitive 
functioning Physical activity Cognitive functioning

 → Physical activity
Physical activity
→ Cognitive functioningHeritability t Heritability t

Average accelerometer-measured physical activity (fraction of acceleration > 0 mg)
Estimate 0.207 0.033 0.123 − 0.011 − 0.145 0.245
P value 2.67E − 115 0.612 4.41E − 28 0.816 0.013 0.065
Moderate accelerometer-measured physical activity (fraction of acceleration > 100 mg and < 425 mg)
Estimate 0.202 0.072 0.092 − 0.105 − 0.071 0.323
P value 1.13E − 165 0.032 5.98E − 29 0.046 0.078 2.89e − 05
Vigorous accelerometer-measured physical activity (fraction of acceleration ≥ 425 mg and < 2000 mg)
Estimate 0.210 0.002 0.069 − 0.001 − 0.031 0.212
P value 6.75E − 157 0.972 3.95E − 25 0.992 0.237 0.007

Figure 3.  LHC-MR plots for the association between accelerometer-based physical activity and general 
cognitive functioning, Notes, #is modi$ed dot-and-whisker plot reports the causal estimate between general 
cognitive functioning (CF) as exposure and varying physical activity (PA)-related traits as outcomes. #e 
forward (CF → PA) and reverse (PA → CF) causal estimates are shown in two di"erent colors as dots (grey and 
white) with 95% CI whiskers (grey and black). Average PA = average of overall accelerations > 0 mg. Moderate 
PA = fraction of acceleration corresponding to moderate physical activity (> 100 mg and < 425 mg). Vigorous 
PA = fraction of acceleration corresponding to vigorous physical activity (≥ 425 mg and < 2000 mg). #e models 
were adjusted for age, sex, genotyping chip, $rst ten genomic principal components (PC), center, and season 
(month) of wearing accelerometer. * = signi$cant e"ect a'er Boneferroni correction (i.e., P-value < .008).
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Moderate physical activity and general cognitive functioning. LHC-MR applied to the fraction of 
accelerations corresponding to moderate physical activity showed a potential positive causal e"ect of moderate 
physical activity on greater cognitive functioning (b = 0.32,  CI95% = [0.17,0.47], P = 2.89e − 05) (Table 1, Fig. 3). 
We found no evidence for the reverse causal e"ect (b = − 0.071,  CI95%. = [− 0.15, 0.01], P = 0.078 [α = 0.008]). As 
was found with average physical activity, there was no evidence for the presence of a heritable confounder. 
Standard MR methods yielded non-signi$cant causal estimates in both directions (Table 2).

Vigorous physical activity and general cognitive functioning. LHC-MR applied to the fraction of 
accelerations corresponding to vigorous physical activity on cognitive functioning showed a potential positive 
causal e"ect of vigorous physical activity on greater cognitive functioning (b = 0.22,  CI95% = [0.06,0.37], P = 0.007) 
(Table 1, Fig. 3). We found no evidence for the reverse causal e"ect (b = − 0.031,  CI95%. = [-0.08, 0.02], P = 0.237 
[α = 0.008]). As was found with average and moderate physical activity, there was no evidence for the pres-
ence of a heritable confounder. Of note, the coe(cient of this causal e"ect was qualitatively weaker than of the 
causal e"ect of moderate physical activity on cognitive functioning (b = 0.22 vs. b = 0.32). Standard MR methods 
yielded non-signi$cant causal estimates in both directions (Table 2).

Sensitivity analyses. We tested another model where an extra adjustment had been done for the baseline 
self-reported level of physical activity at work, walking or standing at work, and the Townsend Deprivation 
Index. LHC-MR applied to summary statistics emerging from this second model showed consistent results with 

Table 2.  Standard Mendelian Randomization (MR) results for the association between accelerometer-
based physical activity and general cognitive functioning. Causal estimates from 5 standard Mendelian 
Randomization (MR) methods on alternating exposure and outcome traits. For both moderate and vigorous 
physical activity as exposure, the cuto" was decreased to 6.33e − 5 because of the low number of genome wide 
signi$cant single nucleotide polymorphisms (SNPs) to use as instruments. Corrected α = 0.008.

Exposure Outcome MR method Valid SNPs Causal estimate SE P value
Average accelerometer-based physical activity (fraction of acceleration > 0 mg)

Cognitive functioning Physical activity

MR Egger 129 0.015 0.185 0.935
Weighted median 129 − 0.027 0.036 0.440
Inverse variance weighted 129 − 0.011 0.032 0.723
Simple mode 129 − 0.102 0.116 0.376
Weighted mode 129 − 0.084 0.111 0.452

Physical activity Cognitive functioning

MR Egger 4 − 2.833 1.148 0.069
Weighted median 4 0.017 0.062 0.782
Inverse variance weighted 4 − 0.088 0.127 0.488
Simple mode 4 0.020 0.076 0.801
Weighted mode 4 0.023 0.074 0.770

Moderate accelerometer-based physical activity (fraction of acceleration > 100 mg and < 425 mg)

Cognitive functioning Physical activity

MR Egger 129 − 0.054 0.181 0.766
Weighted median 129 − 0.032 0.037 0.389
Inverse variance weighted 129 − 0.012 0.032 0.710
Simple mode 129 − 0.059 0.106 0.575
Weighted mode 129 − 0.031 0.091 0.729

Physical activity Cognitive functioning

MR Egger 106 0.325 0.319 0.310
Weighted median 106 − 0.001 0.021 0.981
Inverse variance weighted 106 0.023 0.022 0.309
Simple mode 106 − 0.017 0.057 0.767
Weighted mode 106 − 0.010 0.050 0.837

Vigorous accelerometer-based physical activity (fraction of acceleration ≥ 425 mg)

Cognitive FUNCTIONING Physical activity

MR Egger 129 0.009 0.149 0.952
Weighted median 129 0.018 0.036 0.623
Inverse variance weighted 129 0.002 0.026 0.939
Simple mode 129 0.021 0.097 0.829
Weighted mode 129 0.021 0.088 0.812

Physical activity Cognitive functioning

MR Egger 88 0.151 0.335 0.653
Weighted median 88 − 0.035 0.022 0.108
Inverse variance weighted 88 − 0.016 0.020 0.432
Simple mode 88 − 0.065 0.060 0.286
Weighted mode 88 − 0.059 0.052 0.257
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that of the $rst model (b = 0.22,  CI95% = [− 0.05,0.50], P = 0.111 and b = − 0.090,  CI95% = [− 0.23,0.05], P = 0.200, 
respectively). Both models showed no evidence for the presence of a heritable confounder. Due to the similarity 
in results between these models, we did not conduct this second model on moderate and vigoruous physical 
activity.

Discussion
Main findings. #is study used a genetically informed method that provides evidence of putative causal 
relations to investigate the bidirectional associations between accelerometer-based physical activity and general 
cognitive functioning. Drawing on large-scale GWAS, we found evidence for potential causal e"ects, suggest-
ing that higher levels of moderate and vigorous physical activity lead to increased cognitive functioning. In the 
opposite direction, we did not observe evidence of a causal e"ect of cognitive functioning on physical activity. 
Hence, our study suggests a favorable e"ect of moderate and vigorous physical activity on cognitive function-
ing, but does not provide evidence that increased cognitive functioning promotes engagement in more physical 
activity.

Comparison with previous studies
Previous reviews and meta-analyses of observational studies showed a bene$cial e"ect of physical activity on 
cognitive functioning 6,9,10,27. However, the evidence arising from intervention studies was inconclusive 11,12,14–16,58. 
It has been argued that these inconsistencies may primarily be attributed to the design-speci$c tools used to assess 
physical activity 14. Speci$cally, many observational studies rely on self-reported measures of physical activity, 
whereas intervention studies o'en rely on accelerometer-measured physical activity, or have people exercising 
under monitored conditions. In other words, evidence of a favorable e"ect of physical activity on cognitive 
functioning may have emerged in observational studies because of the self-reported nature of the measures they 
typically used. Yet, in our study, results are based on accelerometer-assessed physical activity, thereby partially 
ruling out this explanation. #erefore, our $ndings further support the literature that demonstrated a protective 
role of physical activity on cognitive functioning and extend it by doing so using an accelerometer-based measure.

Of note, results obtained from LHC-MR di"ered from those obtained with standard MR methods. At least 
three key di"erences in the methods can explain this divergence: i) standard MR uses only genome-wide sig-
ni$cant markers, ii) standard MR is biased in case of sample overlap (as is the case in this study) and hence their 
estimate may be biased towards the observational correlation, and iii) LHC-MR explicitly models correlated 
pleiotropy unlike standard MR. Accordingly, our results obtained from LHC-MR are expected to be more robust 
than those obtained from standard MR. Since LHC-MR could not $nd evidence for the presence of a heritable 
confounder, correlated pleiotropy is less likely, or there might be multiple confounders with opposite e"ects 
canceling each other out. #is $nding highlights that the main reason for the di"erence between LHC-MR and 
classical MR methods is statistical power. For testing the reverse causal e"ect (cognition on physical activity), we 
had numerous instruments available, ensuring that all MR-methods are well-powered and yielding the same (null 
e"ect) conclusion. #e forward e"ect (physical activity on cognition) relied on only a few (weak) instruments, 
rendering classical MR methods notably underpowered. #is is the type of situation in which methods such as 
LHC-MR, which leverage genome-wide genetic markers, are crucial to facilitate discovery. It is important to 
point out that while the statistical conclusion from classical and LHC-MR methods di"er, their e"ect estimates 
are not signi$cantly di"erent, suggesting that there is no discrepancy in the results, but that they have di"erent 
precision. Finally, we acknowledge that LHC-MR assumptions may be violated and results should thus still be 
considered cautiously. Yet, while the assumptions of LHC-MR may not hold, the assumptions of the other $ve 
methods are known not to hold because of insu(cient genome-wide signi$cant instruments.

To the best of our knowledge, our study is the $rst to investigate the potential causal relationship between 
physical activity and cognitive functioning using a genetically informed method. We are aware of only two 
other, non-genetic studies that examined the potential bidirectional associations between physical activity and 
cognitive functioning 1,13. In contrast to the present study, those two studies observed a positive in!uence of 
cognitive functioning on physical activity. At least two factors can explain the di"erences in the results observed. 
First, both those studies are based on longitudinal assessment of the two traits, while our approach is based on 
a genetically instrumented causal inference technique (LHC-MR). Second, these studies draw on self-reported 
physical activity rather than accelerometer-measured physical activity, which may not accurately re!ect the 
objective level of physical activity.

Our results obtained with recently-improved genetically-informed analyses (LHC-MR) highlight the potential 
critical role of physical activity, speci$cally of moderate and vigorous intensity, on cognitive functioning. How-
ever, it should be noted that the estimated e"ect of moderate physical activity on cognitive functioning was about 
1.5 times stronger in magnitude than the e"ect of vigorous physical activity. To the best of our knowledge, this 
study is the $rst to assess and compare the causal relationships of moderate and vigorous physical activity with 
cognitive functioning using a genetically-informed method based on large-scale datasets. Alhough additional 
evidence is needed, this study con$rms the importance to examine the extent to which the intensity of physical 
activity moderates the e"ects observed on cognitive functioning 43.

#e LHC-MR method revealed two causal relations that are consistent with each other. Importantly, these 
$ndings are consistent with theoretical and experimental work explaining the mechanisms underlying the asso-
ciation between the physical activity and cognitive functioning. Results obtained with both the LHC and standard 
MR methods showed no evidence of an e"ect of average physical activity on cognitive functioning. #is $nding 
can likely be explained by physical activities of low intensity (i.e., < 100 mg) that are part of the average physi-
cal activity, which further suggests that physical activity should be of moderate-to-vigorous intensity to bene$t 
cognitive functioning.
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#e absence of evidence for a reverse causal e"ect of cognitive functioning on physical activity may be 
partly explained by the lower power of this analysis due to smaller sample size of the GWAS of physical activity 
(n = 91,084) compared to the sample size of the GWAS of cognitive functioning (n = 257,841). #is absence of 
evidence contrasts with other studies arguing that cognitive functioning is critical for supporting engagement in 
physical activity 20,29,30. #is di"erence could be explained in at least two ways. Firstly, previous studies examin-
ing the positive e"ect of cognitive functions on physical activity relied on self-reported physical activity, which 
can bias the observed associations 1,17,20. Secondly, our study relied on general cognitive functioning, whereas 
previous results highlight the speci$c importance of inhibition resources that may be required to counteract an 
automatic tendency for e"ort minimization 20,29–31,59,60. #erefore, future studies should investigate the speci$c 
relationships between motor inhibition and physical activity when such data is available.

Strengths and limitations
Among the strengths of the current study are the use of large-scale datasets, the reliance on instruments derived 
from objective measures of physical activity, and the application of a robust genetically informed method that 
can estimate causal e"ects. However, this study has several features that limit the conclusions that can be drawn. 
First, the measure of cognitive functioning spans multiple performance domains, which reduced the speci$city 
of the cognitive functioning that was assessed. #is feature limits our ability to evaluate the putative causal e"ects 
between speci$c cognitive functioning, such as motor inhibition, and physical activity. Second, MR analysis is 
designed to elucidate a life-long exposure e"ect on a life-long outcome (except in special cases when genetic 
factors have time-dependent e"ects), thus it is not suited to explore temporal aspects of these causal relation-
ships. #ird, 2-sample MR methods require that SNP e"ects on the exposure are homogeneous between the two 
samples. Here, because our two samples di"er in age, we rely on the assumption that these genetic e"ects do not 
change depending on age. #is assumption o'en turns out to be true, although there are rare exceptions 61. It is 
therefore still possible that genetic variants related to physical activity and cognitive function may di"er across 
the life course. For example, genetic variants related to cognitive development, maintenance and decline may 
strongly di"er. Likewise, the genetic variance predicting physical activity engagement in early-life may di"er 
from those predicting engagement in adulthood or late life. Accordingly, as the age range between the sample 
is not equivalent (40 to 60 years for the UK Biobank vs. 8 to 96 years in the COGENT consortium) and, most 
importantly, as physical activity was only assessed in the UK biobank that provides the narrowest age range, the 
potential di"erences in the genetic variants depending on individual’s age may have bias the current $ndings. 
Testing to which extent age may in!uence the genetic variants associated with physical activity and cognitive 
functioning traits is thus warranted in future studies. Fourth, LHC-MR can be limited by the low heritability 
of traits, potentially causing bimodal/unreliable estimates. Fi'h, LHC-MR assumes a single confounder (or 
several ones with similar e"ects), but a limitation exists when multiple confounders are present with similar but 
opposing e"ect directions on the traits of interest, resulting in a higher misdetection rate. Sixth, although the 
coe(cients estimated with LHC-MR did not statistically di"er from the coe(cents estimated with classical MR, 
it is important to acknowledge that no classical MR was unable to $nd a signi$cant association between physical 
activity and cognitive function. Accordongly, even if we can be rather con$dent in the estimation provided by 
the newly developed methods, it seems more reasonable to consider that the current $ndings are provisional 
and need to be replicated. Finally, it is worth noting that the genetic instruments were developed on a primarily 
white population of European ancestry, limiting the generalizability of the results.

Conclusion and policy implications
Our $ndings provide preliminary support for a unidirectional relation whereby higher levels of moderate and 
vigorous physical activity lead to improved cognitive functioning. #ese results underline the essential role of 
moderate and vigorous physical activity in maintaining or improving general cognitive functioning. #erefore, 
health policies and interventions that promote moderate and vigorous physical activity are relevant to improve 
cognitive functioning or to delay its decline.

Data availability
#e datasets used for the analysis are openly available from the Neale Lab GWAS results at http:// www. neale lab. 
is/ uk- bioba nk and from the Social Science Genetic Association Consortium Downloads at https:// www. thess 
gac. org/ data. Only the new GWAS dataset created for the fractions of physical activity are available with per-
mission from the UK Biobank https:// www. ukbio bank. ac. uk/. #e LHC-MR code is available at https:// github. 
com/ LizaD arrous/ lhcMR.
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Abstract12

Mendelian Randomisation (MR) estimates causal e↵ects between risk factors and complex13

outcomes using genetic instruments. Pleiotropy, heritable confounders, and heterogeneous14

causal e↵ects violate MR assumptions and can lead to biases. To alleviate these, we pro-15

pose an approach employing a Phenome-Wide association Clustering of the MR instruments16

(PWC-MR) and apply this method to revisit the surprisingly large apparent causal e↵ect of17

body mass index (BMI) on educational attainment (EDU): b↵ = -0.19 [-0.22, -0.16].18

First, we clustered 324 BMI-associated genetic instruments based on their association19

with 407 traits in the UK Biobank, which yielded six distinct groups. The subsequent cluster-20

specific MR revealed heterogeneous causal e↵ect estimates on EDU. A cluster enriched for21

socio-economic indicators yielded the largest BMI-on-EDU causal e↵ect estimate (b↵ = -0.4922

[-0.56, -0.42]) whereas a cluster enriched for body-mass specific traits provided a more likely23

estimate (b↵ = -0.09 [-0.13, -0.05]). Follow-up analyses confirmed these findings: within-24

sibling MR (b↵ = -0.05 [-0.09, -0.01]); MR for childhood BMI on EDU (b↵ = -0.03 [-0.06, -25

0.002]); step-wise multivariable MR (b↵ = -0.05 [-0.07, -0.02]) where socio-economic indicators26

were jointly modelled.27

In-depth examination of the BMI-EDU causal relationship demonstrated the utility of our28

PWC-MR approach in revealing distinct pleiotropic pathways and confounder mechanisms.29
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1 Introduction30

Genome-wide association studies[1] (GWASs) have identified many genetic variants associated31

with multiple complex phenotypes, aiding us in annotating single nucleotide polymorphisms32

(SNPs) and their functions, as well as identifying putative causal genes. As sample sizes of33

GWASs increase, more SNP associations are revealed which improve various downstream analy-34

ses such as polygenic score prediction, pathway- and tissue-enrichment, and causal inference[2, 3].35

Mendelian Randomisation[4, 5] (MR), an approach generally applied through the use of genetic36

variants/SNPs as instrumental variables (IVs) to infer the causal relationship between an expo-37

sure or a risk factor X and an outcome Y , has become increasingly used thanks to well-powered38

GWASs from which hundreds of genetic associations with heritable exposures can be used as39

IVs.40

MR has three major assumptions concerning the genetic variant G used as an instrument: (1)41

Relevance – G is strongly associated with the exposure. (2) Exchangeability – there is no con-42

founder of the G-outcome relationship. (3) Exclusion restriction – G a↵ects the outcome only43

through the exposure. Each instrument provides a causal e↵ect estimate, which can then be44

combined with others using an inverse variance-weighting[6] (IVW) method to obtain an esti-45

mate of the total causal e↵ect of the exposure on the outcome. This estimate is more reliable46

than observational associations due to it being more protected against unmeasured confounding47

and reverse causality, provided that the core conditions are met.48

Thanks to well-powered GWASs, we have also discovered that most genetic instruments are49

highly pleiotropic[7], i.e. associated to more than a single trait. This has also been shown in50

phenome-wide association studies (PheWASs), where associations between a SNP and a large51

number of phenotypes are tested. The situation where a genetic variant influences multiple traits,52

but there is a primarily associated trait which mediates all other trait associations, is referred to53

as vertical pleiotropy. On the other hand, genetic variants that a↵ect some traits through path-54

ways other than the primary trait (the exposure) – a phenomena known as horizontal pleiotropy55

– are in direct violation of the exclusion restriction assumption and could lead to biased causal56

e↵ect estimates. However, if the InSIDE assumption [8](Instrument Strength is Independent of57

the Direct E↵ect on the outcome) holds and the direct SNP e↵ects are on average null, then58

IVW will yield consistent causal e↵ect estimates. There have been MR extensions to IVW such59

as MR-Egger to produce less biased causal e↵ect estimates if the InSIDE assumption holds and60

direct e↵ects are not null on average. Note that violation of the InSIDE assumption leads to61

correlated pleiotropy, which can severely bias causal e↵ect estimates. Such a phenomenon may62

emerge as a result of a heritable confounder of the exposure-outcome relationship and has been63

modelled in the past[9, 10].64

Well-powered GWAS may also provide confounded genetic associations through dynastic e↵ects[3, 11],65

assortative mating[12, 13], and population stratification[14]. These phenomena can introduce cor-66

relation between an instrument and confounding factors, such as parental/partner traits or ge-67

netic ancestry leading to a violation of the exchangeability assumption and biased causal e↵ect68

estimates. This type of confounding can be resolved when using family-based study designs[15, 16]
69

such as sibling-pair studies. Since genetic di↵erences between sibling pairs are due to indepen-70

dent and random meiotic events, these e↵ects are una↵ected by population stratification and71

other potential confounders influencing the phenotype. This and other emerging family-based72

designs have been used to obtain unbiased heritability estimates, validate GWAS results and73

test for unbiased causal e↵ect estimates using MR[17, 18].74

Another factor that can lead to complications in MR studies is the presence of heterogeneous75

causal e↵ects emerging due to distinct biological mechanisms: various subtypes of the exposure76
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(e.g. subcutaneous vs visceral adiposity) or di↵erent biological pathways through which the77

exposure impacts the outcome (e.g. interaction between the exposure and other factors). To78

date, horizontal pleiotropy, confounding of genetic associations, and heterogeneous causal e↵ect79

have been largely treated as distinct mechanisms in MR modelling. However, what they have80

in common is that they can lead to variable causal e↵ects estimated depending on the group of81

IVs used in the MR.82

To address this, we introduce in this paper our approach of PheWAS-driven clustering of instru-83

mental variables (PWC-MR) and test the resulting clusters for distinct pathways or mechanisms84

that could underlie the overall causal e↵ect of the exposure. Throughout the paper, we demon-85

strate the approach through the example of estimating the causal e↵ect of body mass index86

(BMI) on educational attainment (EDU). This relationship has been analysed extensively in87

the past and family studies have shown that an apparent strong e↵ect of higher BMI on lower88

educational attainment is shrunk to near zero when using family studies[17]. One explanation is89

that o↵spring BMI is influenced by parental alleles associated with parental (rearing) behaviour,90

which in turn modify the environment of the o↵spring. Such parental traits act as a confounder91

of the o↵spring genotype-EDU relationship, hence violate the exchangeability assumption of92

MR. Moreover, they confound the BMI-EDU association in the tested sample, violating the93

exclusion-restriction assumption and inducing correlated pleiotropy (see Figure 1). Thus, it94

is plausible that some of the detected IV clusters arise through parental genetic confounding95

which may manifest statistically as horizontal pleiotropy. To test this, we ran a systematic con-96

founder search and probed the causal e↵ect of the exposure conditional on candidate confounder97

traits.98
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2 Results99

2.1 Overview of the method100

Figure 1: Directed Acyclic Graph (DAG) illustrating the complex relationship between exposure and

outcome. Gj represents genetic instrument j with an e↵ect �j on exposure X. Exposure X is associated with outcome Y
through K possible pathways of mediation or confounding denoted through the various X1...XK elements. The associations

between the main exposure and the various elements denoted by the ⇡ arrows purposely do not show directionality to allow

for both mediators and confounders. The causal e↵ects on outcome Y are denoted by ↵1,↵2, ...,↵K .

Horizontal/correlated pleiotropy, confounded genetic associations, and mechanism-specific causal101

e↵ects all lead to heterogeneous MR causal e↵ect estimates. In PWC-MR, we attempt to inves-102

tigate all these possible biases simultaneously by informatively clustering the various IVs and103

testing the resulting groups for distinct pathways or mechanisms underlying the overall causal104

e↵ect as illustrated in Figure 1.105

We applied the PWC-MR approach to investigate potential horizontal pleiotropic e↵ects (emerg-106

ing due to heritable confounders, dynastic e↵ects, genetic subtypes of obesity and other pleiotropic107

mechanisms, see Figure 1) of BMI on educational attainment. The analysis focused on grouping108

the IVs of the exposure by running a PheWAS-based clustering to reveal distinct mechanisms or109

pathways underlying their overall e↵ect on the outcome (Figure 2a). This was done by obtain-110

ing the standardised PheWAS association of the BMI IVs across a filtered set of 408 traits, and111

running a k-means clustering on the resulting matrix. This resulted in six clusters of IVs for112

BMI, which were then annotated by traits based on the association of the clustered SNPs with113

each trait. Specifically, for each cluster-trait pair we computed the average explained variance114

of the trait by the SNPs of the given cluster. This yielded an enrichment ratio (ratio of the115

average explained variances) for each cluster-trait pair, and we chose the top ten traits with the116

highest enrichment ratio for each cluster as representatives. Furthermore, the causal e↵ect of117

each cluster’s IVs on education was calculated and compared against each other and that of the118

causal e↵ect obtained using all BMI IVs.119
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Figure 2: Flow diagram representing how the PWC-MR approach aims to disentangle causal e↵ect

between trait pairs from confounding or pleiotropy, as well as systematically search for confounders of the

trait pair.

Panel a represents the main steps of the PWC-MR method: (i) Instrument selection and PheWAS; (ii) Informative IV

clustering using K-means; and (iii) Enrichment analysis and cluster specific MR. Panel b represents a complimentary

approach to PWC-MR where a systematic candidate confounder trait search is performed. These candidate confounder

traits are defined as having an e↵ect on both the exposure and the outcome. A stepwise multivariable MR (MVMR) of the

candidate confounder traits is performed to select those with a strong e↵ect on the outcome. These are then added with

the primary exposure (BMI) to a standard MVMR and the multivariable causal e↵ect on the outcome (EDU) is estimated.

Acronyms: T - trait, p: t-test p-value; MR p: MR p-value.

To complement our findings from the clustering-based analysis, we explored (i) the BMI-EDU120

causal relationship using sib-regression SNP e↵ect sizes[18], (ii) the childhood BMI-EDU causal121

relationship, (iii) replacing the outcome trait with systolic blood pressure (SBP), and finally122

(iv) the potential role of each of the filtered set of traits as a confounder of the BMI-EDU123

relationship.124

We implemented the latter one by systematically running bidirectional MR between each of125

the traits and either BMI or EDU as outcome, then classifying the traits depending on their126

bidirectional associations with both BMI and EDU. The resulting set of candidate confounder127

traits was further analysed for its potential to bias the causal e↵ect of BMI on EDU. To assess128

this, we ran stepwise MVMR and finally calculated the causal e↵ect of BMI on EDU conditional129

on the surviving set of candidate confounder traits of the BMI-EDU relationship (illustrated in130

Figure 2b).131

To further understand the emerging clusters, we sought to uncover tissue-specific mechanisms.132

To do this, we performed a colocalisation analysis of the BMI and gene expression association133

signals at each locus around (±400kb) the 324 BMI IVs. For the gene expression association134

we used eQTL data from both adipose and brain tissue. This yielded a proportion of brain-vs-135

adipose colocalised IVs for each cluster.136
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2.2 PheWAS-based K-means clustering and trait identification137

After identifying 324 genome-wide significant SNPs as IVs for BMI, and selecting 407 filtered138

traits to run PheWAS on, we obtained a standardised e↵ect matrix of the 324 IVs on the 407139

traits. Normalising the matrix by IVs and running K-means clustering on it revealed that six140

clusters yielded the lowest AIC score (Supplementary Figure S1) when compared to varying141

the number of clusters from two to 50. The number of SNPs in each of the six clusters were:142

32, 98, 35, 41, 69, 49 respectively (Supplementary Table 2).143

Next, we computed an enrichment ratio (ER) to identify with which traits the SNPs in each144

cluster were strongly associated. The overall ER value between clusters was roughly centred145

around 1, however clusters #2, #3, #4, and #6 had some large ER values (see Supplementary146

Figure S2). Visualising the top 10 enriched traits in each cluster and their ER values in Figure147

3 and Supplementary Table 3, we see that cluster #2 is strongly enriched for lean mass traits148

such as ‘Trunk fat-free mass’ and ‘Whole body fat-free mass’.149

Similarly, cluster #3 seemed to mostly be enriched for blood- and body stature-related traits150

such as ‘Platelet count’ and ‘Standing height’, while cluster #4 was enriched for traits related151

to socio-economic position (SEP) such as ‘Job involves heavy manual or physical work’, ‘Time152

spent outdoors in summer’, and ‘Fluid intelligence score’. Lastly cluster #6 was enriched for153

food supplements/nutrients such as ‘Folate’ and ‘Potassium’.154

2.2.1 Causal e↵ect estimate per cluster155

To test whether the clusters had di↵erent causal e↵ects on a selected outcome than the overall156

causal e↵ect (using all IVs), we computed the IVW causal e↵ect estimate of each cluster on157

education using cluster-specific IVs. As seen in Figure 4a and Supplementary Table 4, the causal158

e↵ect estimates between the di↵erent clusters are significantly heterogeneous (Q-test value =159

130.61, p-value < 10�300). Clusters #2 and #5 had the smallest causal e↵ect estimates of �0.09160

(p-value = 1.23 ⇥ 10�5) and �0.12 (p-value = 5.22 ⇥ 10�6) respectively, where cluster #2 was161

enriched for lean-mass traits. These estimates are consistent with those obtained from within-162

family studies, which are relatively immune to confounding (see section 2.3.1). By contrast,163

clusters #1 and #4 had the largest negative causal e↵ect estimates of -0.44 (p-value = 7.78 ⇥164

10�20) and -0.49 (p-value = 1.63⇥ 10�44) respectively, where cluster #4 was strongly enriched165

for SEP-related traits.166

All the clusters were less heterogeneous than the group of all the IVs combined (see ‘Avg het’167

in Supplementary Table 4).168

2.3 Post hoc analyses169

To test the robustness of the PWC-MR results, we performed four additional analyses. First, we170

used the same exposure and outcome, but the MR analysis was based on sib-regression-based171

SNP e↵ect sizes instead of SNP e↵ects from GWAS of unrelated samples. Second, we replaced172

the exposure with childhood BMI and estimated its causal e↵ect on EDU. Third, we replaced the173

outcome, EDU, with SBP. Finally, we executed a systematic search for confounders to include174

in a multivariable MR analysis.175

2.3.1 Sib-regression MR176

In Howe et al.(2022)[18], within-sibship (within-family) meta-analysed GWAS estimates were177

generated from 178,086 siblings across 19 cohorts. Using these e↵ect estimates, MR was per-178

formed with BMI as exposure on multiple traits, including educational attainment. They used179

418 independent and genome-wide significant genetic variants for BMI, and estimated its e↵ect180
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Figure 3: Heatmap of the enrichment ratio of the top 10 traits in each cluster. K-means clustering of BMI

revealed six clusters with the following trait enrichment ratios.

on EDU using IVW to be -0.05 (95% CI: �0.09,�0.01).181

They also used jackknife to estimate the standard error of the di↵erence between the sib-182

regression MR estimate and that of the GWAS of unrelated samples MR estimate: -0.19 (95%183

CI: �0.22,�0.16). Using the di↵erence Z-score to generate a p-value for heterogeneity between184

the two estimates revealed a significant di↵erence with a p-value < 0.001.185

2.3.2 Causal e↵ect of childhood BMI on Educational attainment186

We used the UK Biobank trait ‘Comparative body size at age 10’ as a proxy for childhood187

BMI – a measure that has been validated against measured BMI in childhood[19, 20] – for the188

exposure trait. Childhood BMI is presumed to be less influenced by SEP compared to adult189

BMI and hence we expect the causal e↵ect estimate on EDU to have less confounding bias.190

For this trait, we had 171 genome-wide significant SNPs that we used as IVs for the analysis.191

Of these, 16 SNPs were more strongly associated to traits other than childhood BMI and were192

thus excluded from further analysis. The standardised e↵ect matrix of the remaining 155 SNPs193

across 461 traits was normalised with respect to the SNPs, and then clustered into four clusters194

(yielding optimal AIC), each containing 37, 42, 32, 44 IVs, respectively (Supplementary Figure195

7



−0.55

−0.50

−0.45

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

All C1 C2 C3 C4 C5 C6

IV
W

 c
au

sa
l e

ffe
ct

 e
st

im
at

e
BMI → EDUa

−0.15

−0.10

−0.05

0.00

0.05

0.10

All C1 C2 C3 C4

cBMI clusters

cBMI → EDUb

0.00

0.05

0.10

0.15

0.20

0.25

0.30

All C1 C2 C3 C4 C5 C6

BMI → SBPc

BMI clusters BMI clusters

Figure 4: Forest plot of IVW causal e↵ect estimate on outcome using either all exposure IVs (All)

or cluster-specific IVs (C1..C4/C6). Panel a shows causal e↵ect estimates of adult BMI on EDU, panel b proxy of

childhood BMI (cBMI) on EDU, and panel c adult BMI on SBP. Horizontal error bars represent the 95% confidence interval.

The blue vertical line represents the causal e↵ect estimated using all BMI/cBMI IVs. Box sizes of clusters represent the

proportion of the number of IVs in each cluster to the total.

S3, Supplementary Table 5).196

Analysing the trait enrichment for each cluster revealed only two clusters with high ER values:197

clusters #2 and #4 (Supplementary Figure S4, Supplementary Table 6). Cluster #2 had only198

two traits with ERs greater than 2, which were ‘Number of fluid intelligence questions attempted199

within time limit’ and ‘Fluid intelligence score’, whereas cluster #4 was highly enriched for body-200

measurement/fat-mass traits such as ‘Waist circumference’ and ‘Whole body fat mass’ (see201

Supplementary Figure S5). However, calculating the IVW causal e↵ect estimate for each cluster202

and comparing it to the estimate calculated using all IVs revealed homogeneous causal e↵ect203

estimates with a Q-statistic of 3.84 (p-value of 0.43) as seen in Figure 4b and Supplementary204

Table 7. Cluster #2 had a causal e↵ect estimate of �0.09 (95% CI:-0.1638, -0.0148), and cluster205

#4 had a causal e↵ect estimate of �0.04 (95% CI:-0.0823, -0.0024). Noteworthy is the finding206

that the IVs of cluster #2 were more heterogeneous than all the IVs combined. Thus, we207

obtained a massively attenuated causal e↵ect of BMI on EDU, when childhood BMI is used as208

an exposure. Reassuringly, no strongly SEP-enriched cluster emerged and the cluster specific209

causal e↵ects were homogeneous.210

2.3.3 Causal e↵ect of BMI on SBP211

To find further evidence that our approach does not always reveal distinct causal e↵ects when212

the causal e↵ect is non-null, we replaced EDU with SBP as outcome. Namely, we tested a213

well-established non-null causal relationship that is hypothesised to not be biased by pleiotropy214

or confounding: BMI’s e↵ect on SBP. Using the same six clusters previously obtained for BMI,215

we calculated the estimated causal e↵ect of each of the clusters compared to using all the IVs216

combined on SBP. This revealed a homogeneous set of causal e↵ect estimates (Q-test value of217

4.49, p-value = 0.61), with the IVW estimate using all IVs being 0.15 (p-value = 1.09⇥ 10�28)218

as seen in Figure 4c and Supplementary Table 8.219
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2.3.4 Systematic confounder search and MVMR analysis220

Given our suspicion that the large BMI-EDU causal e↵ect is driven by heritable confounders, we221

performed a systematic search to reveal traits that may be potential confounders. As described222

in the Methods section, the strength of the bidirectional e↵ect of the traits on either the exposure223

or the outcome determined their categorisation. This led to the identification of 19 traits that224

were found to be candidate confounder traits (Supplementary Table 9). Matching the 19 con-225

founder traits from this analysis to their respective ERs across the six clusters from the previous226

analysis revealed higher ERs in cluster #1 and cluster #4 (associated with SEP-related traits),227

both of which also had the largest negative causal e↵ects on EDU (Supplementary Figure S6).228

It is worth noting that the traits labelled as candidate confounders were predominantly environ-229

mental exposures, such as ‘Exposure to tobacco smoke outside home’ and ‘Transport type for230

commuting to job workplace: Cycle’.231

Furthermore, these candidate confounder traits are attributed as candidate or potential con-232

founders since they are most likely only genetic correlates of the true confounding traits of the233

BMI-EDU relationship and do not act as true confounders themselves.234

To investigate the possible biasing e↵ect that potential confounder traits can have on the causal235

relationship of BMI on EDU, we ran a stepwise MVMR on these 19 candidate confounder traits236

(Supplementary Table 9). During the creation of the Z-score matrix of SNPs and traits, only237

twelve traits had at least three genome-wide significant and independent SNPs whose e↵ects238

could be used in the analysis, leaving us with a total of 683 SNPs across these twelve traits239

and BMI. The twelve traits were: ‘Time spent watching television (TV)’, ‘Usual walking pace’,240

‘Past tobacco smoking’, ‘Cereal type: Muesli’, ‘Frequency of tiredness / lethargy in last 2 weeks’,241

‘Frequency of depressed mood in last 2 weeks’, ‘Public transport’, ‘Walking for pleasure’, ‘Weekly242

usage of mobile phone in last 3 months’, ‘Eating eggs, dairy, wheat, sugar’, ‘Symptoms, signs243

and abnormal clinical and laboratory findings’, and ‘Average weekly beer plus cider intake’. Of244

these, only the first four had a significant causal e↵ect estimate on EDU (p-value < 0.05/12)245

based on stepwise MVMR, and were subsequently used as exposures alongside BMI in a standard246

MVMR analysis.247

To ensure the strength of the IVs used in the MVMR analysis, we calculated the conditional248

F-statistic and the MVMR causal e↵ect estimate of BMI given various combinations of the four249

remaining candidate confounder traits. We saw the expected trend of a decreasing conditional250

F-statistic with the addition of traits and their IVs to the analysis (see Supplementary Figure251

S7). We note that the causal e↵ect estimate of BMI on EDU decreases when any combination of252

the candidate confounder traits is used with BMI as exposure in comparison to the univariable253

MR causal e↵ect estimate of BMI on EDU (�0.19, p-value = 7.11 ⇥ 10�41). We settled on the254

combination of candidate confounder traits yielding a conditional F-statistic for BMI of 10.19,255

for which the corresponding causal e↵ect estimates are reported in Table 1 below. This choice256

was a compromise between two sources of biases: weak instrument bias vs upward bias due to257

omitting relevant confounders.258

Trait Description ↵ estimate SE P-value

1070 Time spent watching television (TV) -0.2771 0.0256 4.63E-25
1249 Past tobacco smoking 0.1592 0.0218 7.85E-13

1468 4 Cereal type: Muesli 0.2930 0.0383 7.96E-14
21001 Body mass index (BMI) -0.0455 0.0106 2.07E-05

Table 1: MVMR analysis results of BMI and three candidate confounder traits on education. ↵: causal

e↵ect estimate.
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2.4 Relationship with other approaches259

2.4.1 Comparison against MR-Clust260

Other known IV clustering methods include MR-Clust[21], which attempts to cluster variants261

with similar causal e↵ect estimates together following the hypothesis that exposures can a↵ect262

an outcome by distinct causal mechanisms to varying extents. MR-Clust also accounts for the263

possibility of spurious clusters by assigning IVs with uncertain causal e↵ect estimates to ‘null’264

or ‘junk’ clusters.265

We compared the PWC-MR clustering of BMI IVs against that of MR-Clust with EDU as the266

outcome. The MR-Clust results revealed two main clusters as well as a ‘null’ cluster. Cluster267

#1 had 35 SNPs, 13 of which had an inclusion probability greater than 80%. Cluster #2 had268

171 SNPs, 36 of which had an inclusion probability greater than 80%, and the remaining 142269

SNPs were categorised into the ‘null’ cluster as seen in Supplementary Figure S8. The mean270

causal e↵ect estimate of SNPs in cluster #1 was �0.496, whereas it was �0.246 for cluster271

#2. Searching for trait associations for the SNPs in each of the clusters revealed that body272

measurement traits like ‘Arm fat mass’ or ‘Body fat percentage’ are associated to SNPs in both273

clusters, while SEP-related traits such as ‘Fluid intelligence score’ or ‘Time spent watching274

television’ were associated to more SNPs in cluster #1 than in cluster #2.275

Comparing the SNP clustering between the PWC-MR method against that of MR-Clust in276

Table 2 below, we see that cluster #1 in MR-Clust, which seems to be more strongly enriched277

for SEP traits than cluster #2, has SNPs that were similarly clustered in clusters #1 and #4278

using PWC-MR, matching their large negative causal e↵ect of BMI on EDU. However, the same279

distinct comparison cannot be made for SNPs in cluster #2 of MR-Clust.280

Of the 12 Fisher’s exact tests performed to examine the contingency of SNPs in the two separate281

sets of clusters, only four tests revealed a significant association: SNPs in cluster #1 of MR-Clust282

were significantly associated with SNPs in clusters #1, #2 (lean-mass traits), #4 (SEP-related283

traits) and #5 of the PWC-MR clustering.284

Given the di↵erences between the two methods (where PWC-MR performs informative clustering285

of IVs based on external data, and then measures the MR causal e↵ect estimates per cluster286

compared to MR-Clust that clusters IVs based on the magnitude of their MR causal e↵ects) we287

see a more biologically meaningful separation of SNPs using PWC-MR shedding light on the288

various mechanisms through which BMI can act on EDU.289

MR-Clust

PWC-MR
Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6

Cluster1 13 1 0 13 0 5
Cluster2 15 38 21 26 32 29

Null 4 59 14 2 37 15

Table 2: Cross table of BMI IVs clustered using PWC-MR and MR-Clust.

2.4.2 Colocalisation analysis290

With the aim of finding supporting evidence for the k-means clustering and enrichment analy-291

sis, we ran a genetic colocalisation analysis on BMI IVs and two types of tissue: subcutaneous292

adipose and brain, the results of which can be found in Supplementary Tables 12 and 13 respec-293

tively.294

295
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Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6

Adipose 9 9 14 3 6 5
Brain 3 3 4 1 2 4
Both 1 2 1 1 4 4

Neither 29 77 36 23 53 47

Table 3: Cross table indicating the number of genes whose expression colocalises in adipose/brain tissue

with BMI. The colocalisation exercise was performed at loci-defined BMI IVs falling into particular clusters. Colocalisation

was defined as the posterior probability of both GWAS and eQTL being associated is � 0.8 in either brain or adipose tissue

or both.

Running a set of Fisher’s tests to compute the overlap between the membership of the SNPs in296

the six clusters and their tissue of colocalization did not reveal any association between clusters297

and tissues.298

11



3 Discussion299

We have developed a method that performs informative clustering of IVs by utilising their300

association with a large number of traits. Our use of PheWAS data to guide the clustering of301

IVs has revealed distinct mechanisms by which exposure e↵ects could act on outcomes. For our302

exposure, BMI, six distinct clusters were obtained through optimal K-means clustering. These303

clusters had well-defined trait enrichments, with clusters matching SEP-related, substrate, and304

body measurement traits. Estimating individual causal e↵ects of each cluster on EDU as an305

outcome revealed heterogeneous causal e↵ect estimates which allowed us to further strengthen306

our suspicion that the MR estimate for the causal e↵ect of BMI on EDU is upward biased when307

using population-based SNP e↵ect size estimates due to confounding.308

We note from MR analysis run using within-sibling GWAS data[18] that the causal e↵ect estimate309

between BMI and EDU is �0.05 (95% CI: �0.09,�0.01), which is smaller than the causal e↵ect310

estimate seen using population based GWAS data (�0.19, 95% CI: �0.22,�0.16). Investigating311

the various mechanisms or pathways through which BMI could have a causal e↵ect estimate312

on EDU through trait-enrichment analysis has revealed notable causal e↵ect estimates from313

two clusters: one with a strongly negative MR estimate whose trait enrichment reflects shared314

mechanisms with socio-economic factors, and another cluster with close to zero causal e↵ect315

estimate enriched for lean-mass traits. MR has typically presented bias due to heterogeneous316

causal e↵ects emerging via distinct pathways, and bias due to confounding of the instrument-317

outcome association as being separate mechanisms. Here, we have illustrated that a pheWAS-318

based clustering approach can classify instruments into clusters, some of which correspond to319

di↵erent pathways, while others include IVs that are primarily confounder-associated. Our320

results have two major implications: 1) The lean-mass-related IV cluster indicated a more321

plausible, close to zero causal e↵ect of BMI on EDU. 2) We revealed that the SEP-related IVs322

leading to an apparent, sizeable negative e↵ect of BMI on EDU, possibly overestimating the323

true underlying causal e↵ect.324

In order to substantiate our findings, we performed several follow-up analyses. First, sib-325

regression based MR of BMI on EDU recapitulated the close-to-zero causal e↵ect obtained326

for the body-mass specific cluster of IVs. This indicates that many IVs for adult BMI (from327

population-based GWAS) represent indirect (parental/dynastic) e↵ects, which are associated328

rather with a rearing-related parental trait and not primarily with o↵spring BMI. Second, re-329

placing adult BMI with childhood BMI (much less associated with SEP) as exposure in the330

PWC-MR analysis confirmed a negligible causal e↵ect estimate (�0.03, p-value = 0.04), and331

the four emerging clusters showed homogeneous causal e↵ect estimates indicating the lack of332

confounding or biasing e↵ects. This comparison was supported by the growing evidence showing333

that genetic variants have varying e↵ects on BMI or body size at di↵erent stages of life[22, 23],334

and that the UK Biobank proxy trait ‘Comparative body size at age 10’ captures childhood335

BMI well[19]. Noteworthy is the fact that the childhood BMI proxy we use is a coarsened trait in336

comparison to true childhood BMI, and thus the true MR causal e↵ect estimate is likely to be337

overestimated. We have explored this further with our own simulation in Supplementary Meth-338

ods 1.2. One of the four clusters was strongly enriched for body-measurement/fat-mass traits339

whereas the second most strongly enriched cluster had only two mildly enriched SEP-related340

traits. This finding means that as opposed to adult BMI, childhood BMI genetics are unrelated341

to childhood (i.e. parental) SEP. Furthermore, out of the 41 adult BMI IVs that make up cluster342

#4 (SEP-related traits), only three were found to be in LD with childhood BMI IVs.343

In Howe et al. (2022), assortative mating, dynastic e↵ects and population stratification were all344

considered candidate mechanisms for biased population-based GWAS e↵ect estimates. Given345

our observations, a possible explanation is a dynastic e↵ect of parental SEP traits acting as a346
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confounder on the o↵spring’s BMI and EDU in adulthood (as seen in Supplementary Figure347

S9). This e↵ect is direct on the o↵spring’s adulthood EDU but could a↵ect the o↵spring’s adult348

BMI indirectly through either of two ways: (i) Parental SEP has a direct e↵ect on the o↵spring’s349

SEP as an adult, which in turn has an e↵ect on o↵spring adult/late BMI[24], or (ii) parental350

SEP – as a determinant of childhood social circumstances – may have an e↵ect through this on351

the o↵spring’s adult BMI.352

To explore the relevance of the obtained six clusters of IVs, we replaced EDU with SBP as the353

outcome of interest since within-sibling GWAS MR results showed no di↵erence when compared354

to population GWAS MR results, indicating that there seems to be no bias in the causal e↵ect355

estimate due to pleiotropy or confounding. Our analysis revealed that for the six clusters at-356

tributed to BMI, their causal e↵ect estimate on SBP was homogeneous with the estimate using357

all SNPs (0.16, p-value = 1.09 ⇥ 10�28). As there is no significant heterogeneous e↵ects and358

all the cluster causal e↵ects agree, we can conclude that there is no other confounding e↵ects359

biasing the causal e↵ect estimate. It is reassuring to note that our PWC-MR approach does360

not always seek to identify distinct causal e↵ects, confirming that confounding mechanisms are361

specific to certain exposure-outcome pairs.362

Finally, our systematic confounder search coupled with stepwise MVMR has pinpointed TV363

watching, muesli eating, and past tobacco smoking as three candidate confounder traits that364

could bias standard MR analysis of the BMI-EDU relationship: upon accounting for these three365

traits, BMI exhibits a strongly attenuated causal e↵ect on EDU, comparable to that of cluster366

#2 and the sib-regression MR estimate. We acknowledge the fact that past tobacco smoking is367

unlikely to have an e↵ect on EDU retroactively, similar to TV watching and other later-in-life368

traits, which we all consider to be acting as confounder-proxies or correlates of parental SEP. We369

have explored this further in Supplementary Methods 1.3 by introducing ‘Smoking Initiation’370

into the candidate confounder traits.371

Comparing our method to other IV clustering methods such as MR-Clust does not reveal strong372

concordance in the findings. MR-Clust takes as input the association e↵ects of the exposure and373

outcome as well as their association standard errors and attempts to cluster the exposure IVs374

based on the possible similarity between each IV’s causal e↵ect on the outcome. When using375

BMI and EDU as exposure and outcome respectively, MR-Clust revealed two main clusters376

alongside a null cluster. Both of the clusters were enriched for a variety of traits including body-377

measurement traits, both lean- and fat-mass, as well as SEP-related traits. The causal e↵ect378

estimates of both clusters were strongly negative, similar to using all IVs in an MR analysis for379

this trait pair.380

The most apparent di↵erence between the clustering of our method and that of MR-Clust is381

our use of external information (PheWAS data of the exposure IVs and various other traits) to382

reveal possible pathways and mechanisms through which the exposure manifests, independently383

of any outcome. While MR-Clust clusters the individual MR causal e↵ects of IVs on a specific384

outcome based on their magnitude.385

Another comparable clustering method by Grant et al.[25] uses genetic variant associations with386

a set of traits to identify groups of IVs with similar biological mechanisms. Their method,387

NAvMix, uses a directional clustering algorithm and includes a noise-cluster to increase robust-388

ness to outliers. NAvMIX is demonstrated on BMI IVs and their associations to nine lifestyle389

or cardio-metabolic traits that have been previously shown to be related to BMI. Their results390

revealed 5 distinct clusters where they were able to identify a metabolically healthy obesity391

cluster that also had a small MR causal e↵ect on coronary heart disease (CHD). However, we392

were unable to run their method using our data due to convergence issues arising when the393

number of traits used for PheWAS association increases. This comparison also highlights that394
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the traits we include in the pheWAS analysis (and the subsequent clustering) have an impor-395

tant role in which biological mechanisms we can detect. For example, our analysis did not pick396

up the metabolically healthy obesity cluster, potentially because waist-to-hip ratio and other397

subcutaneous-vs-visceral fat proxy-traits were not included among the 407 selected phenotypes398

due to our filtering on genetic correlation with BMI (rg < 0.75). Without such filtering, PWC-399

MR reveals 5 clusters with significantly heterogeneous causal e↵ects on EDU. These five clusters400

are very similar to the original six, with the original cluster #1 getting di↵used into the other401

clusters. Reassuringly, the cluster that is strongly enriched for SEP-related traits has a large402

negative causal e↵ect estimate of -0.53 (95% CI: �0.59,�0.48), whereas the cluster that is most403

enriched for body-measurement/fat-mass traits still had an attenuated causal e↵ect of -0.10404

(95% CI: �0.14,�0.06).405

Furthermore, we attempted to consolidate our findings of the k-means clustering and enrichment406

analysis by running a genetic colocalisation analysis on the 324 clustered BMI IVs and both407

subcutaneous adipose and brain tissue. Unfortunately, we do not find an association between408

the cluster memberships of the IVs and their signal colocalization in brain or adipose tissue,409

possibly due to high false negative rates of colocalization combined with low eQTL sample410

sizes.411

Our method has its own set of limitations: first, we are limited by the availability of traits412

with PheWAS data to support our informative clustering of IVs. This may lead to a fail-413

ure in identifying key pathways and thus missing clusters representing important subgroups414

(mediator/sub-phenotype/confounder). Second, although it is not the most ideal handling of415

data, our binary traits are treated as continuous ones in our analysis. In large samples, linear416

and logistic regression e↵ect estimates correlate very strongly and hence, it is likely that this417

choice did not impact the clustering[26]. Third, although we have attempted to minimise the418

arbitrary choice of parameters in our analysis, the genetic correlation threshold that determines419

which traits are too similar to the exposure and outcome trait is arbitrarily set at 0.75 for BMI420

and EDU and could be modified, but the emerging clusters may change as a consequence. Simi-421

larly, some p-value thresholds and type I error rate control was set at 5%, which may be viewed422

as arbitrary. Fourth, the identified potential confounder traits used in the MVMR analysis act423

as simple proxies for true confounders. For example, exposure to current tobacco smoking or TV424

watching can be highly (genetically) correlated to the same or a similar exposure during early425

life (or even proxy a parental trait), hence it is rather the earlier version of the exposure which426

is likely to be the true confounder. Our proxy confounders were simply nuisance variables, their427

only role was to see the remaining causal e↵ect of BMI on EDU upon conditioning on them.428

Fifth, while for the BMI-EDU relationship we had several lines of evidence pinpointing cluster429

#2 as the one yielding the most likely correct causal e↵ect estimate, in general, we might not430

be able to decide which cluster(s) provide biologically meaningful causal e↵ect estimate(s) and431

which ones may be linked to confounders. Lastly, we acknowledge that there are several other432

tests[27] that could be used in place of a t-test when excluding SNPs more strongly associated433

to other traits than our exposure or di↵erent MR methods used in our systematic confounder434

search, however both of these were simple exclusion or pre-selection steps that have very little435

impact on the outcome of the results.436

To conclude, we found that the classical MR estimate based on population GWAS leads to an437

overestimation of the BMI-EDU causal e↵ect and identified an lean-mass-specific subgroup of438

IVs (cluster #2) that, we believe, yields a much more reliable causal e↵ect estimate. Still, we439

are uncertain whether this e↵ect is exactly zero, or is just strongly attenuated. Our analysis also440

revealed that the unrealistically large standard MR estimate was driven by IVs that likely violate441

the pleiotropy assumption via being also linked to SEP. The attenuated estimate provided by our442
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PWC-MR approach (cluster #2) is compatible with both the estimate based on sib-regression443

summary statistics (P-values di↵erence = 0.161) and the MVMR estimate (p-di↵ = 0.476), all of444

which are based on adulthood phenotypes. However, the estimate obtained for childhood BMI445

is slightly more attenuated than that of the PWC-MR method (p-di↵ 0.024).446

Equipping the MR toolkit with a range of di↵erent analytical strategies is critical for improving447

insights into epidemiological questions, and PWC-MR o↵ers a number of features that compli-448

ment other approaches: (i) it does not require summary statistics from within-family GWAS,449

which are typically scarce and available in much smaller samples and for a limited set of phe-450

notypes (ii) it does not rely on association data from an early exposure, which face similar451

limitations as within-family GWAS (iii) in contrast to MVMR, which estimates a single causal452

e↵ect, PWC-MR provides multiple causal e↵ect estimates, some of which may reflect confounder453

e↵ects, and others heterogeneous mechanisms of action, overall revealing biological insight that454

can be used in follow-up research.455
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4 Methods456

4.1 Instrumental variable selection and PheWAS457

As our primary analysis, we aimed to investigate the potential pleiotropy-patterns emerging458

from the grouping of IVs that are strongly associated with an exposure of interest, as outlined459

in Figure 2a. With BMI selected as the exposure trait, we obtained IVs from the Neale group’s460

UK Biobank GWAS analysis[28] (data sources can be found in Supplementary Table 1) by filtering461

for genome-wide significant SNPs (i.e. association p-value less than 5⇥10�8) followed by linkage462

disequilibrium (LD)-based clumping using the TwoSampleMR R package[29] with the following463

parameters: clump kb = 10, 000, clump r2 = 0.001, pop = “EUR” to obtain independent464

IVs.465

This left us with 348 BMI-associated IVs, for which we ran PheWASs with 1, 480 traits from466

the Neale group UK Biobank GWAS analysis[28]. We extracted for each trait and for each SNP467

the association e↵ect and the corresponding standard error, creating a data matrix of 348 SNPs468

by 1, 480 traits. For the 1, 480 traits, we also extracted details such as variable type, origin and469

complete sample size, among others.470

4.1.1 Quality control471

We removed traits from the PheWAS data matrix that had missing association e↵ects as well as472

duplicates (keeping the most recent version). Furthermore, we filtered out traits for which the473

e↵ective sample size was less than 50, 000 due to their low power of association, leaving us with474

424 traits.475

Using genetic correlation data from the Neale group[28], we further removed traits that had a476

high genetic correlation with BMI, i.e. the exposure, (rg > 0.75), to avoid obvious repetitions of477

traits closely related to it. The resulting association e↵ect data matrix of 348 SNPs and 407 traits478

was then standardised (SNP e↵ects are on a SD/SD scale) and used for further analysis. Note479

that for simplicity, e↵ect sizes for binary traits were treated as those of continuous traits.480

In order to test for invalid IVs, we performed a trait-wide variant of Steiger-filtering[30]. Specif-481

ically, for each SNP, we tested if any of the traits had a significantly stronger (in terms of482

explained variance) association compared to that of the exposure. The significance threshold483

for this one-sided t-test was corrected for using the total number of traits remaining (p-value484

< 0.05/407). This revealed 24 SNPs more strongly associated to traits other than BMI (such as485

‘Whole body water mass’, ‘Basal metabolic rate’ and ‘Sitting height’) that were then removed486

from further analysis.487

4.2 K-means clustering and trait identification488

With the aim of discovering distinct meaningful groups of SNPs among the 324 IVs, we proceeded489

with the clustering of the SNPxTrait association e↵ect matrix using the K-means algorithm[31].490

Taking the absolute standardised e↵ects matrix, we normalised the data frame with respect491

to the SNPs such that the variance of the SNP e↵ects across all the traits equalled 1. We492

used the absolute e↵ects to cluster, in order to ensure that negatively correlated traits were493

considered similar by the Euclidean distance based similarity measure of the k-means clustering.494

We then compared the performance of the clustering with di↵erent number of clusters ranging495

from two to 50, by measuring the Akaike Information Criterion (AIC) score (for further model496

selection criteria, see Supplementary Methods 1.1). After finding the number of clusters with497

the lowest AIC score (six clusters), we proceeded with the assignment of each SNP to one of the498

six clusters.499
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In order to identify traits that were particularly associated to SNPs in each of the six clusters,500

we computed an enrichment ratio (ER) in the following way:501

For each trait t, we calculated the per-SNP average squared e↵ect in a given cluster j, denoted502

as �2

j,t. Given that SNP i belongs to cluster j, �2

j,t was calculated as follows:503

�2

j,t =
1

|cj |
X

i2cj

�2

i,t (1)

where �2

i,t represents the squared standardised e↵ect of SNP i on trait t (not normalised across504

traits), cj represents the set of SNPs in cluster j and |cj | its cardinality. We then normalised505

these per-SNP average squared e↵ects for each cluster relative to the total e↵ect across all506

clusters (K) to obtain the enrichment ratio (ER), Rj,t:507

Rj,t =
�2

j,t

1

K

PK
k=1

�2

k,t

(2)

where K is the total number of clusters. For each cluster (j), traits were then prioritised by the508

(highest) value of ER (Rj,t).509

4.2.1 Causal e↵ect estimate per cluster510

We measured the cluster-specific IVW causal e↵ect estimate on the outcome (EDU) using the511

standardised SNP e↵ects in each cluster, and then compared these estimates to the causal512

e↵ect estimate using all SNPs. We used the TwoSampleMR R package[29] for this analysis, and513

although we use two-sample MR techniques despite having a close to complete sample overlap,514

this does not lead to substantial biases[32]. Measures of IV heterogeneity were calculated using515

the Cochran’s Q-statistic[33] for the IVW method for each cluster. Furthermore, average cluster-516

heterogeneity (per-IV variance) was also calculated for each cluster from the above-mentioned517

parameter.518

As sensitivity analyses, PWC-MR was repeated twice, once with a di↵erent exposure trait519

(replacing BMI with childhood BMI), and another with a di↵erent outcome trait (replacing520

EDU with systolic blood pressure).521

4.3 Systematic confounder search522

In order to decide which of the emerging clusters represent genetic confounding or true bio-523

logical heterogeneity, we systematically searched for BMI-EDU confounders. To do this, we524

investigated the bi-directional causal e↵ects that each trait had on both the exposure and the525

chosen outcome.526

Firstly, an extra filtering step was done where traits that were highly genetically correlated with527

the outcome (rg > 0.75) were removed from the total 407 traits of the previous analysis.528

Then, we ran a bidirectional MR for the remaining traits using the TwoSampleMR R package[29],529

and obtained four sets of causal e↵ect measurements per trait (bidirectional, two di↵erent out-530

come traits - BMI and EDU). To select bidirectional causal e↵ect estimates from those calculated531

by the di↵erent methods in the TwoSampleMR package[29] (Weighted median, Inverse variance532

weighted, Simple mode, and Weighted mode), we ordered the p-values of the causal e↵ect es-533

timates for the four di↵erent methods and selected the estimate of the second most significant534

method to ensure that at least one other method supports the causal claim.535

The next step was to identify the direction of causality. To do so, we performed a one-sided t-536

test to compare the strengths of the estimated causal e↵ects between the trait and the exposure,537
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BMI. More precisely,538

tA,B :=
|b↵A!B|� |b↵B!A|q
SE2

A!B + SE2

B!A

(3)

where A and B denote the examined traits, b↵A!B the causal e↵ect estimate from A on B539

and SEA!B the corresponding standard error. The one-sided P-value is then calculated as540

P = �(tA,B): if P < 0.05 the B ! A causal e↵ect is nominally significantly larger, while if541

P > 0.95, the A ! B direction is dominant. For all the p-values in between, it was challenging542

to assign a direction in which the causal e↵ect was stronger, and thus these traits were not543

further categorised. The p-value thresholds we apply are not intended to suggest that there is a544

transition point at which the meaning of associations change, rather we use these as a heuristic545

that is required to control type I error rate at an arbitrary (5%) threshold. We further tested546

varying one-sided p-value thresholds of more stringent (P < 0.01, P > 0.99) and more lenient547

nature (P < 0.1, P > 0.9), the results of which are found in Supplementary Tables 10 and 11.548

549

The same procedure was repeated to explore the relationship between the traits and the outcome550

trait (EDU). This allowed us to classify traits into candidate confounders, mediators, colliders551

and other categories (as seen in the middle panel of Figure 2b). For example, a confounder552

was defined as a trait with a significantly larger e↵ect on both exposure and outcome than the553

reverse. We then focused only on the confounders which can distort MR estimates and filtered554

them further to make sure that they have at least a nominally significant MR estimate (p-value555

< 0.05) on both BMI and EDU. We were lenient in our categorisation of candidate confounder556

traits as adding potentially irrelevant traits would not bias the multivariable causal e↵ect of557

BMI in the next step. As our aim was not to reduce the total causal e↵ect to the unmediated558

part (possible by including mediators in an MVMR) but to correctly estimate it, mediators were559

not considered further. Similarly, the inclusion of colliders into an MVMR does not alter the560

exposure’s causal e↵ect as previously seen[34], thus they too were not considered further. The561

same holds for traits with a direct e↵ect on either the exposure or the outcome only.562

Furthermore, to test how compatible the two lines of analysis were, we examined the cluster-563

specific enrichment ratio values for the set of candidate confounder traits we obtained.564

4.3.1 Multivariable MR565

Focusing on the candidate confounder traits resulting from the systematic search that could bias566

the causal e↵ect estimate between the exposure-outcome pair, we first ran a stepwise multivari-567

able MR (MVMR) (adapted from the bGWAS R package[35]) with them as exposures to test568

their e↵ect on our chosen outcome, EDU.569

To do this, we created a Z-score matrix combining all genome-wide significant SNPs (p-value less570

than 5⇥ 10�8) and their Z-scores for each of the 19 candidate confounder traits and BMI, such571

that each SNP had an e↵ect that is genome-wide significant for at least one of the candidate572

traits.573

To obtain independent SNPs, we performed rank-based clumping. For this, we first ranked the574

absolute Z-scores across all SNPs for each trait (in descending order), and then for each SNP we575

obtained the highest (best) rank across traits, which was used as an importance score during the576

clumping process (LD-clumped clump kb = 5, 000, clump r2 = 0.01). We then further filtered577

out traits that had less than three instruments remaining. Note that any SNPs that fall in the578

HLA region (6p21.3) were removed for being strongly associated with multiple immune-related579

traits.580

Using this Z-score matrix without our primary exposure (BMI) as input for step-wise MVMR,581

we obtained a final list of candidate confounder traits with significant multivariable causal e↵ects582

(p-value < 0.05/12) on our chosen outcome (EDU).583
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Then, to minimise weak instrument bias when running MVMR, we calculated the conditional584

F-statistic for our primary exposure (BMI) given each of the surviving traits and their di↵erent585

combinations. Finally we ran standard MVMR using the combination of traits that produced a586

conditional F-statistic[36] � 10 (for BMI), and examined the multivariable causal e↵ect of BMI587

on EDU.588

589

4.4 Relation to other approaches590

4.4.1 Comparison against MR-Clust591

We compared the k-means clustering of BMI IVs against another IV clustering method called592

MR-Clust[21], which requires as input the unstandardised SNP e↵ects on both the exposure and593

the outcome, as well as the standard error of the SNP on each. To do so, we performed a Fisher’s594

exact test to examine the frequency distribution of SNPs in each of the k-means clusters against595

the MR-Clust clusters.596

4.4.2 Colocalisation analysis597

To further interpret the findings of the IV clustering, we sought to test if specific patterns of598

colocalisation in di↵erent tissue types appear for the di↵erent IV clusters.599

To do this, we reran the steps detailed in Leyden et al.[37] for the 324 BMI IVs used in this600

work. For each IV, we tested for genetic colocalisation between the BMI GWAS data and the601

gene expression (eQTL) data of both subcutaneous adipose and brain tissue (data sources can602

be found in Supplementary Table 1). For each SNP tested, we took a margin of 200kb up- and603

downstream, and used the coloc R package[38] to test the SNP’s colocalisation with each gene604

found in that region, once using brain eQTL data, and another colocalisation using adipose605

eQTL data. We declared colocalisation if the posterior probability of the model sharing a single606

causal variant was larger than 80%. For each of the aforementioned clusters, we investigated607

if the IVs were more strongly enriched for or depleted in one tissue or the other using Fisher’s608

exact test.609
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Figure S1: Dot plot representing the corresponding Akaike Information Criterion scores across varying

K-means centres for BMI. K-means centres vary from 2 to 50 clusters. The red vertical line represents the number of

centres/cluster with the lowest score.
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Figure S2: Boxplot showing the enrichment ratio of all traits in each cluster. BMI IVs have been clustered

into 6 clusters using K-means. The enrichment ratio of each trait calculated using the cluster-specific IVs is shown in the

barplot. In the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds

to the median, whereas the upper whisker is the largest data point smaller than 1.5⇤ inter-quartile range above the third

quartile. The lower whisker is defined analogously.
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Figure S3: Dot plot representing the corresponding Akaike Information Criterion scores across varying

K-means centres for child BMI. K-means centres vary from 2 to 50 clusters. The red vertical line represents the number

of centres/cluster with the lowest score.
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Figure S4: Boxplot showing the enrichment ratio of all traits in each cluster. Child BMI IVs have been

clustered into 4 clusters using K-means. The enrichment ratio of each trait calculated using the cluster-specific IVs is shown

in the barplot. In the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar

corresponds to the median, whereas the upper whisker is the largest data point smaller than 1.5⇤ inter-quartile range above

the third quartile. The lower whisker is defined analogously.
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Figure S5: Heatmap of the enrichment ratio of the top 10 traits in each cluster. Body size at age 10 is used

as a proxy exposure trait for child BMI. K-means clustering revealed 4 clusters with the following trait enrichment ratios.
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Figure S6: Boxplot showing the ER for confounder traits across the clusters. Confounder traits were

categorised in a systematic search. In the boxplots, the lower and upper hinges correspond to the first and third quartiles,

the middle bar corresponds to the median, whereas the upper whisker is the largest data point smaller than 1.5⇤ inter-

quartile range above the third quartile. The lower whisker is defined analogously.
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Figure S7: Dot plot showing the causal e↵ect estimate of BMI on EDU conditional on various combina-

tions of three candidate confounder traits. The error bars represent the 95% CI. The blue horizontal line represents

the observational correlation between BMI and EDU, whereas the red horizontal line represents the univariate causal e↵ect

estimate of BMI on EDU. Trait 1070: ‘Time spent watching television (TV)’, trait 924: ‘Usual walking pace’, trait 1249:

‘Past tobacco smoking’, 1468 4: ‘Cereal type: Muesli’.
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Figure S8: Dot plot showing the genetic association of IVs with the exposure: BMI, and the outcome:

EDU. The exposure IVs have been clustered using MR-Clust based on their similarity in causal e↵ect

estimates. MR-Clust has revealed 2 main clusters for BMI’s causal e↵ect on EDU as well as a ‘null’ cluster. The IVs

plotted have a cluster inclusion probability greater than or equal to 80%. The slopes represent the causal e↵ect estimate of

each cluster.
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Figure S9: Directed Acyclic Graph (DAG) illustrating the relationship between BMI and EDU. The

DAG involves early and later-in-life (late) versions of BMI as the exposure trait and EDU as the outcome trait. G represents

genetic instruments, Uo
G represents a heritable confounder acting on the trait pair, whereas Z represents a parental trait

involved in exerting dynastic e↵ects. The superscripts p and o stand for parental and o↵spring respectively, and the dashed

arrows from X to Y represent the di↵erent biological mechanisms through which a causal e↵ect can emerge.Grey arrows

represent possible causal pathways between the early traits as well as early BMI and late EDU.
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Supplementary Methods3

1.1 Di↵erent model selection criteria and additional number of clusters4

In order to test for multiple model selection criteria, we tested for the optimal cluster number5

using both AIC (as shown in the manuscript) and Bayesian information criterion (BIC).6

Using BIC, we end up with 2 clusters being the optimal for BMI SNPs with heterogeneous7

causal e↵ects on EDU (cluster 1 = -0.13 (6.61E-16), cluster 2 = -0.34 (6.15E-44)), and their8

enrichment reflects a clear distinction between enrichment for lean-mass and body related traits9

in cluster 1 and a mixed bag of trait enrichment for cluster 2 including lung/height/blood and10

SES-proxy traits.11

This result is due to BIC introducing a stronger penalty term, k⇥ log(n), where k is the number12

of clusters and n corresponds to the number of (independent) samples used.13

However, in our case n represents the number of traits, which are highly correlated. Also, the14

more traits are used to cluster the SNPs, the more clusters we expect to obtain as they allow for a15

more fine-grain resolution of the underlying biological mechanisms. For these reasons, we do not16

believe that BIC is an appropriate measure to quantify clustering fit in this situation. Therefore,17

the BIC-based selection of optimal cluster number does not alter the main message/result, and18

only leads to coarser grain clusters.19
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Figure S10: Causal e↵ect estimates of BIC-clustered BMI SNPs on educational attainment.

On the other hand, we also tried to forcibly increase the number of clusters to 8 in the hopes20

of achieving more distinction in enrichment. We observed similar heterogeneous causal e↵ects21

on EDU, where the smallest and largest e↵ects were from clusters enriched for lean mass and22

SES-related traits respectively. As for the rest of the clusters, another 2 were strongly enriched23

for food supplements and a mix of height/blood/lung measurement traits, another was enriched24

for a mix of diseases and three other clusters had low enrichments for miscellaneous traits.25
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Figure S11: Causal e↵ect estimates of clustered (forced 8 clusters) BMI SNPs on educational attain-

ment.

1.2 Using a coarsened variable as an exposure for MR: Comparative body26

size at age 1027

To validate our comparison between the magnitude of e↵ect estimates for adult and childhood28

BMI, given that childhood BMI was proxied by coarsened variable (Comparative body size at29

age 10), we ran the following analysis:30

We simulated polygenic risk score (PRS) to explain 10% of childhood BMI and added Gaussian31

noise to generate childhood BMI values for 350,000 individuals. Individuals were then split32

into three categories, matching the proportion of plumper and skinnier subjects in the UK33

Biobank data. We then normalised this coarsened/trichotomized phenotype to have a variance34

of 1 (mimicking our original analysis). Both the real and the coarsened childhood BMI were35

regressed onto the PRS. Next, we simulated a continuous EDU score with true childhood BMI36

having a small (�0.1) causal e↵ect on it. Finally, we ran MR for both the coarsened and the37

true childhood BMI on EDU, and compared the magnitudes of the causal e↵ects of 100 di↵erent38

runs (figure below).39
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Figure S12: Causal e↵ect estimate of childhood BMI and coarsened childhood BMI on EDU. True

causal e↵ect of childhood BMI on EDU is -0.1.

As seen in the results above, the causal e↵ect estimates of BMI and coarsened BMI (cBMI)40

on EDU are comparable, with a slight (10%) increase of the average causal e↵ect of cBMI in41

comparison to BMI’s e↵ect. This indicates that using a coarsened version of childhood BMI42

may have led to a slight overestimation of the causal e↵ect, therefore the true childhood BMI on43

EDU e↵ect may be even smaller than the estimated one (�0.03, p-value = 0.04). Furthermore,44

we see that 1 SD change in cBMI is equivalent to 0.9 SD change in BMI, assuring us of the45

robustness of our results and data used.46

1.3 Past tobacco smoking as a candidate confounder of the BMI-EDU rela-47

tionship48

Despite it being a candidate confounder trait, past tobacco smoking is unlikely to have a retroac-49

tive e↵ect on education (or an e↵ect at all, unlike education’s e↵ect on smoking). To further50

investigate this, we added the trait Smoking Initiation (GWAS obtained from Saunders et al.51

2022), which on average occurs around the age of 17 in the UK population, to the MVMR52

analysis. We repeated first the stepwise-MVMR, obtained ‘Smoking initiation’, ‘Time spent53

watching television (TV)’, ‘Cereal type: Muesli’, and ‘Usual walking pace’ as candidate con-54

founder traits with significant causal e↵ects on EDU. Note that smoking initiation replaced past55

tobacco smoking in this step, as it no longer had a strong causal e↵ect on EDU. Adding BMI56

to this set of exposures and then calculating its conditional F-statistic with their various com-57

bination, we discover that the combination of the first three traits give a conditional F-statistic58

� 10 (12.53) and that BMI’s conditional causal e↵ect is severely attenuated, as shown in the59

table below:60

Smoking initiation, as seen, has a significantly negative causal e↵ect on education, but we would61

like to iterate that it, as well as the other candidate confounder traits are not necessarily true con-62

founders, but are very likely to be proxies for a confounding parental environment/trait.63
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Phenotype Description ↵ estimate SE P

SmkInit Smoking initiation -0.1358 0.0122 7.66E-27
1070 Time spent watching television (TV) -0.2617 0.0238 2.91E-26
1468 4 Cereal type: Muesli 0.2920 0.0341 5.39E-17
21001 irnt Body mass index (BMI) -0.0383 0.0103 2.01E-04

Table S1: MVMR analysis results of BMI and three candidate confounder traits on education.
↵: causal e↵ect estimate.
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