UNIL | Université de Lausanne

Unicentre
CH-1015 Lausanne
http://serval.unil.ch

Year : 2010

ON THE EFFICIENCY OF RECURSIVE EVALUATIONS WITH
APPLICATIONS TO RISK THEORY

Sébastien VIQUERAT

Sébastien VIQUERAT 2010 ON THE EFFICIENCY OF RECURSIVE EVALUATIONS WITH
APPLICATIONS TO RISK THEORY

Originally published at : Thesis, University of Lausanne

Posted at the University of Lausanne Open Archive.
http://serval.unil.ch

Droits d'auteur

L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les
documents publiés dans I'Archive SERVAL sont protégés par le droit d'auteur, conformément a la
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir
le consentement préalable de l'auteur et/ou de I’éditeur avant toute utilisation d'une oeuvre ou
d'une partie d'une oeuvre ne relevant pas d'une utilisation a des fins personnelles au sens de la
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette
loi. Nous déclinons toute responsabilité en la matiere.

Copyright

The University of Lausanne expressly draws the attention of users to the fact that all documents
published in the SERVAL Archive are protected by copyright in accordance with federal law on
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the
author and/or publisher before any use of a work or part of a work for purposes other than
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose
offenders to the sanctions laid down by this law. We accept no liability in this respect.

UNIVERSITE DE LAUSANNE
FACULTE DES HAUTES ETUDES COMMERCIALES

ON THE EFFICIENCY OF RECURSIVE EVALUATIONS
WITH APPLICATIONS TO RISK THEORY

THESE

Présentée a la Faculté des HEC
de I'Université de Lausanne

par

Sébastien VIQUERAT

Licencié en sciences économiques
mention sciences actuarielles
de I’'Université de Lausanne

Pour I'obtention du grade de
Docteur en Sciences Actuarielles

2010

Wnil_

UNIL | Université de Lausanne
HEC Lausanne
Le Doyen
Batiment Internef
CH-1015 Lausanne

IMPRIMATUR

Sans se prononcer sur les opinions de l'auteur, la Faculté des hautes études
commerciales de I'Université de Lausanne autorise I'impression de la theése
de Monsieur Sébastien VIQUERAT, licencié¢ en sciences €conomiques,
mention sciences actuarielles, de 1’Université de Lausanne, en vue de

l'obtention du grade de docteur en Sciences Actuarielles.

[.a thése est intitulée :

ON THE EFFICIENCY OF RECURSIVE EVALUATIONS
WITH APPLICATIONS TO RISK THEORY

Lausanne, le 22 juillet 2010

Le doyen -

Soas A7

Daniel Oyon

Tél. ++41 21 692 33 66 | Fax ++41 21 692 34 35 | hecdoctorats@unil.ch

Jury de these

Professeur Francois Dufresne
Faculté des Hautes Etudes Commerciales
Université de Lausanne

Directeur de these

Professeur Hansjorg Albrecher
Faculté des Hautes Etudes Commerciales
Université de Lausanne

Expert interne

Professeur Stéphane Loisel
Institut de Science Financiere et d’Assurances (ISFA)
Université Claude Bernard Lyon 1

Expert externe

il

v

Université de Lausanne
Faculté des Hautes Etudes Commerciales

Doctorat en Sciences Actuarielles

Par la présente, je certifie avoir examiné la thése de doctorat de

Sébastien VIQUERAT

Sa thése remplit les exigences liées a un travail de doctorat.
Toutes les révisions que les membres du jury et le-la soussigné-e ont
demandées durant le colloque de thése ont €té prises en considération et

recgoivent ici mon approbation.

Signature : Ww Date : i 5 '\ - «J”{/ 29/0

-/

Prof. Frangois DUFRESNE

Directeur de thése

vi

Université de Lausanne
Faculté des Hautes Etudes Commerciales

Doctorat en Sciences Actuarielles

Par la présente, je certifie avoir examiné la thése de doctorat de
Sébastien VIQUERAT
Sa thése remplit les exigences liées & un travail de doctorat.
Toutes les révisions que les membres du jury et le-la soussigné-e ont

demandées durant le colloque de thése ont été prises en considération et

recoivent ici mon approbation

Signature : T o> Date: / 5 W lif Coao

Prof. Hansj6rg ALBRECHER
Membre interne du jury

vii

viil

Université de Lausanne
Faculté des Hautes Etudes Commerciales

Doctorat en Sciences Actuarielles

Par la présente, je certifie avoir examiné la titesdoctorat de

Sébastien VIQUERAT

Sa thése remplit les exigences liées a un traeailodtorat.
Toutes les révisions que les membres du jury ket $®ussigné-e ont
demandées durant le colloque de thése ont été&sm@mseonsidération et

recoivent ici mon approbation

Signature : Date : 16/07/2010

Prof. Stéphane LOISEL

Membre externe du jury

X

Avant-propos

Tout d’abord, j'aimerais remercier Monsieur le Professeur Frangois Dufresne sans qui
cette these n’aurait pas existé. J’ai vraiment eu beaucoup de plaisir a travailler avec lui
durant ces cinq dernieres années. J’aimerais également remercier Messieurs les Professeurs

Hansjorg Albrecher et Stéphane Loisel d’avoir accepté de faire partie de mon jury de these.

Durant ces cinq années en tant qu’assistant diplomé, j’ai eu la chance de travailler dans
une ambiance formidable et je profite ici pour remercier tous les professeurs, chargés de
cours, chercheurs, assistants et secrétaire du Département de Science Actuarielles pour
tous les bons moments passés ensemble que se soit au travail ou en dehors du travail. Je
crois qu’il est rare de trouver une équipe de travail aussi sympa et souriante. Je remercie
également les secrétaires du troisieme étage pour leur agréable collaboration et leur bonne
humeur ainsi que les dames de la cafétéria de 'Internef pour la pratique quotidienne du

portugais.

Finalement, je tiens a remercier mes parents et ma famille pour tout le soutien apporté

tout au long de mes études.

xi

xii

Contents

[Synthesis report| 1
1__Introduction| 5
2 How to get rid of round-off errors in recursive formulas| 13
2.1 Introductionl o 13
2.2 The collective risk modello oo 16
[2.3 Recurrence equations and stabilityl 17
2.4 The GNU Multiple Precision Arithmetic Library{. 19
[2.5 Effciency with Panjer’s recursion| 0oL 22
[2.6 Compound binomial distributions| 28
[2.6.1 Definitions and examples| L. 28

2.6.2 Recurrence relationdo 29

2.6.3 Forward vs backward directionsf 31

[2.6.4 Which precision is necessary?| 34

[2.6.5 Precision management| 38

[2.6.6 Effects of m on stability] 0oL 41

2.7 Further remarks 44
2.8 Conclusionl. 47

[3 From approximations of De Pril transforms to approximations of -th |
| I GG [sitbution T oh 49

xiil

Xiv

3.1 Introduction| 49
B2 De Pl i] : ror I arve JSmhoh l

I functionsl 51
3.2.1 Definitions and review]o 51

B.2.2 A more efficient recursive evaluationl 53

[3.2.3 Some applications|. 54

[3.3 Approximations of ¢-th order cumulative distribution functions/ 55
3.4 Frror bounds for {-th order cumulative distribution functions 60
[3.5 Error bounds for stop-loss contracts| 63
[3.6 Error bounds analysis|. L oo 65
[3.7 Applications| 66
[3.7.1 Error bounds for compound Poisson distributions| 66

3.7.2 Frror bounds for the individual risk modell 70

[3.7.3 Error bounds for approximations of the individual life model by [

| compound Poisson distributions|o 73
[3.8 Numerical applications| 76
3.9 Conclusionl. 7

[4 On the stability of recursive evaluations of i-th order cumulative distri- |
L__bution functionsl 79
M.l Introductionl L 79
M2 Definitions and reviewlo Lo 81
[4.2.1 Some exact evaluations and approximations of ¢-th order cumulative [
distribution functionslo 81

4.2.2 Theindividual risk modello 0000 82

4.3 Dhaene-Vandebroek algorithm for #-th order cumulative distribution func- |
I 77 84
4.4 Convergence of De Pril transtorms|. 86
MA41 Generalcasd. o 86

[4.4.2 Convergence of De Pril transtorms of some compound distributions| 88

[4.5 Stability against round-oft errors|.o 92
[4.5.1 Some definitions and general results|. 92
[4.5.2 Stability with a convergent De Pril transtorm| 94
[4.5.3 Stability with a divergent De Pril transtorm| 98

4.6 Numerical illustrations| L oo 103

M7 Conclusionl. 109

XV

Xvi

List of Figures

[2.1 Computation times as functions of A for the first comparison| 26
[2.2 Computation times as functions of s for the second comparison|. 27
[2.3 Computation times as tunctions of s for the third comparison| 28
2.4 Logarithms of the relative errors at the last evaluation points as tunctions |
| of ¢ for both directions with m = 1000 and a precision of 128 bits| 31
(2.5 Evolution of the logarithms of the relative errors as we go along with the |
| recursions in both directions with m = 1000 and a precision of 128 bits| . . 33
[2.6 Evolution of the relative errors of the recursive evaluation using two differ- [
| ent PreciSIONS| v v i e e e e e e e 38
2.7 Evolution of the relative error evaluating according to Algorithm 45|
4.1 Area where the De Pril transtorm is convergent in the case ot Corollary |14 91|
1.2 log,, f(s), logy, f(s) and logololl - 104
4.3 Logarithm of the relative error resulting from an evaluation using the |
| floating-point representation| 105
U4 log,, It f(s), logyo Tt F(s) and logy ol - - o v o o o oo 107

Logarithm of the relative error occurring from an evaluation using the [

floating-point representation for some orders| 108

xvii

Xviil

List of Tables

[I.1 Panjer’s class distributions| oL 6
[2.1 ~ Accuracy versus precision with GMP floating-point objects| 21
[2.2 Computation times and last stages for the first comparison| 26
[2.3 Computation times and last stages for the second comparison| 27
[2.4 Computation times for the third comparison| 27
[2.5 Individual claim amount probability functions of the three examples| 29
[2.6 Relative error at ms according to an evaluation using a “finite” precision [

for the first k stages| 34
[2.7 Values of n, 7, rayp and n if m = 1000 and ¢ =0.3[. 36
[2.8 Relative errors and computation times in five cases| 39
2.9 Relative errors and computation times in two cases with the inclusion of |

the split of multiplications o000 40
[2.10 Values of n, 7, rqarp and 1 with computation times if m = 10000 and ¢ = 0.3| 41
[2.11 Values of 7 (m) for two valuesof mand v =0 41
[2.12 Comparisons between 7 (1000c) and 7 43
(3.1 Number of policies in each class for the example of |Gerberf (1979)] 76|
13.2 Approximations of I'" f(s) by setting p(y) fory > 77
4.1 Number of policies in each class| 103
|4.2 Values of f(s) and f(s) with relative errors for some points| 104

Xix

4.3 Probability function of the X;’sf 105
.4 Values of ¢; and d? for some orders| 105
|4.5 Values of I f(£) and T f (&) for some orders, approximations of I' f(£) and |
relative errors at & Lo 106
4.6 Values of pe, and their upper bounds that guarantee an accurate evaluation |
up to &l 108
4.7 Approximations for p., and their upper bounds that guarantee an accurate |
evaluation for the first 600 points| 109

XX

Synthesis report

This thesis consists of three essays on recursive evaluations related to the distribution of
the aggregate claims amount of a portfolio of insurance policies over a period of time.
Each essay corresponds to a chapter. An introductory chapter precedes these essays. In
the actuarial literature, we can find several ways to model the distribution of the aggregate
claims amount of a portfolio of insurance policies over a period of time. The collective

and individual risk models are the most frequently used in actuarial applications.

In the former model, the aggregate claims amount random variable is defined as
S=X1+Xo+ -+ Xy, where N and X, represent the number of claims and the amount
of the i-th claim, respectively. It is generally assumed that the X;’s are independent,
identically distributed and independent of N. Recursive formulas for some particular dis-
tributions of N have been developed by [Panjer| (1981) and their stability against round-off
errors is discussed in Panjer and Wang| (1993). Recursive evaluations are useful in practice
since they reduce the number of operations, which gives a faster evaluation. However,
numerical problems may arise and lead to meaningless results due to the propagation of
round-off errors coming from the representation of real numbers by floating-point num-

bers.

In the individual risk model, the aggregate claims amount random variable is defined as
S =X+ Xo+ -+ X,,, where m is the number of policies in the portfolio and X;
is the claim amount of the policy number i. For this model, there exist several exact
and approximative recursive evaluations (see e.g. De Pril (1986b, (1988, |1989)), Dhaene
and Vandebroek! (1995), Hipp| (1985, 1986)), Kornya (1983) and Waldmann| (1994)). An
extension of this model can be used for the computation of the probability function of the

m-fold convolution of a probability function.

The De Pril transform is a useful function for evaluations in relation to the distribution
of a sum of independent random variables since the De Pril transform of a convolution

of probability functions is the sum of the De Pril transforms of the probability functions.

Moreover, it defines uniquely a probability function given a value of this probability
function. A recursive scheme for ¢-th order cumulative distribution functions that is based
on the De Pril transform has been developed by Dhaene et al.| (1999). Some quantities

can be calculated directly from such functions.

The first chapter of this thesis introduces Panjer’s recursion that is one of the well known
methods used to evaluate the probability function of the aggregate claims amount. We
expose its history in the actuarial literature as well as in the literature of other fields. We
discuss its extensions in addition to other methods for the evaluation of such a proba-
bility function or related quantities. Further results on recursive evaluations and on the

generalizations of Panjer’s recursion can be found in |Sundt and Vernic| (2009).

Chapter 2: “How to get rid of round-off errors in recursive for-

mulas”

In this first essay, we develop efficient computational methods in order to obtain an
accurate recursive evaluation of the probability function of a compound distribution under
the collective risk model. Such evaluations may be ineffective due to the propagation of
round-off errors coming from the representation of real numbers by computers. The
propagation of such errors affects the stability of the recursive evaluation and may lead
to meaningless values whose relative error may increase without bound. We discuss the
utility of the GNU Multiple Precision Arithmetic Library (GMP), which provides efficient
computational functions using arbitrary-precision arithmetic. Comparisons between the
use of this library and Maple are made to show how GMP is helpful to save time in
computations. We also investigate in detail recursive evaluations for compound binomial
distributions, which are particularly subject to an undesirable propagation of round-off
errors. The efficient computational methods developed in this essay are built on properties
of GMP like the management of the precision of variables. Some numerical examples

illustrate these methods in order to show their benefits.

Chapter 3: “From approximations of De Pril transforms to ap-

proximations of {-th order cumulative distribution functions”

In this essay, we consider recursive evaluations of the t-th order cumulative distribution

function based on the De Pril transform of the corresponding probability function. We

expose a more efficient evaluation scheme than the one developed in Dhaene et al.| (1999)
especially when the De Pril transform converges to zero. We discuss the utility of such
an evaluation for the computation of the expected shortfall at a given probability level
as well as for computations in relation to stop-loss contracts. An expression for the
error resulting from an evaluation of the ¢-th order cumulative distribution function from
an approximation of the De Pril transform is derived. We also develop a bound for
this error that can be computed before the evaluation and discuss its implementation to
the approximation of quantities related to stop-loss contracts. Finally, we express this
error bound for well-known or useful approximations that have been discussed in the
actuarial literature. We end this essay by doing some numerical examples of the previous

applications.

Chapter 4: “On the stability of recursive evaluations of ¢-th order

cumulative distribution functions”

In this last essay, we study the stability against round-off errors of recursive evaluations
of t-th order cumulative distribution functions especially for the individual risk model.
First, we present some recursive formulas that depend on the De Pril transform of the
probability function. The Dhaene-Vandebroek algorithm is extended to recursive evalua-
tions of t-th order cumulative distribution functions. This algorithm gives in many cases a
more efficient way for evaluating such functions. Then, we show that the stability against
round-off errors of such recursive evaluations depends essentially on the convergence or
divergence rate of the De Pril transform. In particular, we find that the recursive evalua-
tion of the ¢-th order cumulative distribution function with ¢ > 1 is strongly stable when
the De Pril transform converges to zero. In the other cases, we give methods to determine
a precision of the floating-point representation that is necessary to guarantee an accurate
evaluation up to any given point. Finally, numerical applications are made at the end of

this essay to illustrate these results.

Chapter 1
Introduction

In the actuarial literature, a recursive procedure for the evaluation of the probability
function of a family of compound distributions is known under the name of Panjer’s
recursion as a reference to Panjer| (1981). This recursion can be used for the evaluation of
the probability function of the aggregate claims amount under the collective risk model
that is defined as

S = Xi+Xo+-+ Xy, (1.1)

where the X;’s are assumed to be independent and identically distributed and independent
of N. It holds for a class of distributions of N that satisfy

b
Dn = (a+—>pn_1, n=12,..., (1.2)
n

with initial value py > 0 and where p,, denotes Pr [N = n]. This class of distributions is

sometimes called Panjer(a, b, 0) class. Panjer’s recursion is given by

- y
fla) = Z<a+b5>g(y)f(x—y), r=12,..., (1.3)
y=1
with initial value f(0) = pg and where g denotes the probability function of the X;’s. We
assume in this chapter that g is defined on the positive integers, but similar expressions
can be derived in the cases where g(0) > 0. The probability function of the non-trivial
distributions that satisfy (1.2)) are given in Table in addition to their parameters a

and b and their probability generating function.

We can also use probability generating functions in order to determine the probability

function of S. We define the probability generating function of a random variable Y

5

Table 1.1: Panjer’s class distributions

Distribution of N pn = Pr[N = n)] a b E[2V]
Poisson e*’\% 0 A A1)

: . . r+n—1 . on g\
Negative binomial < ") (1—-4q)7q q (r—1)q (@)
Binomial Mg | D | (1= g+ g2)”

n q q -1 - q+q

distributed on the nonnegative integers with probability function h as

o0

Py(u) = E[u'] =Y h(k)". (1.4)
We have that
Ps(u) = Py(Px(u)), (1.5)

which leads to

> fky* = Py (Z g(k)u’“> : (1.6)
k=0 k=0

Therefore, determining f amounts to determining the coefficient of a polynomial that is
a function of another polynomial. Recursive formulas for such an operation were derived
during the 18th century in pure mathematics literature. From Table we observe
that the corresponding recursions to for compound negative binomial distributions
and compound binomial distributions were first developed in sections 68 (p. 53) and 76
(p. 59) of |[Euler| (1748), respectively. For compound Poisson distributions, Euler (1751,
p. 10) derived a recursive formula to determine the coefficients f(k) of (see also
Euler (1755, Ch. 8)).

The family of distributions of Table was not discussed for the first time by [Panjer
(1981). Katz’ class whose name refers to Katz (1945)) (see also Katz| (1965)) is similar to
Panjer(a, b,0) class with a different parametrization. |Johnson et al. (2005) also refer to
Carver| (1919, p. 53) who used the difference equation

Pn+1 — Pn _ a—n
Pn bo + blTL + bg’rL2 ’

(1.7)

for smoothing actuarial data. Katz’ class contains the distributions for which by = b; and

by = 0 in (7).

The recursion for compound Poisson distributions was largely discussed before Panjer
(1981)) especially in the biometric literature (see e.g. |Adelson| (1966)), Beall and Rescia;
(1953, p. 356) and Neyman| (1939, p. 47)). The three recursions for the three distributions
of Table|l1.1are treated in |Khatri and Patel| (1961). The Poisson case corresponds to their

case A while the binomial negative and binomial cases belong to their case B.

In the actuarial literature, |Stroh (1978) deduced the recursive formulas for the com-
pound Poisson distribution and the compound negative binomial distribution using dis-
crete Laplace transforms. Then, [Panjer (1980) and Williams| (1980) derived the recursive
formula for the compound Poisson distribution. Tilley (1980) derived the recursive for-
mulas for each distribution of Table [L1l

Panjer| (1981) derived also an integral equation in the cases where the X;’s are continuously
distributed on the positive real numbers with probability density function g(x), = > 0,
and when the distribution of N satisfies (|1.2)). Together with f(0) = po, this integral
equation is

T

fla) = pgle)+ [

y=0

(a+62) 90)f(x = y)dy, @ >0, (L8)
which can be obtained by determining the coefficient of e** on both sides of
Mgy(z) = aMx(2)Mg(2) + (a+ b)Mx(2)Ms(2), (1.9)

where My (u) = E[e“y] denotes the moment generating function of Y. An integral equa-
tion for the Poisson case and the negative binomial case were discussed in [Plackett (1969,
p. 3) and Seal (1971, p. 90), respectively. We refer to Stroter| (1985) for a numerical solu-
tion of such an integral equation. Another approach consists in the discretization of the
probability density function of the X;’s and then to use for the recursive evaluation.

Sundt and Jewell| (1981) generalized the results of Panjer| (1981). They derived a recursive
formula when (1.2)) holds from an integer k£ on such that

b
Pn = (a—i—ﬁ)pn_l, n=k+1,k+2,..., (1.10)

with px > 0. They obtained that

o) = plg<x>+n§;(pn— (a4 2) ot) a™0)

3 (a0 D) g —y), v =12, (1.11)

with f(0) = po and where g* denotes the n-fold convolution of g with itself. They also
extend Panjer’s recursion for the cases where the X;’s are distributed on the set of all
integers. Panjer(a, b, k) class was characterized by Hess et al. (2002)). It contains the
distributions of N that satisfies ((1.10) with p, =0 for n =0,1,...,k — 1 and p; > 0. For
such distributions, becomes

-

r—

fl@) = pog™ (@) + <a+b%>g(y)f(x—y), r=kk+1,.... (112

)

Il
—

Gerhold et al| (2010) discussed a stable recursion for some distributions of Panjer(a, b, 1)

class.

Ambagaspitiyal (1995) derived a recursion for f when the probability function of N satisfies

h2(a7 b)
n

pnla,b) = (hl(a,b)—i—)pn_l(a+b,b), n==kk+1,..., (1.13)

where a and b are parameters of N (see also (Gathy and Lefevre| (2010)). It is given by

k—1

fa) = X (palat) = (mlan) +

n=1

h2(Z7 b)) pur(a+b, b)) 9" (x)

+Z (hl(a, b) + ha(a,b) %) gy)f(x —y;a+bb), x=12,...,(1.14)

y=1
with initial values f(0;a,b) = po(a,b).

De Pril| (1985)) showed that h*™, the n-fold convolution of a discrete probability function

h(y),y =k, k+1,..., where k is an integer, can be evaluated recursively by

" (x) =

z—nk n+1
r — nk

1
k) y—l) h(y+ k)" (x —y), x=nk+1,nk+2,...,(1.15)
y=1
with initial value h*"(nk) = (h(k))". Notice that h*" is the probability function of a shifted
compound binomial distribution with parameters m = n and ¢ = 1 —h(k). If £ = 0, (1.15))
is the same as ((1.3) when N is distributed according to a binomial distribution. Therefore,
this recursion can also be used to evaluate the probability function of the aggregate claims

amount in the individual risk model defined as
S = Xi+Xp+ 4 X, (1.16)

where the X;’s are assumed to be independent and identically distributed. If the X;’s

are not identically distributed and have probability function h;, a recursive evaluation is

8

obtained using the De Pril transform of each h;. This function is denoted function by ;

and can be determined by

vily) = hiO) yhi(y)—ngi(y—x)hi(:v) , y=12.... (1.17)

(1989) proved that the De Pril transform of S denoted by ¢ is given by

f(ZL‘) = _Z¢(y)f<w_y)’ r=12..., (1'19>

with initial value f(0) = [[, h:(0). This last formula was given by (1982alb).

Another recursive scheme for this model was derived by Dhaene and Vandebroek| (1995).
That is

flz) = ini(x), r=1,2..., (1.20)

where the coefficients v;(x) are determined by

u(e) = ﬁ;hxy)(ym_y)_w_y», r=12..., (121

and with initial values f(0) = [[\~, 7;(0) and v;(0) = 0, ¢ = 1,...,m. This algorithm,
which was previously derived by [Waldmann| (1994) for the individual life model, is in sev-
eral situations more efficient than an evaluation using (1.19). Notice that if h;(z) = h;(x)
for all x and @ # 7, and simplify to ([1.15)) with £ = 0. In the actuarial litera-

ture, we can also find some approximations of the probability function for the individual
risk model (see De Pril| (1989), Kornya (1983) and (1986))). Comparisons between
these exact and approximative evaluations are made in [Dhaene et al. (2006) and
and Vandebroek| (1995)).

Some generalizations for the condition on the probability function of N were discussed

in the actuarial literature. Hesselager| (1994) and [Panjer and Willmot| (1982) developed

recursive formulas when p,, satisfies

i
Pn = —————pp_1, n=12,.... (1.22)
nJ

Another extension was made by Schroter| (1990)) and generalized by Sundt| (1992). The
latter showed that

f(l‘) = Zf(m—y)z (aj+%%) g*j(y)’ r=12,..., (1'23>

b.
Pn = Z(aj+#)pn—ja n=12..., (1'24>

with pg > 0. When N is a phase-type variable, its probability generating function is

rational and can be written as

k .
NI ¥2
Py(z) = ZJ—+ (1.25)
1 - Zj:l B2
This is equivalent to writing that
k
Pn = 0t Y Bipnj, n=0,1,2,.. .. (1.26)

j=1

and the probability function of S can be evaluated by

k T k
fl@) = Y aig?(@)+) fle=9) Y Ao ly), w=12.... (1.27)

with initial value f(0) = py = ap. This recursion is given by [Eisele| (2006) who also

extends it to the cases where the X;’s are continuous random variables.

If N follows a Poisson distribution and the X;’s are discrete phase-type variables that

satisfy

k i—
d - Zj:l 720
1= Y8 620

De Pril (1986a)) gave a more efficient recursive formula than ((1.3]) which is

flz) = Z (%% + (1 - %@)) fla—j), z=1,2,..., (1.29)

Jj=1

(1.28)

with initial value f(0) = e™. An extension of this recursion to the distributions of

Panjer’s class is made by Hipp| (2006) who also extends it when g is the probability

density function of a continuous phase-type distribution.

10

If we consider multivariate distributions, we can obtain similar recursive evaluations. We
refer e.g. to |Hesselager| (1996]) and [Vernic| (1999) for bivariate compound distributions
and to Eisele| (2008)), [Sundt| (19994} [2000)) and Sundt| (2002, Section 9) for multivariate

distributions.

Nowadays, compound distributions and convolutions appear in most of the fields of actu-
arial practice. We give here two practical examples. The individual risk model is generally
used to model the distribution of the loss of a life insurance or a pension fund that de-
pends on the sum of the sum at risk of the policies for which a claim occurs over a given
period of time. In the standard model of the Swiss Solvency Test, we need to compute
the expected shortfall of a distribution that involves the evaluation of the probability
function of a compound Poisson distribution. However, recursive formulas are not the
only way that can be used for the evaluation of the probability function of a compound

distribution. We discuss now other methods for such an evaluation.

A first method consists in using the convolution formula which is

flx) = ang*"(x), r=0,1,2,..., (1.30)
n=0
where
g (z) = Zg(y)g*("_l)(x—y), r=12..., (1.31)
y=1
with initial value
1 rz=0

) = ’ . 1.32
g() 0, z=12... ()

However, an evaluation using (1.30)) is generally more demanding in terms of number of

operations than Panjer’s recursion. They require O(n?®) and O(n?) operations to obtain
f(0), f(1),..., f(n), respectively.

A second method that requires only O(nlogn) operations is to use the fast Fourier trans-
form (FFT). It consists in evaluating the probability function of S using the inverse

discrete Fourier transform by

2k
n

n—1
]_ —i2mx
flz)=— ¢5()e G k, x=0,1,2,...,n—1, (1.33)
n
k=0

where © = /—1, n is the number of points that are evaluated and ¢g is the characteristic
function of S which is defined by
¢s(z) = E[e”*°] = Py (¢x(2)). (1.34)

11

The terms ¢g (%) of 1} can be determined using 1) and the discrete Fourier

transform

(1.35)

If n is chosen to be a power of two, ((1.33) and ([1.35]) can be computed efficiently using an

FFT algorithm. This method, which can be used for any random variable with probability
generating function Py, leads to an approximation whose accuracy depends on the choice

of n since it introduces an aliasing error which is equal to
fle)=Pr[S=a]=> Pr[S=xz+jn], =012 n-1 (1.36)
j=1

where Pr[S = s] denotes the exact value of the probability function of S at s. We refer
to [Bithlmann| (1984)) for a comparison between evaluations using Panjer’s recursion and a
method based on the fast Fourier transform algorithm. An exponential tilting procedure
was proposed by |Griibel and Hermesmeier| (1999) in order to reduce the aliasing error
(see also Embrechts and Frei (2009)).

There also exist approximations for the distribution function based on the first central
moments of S (see e.g. Kaas et al. (2008| Sections 2.5 and 3.7)). Monte Carlo simulation
can also be used to approximate any quantity related to S. However, some quantities
like stop-loss premiums can be obtained from ¢-th order cumulative distribution functions

that can be evaluated recursively from the De Pril transform by

M) = 3 () 4T —y), w=12., (1.37)

with initial value I f(0) = f£(0).

12

Chapter 2

How to get rid of round-off errors in

recursive formulas

2.1 Introduction

The collective and individual risk models are frequently used in risk theory applications
especially to represent the aggregate claims amount of a portfolio of insurance policies
over a period of time. In the collective model, this amount is modelled by a compound
distribution which is used, e.g., to compute stop-loss premiums as well as risk margins
to satisfy solvency criteria. In real life applications, the main problem with compound
distributions is the evaluation of their probability function since it generally involves a
large number of operations which depends on the range of the support of the considered

random variables.

In the actuarial literature, a recursive procedure for the evaluation of the probability
function of a family of compound distributions is known under the name of Panjer’s re-
cursion as a reference to Panjer (1981). This family of distributions is called Panjer’s
class. However, such recursive formulas for Panjer’s class distributions were discussed
separately in Khatri and Patel (1961 and the recursion for the compound Poisson distri-
bution was treated e.g. in |Adelson| (1966)), Beall and Rescia (1953)) and Neyman| (1939).
In pure mathematics, these recursive formulas appeared in sections 68 and 76 of [Fuler
(1748) and in Euler| (1751, p. 10) for compound negative binomial, compound binomial
and compound Poisson distributions, respectively. In the actuarial literature, [Stroh/ (1978)
deduced the recursions for the compound Poisson and the compound negative binomial

distributions using discrete Laplace transforms. Then, Panjer (1980) and Williams (1980))

13

derived the recursive formula for compound Poisson distributions. Tilley| (1980) derived
the recursive formula for each distribution of Panjer’s class. The results of [Panjer| (1981))

are generalized in Sundt and Jewell (1981)).

Recursive evaluations are very useful since they reduce largely the number of operations
in comparison to the evaluation using convolutions. Therefore, the evaluation is faster
especially when the expected value of the number of claims is large. The computer
programming implementation is also easier because we can set a stop condition when the
values of the probability function become negligible. However, when we are using floating-
point numbers, meaningless results may arise with recursive formulas because round-off
errors occur from the representation of real numbers by computers. At each stage of the
recursion, an error occurs and affects further computations with more or less effects on
the accuracy of additional points. Throughout this paper, the word accuracy is defined

to be the number of decimal digits that are exact in the evaluation of a given point.

Panjer and Wang| (1993)) focused on the stability against round-off errors for the different
cases discussed in [Panjer| (1981). They showed that the recursive evaluation for compound
Poisson and compound negative binomial distributions are stable while the recursive eval-
uation is unstable for the compound binomial case. An unstable evaluation means that
the magnitude of the relative error blows up such that we get meaningless results. Even

worse we may obtain an overflow.

Kornya| (1983) derived an algorithm to compute the aggregate claims amount distribu-
tion of a traditional life insurance portfolio. If we assume that policies have independent
and identical claim amount distributions, the aggregate claims amount random variable
is distributed according to a compound binomial distribution. This means that the prob-
ability function of an n-fold convolution can be evaluated using the recursive formula
for the compound binomial case discussed in Panjer (1981). This result can be found
in De Pril| (1985)). De Pril (1986b) derived another algorithm to evaluate the aggregate
claims amount distribution in the individual risk model. It is improved in De Pril (1989).
Dhaene and Vandebroek (1995) and [Waldmann! (1994) discussed recursive evaluations for
the same distribution but that reduce the number of arithmetic operations. Such evalua-
tions are also unstable and applying them to calculate the probability function could be

worthless due to the propagation of round-off errors.

As pointed out by Shiu (1983), the recursive formula for compound binomial distributions
is a particular case of the J. C. P. Miller’s formula. This formula is well-known by nu-

merical analysts and computer scientists and many results can be found in the numerical

14

analysis literature. Olver| (1964) analyzed the error accumulation in Miller’s algorithm.
The computational behavior of the solutions of a second order recurrence relation is dis-
cussed in |Gautschil (1967). |Oliver| (1967) developed a relative stability theory and studied
the propagation error for recurrence relation of greater order. Zahar| (1977) discussed the
stability of a generalization of Miller’s algorithm. More general results can be found in
Cash| (1980).

In order to obtain an accurate evaluation efficiently, we use an arbitrary-precision arith-
metic library called GNU Multiple Precision Libraryﬂ (GMP), which is an efficient com-
putational tool especially for basic arithmetic operations. With GMP, we can compute
with an arbitrary precision that is only limited by the available memory of the computer.
GMP also avoids the use of scaling functions because the range of numbers that can be
represented by GMP floating-point variables is more than sufficient to represent the val-
ues of compound distributions in comparison to standard programming languages. The
scaling functions which are discussed in [Panjer and Willmot| (1986) and [Waldmann, (1994))
are used to avoid underflows or overflows in recursive evaluations. Throughout this paper,
the word precision is defined to be the number of bits that is used to represent a real

number by a floating-point number.

In Section 2.2 we define the collective risk model. In Section 2.3 we make a review on
recurrence equations and expose their solutions with the numerical problems that they
may involve. We introduce the arbitrary-precision arithmetic and the GMP library in
Section where we describe its most useful functions and how the precision of vari-
ables can be controlled. In Section [2.5] we study how we can evaluate more efficiently
the probability function of a compound distribution using Panjer’s recursive formula for
the stable cases. In Section [2.6] we investigate in details the recursive evaluation of the
probability function of a compound binomial distribution and find an efficient computa-
tional method which leads to an accurate approximation of this function using GMP. We
conclude this paper by doing some remarks on the extension of our results to more general
recursive evaluations of the aggregate claims amount distribution. We also discuss the
effects of the use of the floating-point representation with other methods of evaluation of
this distribution.

!The manual by |Granlund| (2007) explains in details how to use GMP, the functions that are defined

and the algorithms that it uses to be efficient in computations.

15

2.2 The collective risk model

The collective risk model is used to represent the aggregate claims amount of a portfolio
of insurance policies over a period of time. The aggregate claims amount random variable
S is defined as

S = X+ Xo4-+ Xy, (2.2.1)

with the standard convention that the value of an empty sum is zero (N = 0). The random
variables N and X}, representing the number of claims and the amount of the k-th claim,
respectively, are assumed to be mutually independent. We also assume that X, Xo, ...
are identically distributed on the positive integers. Notice that if the distribution of these
random variables is continuous, a discretization of its probability density function will be

necessary.

The probability function of S can be determined by
fs@) = > pufidi(x), z=01..., (2.2.2)
n=0

where p, = Pr[N = n| and f¥" is the n-fold convolution of fx with itself and with f3°

being the probability function of a degenerate distribution at zero.

For the distributions of N satisfying

b
Dp = (a—i—ﬁ) Pn_1, n=1,2,..., and pg > 0, (2.2.3)
Panjer| (1981) showed that fs can be evaluated recursively by
_ N y _
fs@) = Y (a+b2) stz —y), w=12..., (2.2.4)
y=1

with initial value fs(0) = po. Sundt and Jewell (1981) showed that the Poisson, the
binomial and the negative binomial distributions are the only three distributions that
satisfy , if we exclude the degenerate distribution at zero which is not the most
interesting distribution to use in this model. Panjer (1981) determined the coefficients a
and b corresponding to each of these three distributions. He expressed for each
one including the relation where N follows a geometric distribution, which is a special

case of the negative binomial distribution. Observe that if there exists an integer s such

that fx(x) =0 for all x > s, the recursive formula (2.2.4) becomes

TAS

fs(z) = Z(a—l—b%) Fx@W)fsz—y), z=1,2,..., (2.2.5)

y=1

where x A s = min(z, s), which avoids some useless computations.

16

2.3 Recurrence equations and stability

We present now some general results on recurrence equations and explain the causes of
the instability in the evaluation of some of their solutions. We consider the s-th order

recurrence equation
fl@) = D a@)flx—y), v=12..., (2.3.1)
y=1

where the coefficients a,(z) are known and a,s(x) # 0 for all z. The general solution, g(z),

of (2.3.1)) can be expressed as
g(z) = > cu(z), z=12,..., (2.3.2)
j=1

where uy,us, . .., us are linearly independent functions and compose the fundamental set
of solutions of . Then, we need a set of s initial values to be able to determine
the coefficients ¢;, j = 1,2,...,s. If we consider , the coefficients that gives the
probability function of S are determined from the implicit initial values fs(0) = po and
fs(x)=0,x=-1,-2,...,—s+ 1.

A solution h of (2.3.1)) is said to be dominated by another solution g of (2.3.1)) if

- h(z)
JJim_ o = (2.3.3)

In the fundamental set of solutions there is one solution which dominates the s — 1 other
solutions of the set, let it be u;. This solution is said to be dominant while the solutions
Usg, . .., us are said to be subordinate or non-dominant. In other words, the solution ({2.3.2)

is dominant if ¢; # 0 and subordinate if ¢; = 0.

When the floating-point representation is used in computations, (Cash (1980) gave the
result that the recursive evaluation of a dominant solution is stable against round-off errors
while it is unstable for a subordinate solution. Referring to Oliver| (1967)), the evaluation
of a solution is stable or effective if the relative error grows linearly with respect to the
number of stages while it is unstable or ineffective if the relative error grows more than
linearly with respect to the number of stages. If a recursive evaluation is unstable, an
insufficient accuracy may arise in the results which could even be meaningless. Inspired
by (Gautschil (1967, p. 25) we give now an illustration in order to explain why such results
may arise. Let h be a subordinate solution of with initial values

hz) =0, z=—1,-2,...,—s+ 1 and h(0) = ay. (2.3.4)

17

Due to the floating-point representation of the initial value ay by @q, a round-off error
occurs which is equal to €9 = ag — &p. Then, the error at the first point, ¢, = h(1) — @y,
where h(1) and @; are the exact value and its evaluation, respectively, has two sources:
the evolution of €; and the round-off error coming from the representation of h(1) with a
limited precision. Assuming that we compute the following stages of the recursion with
an “infinite” precision, the solution, h, of with initial values

hz)=0, =—1,-2,...,—s+2, h(0) =g and k(1) = a4, (2.3.5)
is generally dominant (¢ # 0). Therefore, the relative error of the perturbed solution A

defined by ‘%’ increases without bound since we have

lim
r—-+00

= +o0 (2.3.6)

because h(z) — h(x) is dominant. The magnitude of this error depends on the magnitude

of the relative errors of h(0) and (1) that are equal to ar and 745, respectively. |Gautschi
(1967) discussed the effectiveness of second order recurrence equations and gave several
examples. This case is also developed in |Olver (1964), which gives an analysis of the error
of Miller’s algorithm. The general case of linear recurrence relations of greater order is

discussed in |Oliver| (1967) and Zahar| (1977)).

Let us now consider the s-th order congruent recurrence equation

fle) = D by@)ew)fle—y), z=12..., (2.3.7)

y=1
with b,(z) > 0 for y = 1,2,...,s and = > 0, and where c(y) is a function defined on
positive integers with support {y1,ys,...,s} where 1 <y < yp < --- < s < 0o and with

one being their greatest common divisor. If the initial values are nonnegative and at most
one is positive, then the solution of is dominant. This result is shown in Panjer
and Wang] (1993)). All these conditions are satisfied for (2.2.5)) when N follows a Poisson
distribution or a negative binomial distribution. Therefore, the recursive evaluation using
(2.2.5)) is stable in these two cases. They also showed that the relative error grows linearly
with a slope smaller than one with respect to the number of stages. However, when N is
distributed according to a binomial distribution, the solution of is subordinate since
the support of the compound binomial distribution is finite and fg(x) = 0 from a given
point. Moreover, the coefficients b,(x) become negative from some point, which causes
the instability of the recursive evaluation. The recursive evaluation of the probability

function of compound binomial distributions is treated in details in Section |2.6]

18

Globally, there are two approaches to get rid of the round-off errors propagation. The
first one consists in avoiding the use of the floating-point representation such that the
variables are represented by expressions of rational numbers and are evaluated only to
get their numerical value. This approach leads to an exact evaluation but is inefficient
due to its computation time that is much longer compared to the use of the floating-
point representation. The second approach is to use the floating-point representation
but to increase its precision. Although the computation time increases with respect to
the precision, the use of an efficient computational tool providing methods that allows a

precision management can be very useful in order to obtain an efficient evaluation.

2.4 The GNU Multiple Precision Arithmetic Library

With standard programming languages like C, C++4 or Java, the representation of a real
number, which is called a floating-point number, is limited to some types. For example,
float, double and long double are the three types that we can use in the C++ language
to represent real numbers. These types allow us to work with different precisions of the
floating-point representation. The accuracy of a floating-point number depends on the
precision assigned to each type. When a recursive evaluation is unstable, we generally need
to use a greater precision than the one that we can reach with these types. It would be
also useful to be able to choose the precision that we want to assign to each floating-point
number. These two properties are included in the GNU Multiple Precision Arithmetic
Library (GMP), an arbitrary-precision arithmetic library that we can use in addition to
the C++ language, a compiled language. The arbitrary-precision arithmetic, also called
bignum arithmetic, allows us to compute with an arbitrary precision only limited by the
available memory of the computer. It is very useful when we have to work with numbers

that contain many digits. These numbers can be integers as well as real numbers.

The GNU Multiple Precision Arithmetic Library is a free portable library written in C
allowing computations with arbitrary-precision on integers, rational numbers and floating-
point numbers. Its goal is to provide an efficient basic arithmetic on these three types. In
GMP, each type has a corresponding C++ class such that an object declared by a GMP
class is associated to a GMP C type variable. The most interesting class for us is the class
for floating-point numbers that are at the heart of our problem. It is called mpf_class for
multiple precision floating-point and corresponds to the GMP C type mpf_t. The GMP

floating-point type can represent numbers over the range from 268719476768 968719476736

19

but the notions of underflow and overflow are not defined in this library. Therefore, when
a number cannot be represented the execution of the program stops and an error message
appears. The GMP class interface offers overloaded functions like absolute value, floor
or square root as well as overloaded operators which are more convenient to write code.
There are several other functions which do not have a C++ class interface. However,
we are able to use them since there are functions that convert a GMP class object to a
corresponding GMP C type variable. If we need to use several times one of these functions,
we can create an equivalent C++ function, which may assume objects as arguments and
returns an object. Exponential, logarithmic and trigonometric functions are not defined

in GMP, but if necessary we can implement them.

At the beginning of a program written using GMP, we can set a default precision. This
means that when we declare a floating-point object, it will have at least this precision.
For computational efficiency, the precision of an object can take only a multiple of 32 bits
with a minimum value of 64 bits. For example, if we set the default precision to 100 bits,
the precision that objects will have is actually of 128 bits. Then, we can set a greater or
smaller precision to each object that we declare and we can change it easily as we go along
with the program. Therefore, two objects in the same program do not have necessarily

the same precision.

When we are working with different precisions in a program, the precision that is used in
a calculation is the one of the destination object. Therefore, when a computation needs
an intermediate object, the precision of this object is the one of the destination object.
For example, if we compute c=a*x+bxy an intermediate variable is needed to represent
one of the two products. Let it be d=axx. GMP assigns the precision of ¢ to the variable
d. Now, imagine that we do the same computation but using two operations: e=a*x and
c=e+b*xy. We can choose to set a different precision than that of ¢ to e. Thus, the value
of ¢ may differ between the computation in one operation and the computation in two
operations. To save time, it is sometimes useful to split a computation into several parts
and compute each part with a suitable precision since the computation time depends to

a large extent on the precision of the objects that are involved.

Since we are computing with numbers and we set ourselves their precision in bits, it
could be interesting to find a relation between the precision in bits that is used in the
representation of a real number by a GMP floating-point object and the number of decimal
digits that are exact in this representation, and conversely. This relation is a change of base
from base two for the precision to base ten for the number of decimal digits. Therefore,

we can imagine that this number may be obtained by multiplying the precision by log, 2.

20

We check if this relation is true by doing a small example. Let us do the following
10 B
> =33 toa

computations for different precisions using GMP. First, we set the value 3
GMP floating-point object called t, which generates a round-off error. The number of
times that the digit 3 appears is the number of decimal digits that the computer has used

to represent this fraction. Then, we consider the relative error

10 — 3¢
= 2.4.1
0= 25 (24.1)

which would be equal to 0 if there was no round-off error at the previous step. The

number of decimal digits used by the computer with the chosen precision is given by

d = [—logyn], (2.4.2)

where |-] denotes the floor function. Remark that d is the accuracy of the representation

of % by a GMP floating-point object. Table contains the values of n and d for some

Table 2.1: Accuracy versus precision with GMP floating-point objects

r n d
64 5.42101-10721 | 20
128 | 2.93874-107% | 39
256 | 8.63617-10"7 | 78
512 | 7.45834-1071%6 | 155
1024 | 5.56268 - 107310 | 309
8192 | 9.16802 - 1072468 | 2467

32768 | 7.06484 - 1079866 | 9865

precisions. We observe that for this example the relative error is given by

2—7’
S 2.4.3
TR (2.4.3)
for every precision r. From (2.4.2) and ([2.4.3)), it follows that

Note that the floor function is used in order to obtain an integer for the number of exact
decimal digits. With GMP, in the case where a real number can be exactly represented

using only a few bits, only these bits are used in computations even if we wanted to

21

use a larger precision. This arises, for example, when a power of % is represented by a
floating-point number. Therefore, (2.4.4) gives the minimum accuracy for a given preci-
sion. Conversely, the minimum precision that has to be set in order to guarantee a desired

accuracy of the floating-point representation is given by
r = [(d—1)log,10], (2.4.5)

where [-] denotes the ceiling function. The precision that is actually assigned to GMP

objects is

d—1)log, 10
reup = max (32 [%W ,64). (2.4.6)

From (2.4.5)), we can express the difference between two precisions from the difference of

their respective accuracies by
r9 = 11+ Rdg — dl) 10g2 10—‘ . (247)

This relation can be used to determine the precision that we have to use when we want

to change the accuracy of the floating-point representation from d; to ds decimal digits.

The main problem with GMP is that we may obtain different results on two different
computers because the rounding of floating-point numbers depends on the computer word
size. Nevertheless, its computation speed and the fact that we can easily control the
precision of each object give us an efficient computational tool compared to software
like Maple, Mathematica or Matlab. Therefore, we use GMP, and especially its classes in
addition to the C++ language, to obtain efficient computational methods for the recursive

evaluation of the probability function of a compound distribution.

2.5 Efficiency with Panjer’s recursion

To be efficient, a program has to provide results with a sufficient accuracy in the least
time possible. Due to the calculation speed of GMP, we can use it to evaluate recursively
the probability function of a compound distribution with even for the cases where
it is stable. The idea is to compute using an adequate precision. Panjer and Wang| (1993,
p. 248) gave a formula for the minimum accuracy that we can obtain from the number of
stages and the number of decimal digits used to represent real numbers. The lower bound,

v(x), of the accuracy obtained at the z-th stage of the recursive evaluation is given by
v(x) > d+log 2 —log(z+1), =z=1,2,.... (2.5.1)

22

Therefore, in order to determine the precision in bits, r(x), that is necessary to guarantee

a required accuracy v at the z-th stage, we combine (2.4.5)) and (2.5.1) to get

r(z) = [log, ((z+1)-10"")], z=1,2,.... (2.5.2)

We observe that this needed precision will rarely be a large number since each additional
digit in the required accuracy or each multiplication of the number of stages by 10 in-
creases it by log, 10 ~ 3.32. Thus, it is generally smaller than 64 bits, which is the
minimum precision that GMP assigns to objects. Nevertheless, the use of this library
is recommended because its speed is sufficiently beneficial compared to other software
solutions. Time comparisons between the use of GMP and Maple are made at the end of

this section.

When the expected value of N, E[N], is large, two other constraints come up: the ability
to represent the values with floating-point numbers and the available memory of the

computer.

If E[N] is large, the values of the probability function of the compound distribution are
small and an underflow may happen especially for py. If the initial value is too small to be
represented by a floating-point number its representation is zero, which is not appropriate
for an initial value of such recursive evaluations. The scaling functions (see e.g. [Panjer
and Willmot| (1986) and Waldmann| (1994)) give a way to avoid underflows or overflows in
recursive evaluations. However, the range of numbers that can be represented with GMP
is generally sufficient to represent the values of the probability function of a compound

distribution. Thus, GMP avoids the use of scaling functions.

Computers have a limited memory, so we cannot declare as many variables as we wish. A
problem arises when we store the values of the probability function in an array, such that
they can be used for further computations. If we store them in an array, each element of
this array takes a part of the computer memory with the consequence that we are limited
in the size of the array. Furthermore, with Maple, the time needed by the computer for
each operation grows as we go along with the recursive evaluation since it has to swap
pages of memory to the disk from some stage on. This process consumes a lot of time
because Maple has to move this memory to the disk and has to take it back to be able to
use the variables inside. To avoid this problem and to be able to compare the computation
time between Maple and GMP, we opt for another method that allows to declare a smaller

number of variables.

Looking at ([2.2.5) we observe that we need at least the s previous values to calculate

each new value. Therefore, we can create an array with only s elements in which we

23

store only the values that are needed to evaluate the next stage. First, we evaluate
fs(0), fs(1),..., fs(s—1) that we store to their corresponding element of the array. Then,
we evaluate fs(s) which depends on the first s values which are stored in the array and
assigns it to the element 0 of the array. We use the modulo operation s mod s in order
to determine the element of the array where we store this value. Then, for the evaluation
of fs(s+ 1) we use the same modulo operation to take the value of fg(s) in the right
element of the array. We go on with the recursive evaluation using modulo operations to
store or to take a value in the array. The value of fs(z), x = 0,1,..., is actually stored
in the element x mod s of the array as long as we need it for the evaluation of further
stages. This method allows us to use a smaller number of variables but the values of
the probability function are no longer stored in the computer memory at the end of the

evaluation and cannot be used to compute the desired quantities.

In order to be able to calculate the required quantities using the values of the probability
function there are essentially two ways: the first one is to calculate the required quantities
as we go along with the recursion. For example, if we want to calculate a stop-loss premium
with deductible d, we will create a variable which will be accumulated by (x — d) fs(x)
at each stage x of the recursive evaluation. The second way is to store elsewhere the
values of the probability function. We can write these values in a file such that they are
read back when we want to use them or store them in an array declared with a smaller
precision. The use of an array is efficient only with GMP as long as computer memory is
available while writing in a file can be done with all software and programming languages.
In the file we can write the numerical values in decimal or their binary representations,
both with the desired accuracy. The latter is more efficient since it avoids the conversions
from bits to decimal digits and from decimal digits to bits when we write in the file and
when we read it back, respectively. The chosen method will depend on which quantity
we want to calculate with the probability function. The advantage to store elsewhere the
values or their representations is that we can keep only the digits that fulfill the required
accuracy. Remark that it is useless to keep the values with a too large accuracy knowing
that the values of the last evaluation points will have a smaller accuracy than the first
ones. The use of a sufficient precision is only useful to guarantee accurate values at the

last evaluation points.

This procedure is summarized in Algorithm [I] for the computation of the probability
function of a compound Poisson distribution with parameters (A > 0, fx). Notice that
at step [0] we choose to stop the recursion at a given quantile that fulfills some condition

on the magnitude of the probability function. We can also choose to evaluate up to a

24

Algorithm 1: Recursive evaluation for compound Poisson distributions
1. Declare a table f with elements from 0 to s — 1
Define a table g with elements from 1 to s for fx
Define A
Set f[0]]= e and F = f[0]
Store f[0] or F
For i =1 while FF <1 —-107"
sum =0

For k =1 to min(i, s)

S A e B

sum = sum + k- glk] - f[i — k mod s]
flimod s] = 242 F = F 4 f[i mod]

)

—
e

11. Store f[i mod s] or F

®h[j] represents the element number j of the array h

given point. Finally, steps |5[and consist in storing the probability function or the

distribution function in an array or in a file.

Some comparisonsﬂ between the computation times using Maple XI and GMPE| are made
for the evaluation of several compound Poisson distributions according to Algorithm [I]
We compare only the computation times, this is why steps [5| and [11] of Algorithm (1| are

not executed here. In these comparisons, we choose fx such that

1 — _
Fel@) = {5;1’ r=1..5-1 (253)

Its shape has an influence on the computation time only by the number of stages that are
evaluated until the stop condition is reached, which is F' < 1 —10~"7. We choose to assign
a precision of 64 bits (equivalent to a representation with 20 decimal digits) to GMP
objects and to compute using 14 decimal digits with Maple XI. For the first comparison,
we set s = 200 and consider several values of \. Table gives the computation times
in seconds and the stages where the stop condition (last stage) is reached for some \’s.
Figure [2.1| shows these computation times as functions of A. For the second comparison,

we set A = 1000 and consider several values of s. Table|2.3| gives the computation times in

2Computations are made on an HP Compaq computer with an Intel Pentium CPU of 3.40 GHz and

0.99 GB of RAM.
3The version 4.2.2 of GMP is used for computations.

25

seconds and the stages where the stop condition (last stage) is reached for some values of

s. Figure shows these computation times as functions of s. For the last comparison,

we decide to stop the recursion at 200000 for each evaluation. We set A = 1000 and

consider several values of s. Table gives the computation times in seconds for some

values of s and Figure [2.3| shows these computation times as functions of s. We observe

that the computation times of evaluations using GMP are much smaller than the ones

using Maple even if we use more decimal digits in the representation of real numbers with

GMP.

Table 2.2: Computation times and last stages for the first comparison
Last stage Computation time
A GMP Maple GMP Maple
50 9952 9952 3 17
100 16785 16785 6 30
500 64 682 64 682 24 117
1000 120792 120792 45 220
5000 548 447 548 455 204 1006
10000 1071160 1071183 399 1966
% 400
CELZOO*
A
Figure 2.1: Computation times as functions of A for the first comparison

26

Table 2.3: Computation times and last stages for the second comparison

Last stage Computation time

5 GMP Maple GMP Maple
100 60972 60972 11 26
200 120792 120792 44 222
300 180607 180607 98 497
400 240422 240417 174 885
500 300236 300 236 271 1386
1000 599 305 599 304 1081 5734

—GMP Maple XI

8'000

Computation time
N & 2
(=3 o o
o o o
o o o

o

500 1'000 1'500 2'000 2'500

(=]

Figure 2.2: Computation times as functions of s for the second comparison

Table 2.4: Computation times for the third comparison

Computation time
5 GMP Maple
50 18 91
100 36 183
200 72 366
300 109 555

27

—GMP — Maple XI

Computation time

100 - //

0 50 100 150 200 250 300
s

Figure 2.3: Computation times as functions of s for the third comparison

2.6 Compound binomial distributions

2.6.1 Definitions and examples

We focus now on the recursive evaluation of probability functions of compound binomial
distributions. Such distributions occur in the individual risk model. In this model, the

aggregate claims amount random variable S is defined as
S = X1+ Xo++ Xy, (2.6.1)

where m is the number of policies in the portfolio and X, is the claim amount random
variable of the policy number k. We can model X}, as X = I B, where [}, is an indicator
random variable and By, is the claim amount random variable given that a claim occurs.
We assume that [, and By are independent and that the [;’s are mutually independent
and identically distributed according to a Bernoulli distribution with parameter 0 < ¢ <1
such that Pr [l = 1] = ¢, k = 1,..., m. If the random variables By, k = 1,...,m, are also
assumed to be independent and identically distributed, S follows a compound binomial

distribution. Therefore, we can write
S = Yi+Yy+ o+ Yy, (2.6.2)

where Y7, Ys, ... are independent and identically distributed according to the same distri-
bution as By, and where N =Y "" | I; follows a binomial distribution with parameters m

and ¢ such that

Pr[N =n] = (m)q"(l -, n=0,1,...,m, (2.6.3)
n
where m is a positive integer.

From ([2.6.1]), we can see that the recursive formula for compound binomial distributions

can also be used to compute the n-fold convolution of a discrete probability function

28

with a positive probability mass at zero. In this case, the parameters of the binomial
distribution are m = n and ¢ = 1 — fx(0). This result can be found in De Pril (1985).
Finally, the computation of the probability function of a compound binomial distribution
is equivalent to determining the coefficient of a polynomial (the probability generating

function) raised to the power m.

To illustrate our computations in this section, we consider three examples, each of which

has an individual claim amount distribution on the integers from 1 to 10.

Example 1: We consider the distribution of Example 8 of Panjer and Wang| (1993, p. 249).
Its probability function f, is given in Table[2.5] Its expected value, variance and skewness
are 3.7, 5.36 and 1.007, respectively.

Example 2: We consider the random variable obtained by Zy = 11 — Z;, where Z; is
distributed according to the distribution of Example [Ij Its probability function fz, is
given in Table Its expected value, variance and skewness are 7.3, 5.36 and —1.007,

respectively.
Example 3: For this example, we consider a skewness free distribution. Its probability

function fz, is given in Table 2.5 Its expected value and variance are 5.5 and 3.95,

respectively.

Table 2.5: Individual claim amount probability functions of the three examples

x 1 2 3 4 5 6 7 8 9 10
fz,(z) | 0.150 | 0.200 | 0.250 | 0.125 | 0.075 | 0.050 | 0.050 | 0.050 | 0.025 | 0.025
fz,(z) | 0.025 | 0.025 | 0.050 | 0.050 | 0.050 | 0.075 | 0.125 | 0.250 | 0.200 | 0.150
fz,(x) | 0.025 | 0.050 | 0.075 | 0.150 | 0.200 | 0.200 | 0.150 | 0.075 | 0.050 | 0.025

2.6.2 Recurrence relations

For a binomial distribution with probability function (2.6.3)) the coefficients a and b defined
in (2.2.3) are

a=-2 and b= (m+1)=, (2.6.4)
p

g
p

29

where p = 1 — ¢q. The recursive formula for compound binomial distributions is obtained

by substituting (2.6.4)) into (2.2.5)). It is

TN\S

fol@) = —o3 (0t Dy =) fxm)fsle—y), w=12.ms (265

with initial value fg(0) = p™. Notice that we can stop the recursion at stage ms which
is the maximum value of the support of such a compound binomial distribution. As
mentioned in Section 2.3 [Panjer and Wang (1993) showed that is unstable and
could be ineffective in the recursive evaluation of fg. The instability starts when at least
one coefficient (m 4 1) y — = in the sum of is negative for some y. The first point
where it happens is © = m+ 2, which means that is stable over the range [0, m + 1]
as pointed out by Panjer and Wang] (1993)).

For compound binomial distributions, we know that the event S = ms is reached when

we have m claims of amount s. Thus, the probability of this event is given by

fs(ms) = Pr[N =m] [[Pr[X;=s] = (qfx(s)™. (2.6.6)

i=1
Therefore, in contrast to the other Panjer’s recursive formulas, we can calculate the rela-
tive error at ms after an evaluation using . This relative error can be considered as
an accuracy measure since the accuracy at a given point is obtained by taking the integer
part of the negative logarithm to the base ten of the relative error at this point. Observe
that if the accuracy is negative the evaluation is ineffective since the related relative error

is greater than one.

For a given precision of the floating-point representation, the propagation of round-off
errors depends on the parameters m and ¢ and on the shape of fx. The relative error
at ms is an increasing function of m since the number of stages increases with respect to
m. We can show that it also increases with respect to ¢. Figure below illustrates this
property.

Another consequence of knowing the final value is that we can evaluate recursively in the
backward direction i.e. from fg(ms) to fs(0). By rearranging (2.6.5), we get

fs(x) = g (2 +) u(z) fs(z + 5)

s—1
+u(@) Y (w+s—y(m+1) fx(y)fs(x+s—y), (2.6.7)
y=1
for = ms — 1,ms — 2,...,0, where u(z) = ((ms —z) fx(s))”". The initial values of

(2.6.7) are (2.6.6) and fs(z) =0, z=ms+ 1,ms+2,...,ms + s — 1. Notice that these

30

initial values lead to a subordinate solution of because fg(z) = 0 for x < 0. For
, at least one coefficient x + s — y (m + 1) is negative for some y from the point
x = ms —m — 2 on. Therefore, it is stable over the range [ms —m — 1,ms]. We can
measure the accuracy of this recursive evaluation from the relative error at zero. This
relative error increases with respect to m and ¢ like in the forward direction. We illustrate

the behavior of this relative error with respect to ¢ in the next subsection.

2.6.3 Forward vs backward directions

The idea is now to determine which direction is preferable for the recursive evaluation of
the probability function of a given compound binomial distribution over its whole support.

Figure [2.4]shows the logarithms to the base ten of the relative errors at the last evaluation

— Forward Backward — Forward Backward
3'000 3'000
2'500 2'500
2'000 2'000 -
1'500 - 1'500 1
1'000 1'000

500 - 500

Logarithm of the relative error
Logarithm of the relative error

0 0.2 0.4 0.6 0.8 1.0] 0.2 0.4 0.6 0.8 1.0
q q

(a) Example

=1

(b) Example

‘— Torward Backward

3'000 ’

2'500 1 J
2'000 -
1'500 1 /
1000 -

500 /

0

Logarithm of the relative error

] 0.2 0.4 0.6 0.8 1.0
q

(c) Example

Figure 2.4: Logarithms of the relative errors at the last evaluation points as functions of

q for both directions with m = 1000 and a precision of 128 bits

points in the forward and backward recursive evaluations as functions of ¢ and for the

three examples. In order to make these three graphs easier to understand, we choose

31

m = 1000 and the precision (128 bits) such that the recursive evaluations are ineffective.
We observe that the relative error at the last evaluation point increases with respect
to q for each direction. We also remark that the evaluation in the forward direction is
preferable for small values of ¢, while the evaluation in the backward direction is preferable
when the value of ¢ is near one. This property generally holds for every distribution of X.
We denote by ¢, the value of ¢ where the two curves cross. This value depends to a large
extent on the characteristics of the individual claim amount distribution. When fx has
a positive skewness, ¢ is usually smaller than 0.5, while it is generally greater than 0.5 if
fx has a negative skewness. Moreover, for some distributions, one direction is preferable
for almost all q. Unfortunately, there is no simple rule to determine ¢ from fy. If it were
the case, it would be recommended to evaluate in the forward direction if ¢ < ¢ and in
the backward direction if ¢ > ¢. We can conclude that the forward evaluation is better
for small values of ¢ and if fx has a negative skewness, while the backward evaluation is

preferable for large values of ¢ and if fx has a positive skewness.

Panjer and Wang (1993) proposed a combined usage of both directions. It consists in
evaluating fg in both directions for the most part of the support. If we use a sufficient
precision the first digits of both evaluations will be the same for some points in an interval.
If such an interval exists an accurate probability function of S is given by the forward
evaluation over the left side of the support and by the backward evaluation over its
right side. This method has the advantage that the precision which is necessary to get
an accurate evaluation is smaller than the one for an evaluation in only one direction.
However, we do not know beforehand the location of such an interval and if it exists
for the precision used in the evaluation. Moreover, if we do not obtain the same first
digits for any point, we will not be able to know how many bits that we have to add in
order to guarantee an accurate evaluation since we do not have any accuracy measure.
This means that we may evaluate several times before having an adequate accuracy of
the considered probability function. Figure [2.5/shows the evolution of the relative errors
as we go along with the recursions in both directions for the three examples and three
values of q. A precision of 128 bits is assigned to floating-point objects and we choose
m = 1000. In order to calculate these relative errors, we need to know the exact values.
They are evaluated recursively with a precision of 10016 bits which can be considered
as the “infinite” precision. This precision which corresponds to a representation of real
numbers with more than 3000 decimal digits is chosen such that we obtain an evaluation
with a more than sufficient accuracy. The interval over which the first digits of the

evaluations are equal in both directions is the set of points where both curves are below

32

—Forward —Backward —Forward —Backward —Forward —Backward

X 40- X 40 X 40

% \ g 8

: : :

o 20- s 20 o 20

v v v

H 2 2

K] el T

v v v

] 0 ° 0 s 0

£ £ \ £

b b b

o o \ o

€201 E-20 \ £-20

£ £ \ £

T T \ T

) Y) 3 \

Soaf : L — S ; X ; T S Sopf ; . r
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

X X X

(a) Example |1| with q=0.05 (b) Example 2| with q=0.05 (c) Example |3| with q=0.05

—Forward —Backward [—Forward —Backward —Forward —Backward
X 404 \ X 40 X 40
% \ 4 4
e \ N it
8 \ g g
e 201 \ s 20 s 20
v \ [v
2 2 2
k] k] K
[[3 [
] 0 \ [} 0] 0
< < <
£ £ £
] o o
€ -20- E-20 £-20
£ £ £
g 3 3
g f g g 4
340 340 : : ; R) ; : ;)
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 100000 0 2000 4000 6000 8000 100000
X X X

(d) Example |1 with q=0.5 (e) Example |2 with q=0.5 (f) Example 3| with q=0.5

—Forward —Backward —Forward —Backward —Forward —Backward
X 40 \ x40 \ X 40
% 7 \ 8
s = s
2 2 2
s 201 s 20 \ s 20
) v [}
2 2 2
8 8 8
¥ ¥ ¥
g 0 o 0 o 0
s < <
b3 £ b3
o o o
£-201 E-20 £-2
£ <]
8 ‘ni 8
8 e RN —
- -40 - -40 T T T) = -40+ T T T]
0 2'000 4000 6'000 8000 10'000 0 2'000 4000 6'000 8000 10'000 0 2000 4000 6'000 8000 10'000
X X X

(g) Example |l| with q=0.95 (h) Example [2| with q=0.95 (i) Example 3| with q=0.95

Figure 2.5: Evolution of the logarithms of the relative errors as we go along with the

recursions in both directions with m = 1000 and a precision of 128 bits

33

zero. We can observe that it becomes smaller as ¢ increases and it even does not exist
for Examples [1] and [3] with ¢ = 0.95 (see Figures and [2.51). For these two cases, we
have to use a greater precision in order to obtain such an interval. Furthermore, if we
increase m we will have more cases where this interval does not exist. From Figure [2.5
we also remark that the forward and backward evaluations are accurate over a smaller

and greater range as ¢ increases, respectively. Thus, the interval described above moves

to the left as ¢ increases.

2.6.4 Which precision is necessary?

From now on, we consider only evaluations in the forward direction and similar results hold
for evaluations in the backward direction. We start to use the computational properties of
GMP, especially the fact that we can change easily the precision of an object in a program.
We come back to the illustration that we did in Section [2.3|and show numerically that the
recursive evaluation is ineffective if we compute the first stage with a “finite” precision.

Table gives, for the three examples, the relative error at ms of an evaluation using a

Table 2.6: Relative error at ms according to an evaluation using a “finite” precision for
the first k stages

Relative error at ms

Example |1 Example |2 Example |3
Never | 6.73871 - 1071838 | 3.92434 - 1071940 | 2.34821 - 101461
0 8.64004 - 1072 | 8.64004 10722 | 8.64004 - 10~22
1 3.44691 - 1028 4.48025 - 10360 3.24581 - 1057
10 3.11429 - 10%%° 2.63760 - 10362 1.14339 - 10°%3
100 7.20225 - 10280 1.16377 - 1037 8.88992 - 1014
1000 1.07758 - 10447 8.12733 - 1048 4.79148 - 1073
10000 | 2.58066 - 10509 4.95376 - 10°°7 4.51330 - 1098°

precision of 64 bits up to the k-th stage and using a precision of 8192 bits for the following
stages. We choose m = 1000 and ¢ = 0.3, which gives ms = 10000. The precision of
8192 bits is considered to be the “infinite” precision since it is much greater than the
one needed to have an accurate evaluation. From , we know that the precisions of
64 and 8192 bits represent real numbers with 20 and 2467 decimal digits, respectively.

34

When k£ = 0, we represent the initial value fg(0) using a precision of 64 bits and then
we evaluate recursively each stage with a precision of 8192 bits. We observe that this
evaluation leads to accurate values since the accuracy of the last point is of 21 decimal
digits for each of the three examples. The magnitude of this relative error comes from the
round-off error made in the representation of fg(0) with a “finite” precision. Precisions
of 8192 and 64 bits are assigned to each object involved in recursive evaluations for the
“never” case and when k£ = 10000, respectively. The evaluation takes approximatively 15

seconds for each case except for k = 10000 for which it takes only one second.

We can notice that there is a relation between the relative errors obtained in the “never”
case and when k£ = 10000. We observe that the difference between the exponents of the
relative errors for each example is approximatively equal to the difference between the
numbers of decimal digits used in the floating-point representation for both precisions.
In Example [1} the computation with a precision of 8192 bits leads to an accuracy of
1837 digits at ms. If we want to obtain an accuracy of only 10 digits at this point we
can set a smaller precision in order to have a faster evaluation. The difference between
the obtained and the desired accuracies is 1827 digits. Thus, what happens if we reduce
the floating-point representation by 1827 decimal digits? The consequence is that the
relative errors of the first points of the perturbed solution h, discussed in Section , are
approximatively multiplied by 1071827, Then, the relative errors of further points are also
approximatively multiplied by 107'%27 including the one at ms which should be of the
magnitude of 107!, From , this corresponds to assign a precision of 2123 bits to
the objects. Due to code optimization, setting a precision of 2123 bits with GMP assigns
actually a precision of 2144 bits. If this precision is set to each object we obtain a relative
error at ms of 1.90147 - 10~'7 for a computation time of 2 seconds. However, we can also
start from the relative error obtained in the “never” case of Table For Example [T}
this relative error is greater than one and its logarithm, 609.41, can be considered as a
lack of decimal digits used in the floating-point representation. If we add the 10 desired
digits of accuracy, it follows from that we should use a precision of 2122 bits. It is
one bit smaller than the precision obtained starting from the evaluation using an original

precision of 8192. This relation holds for every distribution of X.

We have now a method that guarantees an accurate recursive evaluation. It consists in
evaluating recursively fg using the lowest precision possible (r = 64 bits) and calculating
the relative error at ms denoted by 7. This evaluation is accurate if 7 is smaller than

10+ where v is the desired accuracy. If it is not the case, we determine the precision,

35

7, which is necessary to obtain an accurate evaluation by

7 = r+[logy(n-10")], (2.6.8)
which follows from (2.4.7). The GMP objects have actually a precision of
& 32 ’ (2.6.9)
GMP 39

Table[2.7|contains the values of i, 7 and 7¢) p in addition to the relative error (7)) obtained

Table 2.7: Values of n, 7, Fgpp and 7 if m = 1000 and ¢ = 0.3

Variable Example |1 Example [2 Example |3
n 2.58066 - 109 | 4.95376 - 10597 | 4.51330 - 1098
T 2122 1784 3372
raMp 2144 1792 3392
N 1.90147 - 10717 | 1.13409 - 10713 | 1.57129 - 10716

at ms for a recursive evaluation with a precision of 7gyp calculated for v = 10. This
procedure is summarized in Algorithm [2 Figure [2.6] shows the evolution of the relative
errors as we go along with the recursive evaluations using precisions of 64 and 7gyp bits
for the three examples. We observe that the difference between the logarithms of the
relative errors obtained using both precisions is equal to cZG mp — 20 for each point, where
deup is the number of decimal digits used in the floating-point representation with a
precision of 7gyrp. This means that the relative error is multiplied by 1020-domr at each
point between the evaluations using 64 and 7gyp bits. These two recursive evaluations
are parts of Algorithm 2]

In Section [2.4] we wrote that there is no logarithm function defined in GMP. However,
we can notice that at step of Algorithm [} a logarithm to the base two has to be
computed in order to determine the precision needed to get an accurate evaluation. We
can also observe that we need the smallest integer greater than or equal to this logarithm.
Nevertheless, there exists a GMP function that we can adjust to find this integer. This
function, called mpf_class_get_d_2exp, returns a double variable d and admits two
arguments: a pointer to a signed long int variable exp and a floating-point number
variable op. The value of d is the solution of op = d - 27 with 0.5 < d < 1. The value

of the exponent is stored to exp. This value corresponds to the ceiling function of the

36

Algorithm 2: Recursive evaluation of a compound binomial distribution by

finding the needed precision
1. Set the default precision r to 64 bits
Declare a table f with elements from 0 to s — 1 and an intermediate variable sum
Define a table g with elements from 1 to s for fx
Define m and g and set p =1 — ¢
Set f[0] = p™ and h = (g - g[s])"
Store f[0] with v decimal digits
Fori=1tom=xs

sum =10

S A ol I

For k =1 to min(i,)

—_
e

sum = sum + ((m + 1)k — i) - g[k] - f[i — k mod s]

fli mod s] = =224

—_ =
N =

Store f[i mod s| with v decimal digits
h—f[0]

h

—
w

. Calculate n =

—_
1N

. If n < 10~®+1) then stop

—
[

. Set a precision of r + [log, (17 - 10¥)] to each element of f and g, to p, ¢ and sum

—
=

. Redefine p, ¢ and ¢
. Redo steps [f] to

—
~J

logarithm to the base two of op if d # 0.5. If d = 0.5, the ceiling function of the logarithm
to the base two of op is equal to exp — 1. Therefore, in order to obtain a function that
computes the ceiling function of the logarithm to the base two of a number, we can create
a function, which uses the function mpf_class_get_d_2exp and add a condition on the
value of d to adapt the value of exp. This function can be:
signed long int ceil_log_2(mpf_class number){

double d; signed long int exp;

d = mpf_get_d_2exp (&exp, number.get_mpf_t());

if (d == 0.5)

exp —-= 1;

return exp;

37

—Precision of 64 bits — Precision of 2144 bits‘ — Precision of 64 bits — Precision of 1792 bits|
1'000

500 J
0

-500+

1'000
500 /
0

-5001

Logarithm of the relative error at x

Logarithm of the relative error at x

_1I0007 T T T T 1 _1.0007 T T T T 1
0 2'000 4'000 6'000 8'000 10'000 0 2'000 4'000 6'000 8'000 10'000
X X

(a) Example (b) Example

‘— Precision of 64 bits — Precision of 3392 bits|

1'000 -

500

-500+

Logarithm of the relative error at x

- 1.000 T T T T T 1
0 2'000 4'000 6'000 8'000 10'000
X

(c) Example

Figure 2.6: Evolution of the relative errors of the recursive evaluation using two different

precisions

2.6.5 Precision management

Looking at Algorithm [2| we observe that we have to set a new precision to each object at
step and then to redefine each one according to this new precision at step What
happens if we assign a precision 7 with 7 < 7 to the objects representing p, ¢ and fx?
Although we represent their value with a smaller precision, their representation is still close
to their exact value. Therefore, we have a new compound binomial distribution whose
probability function is a very good approximation of the exact one. We have to choose 7

in function of the desired accuracy, in fact it must be greater than [(v — 1) log, 10].

Such an approximation is interesting since time can be saved due to the use of a smaller
precision. The computation time of the recursive evaluation and the corresponding relative
error obtained in five cases described below and for each of the three examples can be
found in Table 2.8] In order to be easier to compare the computation times, we increase

them by using a greater parameter m chosen to be 10000. The parameter ¢ remains

38

Table 2.8: Relative errors and computation times in five cases

—

Example Example [2 Example |3

Case } . .) . .
Relative error Time Relative error Time | Relative error | Time

(1) 9.64475 - 10721 78 9.64475 - 10721 79 9.64475 - 10721 78
(2) 4.70198 - 1073 884 7.83663 - 1073° 883 | 4.70198 1073 | 884
(3) 9.64475-10721 | 2625 | 9.64475-1072' | 2623 | 9.64475-107%' | 2619
(4)
()

1.54837 - 10713415 | 3432 | 6.76541 - 10714435 | 3431 | 2.66930 - 1079%48 | 3427
1.14991 - 106295 4 1.82767 - 10527 4 1.68812 - 1010061 4

equal to 0.3. In case (1), a precision of 64 bits is assigned to the objects representing p,
g and fx. In case (2), a precision of 64 bits is set only to the objects representing fy. In
case (3), a precision of 64 bits is set only to the objects representing p and ¢. In case (4),
each object has a precision of 65536 bits, the “infinite” precision which was assigned to
the other objects in the three previous cases. In case (5), each object has a precision of
64 bits. This last case corresponds to the first evaluation of Algorithm |2| that is used
to determine 7. From Table we observe that we can save a lot of time by setting a

smaller precision to the “non-recursive” objects while keeping an adequate accuracy.

To save much more time, we can even split step [10| of Algorithm [2/in two parts. The first
one consists in doing the multiplication of the objects which accept a smaller precision
and store the product in an intermediate object w declared with a precision of 7. The
second part concerns the accumulation of the products of the value of w and the proba-
bility function of S at the right point in the object sum. Algorithm |3 is obtained from
Algorithm [2] with the use of a precision of T set to the objects representing p, ¢ and fx and
with the inclusion of the split of multiplications. Notice that in most of the applications,
steps [17] and [18| can be removed because 7 = 64 is generally sufficient to guarantee the
desired accuracy. The cases (1) and (2) of Table are reproduced in Table with
the inclusion of the split of multiplications. Table contains the values of n, 7 and
Taup with v = 10 in addition to the relative error (1) obtained at ms with a recursive
evaluation using Algorithm . The computation time (Time 1) of step |19 of Algorithm
can also be found in Table as well as the computation time (Time 2) of the evalua-
tion using a precision of 7y p assigned to each object. The difference between these two
computation times is the time that we save by using Algorithm [3| instead of Algorithm

for each example.

39

Algorithm 3: Recursive evaluation of a compound binomial distribution by

finding the needed precision with the inclusion of the split of multiplications

1. Set the default precision r to 64 bits

2. Declare a table f with elements from 0 to s — 1 and the variables w and sum
3. Define a table g with elements from 1 to s for fx
4. Define m and g and set p=1—¢
5. Set f[0] = p™ and h = (¢ - g[s])"
6. Store f[0] with v decimal digits
7. Fori=1tom=xs
8. sum =0
9. For k =1 to min(i, s)
10. w=(m+1)k—1i)-glk|
11. sum = sum + w - f[i — k mod s
12. fli mod s] = =74
13. Store f[i mod s| with v decimal digits
14. Calculate n = ‘h—Tf[O}‘
15. If n < 10+ then stop
16. Set a precision of r + [log, (- 10")] to each element of f and to sum
17. Set a precision of max ([vlog, 10],64) to each element of ¢, to p, ¢ and w
18. Redefine p, g and ¢
19. Redo steps [f to

Table 2.9: Relative errors and computation times in two cases with the inclusion of the

split of multiplications

—

Example Example [2 Example |3

Relative error | Time | Relative error | Time | Relative error | Time
(1) |9.64677 - 10721 68 9.64509 - 102! 67 9.64677 - 1072 67
(2) |2.01948 - 10724 | 874 | 3.36581-1072° | 874 | 2.01948-1072* | 873

40

Table 2.10: Values of 0, 7, fgarp and 7 with computation times if m = 10000 and ¢ = 0.3

Variable Example |1 Example [2 Example |3
n 1.14991 - 10529 | 1.82767 - 10°2™ | 1.68812 - 1010061
r 21009 17622 33520
raMp 21024 17632 33536
7 1.01105- 1071 | 9.94587 - 107 | 1.68333-1071°
Time 1 25 21 37
Time 2 622 468 1235

We might put here a figure similar to Figure on the evolution of the relative error
of the two recursive evaluations of Algorithm [3] However, it would not be so nice since
the relative error is always on the same magnitude during the computation of step [19| of
Algorithm [3]

2.6.6 Effects of m on stability

There is a last parameter for which we did not discuss its influences on the stability of
recursive evaluation yet. It is the parameter m. From Tables and we observe
that the needed precision given a parameter m, 7 (m), is approximatively 10 times greater
in the case m = 10000 than in the case m = 1000 for each of the three examples. In both
tables the desired accuracy is 10 digits, but to compare these precisions it is better to

use v = 0. Table gives the values of 7 (m) for v = 0 for the same distributions as in

Table 2.11: Values of # (m) for two values of m and v =0

7 (m)
o Example |1 | Example [2| | Example |3
1000 2089 1751 3339
10000 20976 17589 33487

Tables and [2.10L We remark that the ratio is actually a bit greater than 10, the ratio
between the two values of m. In reality, this is true for almost every distribution of X.

This can be interpreted because multiplying the parameter m = [by a factor ¢ amounts to

41

the same as finding the coefficient of a polynomial raised to the power cl. Moreover, the
recursive evaluation requires ¢ times more stages and is stable over the range [0,cl + 1],

approximatively ¢ times the one in the case m = [.

In order to find a relation between m and the needed precision, we do a multiple linear
regression based on the needed precisions for nine values of m and 21 distributions of X.
These precisions follow from with r = 64 and v = 0 but without taking the ceiling
function. The two explanatory variables used in the regression are ¢ and the product of

¢ and 7([), while the dependent variable is 7(cl). We obtain the following relation
P(cl) = 9.99029¢ + cf (1) — 9.75500. (2.6.10)

Notice that this relation is better for small values of ¢ and that 7(cl) may be insufficient
for some distributions of X for some values of ¢. In order to increase the probability
that this precision is sufficient, we add a margin proportional to ¢ — 1 such that (2.6.10)

becomes

r(cl) = c-7(l)+13(c—1). (2.6.11)

We have now a more efficient method which consists in evaluating recursively with a

parameter m = [and a precision of 64 bits and calculating 7, the relative error at [s. It

follows from ([2.6.8)) and (2.6.11)) that

r(cl) = TJe(r+logy(n))+13(c—1)+vlog,10], (2.6.12)
which leads to
Paup (cl) = 32 [%W . (2.6.13)

Then, we evaluate fg with the parameter m = ¢l and a precision of #gysp (cl) in order to
obtain accurate values. This procedure is summarized in Algorithm [l For a very small
number of distributions the margin chosen in is still not sufficient. However, if this
happens we can use the other direction to evaluate the remaining points until we obtain
a stage where the required accuracy is reached. Remark that the number of additional

evaluation points is very small since 7gprp (cl) is close to the precision really needed.

Table shows the values of 7 (¢m) for ¢ = 2, 5 and 10, an original parameter m = 1000
and a desired accuracy of 10 digits. The value of ¢ remains equal to 0.3. This table also
contains the needed precision 7 calculated using (2.6.8) where 7 is the relative error

obtained at the last evaluation point with a precision of 64 bits and m = 1000c. Notice

42

Algorithm 4: Recursive evaluation of a compound binomial distribution by

finding the needed precision from a first evaluation with a smaller value of m

1.

e e T
R

14.
15.
16.

S AT e I

. Calculate n = ‘

Set the default precision r to 64 bits
Declare a table f with elements from 0 to s — 1 and the variables w and sum
Define a table g with elements from 1 to s for fx
Define m and g and set p =1 — ¢
Set f[0] = p™ and h = (¢ g[s])™
Fori=1tom=xs
sum = 0
For k =1 to min(i,)
w=((m+1)k—1)-glk]
sum = sum + w - f[i —k mod s]
f[i mod s] = =4

p-i
h=£[0]
h

. Set a precision of [¢(r +logyn) + 13 (c — 1) + vlog, 10] to each element of f and

to sum

Set a precision of max ([vlog, 10],64) to each element of g, to p, ¢ and w
Redefine p, ¢ and ¢

Redo steps 9| to [L1] by setting m = c¢m and storing values with v decimal digits

Table 2.12: Comparisons between 7 (1000c¢) and 7

Example |1 Example |2 Example |3

A A A

7 (cm) 7 7 (cm) T 7 (cm) T
2 4224 4221 3548 3544 6723 6724
5 | 10528 | 10518 | 8838 | 8821 | 16777 | 16772
10 | 21035 | 21012 | 17656 | 17623 | 33533 | 33522

43

that the real precision set to GMP objects is the same for six cases over the nine considered
in Table [2.12] For the three other cases, the precision assigned to GMP objects according

to ([2.6.13]) is 32 bits greater than the one obtained by (2.6.9). Example [I| with ¢ = 10
and Example [2f with ¢ = 5 and ¢ = 10 are these three cases for which the difference comes

from the margin chosen in (2.6.11)). Figure [2.7] shows the evolution of the relative error
in the evaluation according to Algorithm [4] for the three examples with m = 1000 and
¢ = 2. In order to obtain nice curves, the second evaluation of Algorithm [is done by
setting a precision of 7 (¢m) to each object. If the precision of objects representing p, ¢
and fx was 64 bits, the relative error would be always on the same magnitude as we go

along the recursive evaluation.

2.7 Further remarks

Some extensions of Panjer’s recursion can be found e.g. in [Sundt (1992)) and |Sundt and
Jewell (1981). The latter derived a recursive formula when ({2.2.3)) holds from an integer
k on such that

b
Pn = (a+ﬁ)pn_1, n=k+1,k+2,..., (2.7.1)

with p, > 0 forn=0,1,...,k — 1 and pr > 0, which gives

fs() = plfx<x>+i(pn— (+§) pm) ()

n=2
z—1
+Z<a+b%> IxWfs(x—y), z=12..., (2.7.2)
y=1

with fs(0) = po. [Sundt| (1992) extends Panjer’s recursion for the distributions of N that
satisfy

k
b;

with p, = 0 for n < 0 and py > 0, which leads to

k

fS(J:) = ZfS(w_y)Z(aj_}'%%))*(j(y)7 r=12..., (274)

Jj=1

with initial value f5(0) = pg. The use of a smaller precision for the floating-point repre-

sentation of the parameters of N and for the representation of fx also gives an accurate

44

— Precision of 64 bits and 7=1000 Precision of 4224 bits and 7=2000
1'000

500 ‘/
0

-500+

-1'000 -

-1'500

Logarithm of the relative error at x

-2'000 + . : . .
0 5'000 10'000 15'000 20'000
X

(a) Example

— Precision of 64 bits and 7=1000 Precision of 3552 bits and #7=2000
1'000

500 J
0

-500+

-1'000

-1'500

Logarithm of the relative error at x

-2'000 - ‘ ‘ ‘ ‘
0 5'000 10'000 15'000 20'000
X

(b) Example

— Precision of 64 bits and 7=1000 Precision of 6752 bits and 7=2000
1'000

500

-500+

-1'000

-1'500

Logarithm of the relative error at x

-2'000 + T T . :
0 5'000 10'000 15'000 20'000
X

(c) Example

Figure 2.7: Evolution of the relative error evaluating according to Algorithm

45

evaluation using (2.7.2)) or (2.7.4]). This method can be generalized to any recursive eval-

uation. However, we still need to know an exact value for fs in order to be able to

determine the needed precision after a first evaluation.

Another method to compute the probability function of S is to use the fast Fourier trans-
form (FFT) that can be applied for any random variable N with probability generating
function Py. It consists in evaluating fs(0), fs(1) ..., fs(n — 1) using the inverse discrete

Fourier transform by

n—1
1 2k —i2nxk
= — _— n — () 1 2 “e . — 1 2-7-5
fS(x) nk§:0¢5(n)6) X) Ly 4y , 1) ()

where ¢ = /—1 and ¢g is the characteristic function of S which is defined by
¢s(z) = E[e”%] = Py (¢x(2)). (2.7.6)

The terms ¢g (22—’“) of 1} can be determined by the substitution of the discrete Fourier

transform

i2mzk

Ox(z) = ifx(k)eT, (2.7.7)

into (2.7.6). If n is chosen to be a power of two, (2.7.5) and (2.7.7) can be computed
efficiently using an FFT algorithm. However, this method introduces an aliasing error

which is equal to
fs(x) —Pr[S =ux] = ZPr[S:x—i—jn], xr=0,1,2,...,n—1, (2.7.8)
j=1

where Pr[S = s] denotes the exact value of the probability function of S at s. We refer
to Bihlmann| (1984) for a comparison between evaluations using Panjer’s recursion and a
method based on the fast Fourier transform algorithm. An exponential tilting procedure
was proposed by (Griibel and Hermesmeier (1999)) in order to reduce the aliasing error (see
also [Embrechts and Frei (2009)). Nevertheless, using the floating-point representation,
this error is of the magnitude of 107¢*! for each point over the interval [0, n — 1], where d
is the number of exact decimal digits used in the floating-point representation. Therefore,
when the exact probability function is smaller than 10~¢*! at a point, the absolute value

—4+1 The use of an exponential tilting

of its evaluation is approximatively equal to 10
decreases the accuracy of fg since the aliasing error occurs on the tilted probability func-
tion. Finally, the use of a smaller precision for the floating-point representation of the

parameters of N and for the representation of fx in the implementation of this method

46

gives aliasing errors of the same magnitude as when all variables are represented using
this smaller precision. Therefore, the gain of time is useless since the accuracy of the

results decreases.

2.8 Conclusion

The use of an efficient computational tool like GMP is essential for evaluations involving
a large number of arithmetic operations. GMP has to be used to evaluate recursively
the probability function of compound distributions especially when their expected value
is large. It also offers several useful functions which allow us to work with different
precisions assigned to objects and it avoids the use of scaling functions. The gain of time
resulting from the use of a smaller precision of the floating-point representation of “non-
recursive” objects is considerable without loosing any useful accuracy. This is why we
have to use GMP and its precision management properties in order to obtain an efficient
evaluation of a subordinate solution of a recurrence relation like the one for the probability

function of compound binomial distributions.

A7

48

Chapter 3

From approximations of De Pril
transforms to approximations of ¢-th
order cumulative distribution

functions

3.1 Introduction

The term De Pril transform was introduced by [Sundt| (1995) as a reference to a function
derived in De Pril (1989, p. 11). Given a value of a probability function, the De Pril
transform defines uniquely this probability function and there exist recursive formulas
from one function to the other. The main result in relation to De Pril transforms is that
the De Pril transform of a convolution of functions is the sum of the De Pril transforms of
these functions. Therefore, they are useful when an efficient evaluation of the probability
function of a convolution is required. Further results on De Pril transforms can be found
in |Sundt| (1998)) and [Sundt and Ekuma (1999).

Convolutions appear frequently in actuarial applications, for example to model the aggre-
gate claims amount of a portfolio of insurance policies like in the collective risk model or in
the individual risk model. In the former model, the aggregate claims amount is modelled
by the sum of the amounts of a random number of claims. In this case, recursions for the
evaluation of the aggregate claims amount probability function can be found in Panjer
(1981)). In the individual risk model, the aggregate claims amount is modelled by the sum

of independent random variables where one random variable represents the claim amount

49

of one policy. This model can be generalized to the evaluation of the probability function
of a convolution of probability functions of independent random variables. Several exact
or approximative recursions for the probability function of this model are discussed in
the actuarial literature (see e.g. |De Pril (1986b} [1988| 1989), Dhaene and Vandebroek
(1995), Hipp (1985, 1986), [Kornya| (1983) and Waldmann| (1994)). All these recursive
evaluations are reviewed in Sundt| (2002) and [Sundt and Vernic (2009). In comparison
to an evaluation involving convolutions, recursive evaluations are good strategies to save
time since they reduce significantly the number of operations. The main approximations
generally decrease again this number to save much more time while keeping a required
accuracy in evaluations. We refer to Dhaene et al.| (20006]) for comparisons between the

numbers of operations of the different exact evaluations and approximations.

Dhaene and Sundt (1998) developed error bounds for the distribution function and the
stop-loss transform of several classes of distributions resulting from an approximation
of their De Pril transforms. Other results on error bounds in connection with De Pril
transforms can be found in De Pril (1989), |Dhaene and De Pril| (1994)), Dhaene and Sundt
(1997) and Sundt et al| (1998). Their approach consists in evaluating the distribution
function and the stop-loss transform from an approximation of the probability function
that is computed from an approximative De Pril transform. Their more accurate error
bounds depend on the evaluations, which means that we know their value only after
having found the approximation of the desired quantities. Moreover, for some of these
error bounds we have to evaluate the probability function over its whole support which is

numerically impossible in most cases.

A recursive formula for the evaluation of the ¢-th order cumulative distribution function
based on the De Pril transform of the probability function is derived in [Dhaene et al.
(1999). They pointed out that frequently calculated quantities like distribution functions
or stop-loss transforms are obtained directly from a given order of such functions. Sundt
(1999b) expressed this recursion for discrete uniform distributions. Recursive formulas for
the t-th order cumulative distribution function and the ¢-th order cumulative tail function
of compound Poisson distributions are developed in /Antzoulakos and Chadjiconstantinidis
(2004) and improved in (Chadjiconstantinidis and Pitselis (2009)).

In Section [3.2] we define the notion of De Pril transforms and discuss the utility of
recursive evaluations of ¢-th order cumulative distribution functions. In Section [3.3] we
express the exact error of the approximation of the ¢-th order cumulative distribution
function resulting from a De Pril transform approximation. Theoretical error bounds for

such approximations are derived in Section [3.4] In Section we expose error bounds

20

in relation to stop-loss contracts. Some comparisons between these error bounds and the
ones developed by Dhaene and De Pril (1994)) are made in Section [3.6] Finally, we apply

the results to some frequently used approximations and do numerical applications.

In the sequel, we assume that the functions are defined on the nonnegative integers. The
notations a > b and a > b are used to simplify the facts that a = b,0+ 1,b+ 2,... and
a=0b+1,b+2,..., respectively. We also assume that Zzza h(k) = 0 whenever b < a.

3.2 De Pril transforms and recursions for ¢-th order

cumulative distribution functions

3.2.1 Definitions and review

The ¢-th order cumulative operator I'* of a function h is defined by

T'h(z) = > T7'h(y), >0, t>1, (3.2.1)

y=0

with T°h(z) = h(z) and T = I''. Tt is shown in |Antzoulakos and Chadjiconstantinidis
(2004, p. 165) that this operator is equivalent to

T'h(x th h(y), x>0,t>0, (3.2.2)

where C}f = (a * b).
a

Dhaene et al|(1999) showed that if the recursive formula for a probability function

= —ng (s —z), s>1, (3.2.3)

with initial value f(0) holds then the ¢-th order cumulative distribution function can be

evaluated by

s

Ttf(s) — %Z(m) FOT (s —a), s> 1, >0, (3.2.4)

r=1

IThis is not the common notation for the binomial coefficient but our definition is used here in order

to simplify expressions

o1

with initial value I'" f(0) = f(0). In the actuarial literature, the function ¢ is known under
the name of De Pril transform (see |Sundt| (1995)). The De Pril transform of a function f

is determined by

1 x—1
p(z) = 0 Cc’f(flf)—;Z;sf)(:r—y)f(y) , o> (3.2.5)

The most useful property of De Pril transforms is that the De Pril transform of a convo-
lution of probability functions of independent random variables is the sum of the De Pril

transforms of these probability functions. This property was proved by De Pril| (1989).

Some additional properties of De Pril transforms that are discussed in |Dhaene and De
Pril (1994) may be useful. Let P(u) and ¢ be the probability generating function and the
De Pril transform of a random variable Y, respectively. They showed that under some

convergence condition, we have
— o(x)
In P = Inf(0 —u” 3.2.6
nP) = nf0)+ 30 E (326)
where f is the probability function of Y and

P(u) = > flyu'. (3.2.7)
y=0
Therefore, by combining (3.2.6) and (3.2.7)) and setting u = 1 we get

i@ — —Inf(0). (3.2.8)

=1

We obtain

P(u) y; yf(y)u’~

— Z gp(x)uz_l, (3.2.9)
f(y)uv v=1

by taking the first derivative with respect to w in (3.2.6) and (3.2.7)). It follows that

EY] = > o), (3.2.10)

by setting v = 1 in (3.2.9). If we take higher order derivatives of (3.2.6) and set u = 1
for each order we obtain Theorem 4.1 of [Sundt et al. (1998) that gives an expression to

calculate the cumulants of Y from ¢.

52

3.2.2 A more efficient recursive evaluation

We develop now a more efficient way for the evaluation of ¢-th order cumulative distri-

bution functions. It is particularly useful when the De Pril transform converges to zero.

Equation (|3 can be rewritten as
I f([ng)T f(s — +Ztrt s—:z:)], s>1,¢t>0. (3.2.11)

r=1

From this last equation, an embedded recursion follows for I'"" f which is

1
If(s) = [tf”lf —i—Zgo s—x)] , s>1,t>0, (3.2.12)
where
['f(s) = T f(s—1) +THf(s), (3.2.13)
and with initial values I'*f(0) = f(0), u=1t,t+ 1.

We can notice that in recursion the terms () +t for t # 0 and « > 1 are generally
different from zero. Therefore, we have to do s multiplications in order to evaluate I f(s),
while time can be saved using because some multiplications may be avoided if
the De Pril transform is equal to zero at some points. In the case where ¢(y) = 0 for

y > r, the embedded recursion (3.2.12)) becomes

min(s,r)

I fls) — % T F(s— 1)+ S e Tf(s—a)|, s>1,¢>0,(3.2.14)

z=1
using and with initial values I f(0) = f(0), u =t,t + 1. This is the case for the
De Pril transform of a compound Poisson distribution with parameters (A, g(z)), z > 1,
where
oly) = { Moglw) ¥ =10 (3.2.15)
0, Yy >w
where w = sup{y : g(y) > 0} (see |[Sundt| (1995, p. 25)).

When the De Pril transform satisfies

lim ¢(z) = 0, (3.2.16)

T—+00

we can truncate it by setting it to zero from a given point r + 1. The gain of time is
double since we need to evaluate the De Pril transform for a smaller number of points and
since we can use instead of . Compound negative binomial distributions
and some cases of compound binomial distributions satisfy (see Theorem 6.1 in
Dhaene and Sundt| (1998))).

23

3.2.3 Some applications

One could say that it is displeasing to need the (¢ + 1)-th order cumulative distribution
function to evaluate the t-th order one. However, its evaluation using is very
simple and the time that can be saved using is substantial compared to the
evaluation using . Moreover, it gives more information about the distribution of

the random variable that may be useful as we will see in the following applications.

Let I; = (S — d)+ be the amount paid by the reinsurer for a stop-loss contract with
deductible d > 0 given a random loss S. From the second order cumulative distribution

function, the stop-loss premium is determined by
B[l = T*f(d—1)+E[S]—d, d>0, (3.2.17)

given that we know the expected value of the loss (see Dhaene et al.[(1999)). The following

theorem gives a new expression for the variance of the stop-loss reinsurer’s payment.

Theorem 1 Given a random loss S, the variance of the stop-loss reinsurer’s payment
with deductible d can be determined from the second and the third order cumulative dis-

tribution functions by

Var[l = E[(S—d)?| —20%f(d—1)+T%f(d-1) — (E[l;])*, d>0.(3.2.18)

Proof. By definition, we have
Var[l] = E[IZ] - (E[14)°. (3.2.19)
From [Antzoulakos and Chadjiconstantinidis (2004, p. 181), we know that
E[I7] = 2A°f(d—1)+A*f(d-1), d>0, (3.2.20)

where A? is the ¢t-th order tail operator and is defined by

Ah(z) = Y A7'(y), x>0, t>1, (3.2.21)

y=z+1

with A°h(z) = h(z). From their Lemma 3.1 (d), it follows that

Af(d—1) = T?f(d—1)+E[S]—d, d=>0, (3.2.22a)
ANfd—1) = —TI3f(d—1)+ %E[(S —d)*] - % [S] + g, d > 0. (3.2.22b)

o4

The substitution of (3.2.22)) into ((3.2.20)) leads to

E[I7] = E[(S—d)?] —2I°f(d—1)+T?f(d—1). (3.2.23)
Equation (3.2.18)) follows by substituting (|3.2.23)) into (3.2.19)) and the proof of Theorem
is complete. =

Another expression for the variance of the stop-loss reinsurer’s payment which contains
only cumulative distribution functions and central moments of S follows from the substi-
tution of (3.2.17)) into (3.2.18)). We get

Var[l) = Var[S] —2T°f(d—1)+T?f(d—1)(2d+1—2E[S] —T*f(d — 1)), (3.2.24)
for d > 0.

An application of the embedded recursion for t = 1 is the computation of the
expected shortfall (ES) of a random variable S at a given probability level a, which is
defined by
E[S; S > VaR,[S]] + (Pr[S < VaR,[5]] — «) VaR,[S]

11—«

E[(S — VaR,[9]),] . (3.2.25)

ES.[S] =

1
= VaR,[S] + 7

-«
where VaR,[S] is the Value-at-Risk at level a. The idea consists in evaluating the dis-
tribution function using the embedded recursion with ¢ = 1 until I'f(s) > «, so
that VaR,[S] = s. The expected shortfall is then determined by

E[S] +T2f(s—1) —as

-«

where I'2f(s — 1) is immediately given by . The evaluation of the second order
cumulative distribution function using is useful if we want to calculate the stop-

ES.[S] = , (3.2.26)

loss premium and the variance of the stop-loss reinsurer’s payment for a given deductible
using (13.2.17)) and Theorem |1} respectively. One can find similar applications for higher

orders.

3.3 Approximations of t-th order cumulative distri-
bution functions
Using the embedded recursion (3.2.14)), an approximation of the De Pril transform leads

to an approximation of the t-th order cumulative distribution function. For such approxi-

mations, bounds for the absolute error of the distribution function and stop-loss premiums

55

have been developed in the actuarial literature (see e.g. Dhaene and De Pril (1994) and
Dhaene and Sundt| (1997, |1998)). In this section, we determine the exact error of the ¢-th
order cumulative distribution function occurring in its evaluation using an approximation

of the De Pril transform.

Let ¢ be an approximation of the De Pril transform of a given probability function f. Let
f be the approximation of this probability function evaluated using 1) with ¢ and

initial value f(0). We define the function ¢ by
0, =0
U(r) = { Beel) L (3.3.1)
It follows from ([3.2.8]) that
o o0 ~ T
> w(@) = InfO)+> ?. (3.3.2)
=1 =1

Equation (3.2.9) also holds for approximations. Therefore, the expected value of the

approximation is given by

doufly) = D @@ > fly) (3.3.3)

The cumulants of the approximation can be determined similarly to Theorem 4.1 in Sundt
et al.| (1998).

The following theorem gives an expression for the exact error of the probability function

resulting from an evaluation using an approximation of its De Pril transform.

Theorem 2 Let ((s) = f(s) — f(s), s > 0, be the error of the probability function at s
when 1t 1s evaluated using with the approximative De Pril transform ¢ and initial

value f(O) = f(0). If) is defined by we have
) = N —y), 521, (3.3.4)

y=1 n=1
where Y™™ is the n-fold convolution of 1.

Proof. From Dhaene and De Pril (1994) p. 185), we know that if f(0) = f(0) we have

s

C(s) = > ay)f(s—y), s>1, (3.3.5)

where the function a is the solution of the recurrence equation
ra(r) = Z zp(z)a(r —z), = >1, (3.3.6)
z=1
with initial value a(0) = 1. Therefore, to prove (3.3.4)), it is sufficient to prove by induction

26

on y that
- 1 *1
a(y) =D —v"W), y=1, (3.3.7)
n=1

is the solution of ([3.3.6)) with initial value a(0) = 1. For y = 1, it holds straightforwardly
that (3.3.7)) is equivalent to (3.3.6) with x = 1. Now let us assume that (3.3.7) holds for
y=1,...,w, we obtain from (3.3.6) that

w+1

(w+1a(w+1) = Zzw(z)a(w +1—2)

z=1

w w+l—-n

= (AP +Y Y 5 D (w + 1 — 2)(2). (3.3.8)

n=1 z=1

We know that the n-fold convolution 1*"(s) is the coefficient of x* of the polynomial

(Z w(y)xy> , (3.3.9)

(see e.g. Knuthl (1992)). Remark that ¢*"(s) = 0 for s < n and that the sum in (3.3.9)
can be taken only over y = 1,2,...,s+ 1 — n in order to determine the coefficient of z*,

s > n. Therefore, we have

s+1—n
P(s) = Z (m !) H Y(i), s>1,n>1, (3.3.10)
’ i=1

S wren ey Ugt1—n
=
> iui=s

where u;, i =1,...,s+1—n, are nonnegative integers. By substituting (3.3.10|) into the
inner sum of (3.3.8) and letting k = w + 1 — n, it follows that

o, o i z n T u;
> iuj=w+l—z

k

Sy ¥ g(ub‘?m)wz)r[w@)“i

=1 Yui=n i=1
> iuj=w+l—z
k k
p— /QZ) Z ul
;zuz_;zﬂ (n+1)!(u17'--auk };[1 Q
S iui=w+1
k

S ui=n+1

> duj=w+1
w+1 .,

= i) D (w4 1). (3.3.11)

o7

The substitution of (3.3.11)) into (3.3.8)) and the division of the latter by w + 1 on both
sides lead to

w

aw+1) = Pw+1)+Y

n=1

w—+1
1

[CEm] w1 =) % (w4 1). (3.3.12)

n=1

This proves that (3.3.7)) holds for y = w + 1. Thus, (3.3.7)) is the solution of (3.3.6)) with

initial value a(0) = 1 and the proof of Theorem [2is complete. m

Corollary 3 Let ﬁ?, t > 0, be the approximation of the t-th order cumulative distribu-
tion function evaluated using (TS’QA) or (TS’QIQ) with ¢ and initial values 1:"7?(0) = f(0),
u=t,t+ 1. The error ofl:t\f s given by

—

[if(s) —T'f(s) = T%(s), s>0,t>0. (3.3.13)

Proof. For t =0, (3.3.13) is Theorem . Let us now assume that (3.3.13]) holds for ¢ = u,
we obtain

s

DoTf(s) =D f(s) = Y (D (@) ~T"f())

=0

- Z r“¢(x) =T"¢(s), s>0. (3.3.14)
=0

Therefore, (3.3.13) holds for ¢ = u+1 and the proof of Corollary is complete by induction
ont. m
In particular, when ¢t = 1 Corollary [3]is

sy 1

F(s)=F(s) = Y > —0™@F(s—y). 520, (3.3.15)

y=1 n=1 """

where F and F denote the distribution function and its approximation, respectively. It

follows in the limit s — oo that

lim (ﬁ(s) - F(s)) =¥ % U (y) = Z% (Z z/)(y))

= exp {i ¢(y)} - 1. (3.3.16)

In opposition to the results in Dhaene and De Pril| (1994), we also consider the sign of

the error in Theorem [2] and Corollary [3 which leads to an expression for the exact error

o8

instead of giving error bounds. If we take the absolute value of addends on both sides of
(3.3.16) we arrive to an error bound that they derived, that is

lim |F(s) = F(s)| < D [Fl@) = f(@)] < exp {Z ww} ~1L (33.47)
=0 y=1
The latter inequality of (3.3.17)) will be proved later.

Remark 1: We get from Theorem [2] and Corollary [3] that

()~ T'f(s) = 3D 0”@ (s —9), 520,120, (33.18)

y=1 n=1

However, this error depends on the exact values of the ¢-th order cumulative distribution

function that should not be known if an approximation is made.

Remark 2: From the substitution of (3.3.2)) into (3.3.16)), it follows that

lim (ﬁ(s) - F(s)> = £(0) - exp {Z @} —1, (3.3.19)

which leads to
lim F(s) = - exp {Z } (3.3.20)

Remark 3: If the assumption f(0) = f(0) is released, the initial value of recursion

3.3.6)) is a(0) = on; (see Dhaene and De Pril (1994, p. 185)). Equations (3.3.4)), (3.3.15),

(3-3.16), (3-3.17), (3-3.19) and (3.3.20) become respectively

Cs) = (al0) - ZZ Sy, s3>0, (3321)

ylnl

s

F(s) = F(s) = (a(0) = DF(s) +a(0) 35" L u () F(s —y), 5> 0;(33.22)

lim (ﬁ<s) —F(s)> = a(0) -exp{z w(y)} —1 (3.3.23)
lim | F(s) = F(s)| < 30 |T(k) = £(k)] <exp{ (8) +Z|w } (3.3.24)

59

(3.3.25)

Sllrélo <}N7’(S) - F(S)) = - exp {i

r=1

§\2
SIS
H,_/

lim F(s) = f(0)-exp {Z @} (3.3.26)

However, if we consider the ¢-th order cumulative distribution function, the error of f(0)
will have a large effect on this function because it is accumulated at each point for ¢
orders. Therefore, it is always better to start recursions with the exact value, which is

easy in practice.

Remark 4: The substitution of (3.3.26)) into (3.3.3) leads to

> yfly) = exp{zw } > 3(x), (3.3.27)

r=1

which gives an expression for the expected value of the approximation in the general case.

3.4 Error bounds for ¢t-th order cumulative distribu-

tion functions

In the previous section, the exact error of f‘?f is expressed as a function of ¢ but depends
on exact values. Hence, we use it to built a bound for such an error. This error bound
is given in the following theorem. From now on, we will generally consider cumulative
distribution functions with an order greater than or equal to one. Therefore, in the sequel

the expressions in relation to I'' f will hold for ¢ > 1 unless stated.

Theorem 4 Let e(s) =Y 1, [(k)|, s > 0. If we assume that e(s — 1) # 0, a bound for
the absolute error Ofﬁ? evaluated using (f324l) or (fS’ 2.15) according to the approzimation

3.5.1]) is given by

Df(s) =TS (s)] < mls), 520, (3.4.1)
where n(s) is defined by
0, s=0
ne(s) = e(l)f(O), s=1 . (3.4.2)

Proof. For s = 1 the prove of (3.4.1) is straightforward from Theorem [2]and Corollary [3|
We even have the equality

Tif(1) —Tf(1) = w(1)f(0), t>0. (3.4.3)
Let us now prove (3.4.1) for t =1 and s > 1. First, we rewrite (3.3.15] as

Fo)=Fs) = 3% % V) F(s —y), s> 0. (3.4.4)

n=1 y=n

It follows that

_ s s 1 . 1 0 1
F(s) - FGs)| < ZZW < X els+1=nr <els) + 3 Sets =1y
= e(s)+et D 1 —¢(s—1), s>1. (3.4.5)

We assume now that (s — 1) # 0. Since €(s) = e(s — 1) + [1(s)|, we have €(s) # 0 and
we obtain from (3.4.5)) that

‘ﬁ(s)—F(s)‘ < e(s) {1+

ee(s—l) -1
= P €(s) =m(s), s>1. (3.4.6)

This proves that Theorem [4| holds for t = 1 and s > 1. In the general case, we have
ee(s—l) -1

e(s—1)

is a positive increasing function for

T-1F(s) — Ft_lF(s)‘ <! ‘ﬁ(s) - F(s)‘ <t { e(s)} s> 1.(3.4.7)

e’—1

Since €(s) is nondecreasing with respect to s and

any real number z, we arrive to

-1 —66(871) —1 e(s S il le(s) = S S
I |: 6(8— 1) ()] < 6(8— 1) r () nt()7 > 1 (348>

The proof of Theorem {4 is complete by substituting (3.4.8) into (3.4.7). m

Remark 5: The assumption €(s — 1) # 0 is not restricting, otherwise there would not
be any error until s — 1 and we would have f’?f(s) —T*'f(s) = ¥(s)f(0). This equality

follows immediately from Theorem 2] and Corollary [3]

Remark 6: The term £ ()1)1 tends to one if €(s — 1) tends to zero. It is generally close

to one in reasonable applications, which means that 7,(s) grows similarly to T""'e(s).

61

Corollary 5 In the limit s — oo, the error bound defined in Theorem[] is also a bound
for the distance between the approximative and the exact (t — 1)-th order cumulative dis-

tribution functions. We have

>

=0

ﬁfl?(m)—rtflf(:c)‘ < lim g (s). (3.4.9)

Proof. For t =1, (3.4.9) is proved using successively Theorem [2| (3.4.5) and (3.4.6) in
0o o z Y
ry 1 *n
So[fw @) < XS Wl S - y)
=0)

z=0 y=1 n=1
x Yy 1
< D0 W) i (s). (3.4.10)
y=1n=1 """

We assume now that (3.4.9)) holds for ¢ = u. It follows for the same reasons as for ((3.4.8)
that

i_o: [f(z) = T"f(2)| < ii‘rfuzﬁ(y)—rulf(y)‘

z=0 y=0
< > nule) < limpa(s). (3.4.11)
=0 5—00

Therefore, (3.4.9) holds for ¢ = u+1 and the proof of Corollary is complete by induction

ont. m

We consider now the case where the De Pril transform is approximated according to

—1,..
By) = 4 FWvEher sy (3.4.12)
0, y>r

such that the evaluation using the embedded recursion (3.2.14)) is more efficient than the

evaluation using (3.2.4)). Let

" (s) = kg;l @, r>0,s>r, (3.4.13)
denote the equivalent to €(s) for such an approximation by truncating the De Pril trans-
form. Notice that is nonincreasing with respect to . Thus, from the error bound
defined in Theorem [4] a truncation point can be determined for any required accuracy for

the approximation of the ¢-th order cumulative distribution function. From ({3.2.2)) and

(3.4.13), it follows that

Ite(s) = Ite=Y(s) - Ct22 |g0(r)|7 r>1, s>, (3.4.14)
r

62

from which we can obtain a better guaranteed accuracy by setting the De Pril transform
to zero from r + 1 instead of r. We can also use it in the other direction if we want to

have a faster evaluation of I''f by reducing its guaranteed accuracy. Observe that the

guaranteed accuracy of f?]?(s) is given by

ee("">(s—1) -1
n(s) = —— T (), r>1 s>r+1 (3.4.15)
(s —1)

which behaves similarly to I'*~'e(")(s).

3.5 Error bounds for stop-loss contracts

In this section, we combine the results of Sections and [3.4] We derive intervals for
the approximation of the stop-loss premium and for the approximation of the variance of
the stop-loss reinsurer’s payment. Unless specified, the expressions in this section hold
for any deductible d > 0.

—_~—

Let E[I,] be the approximation of the stop-loss premium resulting from the approximative

De Pril transform ¢. It is determined by

—_~—

B[l = T2f(d—1)+E[S]—d. (3.5.1)

We also introduce the approximations associated to (3.2.23)) and (3.2.18]), which are ob-
tained by

E[I2] = E[(S—d)? —203f(d—1)+T2f(d—1) (3.5.2)
and
Va1 = B[]~ (E[) . (3.53)
respectively.

From (3.2.17), (3.5.1) and Theorem [4 an error bound for the stop-loss premium with
deductible d is given by

B[] - ElL)| < m(d-1). (3.5.4)

From (13.2.23), (3.5.2) and Theorem 4] it follows that

‘E\[@ —B[2]| < 2ns(d—1) +m(d—1). (3.5.5)

63

Moreover, if €(d — 2) # 0 we have
e(d-2) __

=g RLed—D+ed=1l, d>2 (356)

B[] - B[23]

Since E[I4] > 0, we obtain from (3.5.4) that

[@ﬂﬁ—nﬂd—U)J2ﬁlﬂM2§ (BlT) + mid - 1))’ (35.7)

An interval for the variance of the stop-loss reinsurer’s payment follows from ([3.5.5)) and

(3.5.7). It is given by

—~——

Var[l,] > (Var[[d] —2m(d — 1) — ma(d — 1) — 2E[I] ma(d — 1) — [ipa(d — 1)]2>+(3.5.8a)

Var[Iy] < B[IZ] + 2n3(d — 1) + mp(d — 1) — {(Eﬁd/] —pld — 1))J . (3.5.8b)

In some cases, we are able to determine if the approximation made in the De Pril transform

will lead to an underestimation or an overestimation of I''f. In such cases, the intervals
defined in (3.5.4)), (3.5.5) and (3.5.8)) can be reduced.

On the one hand, if we know that we underestimate I'' f for at least ¢ > 2, we get from
Theorem M that

Tif(s) < T'f(s) < Tif(s)+m(s), s>0, t>2. (35.9)
It follows from (3.2.17)) and (3.5.1]) that
(E[Id]>+ < B[] < E[I)] +ma(d - 1), (3.5.10)

and squaring it leads to
{(E{E})J 2 < B[< (E[Td/] +p(d — 1))2. (3.5.11)

Let us subtract (3.5.2) from (3.2.23)), we get

—_—~—

E[12] ~E[I2] = T2f(d—1)—T2f(d—1) - (2 T3 f(d—1)— 203 f(d — 1)) .(3.5.12)

Since I/‘E?(d — 1) and fgk/f(d — 1) are underestimation of I'2f(d — 1) and T3 f(d — 1),
respectively, both errors partly compensate in (3.5.12)). Moreover, from Corollary |3 and
(3.5.9) we know that

Ft+1f(s) . Ft+1f(8) > th(s) _ ft\f(s)’ $>0,t>2, (3.5.13)

64

which leads to
—omy(d—1) < T2f(d—1) —T2f(d—1) — (2 D3 f(d—1) - 2T3f(d — 1)) < 0. (3.5.14)

Therefore, we obtain

—_~—

(Eﬁcﬂ —zng(d—1))+ < E[?] < B[, (3.5.15)

by combining (3.5.12)) and (3.5.14)). An interval for the variance of the stop-loss reinsurer’s

payment follows from (3.5.11)) and (3.5.15)). It is given by

e~ P

(\E{Td] —2ms(d—1) — 2E[Iy] na(d — 1) — [a(d — 1)]2)+ < Varlly] < Var[l,]. (3.5.16)

On the other hand, if we know that we overestimate I'' f for at least ¢ > 2, the intervals
(3.5.9), (3.5.10), (3.5.11)), (3.5.15)) and (3.5.16]) become respectively:

(T77(s) = m()) | < Tf(s) < T(s). 520, £ 22 (3.5.17)
(Bl - m(d-1) < ElL] < E[L (3.5.18)
{(ﬁﬁ—m(d—l))f < B[P < [El) (3.5.19)
(EA[IE])+ < E[I2] < E[IZ] + 2n3(d — 1); (3.5.20)

—~—— o~

(Var[]d]>+ < Varlly] < B[I2] +2n3(d—1) — {(E{E}-m(d—l))j. (3.5.21)

Observe that we always take the positive part of the lower bounds because the exact

values are positive and these lower bounds may be negative.

3.6 Error bounds analysis

Dhaene and De Pril (1994) developed bounds for the absolute error of the distribution
function and stop-loss premiums (see also Dhaene and Sundt| (1997, 1998)) and |Sundt and
Vernic| (2009, Chapter 10)). Their results are based on the computation of these two

quantities from the probability function evaluated according to ([3.2.3)).

65

The error bounds defined in Corollaries 2 and 4 of Dhaene and De Pril (1994) for the dis-
tribution function and stop-loss premiums, respectively, depend on the evaluations. This
means that first we have to approximate the quantities in order to be able to determine
the corresponding error bound. Hence, we cannot compare them in terms of accuracy
to the error bounds defined in Theorem 4| and that can be calculated before the
evaluation and hold for any De Pril transform approximation. They also developed error
bounds for approximations of stop-loss premiums that depend on the tail of the proba-
bility function. However, they involve the evaluation of the whole probability function,
which is numerically impossible in some cases and is generally more demanding in terms

of computing time in comparison to a recursive evaluation of I'?f using the embedded
recursion ((3.2.14)).

The only comparison that we can make is between the error bound defined in Corollary 1
of Dhaene and De Pril (1994) and the one defined in Theorem {4 with ¢ = 1. We can show

that the latter is more accurate than the other one, that is

e(s—1) __ 1
66<S—_1) E(S) < SILI?O 66(8) — 1, s > 1. (361)

Since €(s) is nondecreasing with respect to s, (3.6.1)) follows by taking the limit s — oo
on the right-hand side of

ee(s—l) -1
e(s—1)

This inequality holds because

e(s) < e -1, s>1. (3.6.2)

[e.9]

e(s—1) _ 1 0 1
e(s) 1 — R — _
c e(s—1) €(s) ; k!

= ¢(s) Z% (e(s)* ' —e(s — 1)k_1) >0, s>1.(3.6.3)

1
— 3—1

Notice that we obtain equality in (3.6.1)) if we take the limit s — oo on its left-hand side.

3.7 Applications

3.7.1 Error bounds for compound Poisson distributions

We consider a compound Poisson distribution with parameters (A, g(x)), z =1,2,...,w
We let GG be the distribution function related to the probability function g. The De Pril

66

transform of such a compound Poisson distribution is given by (3.2.15) where w may be
infinity. Therefore, the approximation by truncating g such that

A Cy=1....
oly) = { y9(y), v T, (3.7.1)
0, y>r
leads to
0 —1,...
bly) = Ym0t s (3.7.2)
—Ag(y), y>r

Since we eliminate the probabilities in the tail of g, the truncation according to (3.7.1))
gives an underestimation of ' f for ¢ > 0. Thus, the intervals (3.5.9), (3.5.10), (3.5.11)),
(3.5.15)) and ((3.5.16|) hold for this approximation. In this case, we can also use (3.4.14))

to adapt the guaranteed accuracy if necessary.

For such an approximation we can show that

t

T e(s) = XY Cloiglk)=X\|T'g(s) = > CIZF T¥g(r)|, s>r (3.7.3)

k=r+1 k=1

The first equality of (3.7.3) follows immediately from (3.2.2)) and (3.7.2)). In order to prove
the second equality of (3.7.3)), it is sufficient to prove that

r t
Z Clorglk) = Z Ct=k Tkg(r), s>, (3.7.4)
k=1 k=1
since we have
IMg(s) = C’i:,lgg(k), s> 1, (3.7.5)
k=1

from (3.2.2)). The substitution of (3.2.2)) into the right-hand side of (3.7.4]) leads to

t t T t

doCih Trg(r) = D CIE Y CElgly) =D gly)) CiE k)
y=1

k=1 k=1 y=1 k=1
=) Clolgly), s> (3.7.6)
y=1

which proves ([3.7.3]).

Remark that we can obtain an expression for I'*"!¢(s), which only depends on the ¢-th
order cumulative distribution function of g. Let V7 be the n-th order backward difference

operator with respect to x, which is defined by
Vih(z) = V' 'h(z) -V h(z—1), x>1,n>1, (3.7.7)

67

with VOh(z) = h(z). Since VII*h(x) = T'""'h(z), we have

t—k
Mrg(r) = Vi*Tl(r) =) (1Y C7 " Tg(r—j), r>1. (3.7.8)

i t t—k
I le(s) = A |Tlg(s) =Y > (=1YCIF ,C"Tlg(r — j)]

i k=1 j=0
[t—1 t—j

= A|Tlg(s) = > (1Y T'g(r—j)> Cloh 7
L Jj=0 k=1
[— s—r

_ t t—1 _ t—1 t

= A [Tfg(s) —C! ;(1)38 S Cy I Tg(r — j)] , s>r.(3.7.9)

For t =1, (3.7.3) or (3.7.9) is
e(s) = A gly) =A(G(s)=G(r), s> (3.7.10)
y=r+1

which leads to

A(G(s—1)~G(r) _ 1

e
= — 1. .11
) = Goomoam OG0, s>rt (37.11)

In particular, we obtain
lim (ﬁ(s)—F(s)) = SO (3.7.12)

from ((3.3.16]). This expression shows the effect on the compound Poisson distribution

function of the probabilities that are neglected in the tail of g.

In the case where t = 2, (3.7.3)) is

LCe(s) = A (F2g(s) —T2g(r) — (s — T)G(T))
= AME[(X=s—1)4]-E[(X—=-r—=14]+(s—-r)(1-G(r))), s>r(3.7.13)

which leads to

AGs—)-G(r) _
m) = Go G(ml (T2g(s) — T2g(r) — (s —)G(r)), s> r+ 1. (3.7.14)

In this case, (3.7.9) is
Te(s) = A(IPg(s) — (s—r+1)Pg(r) + (s = r)IPg(r— 1)), s>r, (3.7.15)

68

which gives another expression for the evaluation of ns(s).

The approximation defined in (3.7.1)) does not correspond to the De Pril transform of a
probability function with initial value f(0) = f(0) = e~ because the right-hand side of
(3.7.12)) is negative. In order to obtain a De Pril transform of a probability function with

an exact initial value, [Dhaene and Sundt| (1997) proposed the approximation

)\yg(y>7 y:17"'7r_1
oy) = § M1-=G(r—-1), y=r Cor>1, (3.7.16)
0, y>r
which gives
0, y=1,...,r—1
P(y) = AM1—-G(r), y=r : (3.7.17)
—Ag(y), y>r

Such an approximation leads to an overestimation of I'' f for ¢t > 1 since we accumulate the
probabilities of the tail of g at r. Thus, the intervals (3.5.17)), (3.5.18)), (3.5.19), (3.5.20)
and (3.5.21)) hold for this approximation.

We can observe that (3.7.2)) and (3.7.17) are equal at each point except r. Therefore,
we only need to include this error into the expressions derived for the approximation
according to (3.7.1). Let d,, be the Kronecker delta defined by

1, ifa=b
by = 4 00T (3.7.18)
0, ifa#b

From (§3.2.2)), it follows that

° —b+t—1
IS, = E:wl@ﬁ:c;;:<3 Sfb :» b>0, s>b t>0,(3.7.19)

where T, , = §,. The inclusion of [¢(r)| into (3.7.3)) using (3.7.19) gives

I le(s) = AF$H1—G() + y(}:@fl], s >, (3.7.20)

from which we can derive an expression similar to (3.7.9) by following the same way.

In the case where t = 1, we have
e(s) = AN1+4+G(s)—2G(r)), s>r. (3.7.21)

69

An upper bound for the distance between the approximative and the exact probability

functions is given by
3 ’f(:z) . f(x)‘ < GO g, (3.7.22)
=0

This upper bound is greater than the one obtained in the approximation according to
(3.7.1) which is equal to the absolute value of the right-hand side of . From
(3.3.16[), we can verify that is the De Pril transform of a probability function
with an exact initial value since we have 2730:1 ¥ (y) = 0, which leads to

lim (ﬁ(s)—F(s)) . (3.7.23)

§—00

3.7.2 Error bounds for the individual risk model

We consider now an insurance policies portfolio. The policies are grouped in different
classes according to their probability that a claim occurs and the severity of this claim
given that it occurs. We assume that there are n;; policies in class (4, j) where the proba-
bility that a claim occursis g;, j = 1,...,b, and where the probability function of the claim
amount given it occurs is g;(x) for x > 1 and i = 1,..., a. Dhaene et al.| (2006]) compared
different methods for exact evaluations or approximations of the probability function of

the aggregate claims amount of such a portfolio (see also Dhaene and Vandebroek| (1995)).

The De Pril transform of the aggregate claims amount probability function is given by

ZZWPU Zznmyz kﬂ()gfk(y), y> 1, (3.7.24)

i=1 j=1 =1 j=1

where p; = 1 — q;, g;* is the k-fold convolution of g; and ¢;; is the De Pril transform
of the probability function of the claim amount of a policy in class (i,j) (see De Pril
(1989))). The De Pril transform ¢;; can be evaluated recursively using with initial
value f;;(0) =p;fori=1,...,aand j =1,...,b. If we assume that ¢; < %,j: 1,....,0,
(3.7.24)) converges to zero when y tends to infinity and an accurate approximation can be
obtained by truncating the De Pril transform. The truncation of from the point
r + 1 leads to

Y(y) =

De Pril| (1989)) and Dhaene and Sundt| (1998, Application 8D) developed error bounds for

k
an approximation such that the terms (%) in (3.7.24) are set to zero for k > z. It is

known under the name of De Pril’s z-th order approximation.

Theorem 6 Let w; = sup{z : g;(z) > 0} and r; = L}%J fori=1,...,a. If we approxi-

mate the De Pril transform of the aggregate claims amount probability function according
to we obtain
g ()" g (%)
gt) G5) ()
Pj —q; \Pj 45 — Py pj

ch v 1< pj)u (Z—j)] s> r. (3.7.26)

The substitution of this expression into gives an error bound for the approzimation

a b

Ft_le(s) = Z Z rnj—J 1

i=1 j=1

of the t-th order cumulative distribution function.

Proof. First, we prove (3.7.26|) for ¢ = 1. By following a similar way to the one in|Dhaene
et al.| (2006, p. 552) for each policy in class (i,j), i =1,...,a, and j =1,...,b, we get

€ij(s) = ZS:WU |—Z Z () 9" (y)

y=r+1 y=r+1k= r+1
1 , 4 .
< B {(q—]) — (q—j) } , oS> (3.7.27)
rit1p; —a; L\pj p;

E_J and |-| is the floor function. If we sum (3.7.27)) over all policies we obtain

where r; = L

< Z i nn+ n b - K‘]—J> . <q—3>} s> (3.7.28)

i=1 j=1 p; P;

which is (3.7.26)) with ¢t = 1. We assume now that (3.7.26)) holds for ¢ = v. Given that

ooy, = ol s> v, (3.7.29)

y=r+1

i (@)y 4 [(Q_a)_(q_ﬂ)] s> 7, (3.7.30)
yeri1 \Pi Pj —4q; L\Pj bj

71

and that

we arrive to

[e(s) = Z e

[A
M
g
M@
|
i

e (q_ﬂ) + (—qﬂ') (&)y
Pj —q; \Pj q; — Dy pj
v . q u q r
Yo (34) ()
—2 45 —Pj Dj

i v+1 s r

Al () (5 1601

Pj —q; \DPj q; — Dj Dj pj

- chtl » (q ") (Z—J)] s> (3.7.31)
J J J

Therefore, (3.7.26]) holds for t = v + 1 and the proof of (3.7.26)) is complete by induction

on t. Finally, it is sufficient to refer to Theorem [4] to complete the proof of Theorem [6] m

Remark 7: One can say that the error bound of Theorem [6] grows too much with respect

to t, but this is a bound for the absolute error of I't f and the values of I'' f also grow very

fast with respect to t.

Remark 8: An upper bound for the expression (3.7.26) is given by

b T S
thl < 1 n”] q—j — q—j . (3.7.32
e(s) < srlszrZ—l—lp]—qJ D Dj RS)

=1 j=1

It holds from (3.7.28)) and (3.7.29) since €(s) > €(y) for s > y. Notice that and
1’ hold for all 0 < ‘qj — %‘ < %, Jj =1,...,b. However, if at least one g; is greater
than %, a truncation may give very bad results because the De Pril transform may diverge.
If we assume ¢; < 3, j =1,...,b, we obtain from (3.7.28) that

b a T
: qj nij (4
€(s) < lime(s) < (—) . s>, (3.7.33)
§—00 ;pj—%;'f’ri-l Dj

which leads to

b a -
It le(s) < Ol 9 mij (q—J) . s> 3.7.34
(s) | Z > b ()

lpj—qj i1 ’I“Z‘—i—l

Expressions (3.7.26)), (3.7.32)) and (3.7.34)) are numerically close to each other if the values

of the ¢;’s are small or when s > 7.

72

Remark 9: It should be noted that the approximation defined in (3.7.25)) is more accurate

than the De Pril’s z-th order approximation where z = min ({r;}{_,) < r. Some terms

k
<%) with k£ > z are taken into account such that the first r values are exact. In the De
J

Pril’s z-th order approximation, only the first z values are exact.

Remark 10: If we set ¢g;(1) = 1 such that w; =1 fori=1,...,a, (3.7.26) becomes

t s t u T
—g g b g g
L) S 9i)) (3735
(pj_Qj) (p;) ; 1<qj—pj> (m)] (37.35)

for s > r. The substitution of (3.7.35)) into (3.4.2)) gives an error bound for the ¢-th order

cumulative distribution function of the number of claims for which White and Greville

(1959) derived an algorithm to calculate its probability function. In the limit s — oo and

for t = 1, we obtain the same error bound as |De Pril (1989) if ¢; < %, jg=1,...,b.

3.7.3 Error bounds for approximations of the individual life

model by compound Poisson distributions

In the actuarial literature, error bounds for approximations of the aggregate claims amount
distribution in the individual risk model by compound Poisson distributions have been
largely discussed (see e.g. |De Pril and Dhaene (1992)), (Gerber| (1984) and Hipp| (1985,
1986))). We consider here the individual life model, a special case of the individual risk
model described in Section [3.7.2] We assume that we have a portfolio of n life insurance

policies where the policy number ¢ has an amount at risk of b;, ¢ = 1,...,n, such that
gi(x) = Opp, x>1,0=1,...,n (3.7.36)
The De Pril transform of the claim amount of this policy is given by

pi(r) = b <_§_i

0, elsewhere

£
‘ = b,,QbZ,
) o 1,....n, (3.7.37)

~.
Il

where ¢; is the probability that a claim occurs for this policy and p; = 1 — ¢;. We derive
now error bounds considering two methods of approximating the aggregate claims amount

distribution of such a portfolio by a compound Poisson distribution.

In the first method, we approximate the aggregate claims amount by a compound Pois-

son such that \; = [lnp|, i = 1...,n, in order to satisfy f(0) = f(0) = e™*, where

73

A =" Xi. We have a compound Poisson distribution with parameters (), g) where g is

given by

1
= —0zp, [Inp;], > 1. 3.7.38
g(x) ;;Aﬁlmﬂ x ()
The probability function of the aggregate claims amount is underestimated since more
than one claim per policy may occur with compound Poisson distributions and since we
have f(0) = f(0). Thus, I'f is also underestimated and the intervals (3.5.9), (3.5.10)),
(3.5.11)), (3.5.15)) and (3.5.16|) hold for this approximation.

As a simplification we consider a portfolio which contains only the policy number ¢ to
derive expressions for this policy. The expressions for the portfolio with n policies will
follow by adding them over all policies since the De Pril transform of a convolution is
the sum of the De Pril transforms of the individual policies. The approximative De Pril

transform of the claim amount of policy number ¢ is given by

©i(x) = bidyp, Inpi|, x>1. (3.7.39)
From and , it follows that
|In p;| _Z_i-’ y="b
Vily) = % <_Z_)by’ . y=2b;3b,... - (3.7.40)
0, elsewhere
If we assume that ¢; < %, we have
IM@H=:mm+%, (3.7.41)

which leads to

- bi (qi\" 1 (g\"
Slijgloﬁ(s) = 1sz‘+z5ymodbi,o§(%) =1ﬂpi+ZE<q—)

| 2
mw—m0—2)2m<ila, (3.7.42)
pi Pi — i

where a mod b is the modulo operation. It follows that

n

e(s) = Zei(s), s> 1, (3.7.43)
i=1
and that

n 2

iiyﬂfW—f@ﬂ < [[-2% -1 (3.7.44)

from Corollary [5| In this case, we can also develop an expression for €(s) following the
same approach as in the previous application. It is obtained by (13.7.43]) with

bi (qi\" A"
61‘(8) = lnpi—l—z(ﬁ,modbi,og(%) §lnpi+2(q—)

. A L]
- 1—(2)b L os>1,i=1,...,n. (3.7.45)

Il
=3
=
|

An expression for I'""'¢(s) can be derived using the same way as in Theorem |§| such
that we are able to determine an error bound for the ¢-th order cumulative distribution

function using Theorem

The second approximation concerns the common approximation where \; = ¢; such that
the expected value of the approximation is exact. The condition f(0) = f(0) is no
more fulfilled. However, we are able to determine a bound for the distance between
the approximative and the exact probability functions from . In this case, the

approximative De Pril transform of the claim amount of policy number i is given by
¢i(z) = bibppqi, =1 (3.7.46)

From (3.7.37)) and (3.7.46)), it follows that

4% — }.

q’L pi’ y — bZ

Yily) = { b(—w)" = 2p,3b,... - (3.7.47)
Y Di ’ A
0, elsewhere

If we assume that ¢; < %, 1 =1,...,n, we have
4i

i (i) = il (3.7.48)

which leads to

Y

: > b ((q\ b < 1 g\
lim ¢(s) = —q + Oy mod b; —(_) = —q + _<_)
00 () yz_; Y db,Oy D q kzz;k‘ 5
= —¢—1In (1 - @> : (3.7.49)
Di
Since we have
‘mf(()) - 1nf(0)‘ = —¢—Inp;, (3.7.50)

75

we obtain from (3.3.24)) and (3.7.43) that

i Fa) - 1) < expn{_zizjlqj} — 1 (3.7.51)

H(pi - %)

i=1
This bound is close to the one derived in |Gerber| (1984)), but it is always greater than it.

Finally, the expected value of this approximation is exact since

d el = > aw). (3.7.52)

3.8 Numerical applications

In this section we implement numerically the results obtained in the applications of Sec-

tions[3.7.2/and [3.7.3] We consider the example of |Gerber| (1979)) where we have a portfolio

of life insurance policies that are grouped according to Table [3.1] and where the claim

Table 3.1: Number of policies in each class for the example of |Gerber| (1979)

gj |[t=1]i=2]1=3|i=4]|1=35
0.03 2 3
0.04 - 1
0.05 - 2
0.06 - 2

=~ W N | = .

2
2
2
2

1
2
4
2

[I NOJ e

amount distribution is g;(x) = 0,,; forzx > 1 and i =1,...,5.

First, we consider the application of Section In this case, the numerical values
of (3.7.26)), (3.7.32) and (3.7.34) are extremely close to each other since the values of

the g;’s are small. Table contains exact values, approximations and error bounds

for the t-th order cumulative distribution function for two points and for two truncation
points. Notice that error bounds in the case where s = 97 (Tables and are also
error bounds for the distance between the exact and the approximative (¢ — 1)-th order
cumulative distribution functions since 97 is the maximum point of the support of the

aggregate claims amount distribution of this portfolio.

We consider now the application of Section |3.7.3] For this application, the portfolio

contains 31 policies with parameters ¢; and b; =i, ¢ = 1,...,31, given in Table [3.1] For

76

Table 3.2: Approximations of I f(s) by setting ¢(y) for y > r

(a) r=>5and s =20

(b) r=12 and s = 20

t | TUF(20) | TTF(20) | T%C(20) | mi(20) | | | T*f(20) | T7F(20) | TUC(20) | mi(20)
11 0.99890 | 1.02402 | 0.02511 | 0.02935 1] 0.99890 | 0.99878 | -0.000128 | 0.000236
2 116.5116 | 16.7483 | 0.2368 | 0.4403 21 16.5116 | 16.5111 | -0.000496 | 0.001890
3| 152.193 | 1563.594 | 1.400 3.522 31 152.193 | 152.192 | -0.001447 | 0.008503
(¢)r=5and s =97 (d) r=12 and s = 97
t | TUF(97) | THFOT) | TUG(9T) | mu(97) | | # | TUF(97) | TTF(97) | T*¢(97) | mi(97)
1 1 1.0261 | 0.02613 | 0.02935 1 1 0.9998 | -0.000187 | 0.000236
21 93.51 95.757 | 2.2468 | 2.7003 2| 93.51 93.495 | -0.01473 | 0.02008
3| 4426.47 | 4524.41 | 97.948 | 125.566 3| 4426.47 | 4425.88 | -0.5888 0.8633

the approximation)\; = [In p;|, the bound for the distance between the exact and
the approximative probability functions is 0.07724 while the exact distance is 0.02449.
For the common approximation \; = ¢;, the bound for the distance between the
exact and the approximative probability functions is 0.15457 while the exact distance is
0.02629. The bound developed in |Gerber (1984) is equal to 0.134 in the latter case.

3.9 Conclusion

In the recursive evaluation of ¢-th order cumulative distribution functions, a truncation
of the De Pril transform may provide a considerable gain of time. Moreover, it gives
more information about the distribution that may be useful, e.g., in relation to stop-
loss contracts. When the De Pril transform converges to zero this approximation has a
negligible effect on the accuracy of the evaluation. Moreover, a bound for the absolute
error of the ¢-th order cumulative distribution function can be determined before the
evaluation for any approximation of the De Pril transform as well as a bound for the
distance between the exact values and the approximations of such functions. Both bounds
hold for any kind of approximation if we are given the exact and approximative De Pril

transforms.

7

78

Chapter 4

On the stability of recursive
evaluations of t-th order cumulative

distribution functions

4.1 Introduction

The aggregate claims amount of a portfolio of insurance policies can be modelled according
to the so-called individual risk model. This model can be generalized to determine the
distribution of a sum of independent random variables. Several exact or approximative
recursive evaluations for its probability function are discussed in the actuarial literature
(see e.g. De Prill (1986b)|, 1988, [1989), Dhaene and Vandebroek| (1995), Hipp| (1985}, [1986),
Kornya (1983) and [Waldmann| (1994)). These methods are reviewed in [Sundt (2002)
and [Sundt and Vernic| (2009). In comparison to an evaluation involving convolutions,
recursions are good strategies to save time since they reduce the number of operations.
Dhaene et al.| (2006)) and Dhaene and Vandebroek (1995) made some comparisons between
the different methods of evaluation. It results that the Dhaene-Vandebroek algorithm is

in many cases the most efficient among the exact recursive evaluations.

In the actuarial literature, recursions for the ¢-th order cumulative distribution function
of a random variable were introduced by Dhaene et al.| (1999). This function is useful to
calculate some quantities like stop-loss premiums. Its recursive evaluation is based on the
De Pril transform of its probability function. The recursive evaluation for convolutions
of discrete uniform distributions and compound Poisson distributions are considered in

Sundt| (1999b)) and |Antzoulakos and Chadjiconstantinidis (2004)), respectively. The lat-

79

ter paper also discusses recursive formulas for the ¢-th order cumulative tail function of
compound Poisson distributions. Their results are improved in |(Chadjiconstantinidis and
Pitselis| (2009).

The De Pril transform is a function derived in |De Prill (1989, p. 11) which leads to a
two-stage recursive evaluation scheme under the individual risk model. This function was
named by Sundt| (1995) who expressed it for some special cases. The usefulness of De
Pril transforms appears if we want to evaluate the probability function of a convolution
since the De Pril transform of a convolution of functions is the sum of the De Pril trans-
forms of these functions. Further results on De Pril transforms can be found in [Sundt
(1998) and |Sundt and Ekumaj (1999). An expression for the exact error of the ¢-th order
cumulative distribution function resulting from an evaluation using an approximative De
Pril transform is derived in Chapter [3] as well as an upper bound for this error. A more
efficient recursive evaluation is also discussed that leads to accurate results when the De
Pril transform converges to zero. Some additional results on error bounds in relation to
De Pril transform approximations can be found in De Pril (1989)), |Dhaene and De Pril
(1994), |Dhaene and Sundt| (1997, [1998)), and Sundt et al. (1998)).

Numerical problems may occur with recursive evaluations if we use the floating-point
representation of numbers. Such a representation generates round-off errors whose prop-
agation may lead to meaningless results. Oliver| (1967)) proposed a classification of error
propagation based on the consideration of relative errors. In the actuarial literature,
Panjer and Wang| (1993)) discussed the stability against round-off errors of the recursive
evaluations developed in [Panjer| (1981) for the probability function of a family of com-
pound distributions. The stability of the evaluations using recursive formulas discussed in
Sundt| (1992) is studied in Panjer and Wang| (1995)). An efficient method for the recursive
evaluation of the probability function of a compound binomial distribution is discussed
in Chapter [2l It consists in using an arbitrary-precision arithmetic library that allows
the representation of real numbers by floating-point numbers with different precisions
in a computer program. The precision is only limited by the available memory of the

computer.

In Section we present some exact evaluations and approximations of the t-th order
cumulative distribution function and define the individual risk model with its associated
recursive formulas. We extend the Dhaene-Vandebroek algorithm to the recursive eval-
uation of the t-th order cumulative distribution function in Section {.3] In Section [4.4]
we study the convergence of De Pril transforms and consider the case of some compound

distributions. The stability against round-off errors of recursive evaluations of the t-th

80

order cumulative distribution function is studied in Section [4.5] where we find that the
convergence or divergence rate of the De Pril transform is crucial to determine the ef-

fect of round-off errors. Finally, in Section we illustrate numerically the results of
Section

In the sequel, we assume that the functions are defined on the nonnegative integers. The
notations @ > b and a > b are used to simplify the facts that a = b,0+ 1,0+ 2,... and
a=b+1,b+2, ..., respectively, when a is used as a function argument. We also assume
that ZZZG h(k) = 0 whenever b < a.

4.2 Definitions and review

4.2.1 Some exact evaluations and approximations of ¢-th order

cumulative distribution functions

The t-th order cumulative operator I'* of a function h is defined by

T'h(z) = > T7'h(y), =20, t>1, (4.2.1)

y=0
with T9h(z) = h(z). When h is a probability function of a random variable X, I'"'h is
the t-th order cumulative distribution function of X. Some frequently used quantities like

stop-loss transforms can be computed from some order of this function.

In the actuarial literature, recursive formulas for exact evaluations and approximations
were developed for ¢-th order cumulative distribution functions. [Dhaene et al.| (1999)

showed that this function can be evaluated by

) = - () +OT s —y), 521,120 (1.22)

where ¢ is the De Pril transform of f and with initial value I' f(0) = f(0). The De Pril

transform is determined from the probability function by

ely) = ﬁ <yf(y) - is@(w)f(y - x)) , Y=L (4.2.3)

r=1

and defines uniquely a probability function given a value of it (e.g. f(0)). In Chapter 3]

we showed that a lot of computing time can be saved by truncating the De Pril transform

81

from a given point such that

=1,...
oly) = oy), v SR ,r>1, (4.2.4)
0, y>r

when ¢(y) converges to zero in the limit y — oco. It is equivalent to approximating I f(s)

by ﬁ?(s) using the embedded recursion

Tif(s) = % [t [t f(s —1) + ;wwﬁ?(s —y)|, s=1,t20, (425)
where a A b = min(a,b) and
[H+f(s) = DHIf(s—1)+Tif(s), s>1,¢t>0, (4.2.6)

with initial values l:zu/f(O) = f(0), u = t,t + 1. Expressions for the exact error of ﬁ?(s)
and a bound for its absolute value are derived in Chapter [3| for any De Pril transform
approximation. Approximations of the form of appear implicitly when floating-
point numbers are used in evaluations. We explain why this is the case and discuss the

propagation of round-off errors for such recursive evaluations in Section [4.5

4.2.2 The individual risk model

The individual risk model is generally used to model the aggregate claims amount of a
portfolio of insurance policies during a given period of time. The insurance policies are
assumed to be mutually independent and grouped in different classes according to their
probability that a claim occurs and their claim severity given that it occurs. We assume

that there are n;; policies in class (i, j) where the probability that a claim occurs is g,

j =1,...,b, and the probability function of the claim amount given that it occurs is g;(x)
for x > 1 and ¢ = 1,...,a. The aggregate claims amount random variable S is modelled
as
a b ni
S =Y Lk Biji, (4.2.7)
i=1 j=1 k=1

where I;;;, and B;jj are the indicator if a claim occurs and the conditional claim amount
random variable for the policy number k in class (4, j), respectively. Notice that I;;;B;jp
follows a compound Bernouilli distribution and that 222]1 I;j1 Biji. follows a compound

binomial distribution.

82

Since the De Pril transform of a convolution of probability functions is the sum of the
De Pril transforms of these probability functions, the t-th order cumulative distribution

function can be evaluated by

a b s
1
I = — [t > > 2.
f(s) . tI' " f(s —l—ZZn” ©ij(y —y)|, s>1,t>0,(4.2.8)
=1 j=1 y=1
where ¢;; is the De Pril transform of ;4 B;;,, k = 1,...,n,;; and
I'*f(s) = T f(s—1)+Tf(s), s>1,t>0. (4.2.9)
The initial values of (4.2.8) and (4.2.9)) are
T f(0 HH P, w=tt+1, (4.2.10)

=1 j5=1

where p; = 1 — g;. [De Pril (1989) showed that ¢;; can be determined either by

wij(y) = . (ygz Zs%)>, y > 1, (4.2.11)

or by

Yy k+1 N\F
eii(y) =y (_1]2 (q—j> gt W), y=>1, (4.2.12)

where g% denotes the k-fold convolution of g;.

We discuss now an important property of the individual risk model which is that we are
able to know the exact value of I f (), t > 0, where ¢ is the maximum value of the support
of S. This result which is used later to measure the accuracy of a recursive evaluation

using the floating-point representation is given in the following theorem.

Theorem 7 Let & = sup{s: f(s) > 0} which is determined by

a b

i=1 j=1
where w; = sup{x : g;(x) > 0}. We have
a b s
I T gg:(wl™ t=0
e = { S | (42.14)
1

(t—1)! |:(£_S+1)t_71:|7 t>1
where B [Xﬂ is the k-th rising factorial moment with E [Xﬁ] = 1.

83

Proof. For t = 0, the event S = £ takes place when a claim of amount w; occurs for
each policy. Thus, (4.2.14) holds because the claim amounts of policies are assumed to
be mutually independent.

From [Antzoulakos and Chadjiconstantinidis (2004, p. 173), we know that

If(s) = (—1)tAtf(s)+tZ_:(1) ¢t-i—t [jj], s§>0,t>0, (4.2.15)

b
where E[X*%] is the k-th falling factorial moment, Cj = (a i) and A’ is the ¢-th order
a
tail operator, which is defined by

> ATh(y), x>0, t>1, (4.2.16)

y=x+1
with A°h(z) = h(x). Since f(s) = 0 for s > &, we have A'f(£) = 0 for ¢t > 1. Tt follows
that

t—1
Z]Ctjlcs]

) = Z o] = E = E[(-1)"" C]
— B[CCY] = ﬁ]ﬂ[(& ~ S+ 1)“} L t>1, (4.2.17)

and the proof of Theorem [7]is complete. m

4.3 Dhaene-Vandebroek algorithm for ¢-th order cu-

mulative distribution functions

The Dhaene-Vandebroek algorithm derived in \Dhaene and Vandebroek! (1995) is another
exact recursive evaluation for the probability function of S under the individual risk model.
This algorithm is in many cases more efficient than the evaluation using the embedded
recursion with and ¢ = 0 (see Dhaene et al| (2006) and Dhaene and
Vandebroek| (1995))). In the following theorem we extend this algorithm to the recursive

evaluation of t-th order cumulative distribution functions.

Theorem 8 The t-th order cumulative distribution function of the aggregate claims a-

mount under the individual risk model is obtained by

1
I'f(s) = - (T f (s —I—ZZn”FtvU L os>1,t>0, (431)

=1 j=1

IThis is not the common notation for the binomial coefficient but our definition is used here in order

to simplify expressions

84

where T f(s — 1) is given by and the coefficients T*v;;(s) are determined by

Thoy(s) = 4 Z gi(k) (KT (s — k) — Ttuy(s — k). (4.3.2)

S

The initial values for this algorithm are given by (4.2.10) and T'"v;;(0) =0, t > 0.

Proof. For t = 0, Theorem [§| is the Dhaene-Vandebroek algorithm.
We prove now recurrence equations (4.3.1) and (4.3.2) by induction on t. First, let us
assume that (4.3.2)) holds for t = u, we have

[o(s) = zs:f‘“v,j Z 4 Zg, (kT"f(x — k) — T"vy(z — k))

1 Pi k=1
@ " ~
J k=1 =k r=k
= qj Zgl /{;Fqulf(S — k) - FquIUZ'j(S - k)) . (433>
pj k=1

This proves that (4.3.2]) holds for ¢ = u + 1. The multiplication by s on both sides of

[E31) gives

b
sT'f(s) = tTf(s— 1)+ > > nyThuy(s), s>1, >0 (4.3.4)
j=1

i=1

Moreover, since I"h(y) = T h(y) — T 'h(y — 1) for y > 1 and ¢ > 0, we obtain using

summation by parts that
ZyFth(y) = sI'"R(s) = T"h(s —1), s>1,t>0. (4.3.5)

Let us now assume that (4.3.4]) holds for t = u. It follows successively from (4.3.5)) and

{39 that
Sru—i-lf(s) _ Fu+2f +Zyru

a

b
= I f(s—1) +Z ul" f(y — 1) + ZnUF i (y
y=1 i=1 j=1

a

b
= (u+ DI (s =1+ > ng D oy(s) (4.3.6)
7=1

=1

This proves that (4.3.4) holds for ¢ = u + 1. The equation (4.3.1) follows by dividing
(4.3.6) by s on both sides, which completes the proof of Theorem [, =

85

The comparison between Theorem [§ and the recursive evaluation using with
leads to the same conclusions as comparisons between the corresponding eval-
uations of the probability function that are made in |Dhaene et al.| (2006) and Dhaene and
Vandebroek| (1995)). Similarly to we also evaluate the (¢ + 1)-th order cumulative
distribution function, which gives more information about the distribution. Applications
involving both orders may be developed, two of them are discussed in Chapter[3] We study
the stability against round-off errors in the implementation of Theorem [§]in Section [4.5]

4.4 Convergence of De Pril transforms

4.4.1 General case

Let us now discuss the cases where the approximation by a truncation of the De Pril
transform may be implemented or when it is involved in computations using the floating-
point representation. The results derived in this section are important for Section 4.5
where we discuss the stability against round-off errors of the recursive evaluation of ¢-th

order cumulative distribution functions.

Theorem 9 Let h(z), x = 0,1,...,w, be a probability function with h(0) > 0 and
h(w) > 0. The De Pril transform of h is given by

ply) = =D M, y=1, (4.4.1)
k=1
where Ay, ..., A\, are the roots of the polynomial

i h(w — z)A*. (4.4.2)

Proof. The De Pril transform of a probability function h is the solution of (4.2.3)).

However, it is also the solution of the w-th order recurrence equation
1 w
oW = 5w > oy —2)h(z), y>w, (4.4.3)
=1

with initial values ¢(1),..., p(w) that are determined by the first w steps of (4.2.3)). The
characteristic polynomial of (4.4.3) is

A+ ; % A (4.4.4)

86

which has the same roots as (4.4.2). We assume that (4.4.4)) has the roots p1, ..., uy,
| < w, with multiplicities ay, ..., o, respectively. The solution of (4.4.3) is given by

akl

I
Z,uz Z Cru ", vy >uw, (4.4.5)
k=1

where the w coefficients Cy,’s are uniquely determined from w initial values. From New-
ton’s identities, we are able to determine recursively s, = | r r¥ where 1, i =1,...,n,
are the roots of the polynomial 2" + a,_12" ' 4+ -- - + a1z + a¢ by

k—1
S, = —kan,_p — Z Qn—jSk—j, k=1,...,n. (4.4.6)

=1

Note the similarity of (4.4.6) with (4.2.3]). Thus, by substituting n = w and a,_; = %

into (4.4.6) we obtain that ¢(y) = —s,, y = 1,...,w. Therefore, using the initial values

of (4.4.3) we find that

—ap, u=0
Cru = A M Ck=1,...,1 (4.4.7)
0, otherwise

It follows that the De Pril transform of & is given by (4.4.1) where A,..., A, are the roots
of (4.4.4) and the proof of Theorem [J] is complete. m

Corollary 10 Let h(zx), x = 0,1,...,w, be a probability function with h(0) > 0 and
h(w) > 0. The De Pril transform of h converges to zero in absolute value if the roots of
satisfy | M| <1, k =1,...,w, where |z| denotes the complex modulus of .

Proof. The De Pril transform of a probability function is given by Theorem [J] but the

roots of (4.4.2) may be complex. Using the polar representation of complex numbers in

[ELT), we get

p(y) = =) |MlY (cos(y i) +isin(y b)), y > 1, (4.4.8)

where 6y is the complex argument of \;. Therefore, the De Pril transform converges to

zero in absolute value if [A\y| < 1fork=1,...,w. =

Corollary 11 The De Pril transform of a convolution of probability functions converges

to zero if the De Pril transform of each probability function satisfies Corollary[10}

87

Proof. The proof is immediate since the De Pril transform of a convolution of probability
functions is the sum of the De Pril transforms of the probability functions and that the
sum of convergent sequences converges in absolute value to the sum of their limits which

are here equal to zero. m

Notice that if we use Corollary [10]in order to determine if the approximation of the ¢-th
order cumulative distribution function obtained by truncating the De Pril transform is
effective, we have to know its associated probability function. However, from Corollary [I]]
we are able to know if such an approximation for a convolution is appropriate before
evaluating the De Pril transforms. We are also able to determine in advance if the De
Pril transform of a compound distribution is convergent. This point is discussed in the

next subsection.

4.4.2 Convergence of De Pril transforms of some compound dis-

tributions

Compound distributions are frequently used to model the aggregate claims amount dis-
tribution. Such a model is known under the name of collective risk model in the actuarial

literature. The aggregate claims amount random variable is defined as
S = Xi+ X+ + Xy, (4.4.9)

where N and X; represent the number of claims and the amount of the i-th claim, re-
spectively. The X;’s and N are assumed to be mutually independent. We assume that

the X;’s are identically distributed with common probability function g(z), z =1,..., w.

Corollary [10] holds for compound Poisson and compound negative binomial distributions.
These results follow from Theorem 6.1 in [Dhaene and Sundt| (1998) since the De Pril
transforms of the Poisson and the negative binomial distributions are bounded and con-
vergent. For compound Poisson distributions, we even have ¢(y) = 0 for y > w (see e.g.
Sundt| (1995, p. 25)). Corollary [10[does not hold for all compound binomial distributions,
the convergence of their De Pril transforms depends on the shape of ¢ and on the param-
eters of the binomial distribution. Sundt and Ekuma| (1999, p. 183) developed recursive
forms for the De Pril transforms of compound negative binomial and compound binomial
distributions that we use now to express these De Pril transforms as sums of polynomial

roots raised to a power.

First, we consider compound negative binomial distributions. Let N be a negative bino-

88

mial distribution with parameters » > 0 and 0 < ¢ < 1 such that
-1
Pr[N =n] = (7’*”)(1—q)”qn, n >0, (4.4.10)
n

Sundt and Ekumal (1999, p. 183) showed that the De Pril transform of a compound
negative binomial probability function can be evaluated by

wA(y—1)
oy) = qryg(y) +q g(r)ply —m), y=>1 (4.4.11)

8
Il
—

This De Pril transform is the solution of
= qu —x), yY>w, (4.4.12)

with initial values ¢(1), ..., ¢(w) determined by (4.4.11)). The corresponding characteris-

tic polynomial is

A —q Z g(x) A\, (4.4.13)
rx=1

By substituting n = w and a,,—; = —qg(j) into (4.4.6), and multiplying it by r, we obtain

from (4.4.11]) that
ry N, y>1, (4.4.14)
k=1

where the A\;’s are the roots of (4.4.13)). Moreover, from Descartes’ rule of signs, this
polynomial has exactly one positive real root, let it be A\;. Furthermore, \; < 1 because
> 1 qg9(x) = q < 1. Since |Cauchy (1829, p. 122), we know that

M <N, k=20, (4.4.15)

which proves that the De Pril transform of a compound negative binomial distribution

always converges to zero.

We consider now the case of compound binomial distributions. Let N be a binomial

distribution with parameters m and 0 < ¢ < 1 such that
m _
Pr[N=n] = ()q”pm " n=0,1,...,m, (4.4.16)
n

where p = 1 —q and m is a positive integer. Sundt and Ekumal (1999] p. 183) showed that

the De Pril transform of a compound binomial probability function can be evaluated by

mqyg(y)
oly) =

wA(y-
Z —xz), y>1. (4.4.17)

r=1

a
p

89

This De Pril transform is the solution of
q w
oly) = — S g@)ely —x), y>w, (4.4.18)
rx=1

with initial values ¢(1),...,p(w) determined by (4.4.17). The characteristic polynomial
of (4.4.18)) is

A+ g 3 gla)ae. (4.4.19)
x=1

By substituting n = w and a,,_; = %g(j) into 1) and multiplying it by —m we obtain
from (4.4.17)) that

ply) = —md> N, y>1, (4.4.20)
k=1

where the \;’s are the roots of (4.4.19)) that does not depend on m. From Cauchy| (1829,
p. 122), we have that (4.4.20) converges to zero when]% < 1, which is equivalent to g < %

However, in this case the corresponding upper bound of (4.4.15)) is not a root of (4.4.19))

since it has no positive root. This means that (4.4.20) also converges for some ¢ > %
depending on g. The following corollary shows this property for the case where w = 2

and m = 1.

Corollary 12 For an individual claim amount random variable with a probability that a
claim occurs of q and a conditional claim amount distribution satisfying g(1) + g(2) = 1,

the De Pril transform of its probability function converges to zero if

1 1
2—g(1)" 29(1)

¢ < min () . 0<g(1) <1 (4.4.21)

Proof. In this case, the claim amount distribution follows a compound Bernouilli distri-

bution with parameter ¢ and conditional claim amount probability function g such that

g(2) =1 —g(1). The roots of (4.4.19)) are

_ —a9() = V@91’ —dgpg(2) o —a9(1) + V@9(1)’ — 4gpg(2)
2p 2 2p

A

. (4.4.22)

?2(1_;“(’8))3, both roots are complex with |A\;| = |A\2|. Therefore, we have |[\| > |\

for any (g(1),q) in the unit square and in order to determine if the De Pril transform

If ¢ <

converges it is sufficient to find for which values of (¢(1),q) the inequality |A;| < 1 holds.

In the case of complex roots, one can show that |A\;| < 1 is satisfied over the range

90

q < (2—g(1))"". Together with the condition of having complex roots, the range of

convergence is

- 1 4(0-4g(1)
¢ < min (2 9 2 g (1))2) ., 0<g9(1) <1 (4.4.23)

In the case of real roots, one can show that |\| < 1 holds if ¢ < 2-(2+ ¢(1))”" and

q< (29(1))71. Together with the condition of having real roots, the range of convergence

becomes

4(1-g(1)) 1 2
22y <4 <gay 3 <g(l) <L (4.4.24)

The union of (4.4.23) and (4.4.24]) leads to (4.4.21) and the proof is complete. Figure

shows the different functions encountered above and the area where the De Pril transform

is convergent in this particular case. m

41-g(1)) _. 1 -1 . 2

‘_ (2-g(1))? 2—g() ~2g(1) T 2+g()

Figure 4.1: Area where the De Pril transform is convergent in the case of Corollary

From Corollary and (4.4.20)), it follows that the De Pril transform of the aggregate

claims amount under the individual model is given by
a b w;
py) = =D D nhy, y=1, (4.4.25)
i=1 j=1 k=1
where \jji, K =1,...,w;, are the roots of
PN+ g5 Y gilm) AT, (4.4.26)
r=1

91

fort=1,...,aand 5 = 1,...,b. Therefore, (4.4.25) converges to zero if the modulus of

every root is smaller than one.

Remark 11: If a = 1 and w; = 1 such that ¢g(1) = 1, the roots of (4.4.26)) are \i;1 = —
Jj=1,...,b. Moreover, if n;; =1, 7 =1,...,b, a recursive evaluation of the probability

function equivalent to (4.2.2)) with (4.4.25) and ¢t = 0 is given by formulas (7) and (8) of
White and Greville (1959).

4.5 Stability against round-off errors

4.5.1 Some definitions and general results

In this section, we study the propagation of round-off errors when floating-point numbers
are used for the evaluation of I' f according to the recursive formulas considered above.
The use of floating-point numbers is highly recommended to save time when a large
number of computations have to be done. A floating-point number is generally represented
as £505152 . .. 5,—1-3° according to a base 3 > 2 and a precision p. The sequence of integers
505152 ...5,—1 is called the significand or mantissa and the integer e is the exponent. The

floating-point number +s¢s152...5,-1 - 3° represents the number

p—1

+£3°) 5,87, s;€{0,1,...,8-1}. (4.5.1)

=0
We denote by e the maximal relative error of the floating-point representation z of a real
number z if the computer rounds to the nearest floating-point number. It is defined by

1—p
< B
- 2

T —T

—e. (4.5.2)

X

The propagation of such round-off errors in a recursive evaluation may grow without
bound and may lead to meaningless values. The relative error is used as a measure of
accuracy. The accuracy is defined to be the number of decimal digits that are exact
in an evaluation. We refer to [Oliver| (1967)) for a classification of stability of recursive
evaluations. [Panjer and Wang| (1993)) showed that the evaluation of a recursion of the

form
h(s) = b(s)+ > ay(s)h(s —y), s>1, (4.5.3)
y=1
is strongly stable if b(s), the coefficients a,(s) and the initial values are nonnegative.

92

Dhaene et al.| (1999) wrote that for any random variable with probability function h, there
exists an order u such that the recursive evaluation of I''h(2) using (4.2.2)) is strongly stable
for t > u. Due to |Panjer and Wang (1993)), a sufficient condition for u is that

utoly) > 0, y=1,2,...,z (4.5.4)

On the one hand, if ¢ converges to zero but has negative values then v may be quite small.
Its value will depend on the first values of the De Pril transform. On the other hand,
if ¢ diverges and has negative values, the order u will be extremely large and close to
©(z). However, if we desire to evaluate I'""h(z) with ¢ < u the first digits of the significand
of T"h(2) cancel out by taking the finite differences to obtain that order because I'"h(z)
is smaller than I'A(z). The evaluation obtained for I'*h(z) is not better in terms of
accuracy than the one resulting from a recursive evaluation for the order ¢, which avoids
the computation of finite differences. Notice that for compound Poisson and compound
negative binomial distributions holds for © = 0 since their De Pril transforms are
nonnegative. It follows that the recursive evaluation of I'*h is stable for any positive order.

Panjer and Wang (1993) showed this result for a recursive evaluation with ¢ = 0.

Panjer and Wang| (1993)) defined the notions of dominant and subordinate solutions of a
recurrence equation and showed that the evaluation of a dominant solution is stable while
evaluating a subordinate solution is unstable (see also Chapter . Under the individual

risk model, the recurrence equation (4.2.8) with (4.2.11]) or (4.2.12) and the system of
recurrence equations of Theorem |8 have the same set of solutions since they are built

from the same power series (see Dhaene et al. (2006, pp. 546-547)). Therefore, their
solutions with their respective initial values are equal and the propagation of round-off
errors behaves similarly in both cases. The same results are obtained by considering
the recursion of the form of under the individual risk model. Thus, if we know
that one of these recursive evaluations is unstable then the other ones are unstable and
conversely. In general the evaluation according to Theorem [§| produces smaller relative
errors but not significantly. Moreover, as pointed out by Dhaene and Vandebroek| (1995),
this algorithm needs to store a smaller number of values at each evaluation stage of the
recursion. This difference is reduced if the De Pril transform can be truncated according to
(4.2.4]). For all these reasons we conclude that the evaluation of the ¢-th order cumulative
distribution function according to Theorem || is the most efficient amongst the recursions
considered in this paper. Since it is easier to study the propagation of round-off errors
for recurrence equations and than for Theorem , we focus on these two

recursive evaluations and the results will also hold for Theorem

93

4.5.2 Stability with a convergent De Pril transform

When floating-point numbers are used in the evaluation of (4.2.2)) or (4.2.5)), the De Pril

transform cannot be represented exactly and we implicitly have an approximative De Pril
transform. An expression for the error of f‘?f resulting from a recursive evaluation using
any De Pril transform approximation @ is developed in Chapter [3] This expression is

s

Yy
[7f(s) - ST (s —y), 520,120, (455)

y=1 n=1

where we assume f\t?(O) =T"f(0), t > 0, and ® is defined by

0, rz=0

T ’ —

Since I't f is a nondecreasing function for ¢ > 1, an upper bound for the relative error of

ﬁ?(s) follows from 1' It is

LU (s) —T'f(s)
LU f(s)

S Yy

< SN |<exp{2|w }

y=1 n=1
< exp{zhp }—1, s>0,t>1. (4.5.7)
y=1

However, this error bound holds only if there is not any round-off errors propagation during

the recursive evaluation for example by setting an “infinite” precision to the variables

representing the t-th order cumulative distribution function.

If the computer uses a precision of p to represent the De Pril transform, we obtain from

that
le(y) — o) < ele(y)], y=>1, (4.5.8)

where ¢ denotes the floating-point representation of . If we evaluate the t-th order
cumulative distribution function, whose variables are assumed to be represented using an

“infinite” precision, it follows that

T7f(s) = T f(s) = [o(y)
Tt f(s) S exp {5Z T} -1, s>0,t>1 (4.5.9)

From (4.4.8) we have

)l < DI w>1, (4.5.10)

k

94

where the \;’s are the roots of the characteristic polynomial of . Under the indi-
vidual risk model, we can see from that the sum of contains w; roots per
policy. Assuming that Corollary [10] holds for this De Pril transform, the substitution of
(4.5.10) into (4.5.9) leads to

Tt f(s) — Tt f(s - Arl” —e
f(r)tf(s)f() fexp{?};u }_1:13(1_|Ak|) Sl (4541)

for s > 0 and ¢t > 1. Using the first order multivariate Taylor series expansion we get

[Ta-mh— R:1+5§:Mk (4.5.12)

k

It follows that
Tif(s) = T'f(
I'f(s)

which shows that the recursive evaluation of I'! f for ¢ > 1 obtained from the representation

<) N, s>0, t>1. 4.5.13
Z |

of a convergent De Pril transform using a reasonable precision is accurate even though

t + ¢(y) is negative for some y.

The idea of truncating a convergent De Pril transform comes from looking at .
When floating-point numbers are used for the evaluation of I'' f using , the value
of o(y) +t is represented by ¢ when |¢(y)| < te. We denote by r; the maximal point for
which the term ¢(y) + t is not represented only by ¢, it is determined by

re = sup{y > 1:|p(y)| >te}, t>1. (4.5.14)

This is equivalent to setting ¢(y) = 0 for y > ;. In this case it is more efficient to evaluate

I' f using where r is given by (4.5.14) instead of (4.2.2) -) because time can be saved

without losmg accuracy. For such an evaluatlon7) becomes

Tf(s) = T'f(s) el o le@l |
T f(s) < exp {5 yz:; y + y;ﬂ y } 1
> |)\k|y 1—¢ > y
X Akl” 0 —
< ep{es;;) +Tt+1y§i-1;’k‘} 1

_ 1—€Z|)\k|n+1 H(1_|)\ |)—a_1 (4515>
- re+ 1= 1=yl [L g ’ e

for s > 0 and t > 1. Using the (r; + 1)-th order multivariate Taylor series expansion, we

obtain
1—8z|>\k|7't+1 1+1—5Z’>\ |7't+1 1+ te t>1(4516)
ex ~ ~ , = 1,(4.0.
P Tt+1 1—‘)\k’ Tt—i—l A k Tt—i_l

95

since 32, || & te from (4.5.14). The substitution of (4.5.12) and (4.5.16) into (4.5.15)

leads to

1—e¢ ’)\k|7“z+1
Me]) F -1 A t>1.(4.5.17
R E b 1 (IR T SRS P
Therefore, the recursive evaluation using (4.2.5)) with r given by (4.5.14)) is accurate for

t > 1 if we use a reasonable precision and if the De Pril transform converges to zero.

Until now we considered only the effect of round-off errors coming from the representation
of ¢ by floating-point numbers. However, it is important to consider also the propagation
of such errors as we go along with the recursive evaluation of I'"! f using a “finite” precision
p. The recursions) and (4.2.5) - are both of the form of (4.5.3 -) therefore the propaga-
tion of round-off errors as we go along with these recursions is similar and does not create
numerical problems. Such problems may arise with when ¢(y) is negative for some
y’s, which is the case under the individual risk model. They happen when a difference
between two numbers is significantly smaller in absolute value than both numbers, which
means that the first digits of the significands of both numbers vanish and the exact signif-
icand of the difference has a smaller precision. Here, since sTf(s) > tT"" f(s — 1) >0
for s > 1 and ¢t > 0, the two numbers that may cause such problems are the maximum
and minimum values of the products p(y)I' f(s — y) over y = 1,2,...,s. However, such
problems are already taken into account in (4.5.15)). Therefore, the evaluation of I f
using the floating-point representation is strongly stable for £ > 1 when ¢ converges to

zero. In this case, the values of y ., and y:,t defined such that

Moo = PYs) D' f(s —wie) = min (p(y)"f(s —y))
y=ls , s>1,1>0, (4.5.18)
o = e U'f(s —yiy) = max (0(y) I'f(s —y))

are small for any s > 1 and remain constant when s becomes large. Moreover, the
products 7., and ’/T;:t are of the same magnitude as s f(s), for s > 1. Remark that
as long as m, is positive, the recursion satisfies the condition of stability of Panjer and
Wang] (1993).

The last point concerns the accuracy of the evaluation of the De Pril transform. Under

the individual risk model, if we have
Nije # N, kB #L (4.5.19)

in (4.4.25)) the solution of (4.2.11) is dominant and its evaluation is strongly stable. If
this holds for each class of policies, the De Pril transform of the probability function of

96

S is accurate. However, if it does not hold for all classes, a subordinate solution has to
be evaluated but it is generally accurate up to the implicit truncation point. Another
way to calculate the De Pril transform is using , which is more efficient than an
evaluation using but less efficient than the recursive evaluation with .

Notice that does not hold for ¢ = 0 since the probability function is nonincreasing.
In general the probability function under the individual risk model is roughly concave and
unimodal. For the points above the mode, the probability function decreases exponentially
involving that f(s) converges to zero at a decreasing rate with respect to s, i.e. ﬂ%’;)
decreases with respect to s if s is above the mode. In this case, numerical problems arise
in the recursive evaluation from the point ¢ where the convergence rate of f becomes

smaller than 7, which is the convergence rate of 7¥ with respect to y. The point ¢ is then
defined by

f(s+1)
f(s)

IN

7, forall s > ¢, (4.5.20)
where
T = mkax|)\k\ : (4.5.21)

where the maximum is taken over all the roots that compose the De Pril transform such
that (y) behaves like 7¥. For the points s > ¢, y,, and y;fo are both approximatively
equal to s — ¢ and the values of ‘7‘[‘8_’0‘ and 71'::0 become much greater than sf(s), which
creates a lack of precision in f(s) Therefore, if the De Pril transform converges to zero,
the recursive evaluation of the probability function is strongly stable up to the stage ¢

and is unstable from this stage on. Over the unstable range we have actually

_ et let2,. .. .d
~ {ﬂs)’ S=CHLETS.. a0 (4.5.22)

(o) Lo f(@P), s> P

S

where d” is the maximal stage for which all previous evaluations have at least one exact

digit in their significand. It can be approximatively determined by
d’ =~ inf{s>c:|p(s—c)|f(c)e > sf(s)} —1, (4.5.23)

which increases with respect to p. This is an approximation since the relative error of
f(s), s > ¢, depends on the relative error of f(c), which is generally greater than e. We
explain now how (4.5.22)) is derived. For the points s =c+ 1,¢+2,...,d", f(s) evolves

similarly to f(s) because the loss of precision in W;:t + 7, is smaller than p. However, the

97

accuracy of f(s) decreases with respect to s but f(d”) has at least one exact digit in its

significand. For the points s > d”, we have from (4.5.2)) and (4.5.23)) that

sf(s)mmlen |moe| = lels —)| f(c)e > sf(s), s>d, (4.5.24)

s,t

which leads to

(s+1Df(s+1)=|e(s+1—=c)flc)e=T|o(s —c)| flc)e = Tsf(s), s>d°. (4.5.25)

Given f(d*) =~ f(d), it follows that

sf(s) ~ 7 Cdf(d), s> d-. (4.5.26)

which is equivalent to (4.5.22)). Therefore, sf(s) converges to zero at a rate of 7 from d”
on and the relative error grows exponentially. The main problem is that we do not know
the points ¢ and d? before the evaluation. A method to obtain an accurate probability
function of a compound binomial distribution over its entire support is developed in
Chapter [2 This method, which consists in increasing p efficiently, can be generalized for
the individual risk model described in Section [£.2.2l We come back to this method in the

next subsection. We illustrate these results through a numerical example in Section [4.6]

4.5.3 Stability with a divergent De Pril transform

When the De Pril transform diverges the upper bound of (4.5.9)) tends to infinity. This
implies that the evaluation may be inaccurate. However, we know that a stable evaluation
is obtained at least from a given order defined in (4.5.4)). Nevertheless, this order is not

the smallest one for which the recursive evaluation is stable as we have seen above.

We consider here the stability of recursive evaluation when the De Pril transform diverges.
From Theorem [9| we know that ¢(y) behaves like 7¥ where 7 > 1 and is defined by (4.5.21).
Like in Section for the case where t = 0, we let ¢; be the point where I'* f becomes
less increasing than the De Pril transform. This is equivalent to writing that
If(s + 1)
If(s)

Then, the values of y., and y;ft are both approximatively equal to s — ¢; for s > ¢; and

< 7, forall s >¢, t>0. (4.5.27)

we can define df as the maximal stage for which all previous evaluations have at least one

exact digit in their significand. It can be approximatively determined by
df = inf{s>c :|p(s—c)| T fler)e > sTHf(s)} =1, ¢>0, (4.5.28)

98

and is an increasing function of p. For the same reasons as mentioned above the recursive
evaluation of I'' f(s) is strongly stable up to the stage s = ¢; and is unstable from this
stage on. For s > ¢;, we obtain similarly to (4.5.22) that

__ rt el 2, dl
t { f(s), TTaTLaTS G o) (4.5.29)

F S ~ 4 P
f(s) K s d TEE(L), s> df

Notice that ft\f(s) > T f(s) for s > d} and ¢t > 0. This statement can be justified in the

same way as in (4.5.24)).

We can observe that T f(s) is generally more increasing with respect to s than I'* f(s)
because we usually have
M fls) o sy
[l f(se) = T'f(s)’

It follows that ¢; and df increase with respect to ¢ while the values of 3, and y;, decrease

S9 Z S1 Z 0, t Z 0. (4530)

with respect to t. Thus, the recursive evaluation is stable over a greater interval and

becomes more accurate as t increases. Moreover, from (4.5.29)) we obtain that

['f(s) =T'f(s)
If(s)

<1, s=c¢+1,¢+2,....d}, t>0, (4.5.31)

because there is at least one exact digit in the significand of ﬁ?(s) We also get that
T'f(s) = T'f(s)
— 1= d?, t >0. (4.5.32
O ST T 0 T =0 088

Remark that the relative errors in (4.5.31]) and (4.5.32)) both increase exponentially with
respect to s as explained in Section [4.5.2l We can show that (4.5.32)) decreases with

respect to t, which is not a surprise since the recursive evaluation is more accurate as t

increases. We have from (4.5.28)) that

KT () ~ |o(d —c)| T f(c)e, t>0. (4.5.33)

If (4.5.30]) holds, it follows that
dy T f(d) Y “P(dfﬂ - Ct+1)| T fega) e < |90(df+1 - Ct+1)‘ I f (1)
sTH1Lf(s) sTHLf(s) - sTtf(s)
for s > d},, and t > 0. Moreover, using (4.5.27) and (4.5.33)), we have

75 ‘@(dtpﬂ - Ct+1)| T flepr)e < 7o dnteme ‘90<df+1 - Ct+1)| I f(c)e
7 |p(df =)| T f(er) e
~ U AT (D), s> df, t>0. (4.5.35)

AT BTy dy T (dy)

© (4.5.34)

99

—~——

The combination of (4.5.34)) and (4.5.35|) shows that the relative error of I'**! f(s) is smaller

than the one of I'* f(s) over the range s > dy,,. For the points s = dj +1,d; +2,...,d},,

the relative error of I'**! f(s) is smaller than one which is smaller than the relative error

of f?f(s) This proves that the accuracy of 1:?? becomes better as t increases.

Hence, there exists an order u, for which the recursive evaluation of It f is strongly stable
up to the point z for ¢ > w.. There also exists an order u/ for which the recursive
evaluation of I' f using a precision p leads to values with at least one exact digit in their

significand up to the point z for ¢ > uf}. These orders are determined by

ue = inf{t>0:¢,> 2}, 22>1, (4.5.36)
and

uy = imf{t>0:d} >z}, z>1, (4.5.37)

which are much smaller than the order defined in (4.5.4). However, we do not know the
values of ¢, and d}, ¢t > 0, in advance and if we want to evaluate I''f(z) with ¢t < uf
we lose some accuracy in taking finite differences as explained above. The relative error
obtained for that value is of the same magnitude as . Therefore, the most efficient
approach consists in the calculation of I' f using a recursive evaluation for the order ¢ and

augmenting p in order to increase df and to obtain an accurate value of I' f(2).

The question is now to determine the smallest precision that we can use in order to
obtain a value for I f(z), 2 > 1 and ¢ > 0, with at least one exact digit in its significand.
We denote this precision by p,;. Remark that if we desire an accuracy of at least v

decimal digits in I'" f(z) we only have to add loggz 10" to p.;. The evaluation of I''f(s)

for s = 0,1, ...,z using this precision will then have an accuracy of at least v digits since

(4.5.31)) and (4.5.32)) increase with respect to s. Similarly as in Chapter , we can consider

the base-3 logarithm of the relative error at a given point as a lack of precision of the

floating-point representation in order to determine p, ;.

Under the individual risk model, a first method is to evaluate I''f using a reasonable

precision p up to the final value £ and then to evaluate it again using a precision of

() - th(ﬁ)' 0 (4.5.38)

Pet = P08 T -

where T f(¢) is determined by Theorem It is assumed here that the evaluation of

f??(g) with a precision of p is inaccurate. The second evaluation using the precision pg

gives accurate values for I'" f over the entire support of S.

100

We develop now another method to determine p,; which may involve a smaller number of
operations during the first evaluation. If we consider the base-(logarithm of the relative

error at z, which is obtained in an evaluation using a precision p, as a lack of precision,

it follows from (4.5.32)) that

&2 T T ()
2l f(z)

Pz =~ p+logg z>dY, (4.5.39)
which holds for any p for which fﬁ(z) is inaccurate. Notice that the precision in (4.5.39))

cannot be determined before an evaluation since it depends on exact values and on df

that are unknown. However, we get from (4.5.29) and (4.5.33]) that

2f(2) me df 7T (D) e Jipldf —)| 7 T fer) &~ (= —)| T f(er) &, (4.5.40)

for t > 0, which leads to

o(z —)| T f(cr)
22T f(2) ’

p-p ~ 1+4logg z2>¢, t >0, (4.5.41)

which no more depends on any other precision but still depends on exact values and
on ¢;. From (4.5.41)), we are able to calculate p¢; which is an upper bound of p,, for
z=c¢+1,¢+2...,&, if we are given I f(£) and after a first evaluation using a reasonable
precision up to the point ¢;. This point can be determined using . This is possible
under the individual risk model because Theorem [7| gives the final value and since the first
evaluation gives an accurate value of I' f(¢;) whichever precision we use. The recursive
evaluation of I'* f using a precision of pg ; is accurate over the whole support of S. However,
we cannot determine exactly p,, and using a precision p¢, in the evaluation of I' f(z) may

consume too much time if the difference between these two precisions is significantly large.

Remark 12: The precision given by (4.5.39)) or (4.5.41)) corresponds to the precision for

which |o(z — ¢)| Tt f(er) €, = 2T f(2), where £, is the maximal relative error occurring
in the floating-point representation with a precision of p, ;. It is similar to write that p,,
is the value of p that satisfies z = d}, t > 0.

Remark 13: The recursive evaluation using (4.2.5) with a precision obtained by (4.5.41]
with z = £ is accurate over the range [0, £] for any random variable with De Pril transform
@ if we know T f(£) and if logT' f is roughly concave. The latter condition is generally

fulfilled for any random variable.

101

Remark 14: If the claim amount random variables of all policies are identically dis-
tributed, the precision pgo given by (4.5.38) or (4.5.41) with = 2 and Theorem

corresponds to the needed precision discussed in Chapter [2]

Remark 15: Both methods developed above also hold for the recursive evaluation of a

probability function when its De Pril transform converges absolutely to zero.

We discuss now a method to determine a precision that guarantees accurate values up to
the point z. It can be used for any random variable with a divergent De Pril transform
and without any other information else than the De Pril transform. Under the individual

risk model, this method, which can be used only for £ > 1, is more adapted if we want to

evaluate only the first z values of I'' f. It follows from (4.5.41)) that

por <1 +1og/3|“0(22—_ct)|, > t> 1, (4.5.42)
z

which does not depend on any exact value. Therefore, it is sufficient to represent exactly
the integer part of ¢(z—¢;) to obtain an accurate value of I f(z), 2 > ¢;. Nevertheless, we
still need a first evaluation in order to determine the point ¢;. However, since ¢ diverges

we have

lp(2)]
2z

P < 1+logg z2>1,t>1, (4.5.43)

which does no more depend on ¢; and on ¢t. Under the individual model, when y becomes

large the De Pril transform is given by
()| ~ njr, (4.5.44)

where nj; is the number of policies in the class where the largest root appears. Thus, it
follows that

T

nT.
pzp < 14 zlogsT 4 loggs 2—2, z>1,t> 1. (4.5.45)

Remark 16: To be prudent we should define a reasonable minimal precision that should

be used in evaluations when we calculate a sufficient precision using (4.5.41)), (4.5.42)),
[@5.43) or (E5.45).

Remark 17: The truncation of a divergent De Pril transform is not possible. Therefore,
in such a case the most efficient strategy consists in the evaluation of I''f according to

Theorem 8| even if the precision that is necessary depends on the De Pril transform that

we can approximate by (4.5.44]).

102

Remark 18: We can derive a recursive formula for the t-th order tail probability func-
tion, A'f, defined in (4.2.16)), from the substitution of the terms Az f(z) by ¢(x) into
Lemma 3.2 of |Antzoulakos and Chadjiconstantinidis (2004) that holds for compound
Poisson distributions. However, such a recursive evaluation requires a greater number of
operations than the one of I f. Moreover, for t > 1, A'f(s) decreases with respect to s
and is thus unstable for any kind of distributions. In addition, we need a large precision
in order to obtain accurate results because the exact values become smaller and smaller
as we go along with the recursion. The same problems arise for a backward recursive
formula for I' f that can be derived from (4.2.8)) in the case where a truncation of the De
Pril transform is effective. An idea to obtain a stable evaluation for A’ f could be to derive

a backward recursive evaluation when the De Pril transform can be truncated. However,

in this case such functions can be obtained by (4.2.15]) from a stable evaluation of T f.

4.6 Numerical illustrations

In this section we illustrate the results of Sections4.5.2] and [4.5.3] For the first illustration
we consider an example with a convergent De Pril transform. We consider an adaptation
of the example of |Gerber| (1979) where we have a portfolio of life insurance policies that
are grouped according to Table and where the individual claim amount distribution
is

Table 4.1: Number of policies in each class

il ¢ li=1]i=2]i=3]i=4]i=5
11003 20 | 30 | 10 | 20 | -
2l004] - [10| 20| 20 | 10
30005 - [20 | 40 | 20 | 20
41006 - [20 | 20 | 20 | 10
gi(z) = {1’ fo=i s1i=1..5 (4.6.1)
0, ifx#1

1

We have ¢ = 970 for this portfolio. For each class (i,7), we have |Ajx| = (Z—j)z, for

tf=

k—=1,...i, which leads to 7 — (g—) — 0.57677.

103

We evaluate the probability function according to Theorem [§| using ten decimal digits in
the representation of real numbers by floating-point numbers i.e. § = 10 and p = 10.
It turns out that ¢ = 260 and d” = 445 when they are determined by and
, respectively. Table gives the exact values and the evaluations using the

Table 4.2: Values of f(s) and f(s) with relative errors for some points

. Fls) = 1)
S| 7(s) 6

c | 2.9435-1073* | 2.9435-1073* | 1.6987-107°
d’ | 8.8074-107% | 8.6401-10~% 0.0190

€ | 4.5802- 107422 | 2.7667 - 107217 | 6.0405 - 102

floating-point representation with their relative error for some points of the probability

function. Figure 4.2|illustrates the fact that sf(s) converges to zero at the rate 7 from the

‘— Evaluation using floating-point representation - --Exact evaluation * De Pril transform

-100+

-200+

-300+

-400

T T T T
0 200 400 600 800

Figure 4.2: logy, f(s), logyo f(s) and logyq |¢|

point d” = 445 on. It shows the logarithm of the recursive evaluation using the floating-
point representation, the logarithm of f and the logarithm of the De Pril transform. We
observe that the logarithm of the De Pril transform is composed by five lines. This is

not surprising since here > ;%)\f'jk = 0 if y is not a multiple of 7. However, the upper

line behaves similarly to slog,, 7 and is parallel to log,, f(s) for s > d”. The fact that

these curves are parallel shows that sf(s) converges to zero at the same rate as 7° for

104

s > d”. Finally, the evolution of the relative error as we go along with the recursion using

the floating-point representation is displayed in Figure Notice that the recursive

200

150

100+
50

0

Logarithm of the relative error

-50

0 200 400 600 800

Figure 4.3: Logarithm of the relative error resulting from an evaluation using the floating-

point representation

evaluation of I''f for ¢ > 1 is stable and that the implicit truncation point defined in
is r, = 45 for t € {1,2}.

For the second illustration we consider the recursive evaluation of the ¢t-th order cumulative
distribution function of a compound binomial distribution with the same parametrization
as in Section [£.4.2] The probability function g is chosen to be the same as Example 8 of
Panjer and Wang] (1993, p. 249). It is given in Table We set m = 100 and p = 0.09

Table 4.3: Probability function of the X;’s

g(x) | 0.150 | 0.200 | 0.250 | 0.125 | 0.075 | 0.050 | 0.050 | 0.050 | 0.025 | 0.025

and we use the floating-point representation with 3 = 10 and p = 10. Thus, we have
¢ = 1000 and 7 = 1.17234. Table gives, for some orders, the values of ¢; and d} that

Table 4.4: Values of ¢; and d} for some orders

t 0 1 2 10 | 30 | 50
¢ | 255 | 261 | 266 | 311 | 426 | 541
dy | 408 | 447 | 466 | 575 | 780 | 965

are determined by (4.5.27)) and (4.5.28)), respectively. We remark that both values increase

105

Table 4.5: Values of T f(£) and ﬁ?(f) for some orders, approximations of 1:7(5) and

relative errors at &

— p(€—c)| T f(e)e | |THF(E) — THF(E)

El e i) |

© © ¢ ' (e
0 | 4.9905 107165 2.0062 - 1036 1.0128 - 1037 4.0200 - 10290

1 1.3152 - 1038 5.8972 - 1037 1.3152 - 1038
2 664.3 1.0647 - 1039 3.1557 - 1038 1.6027 - 1036
10 7.6841 - 1019 2.0061 - 10%° 1.3621 - 10% 2.6108 - 10%°
30 2.3990 - 10°t 1.6752 - 1062 3.8397 - 106t 6.9830 - 1010
50 7.0414 - 1076 —5.2747 - 1078 1.1894 - 1078 75.909

with respect to t. Table contains the values of T f(£) and ﬁ?(f) with their relative
error for some orders as well as the approximation of l:t\f(f) that follows from (|4.5.40))
for each order. It shows that the relative error decreases with respect to t and that the
approximation w is close to 1:?]?(5) Moreover, the orders defined by (4.5.36
and that guarantee a stable or an accurate evaluation up to £ are u. = 130 and
uf; = 55, respectively. Figure shows the logarithm of the evaluation using the floating-

point representation, the logarithm of the exact evaluation and the logarithm of the De Pril
transform for some orders. We observe that sﬁ_f(s) grows at a rate of 7 = 1.17234 from
the point d? on and for each t, since log;, I f(s) is parallel to slogy, 7 for s > df. We can
also remark that d? increases with respect to ¢, which means that the recursive evaluation
using floating-point representation is more accurate as t increases. This statement can
also be observed in Figure where we display the relative error of ﬁ? as we go along
with the recursion for the same orders as in Figure 4.4, Table [4.6| shows the values of the
precisions and their upper bounds discussed in Section [£.5.3] These precisions guarantee
an accurate evaluation over the entire support of S. Remark that we have nj; = m for
the evaluation of . Table contains the same precisions and their upper bounds
but when we desire an accurate evaluation up to the point 600 only. Notice that the third
column of Table [4.7] cannot be determined from a first evaluation since it depends on
the exact value of I f(600). We remark that the values of p,; obtained from for
t = 30 and ¢ = 50 are smaller that p. This is not surprising since d; > 600 for both cases.
We also observe that the upper bound for the needed precision computed by is

smaller than p¢; for each case where it can be evaluated with z = 600.

106

[— Evaluation using floating-point representation =+ Exact evaluation

++++ De Pril transform|

[— Evaluation using floating-point representation =+~ Exact evaluation -

De Pril transform|

1'000

1'000

1001 100+
50 50
o : o
-50 -50
-100 -100 -
N
-1504 kY -150
0 200 400 600 800 1'000 0 200 400 600 800
(a) t =0 (b) t =1
[— Evaluation using floating-point -~ Exaot evaluation -+ De Pril transform! |— Evaluation using floating-point -+~ Exact evaluation - De Pril transform|
1001 100+
50
Q fume -
=501 -50+
-100 -100
-150+4 -1504
0 200 400 600 800 1'000 0 200 400 600 800
(¢)t=2 (d) t =10
[— Evatuation using floating-point representation -+~ Exact evaluation -~ De Pril transform [— Evaluation using floating-point representation - -~ Exact evaluation -+~ De Pril transform
1001 100+
504 50
0 0
-50 -50
-100 -100
-150+ -1501
0 200 400 600 800 1'000 0 200 400 600 800
(e) t =30 (f) t = 50

Figure 4.4: log,, Tt f(s), log,o I f(s) and log,, |#]

107

1'000

= =0 =1 —==2 —= 1710 — =30 — =50

200 '

—
ul
(@]
L
~

Logarithm of the relative error
Ay

100 L
50+ 7)
0
-50 w \ \ \ 1
0 200 400 600 800 1'000

Figure 4.5: Logarithm of the relative error occurring from an evaluation using the floating-

point representation for some orders

Table 4.6: Values of p¢; and their upper bounds that guarantee an accurate evaluation

up to &

t per | From (4.5.41)) | From (4.5.42)) | From (4.5.43|) | From (4.5.45
0 | 210.60 211.31 - - -

1| 48.12 47.77 50.96 68.59 68.75

2 | 46.20 45.68 50.52 68.59 68.75
10 | 35.42 35.25 47.50 63.59 68.75
30 | 20.84 20.20 39.50 68.59 68.75
50 | 11.88 11.23 31.48 68.59 68.75

108

Table 4.7: Approximations for p,; and their upper bounds that guarantee an accurate

evaluation for the first 600 points

t | p.r | From (4.5.42) | From (4.5.43) | From (4.5.45
0 | 42.02 - - -

1]20.33 23.51 40.97 41.35

2 | 18.73 23.18 40.97 41.35
10 | 11.35 20.13 40.97 41.35
30 | 3.21 12.15 40.97 41.35
50 | 0.37 4.15 40.97 41.35

4.7 Conclusion

We have seen that the convergence of divergence rate of the De Pril transform has a large
effect on the stability against round-off errors of the recursive evaluation of ¢-th order
cumulative distribution functions. In particular, the evaluation of such a function with
t > 1 is strongly stable if the De Pril transform converges to zero. We also obtain that
the only way to get an accurate evaluation of a given order is to increase the precision of
the floating-point representation. An upper bound for the precision that is necessary in
order to guarantee an accurate evaluation can be determined from the De Pril transform

without doing a first evaluation with a small precision.

109

110

Bibliography

Adelson, R. M. (1966). Compound Poisson distributions. Operations Research Quar-
terly 17, 73-75.

Ambagaspitiya, R. S. (1995). A family of discrete distributions. Insurance: Mathematics
and Economics 16, 107 — 127.

Antzoulakos, D. L. and S. Chadjiconstantinidis (2004). On mixed and compound mixed

Poisson distributions. Scandinavian Actuarial Journal, 161-188.

Beall, G. and R. R. Rescia (1953). A generalization of Neyman’s contagious distributions.
Biometrics 9, 354-386.

Biihlmann, H. (1984). Numerical evaluation of the compound Poisson distribution: Re-

cursion or fast Fourier transform. Scandinavian Actuarial Journal, 116-126.

Carver, H. C. (1919). On the graduation of frequency distributions. Proceedings of the
Casualty Actuarial and Statistical Society 6, 52-72.

Cash, J. R. (1980). Stable Recursions: with Applications to the Numerical Solution of
Stiff Systems. London: Academic Press.

Cauchy, A. L. (1829). Ezxercices de mathématiques. Quatrieme année. Paris.

Chadjiconstantinidis, S. and G. Pitselis (2009). Further improved recursions for a class
of compound Poisson distributions. Insurance: Mathematics and Economics 44, 278 —
286.

Chan, B. (1982a). Recursive formulas for aggregate claims. Scandinavian Actuarial Jour-
nal, 38-40.

Chan, B. (1982b). Recursive formulas for discrete distributions. Insurance: Mathematics
and Economics 1, 241-243.

111

De Pril, N. (1985). Recursions for convolutions of arithmetic distributions. ASTIN Bul-
letin 15, 135-139.

De Pril, N. (1986a). Improved recursions for some compound distributions. Insurance:

Mathematics and Economics 5, 129-132.

De Pril, N. (1986b). On the exact computation of the aggregate claims distribution in
the individual life model. ASTIN Bulletin 16, 109-112.

De Pril, N. (1988). Improved approximations for the aggregate claims distribution of a

life insurance portfolio. Scandinavian Actuarial Journal, 61-68.

De Pril, N. (1989). The aggregate claims distribution in the individual model with arbi-
trary positive claims. ASTIN Bulletin 19, 9-24.

De Pril, N. and J. Dhaene (1992). Error bounds for compound Poisson approximations
of the individual risk model. ASTIN Bulletin 22, 135-148.

Dhaene, J. and N. De Pril (1994). On a class of approximative computation methods in

the individual risk model. Insurance: Mathematics and Economics 14, 181-196.

Dhaene, J., C. Ribas, and R. Vernic (2006). Recursions for the individual risk model.
Acta Mathematicae Applicatae Sinica, English Series 22, 543-564.

Dhaene, J. and B. Sundt (1997). On error bounds for approximations to aggregate claims
distributions. ASTIN Bulletin 27, 243-262.

Dhaene, J. and B. Sundt (1998). On approximating distributions by approximating their

De Pril transforms. Scandinavian Actuarial Journal, 1-23.

Dhaene, J. and M. Vandebroek (1995). Recursions for the individual model. Insurance:
Mathematics and Economics 16, 31-38.

Dhaene, J., G. E. Willmot, and B. Sundt (1999). Recursions for distribution functions

and stop-loss transforms. Scandinavian Actuarial Journal, 52—65.

Eisele, K.-T. (2006). Recursions for compound phase distributions. Insurance: Mathe-
matics and FEconomics 38, 149-156.

Eisele, K.-T. (2008). Recursions for multivariate compound phase variables. Insurance:
Mathematics and Economics 42, 65-72.

112

Embrechts, P. and M. Frei (2009). Panjer recursion versus FFT for compound distribu-
tions. Mathematical Methods of Operations Research 69, 497-508.

Euler, L. (1748). Introductio in analysin infinitorum. Lausanne: Marc-Michel Bousquet

et Cie.

Euler, L. (1751). Observationes analyticae variac de combinationibus. Commentarii

academiae scientiarum Petropolitanae 13, 64-93.

Euler, L. (1755). Institutiones calculi differentialis cum eius usu in analysi finitorum ac

doctrina serierum. St. Petersburg: Academiae scientiarum Petropolitanae.

Gathy, M. and C. Lefevre (2010). On the Lagrangian Katz family of distributions as a

claim frequency model. Insurance: Mathematics and Economics 47, 76 — 83.

Gautschi, W. (1967). Computational aspects of three-term recurrence relations. SIAM
Review 9, 24-82.

Gerber, H. U. (1979). An Introduction to Mathematical Risk Theory. Philadelphia: S.S.

Heubner Foundation Monograph Series 8.

Gerber, H. U. (1984). Error bounds for the compound Poisson approximation. Insurance:
Mathematics and Economics 3, 191-194.

Gerhold, S., U. Schmock, and R. Warnung (2010). A generalization of Panjer’s recursion

and numerically stable risk aggregation. Finance and Stochastics 1/, 81-128.

Granlund, T. (2007, August). GNU MP: The GNU Multiple Precision Arithmetic Library
(4.2.2 ed.).

Griibel, R. and R. Hermesmeier (1999). Computation of compound distributions I: Alias-
ing errors and exponential tilting. ASTIN Bulletin 29, 197-214.

Hess, K., A. Liewald, and K. Schmidt (2002). An extension of Panjer’s recursion. ASTIN
Bulletin 32, 283-297.

Hesselager, O. (1994). A recursive procedure for calculation of some compound distribu-
tions. ASTIN Bulletin 24, 19-32.

Hesselager, O. (1996). Recursions for certain bivariate counting distributions and their
compound distributions. ASTIN Bulletin 26, 35-52.

113

Hipp, C. (1985). Approximation of aggregate claims distributions by compound Poisson

distributions. Insurance: Mathematics and Economics 4, 227-232.

Hipp, C. (1986). Improved approximations for the aggregate claims distribution in the
individual model. ASTIN Bulletin 16, 89-100.

Hipp, C. (2006). Speedy convolution algorithms and Panjer recursions for phase-type

distributions. Insurance: Mathematics and Economics 38, 176-188.

Johnson, N. L., A. W. Kemp, and S. Kotz (2005). Univariate Discrete Distributions
(Third ed.). Wiley Series in Probability and Statistics. Hoboken, NJ: John Wiley &

Sons.

Kaas, R., M. Goovaerts, J. Dhaene, and M. Denuit (2008). Modern Actuarial Risk Theory
— Using R. Berlin Heidelberg: Springer-Verlag.

Katz, L. (1945). Characteristics of frequency functions defined by first-order difference
equations. Dissertation, University of Michigan, Ann Arbor, MI.

Katz, L. (1965). Unified treatment of a broad class of discrete probability distributions. In
G. P. Patil (Ed.), Classical and Contagious Discrete Distributions, Oxford, pp. 64-93.

Pergamon Press.

Khatri, C. G. and I. R. Patel (1961). Three classes of univariate discrete distributions.
Biometrics 17, 567-575.

Knuth, D. (1992). Convolution polynomials. The Mathematica Journal 2, 67-78.

Kornya, P. S. (1983). Distribution of the aggregate claims in the individual risk theory
model. Transactions of Society of Actuaries 35, 823-836.

Neyman, J. (1939). On a new class of “contagious” distributions, applicable in entomology
and bacteriology. The Annals of Mathematical Statistics 10, 35-57.

Oliver, J. (1967). Relative error propagation in the recursive solution of linear recurrence
relations. Numerische Mathematik 9, 323-340.

Olver, F. W. J. (1964). Error analysis of Miller’s recurrence algorithm. Mathematics of
Computation 18, 65-74.

Panjer, H. H. (1980). The aggregate claims distribution and stop-loss reinsurance. Trans-
actions of the Society of Actuaries 32, 523-545.

114

Panjer, H. H. (1981). Recursive evaluation of a family of compound distributions. ASTIN
Bulletin 12, 22-26.

Panjer, H. H. and S. Wang (1993). On the stability of recursive formulas. ASTIN Bul-
letin 23, 227-258.

Panjer, H. H. and S. Wang (1995). Computational aspects of Sundt’s generalized class.
ASTIN Bulletin 25, 5-17.

Panjer, H. H. and G. E. Willmot (1982). Recursions for compound distributions. ASTIN
Bulletin 13, 1-11.

Panjer, H. H. and G. E. Willmot (1986). Computational aspects of recursive evaluation

of compound distributions. Insurance: Mathematics and Economics 5, 113-116.

Plackett, R. L. (1969). Stochastic models of capital investment. Journal of the Royal
Statistical Society. Series B (Methodological) 11, 1-28.

Schroter, K. J. (1990). Recursions for compound distributions. Scandinavian Actuarial
Journal, 161-175.

Seal, H. L. (1971). Numerical calculation of the Bohman-Escher family convolution-mixed
negative binomial distribution functions. Mitteilungen der Vereinigung Schweizerischer

Versicherungsmathematiker 71, 71-94.

Shiu, E. S. W. (1983). Discussion on Kornya’s paper: Distribution of aggregate claims in
the individual risk theory model. Transactions of Society of Actuaries 35, 847-850.

Stroh, E. (1978). Actuarial note: The distribution functions of collective risk theory as

linear compounds. Actuarial Research Clearing House.

Stroter, B. (1985). The numerical evaluation of the aggregate claim density function via in-
tegral equations. Blatter der Deutschen Gesellschaft fur Versicherungs-mathematik 17,
1-14.

Sundt, B. (1992). On some extensions of Panjer’s class of counting distributions. ASTIN
Bulletin 22, 61-80.

Sundt, B. (1995). On some properties of De Pril transforms of counting distributions.
ASTIN Bulletin 25, 19-31.

115

Sundt, B. (1998). A generalization of the De Pril transform. Scandinavian Actuarial
Journal, 41-48.

Sundt, B. (1999a). On multivariate Panjer recursions. ASTIN Bulletin 29, 29-45.

Sundt, B. (1999b). Recursions for convolutions of discrete uniform distributions revisited.

Insurance: Mathematics and Economics 24, 15-21.
Sundt, B. (2000). On multivariate Vernic recursions. ASTIN Bulletin 30, 111-122.

Sundt, B. (2002). Recursive evaluation of aggregate claims distributions. [Insurance:

Mathematics and Economics 30, 297-322.

Sundt, B., J. Dhaene, and N. De Pril (1998). Some results on moments and cumulants.

Scandinavian Actuarial Journal, 24-40.

Sundt, B. and O. Ekuma (1999). The De Pril transform of a compound R}, distribution.
Bulletin of the Swiss Association of Actuaries, 179—-189.

Sundt, B. and W. S. Jewell (1981). Further results on recursive evaluation of compound
distributions. ASTIN Bulletin 12, 27-39.

Sundt, B. and R. Vernic (2009). Recursions for Convolutions and Compound Distributions
with Insurance Applications. EAA Lecture Notes. Berlin Heidelberg: Springer-Verlag.

Tilley, J. A. (1980). Discussion on the aggregate claims distribution and stop-loss rein-
surance. Transactions of the Society of Actuaries 32, 538-544.

Vernic, R. (1999). Recursive evaluation of some bivariate compound distributions. ASTIN

Bulletin 29, 315-325.

Waldmann, K. H. (1994). On the exact calculation of the aggregate claims distribution
in the individual life model. ASTIN Bulletin 24, 89-96.

White, R. P. and T. N. E. Greville (1959). On computing the probability that exactly k

out of n independent events will occur. Transactions of Society of Actuaries 11, 88-99.

Williams, R. E. (1980). Computing the probability density function for aggregate claims.
Proceedings of the Canadian Institute of Actuaries 11, 39-47.

Zahar, R. V. M. (1977). A mathematical analysis of Miller’s algorithm. Numerische
Mathematik 27, 427-447.

116

	these_copyright
	These_Sebastien_Viquerat
	Synthesis report
	Introduction
	How to get rid of round-off errors in recursive formulas
	Introduction
	The collective risk model
	Recurrence equations and stability
	The GNU Multiple Precision Arithmetic Library
	Efficiency with Panjer's recursion
	Compound binomial distributions
	Definitions and examples
	Recurrence relations
	Forward vs backward directions
	Which precision is necessary?
	Precision management
	Effects of m on stability

	Further remarks
	Conclusion

	From approximations of De Pril transforms to approximations of t-th order cumulative distribution functions
	Introduction
	De Pril transforms and recursions for t-th order cumulative distribution functions
	Definitions and review
	A more efficient recursive evaluation
	Some applications

	Approximations of t-th order cumulative distribution functions
	Error bounds for t-th order cumulative distribution functions
	Error bounds for stop-loss contracts
	Error bounds analysis
	Applications
	Error bounds for compound Poisson distributions
	Error bounds for the individual risk model
	Error bounds for approximations of the individual life model by compound Poisson distributions

	Numerical applications
	Conclusion

	On the stability of recursive evaluations of t-th order cumulative distribution functions
	Introduction
	Definitions and review
	Some exact evaluations and approximations of t-th order cumulative distribution functions
	The individual risk model

	Dhaene-Vandebroek algorithm for t-th order cumulative distribution functions
	Convergence of De Pril transforms
	General case
	Convergence of De Pril transforms of some compound distributions

	Stability against round-off errors
	Some definitions and general results
	Stability with a convergent De Pril transform
	Stability with a divergent De Pril transform

	Numerical illustrations
	Conclusion

