

Unicentre

CH-1015 Lausanne

http://serval.unil.ch

Year : 2010

ON THE EFFICIENCY OF RECURSIVE EVALUATIONS WITH
APPLICATIONS TO RISK THEORY

Sébastien VIQUERAT

Sébastien VIQUERAT 2010 ON THE EFFICIENCY OF RECURSIVE EVALUATIONS WITH
APPLICATIONS TO RISK THEORY

Originally published at : Thesis, University of Lausanne

Posted at the University of Lausanne Open Archive.
http://serval.unil.ch

Droits d’auteur
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette
loi. Nous déclinons toute responsabilité en la matière.

Copyright
The University of Lausanne expressly draws the attention of users to the fact that all documents
published in the SERVAL Archive are protected by copyright in accordance with federal law on
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the
author and/or publisher before any use of a work or part of a work for purposes other than
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose
offenders to the sanctions laid down by this law. We accept no liability in this respect.

UNIVERSITE DE LAUSANNE

FACULTE DES HAUTES ETUDES COMMERCIALES
 __

ON THE EFFICIENCY OF RECURSIVE EVALUATIONS

WITH APPLICATIONS TO RISK THEORY

THESE

Présentée à la Faculté des HEC

de l’Université de Lausanne

par

Sébastien VIQUERAT

Licencié en sciences économiques

mention sciences actuarielles
de l’Université de Lausanne

Pour l’obtention du grade de
Docteur en Sciences Actuarielles

2010

Jury de thèse

Professeur François Dufresne

Faculté des Hautes Études Commerciales

Université de Lausanne

Directeur de thèse

Professeur Hansjörg Albrecher

Faculté des Hautes Études Commerciales

Université de Lausanne

Expert interne

Professeur Stéphane Loisel

Institut de Science Financière et d’Assurances (ISFA)

Université Claude Bernard Lyon 1

Expert externe

iii

iv

 v

vi

 vii

viii

Université de Lausanne
Faculté des Hautes Etudes Commerciales

Doctorat en Sciences Actuarielles

Par la présente, je certifie avoir examiné la thèse de doctorat de

Sébastien VIQUERAT

Sa thèse remplit les exigences liées à un travail de doctorat.

Toutes les révisions que les membres du jury et le-la soussigné-e ont

demandées durant le colloque de thèse ont été prises en considération et

reçoivent ici mon approbation

Signature : ____________________________ Date : ____16/07/2010____

Prof. Stéphane LOISEL

Membre externe du jury

 ix

x

Avant-propos

Tout d’abord, j’aimerais remercier Monsieur le Professeur François Dufresne sans qui

cette thèse n’aurait pas existé. J’ai vraiment eu beaucoup de plaisir à travailler avec lui

durant ces cinq dernières années. J’aimerais également remercier Messieurs les Professeurs

Hansjörg Albrecher et Stéphane Loisel d’avoir accepté de faire partie de mon jury de thèse.

Durant ces cinq années en tant qu’assistant diplômé, j’ai eu la chance de travailler dans

une ambiance formidable et je profite ici pour remercier tous les professeurs, chargés de

cours, chercheurs, assistants et secrétaire du Département de Science Actuarielles pour

tous les bons moments passés ensemble que se soit au travail ou en dehors du travail. Je

crois qu’il est rare de trouver une équipe de travail aussi sympa et souriante. Je remercie

également les secrétaires du troisième étage pour leur agréable collaboration et leur bonne

humeur ainsi que les dames de la cafétéria de l’Internef pour la pratique quotidienne du

portugais.

Finalement, je tiens à remercier mes parents et ma famille pour tout le soutien apporté

tout au long de mes études.

xi

xii

Contents

Synthesis report 1

1 Introduction 5

2 How to get rid of round-off errors in recursive formulas 13

2.1 Introduction . 13

2.2 The collective risk model . 16

2.3 Recurrence equations and stability . 17

2.4 The GNU Multiple Precision Arithmetic Library 19

2.5 Efficiency with Panjer’s recursion . 22

2.6 Compound binomial distributions . 28

2.6.1 Definitions and examples . 28

2.6.2 Recurrence relations . 29

2.6.3 Forward vs backward directions . 31

2.6.4 Which precision is necessary? . 34

2.6.5 Precision management . 38

2.6.6 Effects of m on stability . 41

2.7 Further remarks . 44

2.8 Conclusion . 47

3 From approximations of De Pril transforms to approximations of t-th

order cumulative distribution functions 49

xiii

3.1 Introduction . 49

3.2 De Pril transforms and recursions for t-th order cumulative distribution

functions . 51

3.2.1 Definitions and review . 51

3.2.2 A more efficient recursive evaluation 53

3.2.3 Some applications . 54

3.3 Approximations of t-th order cumulative distribution functions 55

3.4 Error bounds for t-th order cumulative distribution functions 60

3.5 Error bounds for stop-loss contracts . 63

3.6 Error bounds analysis . 65

3.7 Applications . 66

3.7.1 Error bounds for compound Poisson distributions 66

3.7.2 Error bounds for the individual risk model 70

3.7.3 Error bounds for approximations of the individual life model by

compound Poisson distributions . 73

3.8 Numerical applications . 76

3.9 Conclusion . 77

4 On the stability of recursive evaluations of t-th order cumulative distri-

bution functions 79

4.1 Introduction . 79

4.2 Definitions and review . 81

4.2.1 Some exact evaluations and approximations of t-th order cumulative

distribution functions . 81

4.2.2 The individual risk model . 82

4.3 Dhaene-Vandebroek algorithm for t-th order cumulative distribution func-

tions . 84

4.4 Convergence of De Pril transforms . 86

4.4.1 General case . 86

xiv

4.4.2 Convergence of De Pril transforms of some compound distributions 88

4.5 Stability against round-off errors . 92

4.5.1 Some definitions and general results 92

4.5.2 Stability with a convergent De Pril transform 94

4.5.3 Stability with a divergent De Pril transform 98

4.6 Numerical illustrations . 103

4.7 Conclusion . 109

xv

xvi

List of Figures

2.1 Computation times as functions of λ for the first comparison 26

2.2 Computation times as functions of s for the second comparison 27

2.3 Computation times as functions of s for the third comparison 28

2.4 Logarithms of the relative errors at the last evaluation points as functions

of q for both directions with m = 1000 and a precision of 128 bits 31

2.5 Evolution of the logarithms of the relative errors as we go along with the

recursions in both directions with m = 1000 and a precision of 128 bits . . 33

2.6 Evolution of the relative errors of the recursive evaluation using two differ-

ent precisions . 38

2.7 Evolution of the relative error evaluating according to Algorithm 4 45

4.1 Area where the De Pril transform is convergent in the case of Corollary 12 91

4.2 log10 f̃(s), log10 f(s) and log10 |ϕ| . 104

4.3 Logarithm of the relative error resulting from an evaluation using the

floating-point representation . 105

4.4 log10 Γ̃tf(s), log10 Γtf(s) and log10 |ϕ| . 107

4.5 Logarithm of the relative error occurring from an evaluation using the

floating-point representation for some orders 108

xvii

xviii

List of Tables

1.1 Panjer’s class distributions . 6

2.1 Accuracy versus precision with GMP floating-point objects 21

2.2 Computation times and last stages for the first comparison 26

2.3 Computation times and last stages for the second comparison 27

2.4 Computation times for the third comparison 27

2.5 Individual claim amount probability functions of the three examples 29

2.6 Relative error at ms according to an evaluation using a “finite” precision

for the first k stages . 34

2.7 Values of η, r̂, r̂GMP and η̂ if m = 1000 and q = 0.3 36

2.8 Relative errors and computation times in five cases 39

2.9 Relative errors and computation times in two cases with the inclusion of

the split of multiplications . 40

2.10 Values of η, r̂, r̂GMP and η̂ with computation times if m = 10 000 and q = 0.3 41

2.11 Values of r̂ (m) for two values of m and v = 0 41

2.12 Comparisons between r̂ (1000c) and r̂ . 43

3.1 Number of policies in each class for the example of Gerber (1979) 76

3.2 Approximations of Γtf(s) by setting ϕ(y) for y > r 77

4.1 Number of policies in each class . 103

4.2 Values of f(s) and f̃(s) with relative errors for some points 104

xix

4.3 Probability function of the Xi’s . 105

4.4 Values of ct and dρ
t for some orders . 105

4.5 Values of Γtf(ξ) and Γ̃tf(ξ) for some orders, approximations of Γ̃tf(ξ) and

relative errors at ξ . 106

4.6 Values of ρ̂ξ,t and their upper bounds that guarantee an accurate evaluation

up to ξ . 108

4.7 Approximations for ρ̂z,t and their upper bounds that guarantee an accurate

evaluation for the first 600 points . 109

xx

Synthesis report

This thesis consists of three essays on recursive evaluations related to the distribution of

the aggregate claims amount of a portfolio of insurance policies over a period of time.

Each essay corresponds to a chapter. An introductory chapter precedes these essays. In

the actuarial literature, we can find several ways to model the distribution of the aggregate

claims amount of a portfolio of insurance policies over a period of time. The collective

and individual risk models are the most frequently used in actuarial applications.

In the former model, the aggregate claims amount random variable is defined as

S = X1 +X2 + · · ·+XN , whereN andXi represent the number of claims and the amount

of the i-th claim, respectively. It is generally assumed that the Xi’s are independent,

identically distributed and independent of N . Recursive formulas for some particular dis-

tributions of N have been developed by Panjer (1981) and their stability against round-off

errors is discussed in Panjer and Wang (1993). Recursive evaluations are useful in practice

since they reduce the number of operations, which gives a faster evaluation. However,

numerical problems may arise and lead to meaningless results due to the propagation of

round-off errors coming from the representation of real numbers by floating-point num-

bers.

In the individual risk model, the aggregate claims amount random variable is defined as

S = X1 + X2 + · · · + Xm, where m is the number of policies in the portfolio and Xi

is the claim amount of the policy number i. For this model, there exist several exact

and approximative recursive evaluations (see e.g. De Pril (1986b, 1988, 1989), Dhaene

and Vandebroek (1995), Hipp (1985, 1986), Kornya (1983) and Waldmann (1994)). An

extension of this model can be used for the computation of the probability function of the

m-fold convolution of a probability function.

The De Pril transform is a useful function for evaluations in relation to the distribution

of a sum of independent random variables since the De Pril transform of a convolution

of probability functions is the sum of the De Pril transforms of the probability functions.

1

Moreover, it defines uniquely a probability function given a value of this probability

function. A recursive scheme for t-th order cumulative distribution functions that is based

on the De Pril transform has been developed by Dhaene et al. (1999). Some quantities

can be calculated directly from such functions.

The first chapter of this thesis introduces Panjer’s recursion that is one of the well known

methods used to evaluate the probability function of the aggregate claims amount. We

expose its history in the actuarial literature as well as in the literature of other fields. We

discuss its extensions in addition to other methods for the evaluation of such a proba-

bility function or related quantities. Further results on recursive evaluations and on the

generalizations of Panjer’s recursion can be found in Sundt and Vernic (2009).

Chapter 2: “How to get rid of round-off errors in recursive for-

mulas”

In this first essay, we develop efficient computational methods in order to obtain an

accurate recursive evaluation of the probability function of a compound distribution under

the collective risk model. Such evaluations may be ineffective due to the propagation of

round-off errors coming from the representation of real numbers by computers. The

propagation of such errors affects the stability of the recursive evaluation and may lead

to meaningless values whose relative error may increase without bound. We discuss the

utility of the GNU Multiple Precision Arithmetic Library (GMP), which provides efficient

computational functions using arbitrary-precision arithmetic. Comparisons between the

use of this library and Maple are made to show how GMP is helpful to save time in

computations. We also investigate in detail recursive evaluations for compound binomial

distributions, which are particularly subject to an undesirable propagation of round-off

errors. The efficient computational methods developed in this essay are built on properties

of GMP like the management of the precision of variables. Some numerical examples

illustrate these methods in order to show their benefits.

Chapter 3: “From approximations of De Pril transforms to ap-

proximations of t-th order cumulative distribution functions”

In this essay, we consider recursive evaluations of the t-th order cumulative distribution

function based on the De Pril transform of the corresponding probability function. We

2

expose a more efficient evaluation scheme than the one developed in Dhaene et al. (1999)

especially when the De Pril transform converges to zero. We discuss the utility of such

an evaluation for the computation of the expected shortfall at a given probability level

as well as for computations in relation to stop-loss contracts. An expression for the

error resulting from an evaluation of the t-th order cumulative distribution function from

an approximation of the De Pril transform is derived. We also develop a bound for

this error that can be computed before the evaluation and discuss its implementation to

the approximation of quantities related to stop-loss contracts. Finally, we express this

error bound for well-known or useful approximations that have been discussed in the

actuarial literature. We end this essay by doing some numerical examples of the previous

applications.

Chapter 4: “On the stability of recursive evaluations of t-th order

cumulative distribution functions”

In this last essay, we study the stability against round-off errors of recursive evaluations

of t-th order cumulative distribution functions especially for the individual risk model.

First, we present some recursive formulas that depend on the De Pril transform of the

probability function. The Dhaene-Vandebroek algorithm is extended to recursive evalua-

tions of t-th order cumulative distribution functions. This algorithm gives in many cases a

more efficient way for evaluating such functions. Then, we show that the stability against

round-off errors of such recursive evaluations depends essentially on the convergence or

divergence rate of the De Pril transform. In particular, we find that the recursive evalua-

tion of the t-th order cumulative distribution function with t ≥ 1 is strongly stable when

the De Pril transform converges to zero. In the other cases, we give methods to determine

a precision of the floating-point representation that is necessary to guarantee an accurate

evaluation up to any given point. Finally, numerical applications are made at the end of

this essay to illustrate these results.

3

4

Chapter 1

Introduction

In the actuarial literature, a recursive procedure for the evaluation of the probability

function of a family of compound distributions is known under the name of Panjer’s

recursion as a reference to Panjer (1981). This recursion can be used for the evaluation of

the probability function of the aggregate claims amount under the collective risk model

that is defined as

S = X1 +X2 + · · ·+XN , (1.1)

where theXi’s are assumed to be independent and identically distributed and independent

of N . It holds for a class of distributions of N that satisfy

pn =

(
a+

b

n

)
pn−1, n = 1, 2, . . . , (1.2)

with initial value p0 > 0 and where pn denotes Pr [N = n]. This class of distributions is

sometimes called Panjer(a, b, 0) class. Panjer’s recursion is given by

f(x) =
x∑

y=1

(
a+ b

y

x

)
g(y)f(x− y), x = 1, 2, . . . , (1.3)

with initial value f(0) = p0 and where g denotes the probability function of the Xi’s. We

assume in this chapter that g is defined on the positive integers, but similar expressions

can be derived in the cases where g(0) > 0. The probability function of the non-trivial

distributions that satisfy (1.2) are given in Table 1.1 in addition to their parameters a

and b and their probability generating function.

We can also use probability generating functions in order to determine the probability

function of S. We define the probability generating function of a random variable Y

5

Table 1.1: Panjer’s class distributions

Distribution of N pn = Pr [N = n] a b E
[
zN
]

Poisson e−λ λn

n!
0 λ eλ(z−1)

Negative binomial

(
r + n− 1

n

)
(1− q)rqn q (r − 1)q

(
1−q
1−qz

)r

Binomial

(
m

n

)
qn(1− q)m−n q

q−1
(m+ 1) q

1−q
(1− q + qz)m

distributed on the nonnegative integers with probability function h as

PY (u) = E
[
uY
]

=
∞∑

k=0

h(k)uk. (1.4)

We have that

PS(u) = PN (PX(u)) , (1.5)

which leads to

∞∑
k=0

f(k)uk = PN

(
∞∑

k=0

g(k)uk

)
. (1.6)

Therefore, determining f amounts to determining the coefficient of a polynomial that is

a function of another polynomial. Recursive formulas for such an operation were derived

during the 18th century in pure mathematics literature. From Table 1.1, we observe

that the corresponding recursions to (1.3) for compound negative binomial distributions

and compound binomial distributions were first developed in sections 68 (p. 53) and 76

(p. 59) of Euler (1748), respectively. For compound Poisson distributions, Euler (1751,

p. 10) derived a recursive formula to determine the coefficients f(k) of (1.4) (see also

Euler (1755, Ch. 8)).

The family of distributions of Table 1.1 was not discussed for the first time by Panjer

(1981). Katz’ class whose name refers to Katz (1945) (see also Katz (1965)) is similar to

Panjer(a, b, 0) class with a different parametrization. Johnson et al. (2005) also refer to

Carver (1919, p. 53) who used the difference equation

pn+1 − pn

pn

=
a− n

b0 + b1n+ b2n2
, (1.7)

for smoothing actuarial data. Katz’ class contains the distributions for which b0 = b1 and

b2 = 0 in (1.7).

6

The recursion (1.2) for compound Poisson distributions was largely discussed before Panjer

(1981) especially in the biometric literature (see e.g. Adelson (1966), Beall and Rescia

(1953, p. 356) and Neyman (1939, p. 47)). The three recursions for the three distributions

of Table 1.1 are treated in Khatri and Patel (1961). The Poisson case corresponds to their

case A while the binomial negative and binomial cases belong to their case B.

In the actuarial literature, Stroh (1978) deduced the recursive formulas for the com-

pound Poisson distribution and the compound negative binomial distribution using dis-

crete Laplace transforms. Then, Panjer (1980) and Williams (1980) derived the recursive

formula for the compound Poisson distribution. Tilley (1980) derived the recursive for-

mulas for each distribution of Table 1.1.

Panjer (1981) derived also an integral equation in the cases where theXi’s are continuously

distributed on the positive real numbers with probability density function g(x), x > 0,

and when the distribution of N satisfies (1.2). Together with f(0) = p0, this integral

equation is

f(x) = p1g(x) +

∫ x

y=0

(
a+ b

y

x

)
g(y)f(x− y)dy, x > 0, (1.8)

which can be obtained by determining the coefficient of ezx on both sides of

M ′
S(z) = aMX(z)M ′

S(z) + (a+ b)M ′
X(z)MS(z), (1.9)

where MY (u) = E
[
euY
]

denotes the moment generating function of Y . An integral equa-

tion for the Poisson case and the negative binomial case were discussed in Plackett (1969,

p. 3) and Seal (1971, p. 90), respectively. We refer to Ströter (1985) for a numerical solu-

tion of such an integral equation. Another approach consists in the discretization of the

probability density function of the Xi’s and then to use (1.3) for the recursive evaluation.

Sundt and Jewell (1981) generalized the results of Panjer (1981). They derived a recursive

formula when (1.2) holds from an integer k on such that

pn =

(
a+

b

n

)
pn−1, n = k + 1, k + 2, . . . , (1.10)

with pk > 0. They obtained that

f(x) = p1g(x) +
k∑

n=2

(
pn −

(
a+

b

n

)
pn−1

)
g∗n(x)

+
x−1∑
y=1

(
a+ b

y

x

)
g(y)f(x− y), x = 1, 2, . . . , (1.11)

7

with f(0) = p0 and where g∗n denotes the n-fold convolution of g with itself. They also

extend Panjer’s recursion for the cases where the Xi’s are distributed on the set of all

integers. Panjer(a, b, k) class was characterized by Hess et al. (2002). It contains the

distributions of N that satisfies (1.10) with pn = 0 for n = 0, 1, . . . , k − 1 and pk > 0. For

such distributions, (1.11) becomes

f(x) = pkg
∗k(x) +

x−k∑
y=1

(
a+ b

y

x

)
g(y)f(x− y), x = k, k + 1, (1.12)

Gerhold et al. (2010) discussed a stable recursion for some distributions of Panjer(a, b, 1)

class.

Ambagaspitiya (1995) derived a recursion for f when the probability function ofN satisfies

pn(a, b) =

(
h1(a, b) +

h2(a, b)

n

)
pn−1(a+ b, b), n = k, k + 1, . . . , (1.13)

where a and b are parameters of N (see also Gathy and Lefèvre (2010)). It is given by

f(x; a, b) =
k−1∑
n=1

(
pn(a, b)−

(
h1(a, b) +

h2(a, b)

n

)
pn−1(a+ b, b)

)
g∗n(x)

+
x∑

y=1

(
h1(a, b) + h2(a, b)

y

x

)
g(y)f(x− y; a+ b, b), x = 1, 2, . . . , (1.14)

with initial values f(0; a, b) = p0(a, b).

De Pril (1985) showed that h∗n, the n-fold convolution of a discrete probability function

h(y), y = k, k + 1, . . ., where k is an integer, can be evaluated recursively by

h∗n(x) =
1

h(k)

x−nk∑
y=1

(
n+ 1

x− nk
y − 1

)
h(y + k)h∗n(x− y), x = nk + 1, nk + 2, . . . , (1.15)

with initial value h∗n(nk) = (h(k))n. Notice that h∗n is the probability function of a shifted

compound binomial distribution with parameters m = n and q = 1−h(k). If k = 0, (1.15)

is the same as (1.3) when N is distributed according to a binomial distribution. Therefore,

this recursion can also be used to evaluate the probability function of the aggregate claims

amount in the individual risk model defined as

S = X1 +X2 + · · ·+Xm, (1.16)

where the Xi’s are assumed to be independent and identically distributed. If the Xi’s

are not identically distributed and have probability function hi, a recursive evaluation is

8

obtained using the De Pril transform of each hi. This function is denoted function by ϕi

and can be determined by

ϕi(y) =
1

hi(0)

[
yhi(y)−

y−1∑
x=1

ϕi(y − x)hi(x)

]
, y = 1, 2, (1.17)

De Pril (1989) proved that the De Pril transform of S denoted by ϕ is given by

ϕ(y) =
m∑

i=1

ϕi(y), y = 1, 2, . . . , (1.18)

which leads to the recursion

f(x) =
1

x

x∑
y=1

ϕ(y)f(x− y), x = 1, 2 . . . , (1.19)

with initial value f(0) =
∏m

i=1 hi(0). This last formula was given by Chan (1982a,b).

Another recursive scheme for this model was derived by Dhaene and Vandebroek (1995).

That is

f(x) =
1

x

m∑
i=1

vi(x), x = 1, 2 . . . , (1.20)

where the coefficients vi(x) are determined by

vi(x) =
1

hi(0)

x∑
y=1

hi(y) (yf(x− y)− vi(x− y)) , x = 1, 2, . . . , (1.21)

and with initial values f(0) =
∏m

i=1 hi(0) and vi(0) = 0, i = 1, . . . ,m. This algorithm,

which was previously derived by Waldmann (1994) for the individual life model, is in sev-

eral situations more efficient than an evaluation using (1.19). Notice that if hi(x) = hj(x)

for all x and i 6= j, (1.19) and (1.20) simplify to (1.15) with k = 0. In the actuarial litera-

ture, we can also find some approximations of the probability function for the individual

risk model (see De Pril (1989), Kornya (1983) and Hipp (1986)). Comparisons between

these exact and approximative evaluations are made in Dhaene et al. (2006) and Dhaene

and Vandebroek (1995).

Some generalizations for the condition on the probability function of N were discussed

in the actuarial literature. Hesselager (1994) and Panjer and Willmot (1982) developed

recursive formulas when pn satisfies

pn =

∑k
j=0 ajn

j∑k
j=0 bjn

j
pn−1, n = 1, 2, (1.22)

9

Another extension was made by Schröter (1990) and generalized by Sundt (1992). The

latter showed that

f(x) =
x∑

y=1

f(x− y)
k∑

j=1

(
aj +

bj
j

y

x

)
g∗j(y), x = 1, 2, . . . , (1.23)

with initial value f(0) = p0 when

pn =
k∑

j=1

(
aj +

bj
n

)
pn−j, n = 1, 2, . . . , (1.24)

with p0 > 0. When N is a phase-type variable, its probability generating function is

rational and can be written as

PN(z) =

∑k
j=0 αjz

j

1−
∑k

j=1 βjzj
. (1.25)

This is equivalent to writing that

pn = αn +
k∑

j=1

βjpn−j, n = 0, 1, 2, (1.26)

and the probability function of S can be evaluated by

f(x) =
k∑

j=1

αjg
∗j(x) +

x∑
y=1

f(x− y)
k∑

j=1

βjg
∗j(y), x = 1, 2, (1.27)

with initial value f(0) = p0 = α0. This recursion is given by Eisele (2006) who also

extends it to the cases where the Xi’s are continuous random variables.

If N follows a Poisson distribution and the Xi’s are discrete phase-type variables that

satisfy

d

dz
PX(z) =

∑k
j=1 γjz

j−1

1−
∑k

j=1 δjz
j
, (1.28)

De Pril (1986a) gave a more efficient recursive formula than (1.3) which is

f(x) =
k∑

j=1

(
λ

x
γj +

(
1− j

x
δj

))
f(x− j), x = 1, 2, . . . , (1.29)

with initial value f(0) = e−λ. An extension of this recursion to the distributions of

Panjer’s class is made by Hipp (2006) who also extends it when g is the probability

density function of a continuous phase-type distribution.

10

If we consider multivariate distributions, we can obtain similar recursive evaluations. We

refer e.g. to Hesselager (1996) and Vernic (1999) for bivariate compound distributions

and to Eisele (2008), Sundt (1999a, 2000) and Sundt (2002, Section 9) for multivariate

distributions.

Nowadays, compound distributions and convolutions appear in most of the fields of actu-

arial practice. We give here two practical examples. The individual risk model is generally

used to model the distribution of the loss of a life insurance or a pension fund that de-

pends on the sum of the sum at risk of the policies for which a claim occurs over a given

period of time. In the standard model of the Swiss Solvency Test, we need to compute

the expected shortfall of a distribution that involves the evaluation of the probability

function of a compound Poisson distribution. However, recursive formulas are not the

only way that can be used for the evaluation of the probability function of a compound

distribution. We discuss now other methods for such an evaluation.

A first method consists in using the convolution formula which is

f(x) =
∞∑

n=0

png
∗n(x), x = 0, 1, 2, . . . , (1.30)

where

g∗n(x) =
x∑

y=1

g(y)g∗(n−1)(x− y), x = 1, 2, . . . , (1.31)

with initial value

g∗0(x) =

{
1, x = 0

0, x = 1, 2, . . .
. (1.32)

However, an evaluation using (1.30) is generally more demanding in terms of number of

operations than Panjer’s recursion. They require O(n3) and O(n2) operations to obtain

f(0), f(1), . . . , f(n), respectively.

A second method that requires only O(n log n) operations is to use the fast Fourier trans-

form (FFT). It consists in evaluating the probability function of S using the inverse

discrete Fourier transform by

f(x) =
1

n

n−1∑
k=0

φS

(
2πk

n

)
e
−i2πxk

n , x = 0, 1, 2, . . . , n− 1, (1.33)

where i =
√
−1, n is the number of points that are evaluated and φS is the characteristic

function of S which is defined by

φS(z) = E
[
eizS
]

= PN (φX(z)) . (1.34)

11

The terms φS

(
2πk
n

)
of (1.33) can be determined using (1.34) and the discrete Fourier

transform

φX(z) =
n−1∑
k=0

g(k)e
i2πzk

n . (1.35)

If n is chosen to be a power of two, (1.33) and (1.35) can be computed efficiently using an

FFT algorithm. This method, which can be used for any random variable with probability

generating function PN , leads to an approximation whose accuracy depends on the choice

of n since it introduces an aliasing error which is equal to

f(x)− Pr [S = x] =
∞∑

j=1

Pr [S = x+ jn] , x = 0, 1, 2, . . . , n− 1, (1.36)

where Pr [S = s] denotes the exact value of the probability function of S at s. We refer

to Bühlmann (1984) for a comparison between evaluations using Panjer’s recursion and a

method based on the fast Fourier transform algorithm. An exponential tilting procedure

was proposed by Grübel and Hermesmeier (1999) in order to reduce the aliasing error

(see also Embrechts and Frei (2009)).

There also exist approximations for the distribution function based on the first central

moments of S (see e.g. Kaas et al. (2008, Sections 2.5 and 3.7)). Monte Carlo simulation

can also be used to approximate any quantity related to S. However, some quantities

like stop-loss premiums can be obtained from t-th order cumulative distribution functions

that can be evaluated recursively from the De Pril transform by

Γtf(x) =
1

x

x∑
y=1

(ϕ(y) + t) Γtf(x− y), x = 1, 2 . . . , (1.37)

with initial value Γtf(0) = f(0).

12

Chapter 2

How to get rid of round-off errors in

recursive formulas

2.1 Introduction

The collective and individual risk models are frequently used in risk theory applications

especially to represent the aggregate claims amount of a portfolio of insurance policies

over a period of time. In the collective model, this amount is modelled by a compound

distribution which is used, e.g., to compute stop-loss premiums as well as risk margins

to satisfy solvency criteria. In real life applications, the main problem with compound

distributions is the evaluation of their probability function since it generally involves a

large number of operations which depends on the range of the support of the considered

random variables.

In the actuarial literature, a recursive procedure for the evaluation of the probability

function of a family of compound distributions is known under the name of Panjer’s re-

cursion as a reference to Panjer (1981). This family of distributions is called Panjer’s

class. However, such recursive formulas for Panjer’s class distributions were discussed

separately in Khatri and Patel (1961) and the recursion for the compound Poisson distri-

bution was treated e.g. in Adelson (1966), Beall and Rescia (1953) and Neyman (1939).

In pure mathematics, these recursive formulas appeared in sections 68 and 76 of Euler

(1748) and in Euler (1751, p. 10) for compound negative binomial, compound binomial

and compound Poisson distributions, respectively. In the actuarial literature, Stroh (1978)

deduced the recursions for the compound Poisson and the compound negative binomial

distributions using discrete Laplace transforms. Then, Panjer (1980) and Williams (1980)

13

derived the recursive formula for compound Poisson distributions. Tilley (1980) derived

the recursive formula for each distribution of Panjer’s class. The results of Panjer (1981)

are generalized in Sundt and Jewell (1981).

Recursive evaluations are very useful since they reduce largely the number of operations

in comparison to the evaluation using convolutions. Therefore, the evaluation is faster

especially when the expected value of the number of claims is large. The computer

programming implementation is also easier because we can set a stop condition when the

values of the probability function become negligible. However, when we are using floating-

point numbers, meaningless results may arise with recursive formulas because round-off

errors occur from the representation of real numbers by computers. At each stage of the

recursion, an error occurs and affects further computations with more or less effects on

the accuracy of additional points. Throughout this paper, the word accuracy is defined

to be the number of decimal digits that are exact in the evaluation of a given point.

Panjer and Wang (1993) focused on the stability against round-off errors for the different

cases discussed in Panjer (1981). They showed that the recursive evaluation for compound

Poisson and compound negative binomial distributions are stable while the recursive eval-

uation is unstable for the compound binomial case. An unstable evaluation means that

the magnitude of the relative error blows up such that we get meaningless results. Even

worse we may obtain an overflow.

Kornya (1983) derived an algorithm to compute the aggregate claims amount distribu-

tion of a traditional life insurance portfolio. If we assume that policies have independent

and identical claim amount distributions, the aggregate claims amount random variable

is distributed according to a compound binomial distribution. This means that the prob-

ability function of an n-fold convolution can be evaluated using the recursive formula

for the compound binomial case discussed in Panjer (1981). This result can be found

in De Pril (1985). De Pril (1986b) derived another algorithm to evaluate the aggregate

claims amount distribution in the individual risk model. It is improved in De Pril (1989).

Dhaene and Vandebroek (1995) and Waldmann (1994) discussed recursive evaluations for

the same distribution but that reduce the number of arithmetic operations. Such evalua-

tions are also unstable and applying them to calculate the probability function could be

worthless due to the propagation of round-off errors.

As pointed out by Shiu (1983), the recursive formula for compound binomial distributions

is a particular case of the J. C. P. Miller’s formula. This formula is well-known by nu-

merical analysts and computer scientists and many results can be found in the numerical

14

analysis literature. Olver (1964) analyzed the error accumulation in Miller’s algorithm.

The computational behavior of the solutions of a second order recurrence relation is dis-

cussed in Gautschi (1967). Oliver (1967) developed a relative stability theory and studied

the propagation error for recurrence relation of greater order. Zahar (1977) discussed the

stability of a generalization of Miller’s algorithm. More general results can be found in

Cash (1980).

In order to obtain an accurate evaluation efficiently, we use an arbitrary-precision arith-

metic library called GNU Multiple Precision Library1 (GMP), which is an efficient com-

putational tool especially for basic arithmetic operations. With GMP, we can compute

with an arbitrary precision that is only limited by the available memory of the computer.

GMP also avoids the use of scaling functions because the range of numbers that can be

represented by GMP floating-point variables is more than sufficient to represent the val-

ues of compound distributions in comparison to standard programming languages. The

scaling functions which are discussed in Panjer and Willmot (1986) and Waldmann (1994)

are used to avoid underflows or overflows in recursive evaluations. Throughout this paper,

the word precision is defined to be the number of bits that is used to represent a real

number by a floating-point number.

In Section 2.2, we define the collective risk model. In Section 2.3, we make a review on

recurrence equations and expose their solutions with the numerical problems that they

may involve. We introduce the arbitrary-precision arithmetic and the GMP library in

Section 2.4 where we describe its most useful functions and how the precision of vari-

ables can be controlled. In Section 2.5, we study how we can evaluate more efficiently

the probability function of a compound distribution using Panjer’s recursive formula for

the stable cases. In Section 2.6, we investigate in details the recursive evaluation of the

probability function of a compound binomial distribution and find an efficient computa-

tional method which leads to an accurate approximation of this function using GMP. We

conclude this paper by doing some remarks on the extension of our results to more general

recursive evaluations of the aggregate claims amount distribution. We also discuss the

effects of the use of the floating-point representation with other methods of evaluation of

this distribution.

1The manual by Granlund (2007) explains in details how to use GMP, the functions that are defined

and the algorithms that it uses to be efficient in computations.

15

2.2 The collective risk model

The collective risk model is used to represent the aggregate claims amount of a portfolio

of insurance policies over a period of time. The aggregate claims amount random variable

S is defined as

S = X1 +X2 + · · ·+XN , (2.2.1)

with the standard convention that the value of an empty sum is zero (N = 0). The random

variables N and Xk, representing the number of claims and the amount of the k-th claim,

respectively, are assumed to be mutually independent. We also assume that X1, X2, . . .

are identically distributed on the positive integers. Notice that if the distribution of these

random variables is continuous, a discretization of its probability density function will be

necessary.

The probability function of S can be determined by

fS(x) =
∞∑

n=0

pnf
∗n
X (x), x = 0, 1 . . . , (2.2.2)

where pn = Pr [N = n] and f ∗nX is the n-fold convolution of fX with itself and with f ∗0X

being the probability function of a degenerate distribution at zero.

For the distributions of N satisfying

pn =

(
a+

b

n

)
pn−1, n = 1, 2, . . . , and p0 > 0, (2.2.3)

Panjer (1981) showed that fS can be evaluated recursively by

fS(x) =
x∑

y=1

(
a+ b

y

x

)
fX(y)fS(x− y), x = 1, 2, . . . , (2.2.4)

with initial value fS(0) = p0. Sundt and Jewell (1981) showed that the Poisson, the

binomial and the negative binomial distributions are the only three distributions that

satisfy (2.2.3), if we exclude the degenerate distribution at zero which is not the most

interesting distribution to use in this model. Panjer (1981) determined the coefficients a

and b corresponding to each of these three distributions. He expressed (2.2.4) for each

one including the relation where N follows a geometric distribution, which is a special

case of the negative binomial distribution. Observe that if there exists an integer s such

that fX(x) = 0 for all x > s, the recursive formula (2.2.4) becomes

fS(x) =
x∧s∑
y=1

(
a+ b

y

x

)
fX(y)fS(x− y), x = 1, 2, . . . , (2.2.5)

where x ∧ s = min(x, s), which avoids some useless computations.

16

2.3 Recurrence equations and stability

We present now some general results on recurrence equations and explain the causes of

the instability in the evaluation of some of their solutions. We consider the s-th order

recurrence equation

f(x) =
s∑

y=1

ay(x)f(x− y), x = 1, 2, . . . , (2.3.1)

where the coefficients ay(x) are known and as(x) 6= 0 for all x. The general solution, g(x),

of (2.3.1) can be expressed as

g(x) =
s∑

j=1

cjuj(x), x = 1, 2, . . . , (2.3.2)

where u1, u2, . . . , us are linearly independent functions and compose the fundamental set

of solutions of (2.3.1). Then, we need a set of s initial values to be able to determine

the coefficients cj, j = 1, 2, . . . , s. If we consider (2.2.5), the coefficients that gives the

probability function of S are determined from the implicit initial values fS(0) = p0 and

fS(x) = 0, x = −1,−2, . . . ,−s+ 1.

A solution h of (2.3.1) is said to be dominated by another solution g of (2.3.1) if

lim
x→+∞

h(x)

g(x)
= 0. (2.3.3)

In the fundamental set of solutions there is one solution which dominates the s− 1 other

solutions of the set, let it be u1. This solution is said to be dominant while the solutions

u2, . . . , us are said to be subordinate or non-dominant. In other words, the solution (2.3.2)

is dominant if c1 6= 0 and subordinate if c1 = 0.

When the floating-point representation is used in computations, Cash (1980) gave the

result that the recursive evaluation of a dominant solution is stable against round-off errors

while it is unstable for a subordinate solution. Referring to Oliver (1967), the evaluation

of a solution is stable or effective if the relative error grows linearly with respect to the

number of stages while it is unstable or ineffective if the relative error grows more than

linearly with respect to the number of stages. If a recursive evaluation is unstable, an

insufficient accuracy may arise in the results which could even be meaningless. Inspired

by Gautschi (1967, p. 25) we give now an illustration in order to explain why such results

may arise. Let h be a subordinate solution of (2.3.1) with initial values

h(x) = 0, x = −1,−2, . . . ,−s+ 1 and h(0) = α0. (2.3.4)

17

Due to the floating-point representation of the initial value α0 by α̃0, a round-off error

occurs which is equal to ε0 = α0 − α̃0. Then, the error at the first point, ε1 = h(1)− α̃1,

where h(1) and α̃1 are the exact value and its evaluation, respectively, has two sources:

the evolution of ε0 and the round-off error coming from the representation of h(1) with a

limited precision. Assuming that we compute the following stages of the recursion with

an “infinite” precision, the solution, h̃, of (2.3.1) with initial values

h̃(x) = 0, x = −1,−2, . . . ,−s+ 2, h̃(0) = α̃0 and h̃(1) = α̃1, (2.3.5)

is generally dominant (c̃1 6= 0). Therefore, the relative error of the perturbed solution h̃

defined by
∣∣∣ h̃(x)−h(x)

h(x)

∣∣∣ increases without bound since we have

lim
x→+∞

∣∣∣∣∣ h̃(x)− h(x)

h(x)

∣∣∣∣∣ = +∞ (2.3.6)

because h̃(x)− h(x) is dominant. The magnitude of this error depends on the magnitude

of the relative errors of h̃(0) and h̃(1) that are equal to ε0
α0

and ε1
h(1)

, respectively. Gautschi

(1967) discussed the effectiveness of second order recurrence equations and gave several

examples. This case is also developed in Olver (1964), which gives an analysis of the error

of Miller’s algorithm. The general case of linear recurrence relations of greater order is

discussed in Oliver (1967) and Zahar (1977).

Let us now consider the s-th order congruent recurrence equation

f(x) =
s∑

y=1

by(x)c(y)f(x− y), x = 1, 2, . . . , (2.3.7)

with by(x) > 0 for y = 1, 2, . . . , s and x > 0, and where c(y) is a function defined on

positive integers with support {y1, y2, . . . , s} where 1 ≤ y1 < y2 < · · · < s <∞ and with

one being their greatest common divisor. If the initial values are nonnegative and at most

one is positive, then the solution of (2.3.7) is dominant. This result is shown in Panjer

and Wang (1993). All these conditions are satisfied for (2.2.5) when N follows a Poisson

distribution or a negative binomial distribution. Therefore, the recursive evaluation using

(2.2.5) is stable in these two cases. They also showed that the relative error grows linearly

with a slope smaller than one with respect to the number of stages. However, when N is

distributed according to a binomial distribution, the solution of (2.2.5) is subordinate since

the support of the compound binomial distribution is finite and fS(x) = 0 from a given

point. Moreover, the coefficients by(x) become negative from some point, which causes

the instability of the recursive evaluation. The recursive evaluation of the probability

function of compound binomial distributions is treated in details in Section 2.6.

18

Globally, there are two approaches to get rid of the round-off errors propagation. The

first one consists in avoiding the use of the floating-point representation such that the

variables are represented by expressions of rational numbers and are evaluated only to

get their numerical value. This approach leads to an exact evaluation but is inefficient

due to its computation time that is much longer compared to the use of the floating-

point representation. The second approach is to use the floating-point representation

but to increase its precision. Although the computation time increases with respect to

the precision, the use of an efficient computational tool providing methods that allows a

precision management can be very useful in order to obtain an efficient evaluation.

2.4 The GNU Multiple Precision Arithmetic Library

With standard programming languages like C, C++ or Java, the representation of a real

number, which is called a floating-point number, is limited to some types. For example,

float, double and long double are the three types that we can use in the C++ language

to represent real numbers. These types allow us to work with different precisions of the

floating-point representation. The accuracy of a floating-point number depends on the

precision assigned to each type. When a recursive evaluation is unstable, we generally need

to use a greater precision than the one that we can reach with these types. It would be

also useful to be able to choose the precision that we want to assign to each floating-point

number. These two properties are included in the GNU Multiple Precision Arithmetic

Library (GMP), an arbitrary-precision arithmetic library that we can use in addition to

the C++ language, a compiled language. The arbitrary-precision arithmetic, also called

bignum arithmetic, allows us to compute with an arbitrary precision only limited by the

available memory of the computer. It is very useful when we have to work with numbers

that contain many digits. These numbers can be integers as well as real numbers.

The GNU Multiple Precision Arithmetic Library is a free portable library written in C

allowing computations with arbitrary-precision on integers, rational numbers and floating-

point numbers. Its goal is to provide an efficient basic arithmetic on these three types. In

GMP, each type has a corresponding C++ class such that an object declared by a GMP

class is associated to a GMP C type variable. The most interesting class for us is the class

for floating-point numbers that are at the heart of our problem. It is called mpf_class for

multiple precision floating-point and corresponds to the GMP C type mpf_t. The GMP

floating-point type can represent numbers over the range from 2−68719476768 to 268719476736,

19

but the notions of underflow and overflow are not defined in this library. Therefore, when

a number cannot be represented the execution of the program stops and an error message

appears. The GMP class interface offers overloaded functions like absolute value, floor

or square root as well as overloaded operators which are more convenient to write code.

There are several other functions which do not have a C++ class interface. However,

we are able to use them since there are functions that convert a GMP class object to a

corresponding GMP C type variable. If we need to use several times one of these functions,

we can create an equivalent C++ function, which may assume objects as arguments and

returns an object. Exponential, logarithmic and trigonometric functions are not defined

in GMP, but if necessary we can implement them.

At the beginning of a program written using GMP, we can set a default precision. This

means that when we declare a floating-point object, it will have at least this precision.

For computational efficiency, the precision of an object can take only a multiple of 32 bits

with a minimum value of 64 bits. For example, if we set the default precision to 100 bits,

the precision that objects will have is actually of 128 bits. Then, we can set a greater or

smaller precision to each object that we declare and we can change it easily as we go along

with the program. Therefore, two objects in the same program do not have necessarily

the same precision.

When we are working with different precisions in a program, the precision that is used in

a calculation is the one of the destination object. Therefore, when a computation needs

an intermediate object, the precision of this object is the one of the destination object.

For example, if we compute c=a*x+b*y an intermediate variable is needed to represent

one of the two products. Let it be d=a*x. GMP assigns the precision of c to the variable

d. Now, imagine that we do the same computation but using two operations: e=a*x and

c=e+b*y. We can choose to set a different precision than that of c to e. Thus, the value

of c may differ between the computation in one operation and the computation in two

operations. To save time, it is sometimes useful to split a computation into several parts

and compute each part with a suitable precision since the computation time depends to

a large extent on the precision of the objects that are involved.

Since we are computing with numbers and we set ourselves their precision in bits, it

could be interesting to find a relation between the precision in bits that is used in the

representation of a real number by a GMP floating-point object and the number of decimal

digits that are exact in this representation, and conversely. This relation is a change of base

from base two for the precision to base ten for the number of decimal digits. Therefore,

we can imagine that this number may be obtained by multiplying the precision by log10 2.

20

We check if this relation is true by doing a small example. Let us do the following

computations for different precisions using GMP. First, we set the value 10
3

= 3.3̄ to a

GMP floating-point object called t, which generates a round-off error. The number of

times that the digit 3 appears is the number of decimal digits that the computer has used

to represent this fraction. Then, we consider the relative error

η =

∣∣∣∣10− 3 t

10

∣∣∣∣ , (2.4.1)

which would be equal to 0 if there was no round-off error at the previous step. The

number of decimal digits used by the computer with the chosen precision is given by

d = b− log10 ηc , (2.4.2)

where b·c denotes the floor function. Remark that d is the accuracy of the representation

of 10
3

by a GMP floating-point object. Table 2.1 contains the values of η and d for some

Table 2.1: Accuracy versus precision with GMP floating-point objects

r η d

64 5.42101 · 10−21 20

128 2.93874 · 10−40 39

256 8.63617 · 10−79 78

512 7.45834 · 10−156 155

1024 5.56268 · 10−310 309

8192 9.16802 · 10−2468 2467

32 768 7.06484 · 10−9866 9865

precisions. We observe that for this example the relative error is given by

η =
2−r

10
, (2.4.3)

for every precision r. From (2.4.2) and (2.4.3), it follows that

d = br · log10 2c+ 1. (2.4.4)

Note that the floor function is used in order to obtain an integer for the number of exact

decimal digits. With GMP, in the case where a real number can be exactly represented

using only a few bits, only these bits are used in computations even if we wanted to

21

use a larger precision. This arises, for example, when a power of 1
2

is represented by a

floating-point number. Therefore, (2.4.4) gives the minimum accuracy for a given preci-

sion. Conversely, the minimum precision that has to be set in order to guarantee a desired

accuracy of the floating-point representation is given by

r = d(d− 1) log2 10e , (2.4.5)

where d·e denotes the ceiling function. The precision that is actually assigned to GMP

objects is

rGMP = max

(
32

⌈
(d− 1) log2 10

32

⌉
, 64

)
. (2.4.6)

From (2.4.5), we can express the difference between two precisions from the difference of

their respective accuracies by

r2 = r1 + d(d2 − d1) log2 10e . (2.4.7)

This relation can be used to determine the precision that we have to use when we want

to change the accuracy of the floating-point representation from d1 to d2 decimal digits.

The main problem with GMP is that we may obtain different results on two different

computers because the rounding of floating-point numbers depends on the computer word

size. Nevertheless, its computation speed and the fact that we can easily control the

precision of each object give us an efficient computational tool compared to software

like Maple, Mathematica or Matlab. Therefore, we use GMP, and especially its classes in

addition to the C++ language, to obtain efficient computational methods for the recursive

evaluation of the probability function of a compound distribution.

2.5 Efficiency with Panjer’s recursion

To be efficient, a program has to provide results with a sufficient accuracy in the least

time possible. Due to the calculation speed of GMP, we can use it to evaluate recursively

the probability function of a compound distribution with (2.2.5) even for the cases where

it is stable. The idea is to compute using an adequate precision. Panjer and Wang (1993,

p. 248) gave a formula for the minimum accuracy that we can obtain from the number of

stages and the number of decimal digits used to represent real numbers. The lower bound,

v(x), of the accuracy obtained at the x-th stage of the recursive evaluation is given by

v(x) ≥ d+ log10 2− log10(x+ 1), x = 1, 2, (2.5.1)

22

Therefore, in order to determine the precision in bits, r(x), that is necessary to guarantee

a required accuracy v at the x-th stage, we combine (2.4.5) and (2.5.1) to get

r(x) =
⌊
log2

(
(x+ 1) · 10(v−1)

)⌋
, x = 1, 2, (2.5.2)

We observe that this needed precision will rarely be a large number since each additional

digit in the required accuracy or each multiplication of the number of stages by 10 in-

creases it by log2 10 ≈ 3.32. Thus, it is generally smaller than 64 bits, which is the

minimum precision that GMP assigns to objects. Nevertheless, the use of this library

is recommended because its speed is sufficiently beneficial compared to other software

solutions. Time comparisons between the use of GMP and Maple are made at the end of

this section.

When the expected value of N , E[N], is large, two other constraints come up: the ability

to represent the values with floating-point numbers and the available memory of the

computer.

If E[N] is large, the values of the probability function of the compound distribution are

small and an underflow may happen especially for p0. If the initial value is too small to be

represented by a floating-point number its representation is zero, which is not appropriate

for an initial value of such recursive evaluations. The scaling functions (see e.g. Panjer

and Willmot (1986) and Waldmann (1994)) give a way to avoid underflows or overflows in

recursive evaluations. However, the range of numbers that can be represented with GMP

is generally sufficient to represent the values of the probability function of a compound

distribution. Thus, GMP avoids the use of scaling functions.

Computers have a limited memory, so we cannot declare as many variables as we wish. A

problem arises when we store the values of the probability function in an array, such that

they can be used for further computations. If we store them in an array, each element of

this array takes a part of the computer memory with the consequence that we are limited

in the size of the array. Furthermore, with Maple, the time needed by the computer for

each operation grows as we go along with the recursive evaluation since it has to swap

pages of memory to the disk from some stage on. This process consumes a lot of time

because Maple has to move this memory to the disk and has to take it back to be able to

use the variables inside. To avoid this problem and to be able to compare the computation

time between Maple and GMP, we opt for another method that allows to declare a smaller

number of variables.

Looking at (2.2.5) we observe that we need at least the s previous values to calculate

each new value. Therefore, we can create an array with only s elements in which we

23

store only the values that are needed to evaluate the next stage. First, we evaluate

fS(0), fS(1), . . . , fS(s−1) that we store to their corresponding element of the array. Then,

we evaluate fS(s) which depends on the first s values which are stored in the array and

assigns it to the element 0 of the array. We use the modulo operation s mod s in order

to determine the element of the array where we store this value. Then, for the evaluation

of fS(s + 1) we use the same modulo operation to take the value of fS(s) in the right

element of the array. We go on with the recursive evaluation using modulo operations to

store or to take a value in the array. The value of fS(x), x = 0, 1, . . . , is actually stored

in the element x mod s of the array as long as we need it for the evaluation of further

stages. This method allows us to use a smaller number of variables but the values of

the probability function are no longer stored in the computer memory at the end of the

evaluation and cannot be used to compute the desired quantities.

In order to be able to calculate the required quantities using the values of the probability

function there are essentially two ways: the first one is to calculate the required quantities

as we go along with the recursion. For example, if we want to calculate a stop-loss premium

with deductible d, we will create a variable which will be accumulated by (x− d)+fS(x)

at each stage x of the recursive evaluation. The second way is to store elsewhere the

values of the probability function. We can write these values in a file such that they are

read back when we want to use them or store them in an array declared with a smaller

precision. The use of an array is efficient only with GMP as long as computer memory is

available while writing in a file can be done with all software and programming languages.

In the file we can write the numerical values in decimal or their binary representations,

both with the desired accuracy. The latter is more efficient since it avoids the conversions

from bits to decimal digits and from decimal digits to bits when we write in the file and

when we read it back, respectively. The chosen method will depend on which quantity

we want to calculate with the probability function. The advantage to store elsewhere the

values or their representations is that we can keep only the digits that fulfill the required

accuracy. Remark that it is useless to keep the values with a too large accuracy knowing

that the values of the last evaluation points will have a smaller accuracy than the first

ones. The use of a sufficient precision is only useful to guarantee accurate values at the

last evaluation points.

This procedure is summarized in Algorithm 1 for the computation of the probability

function of a compound Poisson distribution with parameters (λ > 0, fX). Notice that

at step 6 we choose to stop the recursion at a given quantile that fulfills some condition

on the magnitude of the probability function. We can also choose to evaluate up to a

24

Algorithm 1: Recursive evaluation for compound Poisson distributions

1. Declare a table f with elements from 0 to s− 1

2. Define a table g with elements from 1 to s for fX

3. Define λ

4. Set f [0]a = e−λ and F = f [0]

5. Store f [0] or F

6. For i = 1 while F < 1− 10−v

7. sum = 0

8. For k = 1 to min(i, s)

9. sum = sum+ k · g[k] · f [i− k mod s]

10. f [i mod s] = sum·λ
i
, F = F + f [i mod s]

11. Store f [i mod s] or F

ah[j] represents the element number j of the array h

given point. Finally, steps 5 and 11 consist in storing the probability function or the

distribution function in an array or in a file.

Some comparisons2 between the computation times using Maple XI and GMP3 are made

for the evaluation of several compound Poisson distributions according to Algorithm 1.

We compare only the computation times, this is why steps 5 and 11 of Algorithm 1 are

not executed here. In these comparisons, we choose fX such that

fX(x) =

{
1

s+1
, x = 1, . . . , s− 1

2
s+1

, x = s
. (2.5.3)

Its shape has an influence on the computation time only by the number of stages that are

evaluated until the stop condition is reached, which is F < 1− 10−7. We choose to assign

a precision of 64 bits (equivalent to a representation with 20 decimal digits) to GMP

objects and to compute using 14 decimal digits with Maple XI. For the first comparison,

we set s = 200 and consider several values of λ. Table 2.2 gives the computation times

in seconds and the stages where the stop condition (last stage) is reached for some λ’s.

Figure 2.1 shows these computation times as functions of λ. For the second comparison,

we set λ = 1000 and consider several values of s. Table 2.3 gives the computation times in

2Computations are made on an HP Compaq computer with an Intel Pentium CPU of 3.40 GHz and

0.99 GB of RAM.
3The version 4.2.2 of GMP is used for computations.

25

seconds and the stages where the stop condition (last stage) is reached for some values of

s. Figure 2.2 shows these computation times as functions of s. For the last comparison,

we decide to stop the recursion at 200 000 for each evaluation. We set λ = 1000 and

consider several values of s. Table 2.4 gives the computation times in seconds for some

values of s and Figure 2.3 shows these computation times as functions of s. We observe

that the computation times of evaluations using GMP are much smaller than the ones

using Maple even if we use more decimal digits in the representation of real numbers with

GMP.

Table 2.2: Computation times and last stages for the first comparison

Last stage Computation time
λ

GMP Maple GMP Maple

50 9952 9952 3 17

100 16 785 16 785 6 30

500 64 682 64 682 24 117

1000 120 792 120 792 45 220

5000 548 447 548 455 204 1006

10 000 1 071 160 1 071 183 399 1966

Figure 2.1: Computation times as functions of λ for the first comparison

26

Table 2.3: Computation times and last stages for the second comparison

Last stage Computation time
s

GMP Maple GMP Maple

100 60 972 60 972 11 56

200 120 792 120 792 44 222

300 180 607 180 607 98 497

400 240 422 240 417 174 885

500 300 236 300 236 271 1386

1000 599 305 599 304 1081 5734

Figure 2.2: Computation times as functions of s for the second comparison

Table 2.4: Computation times for the third comparison

Computation time
s

GMP Maple

50 18 91

100 36 183

200 72 366

300 109 555

27

Figure 2.3: Computation times as functions of s for the third comparison

2.6 Compound binomial distributions

2.6.1 Definitions and examples

We focus now on the recursive evaluation of probability functions of compound binomial

distributions. Such distributions occur in the individual risk model. In this model, the

aggregate claims amount random variable S is defined as

S = X1 +X2 + · · ·+Xm, (2.6.1)

where m is the number of policies in the portfolio and Xk is the claim amount random

variable of the policy number k. We can model Xk as Xk = IkBk where Ik is an indicator

random variable and Bk is the claim amount random variable given that a claim occurs.

We assume that Ik and Bk are independent and that the Ik’s are mutually independent

and identically distributed according to a Bernoulli distribution with parameter 0 ≤ q ≤ 1

such that Pr [Ik = 1] = q, k = 1, . . . ,m. If the random variables Bk, k = 1, . . . ,m, are also

assumed to be independent and identically distributed, S follows a compound binomial

distribution. Therefore, we can write

S = Y1 + Y2 + · · ·+ YN , (2.6.2)

where Y1, Y2, . . . are independent and identically distributed according to the same distri-

bution as Bk and where N =
∑m

k=1 Ik follows a binomial distribution with parameters m

and q such that

Pr [N = n] =

(
m

n

)
qn(1− q)m−n, n = 0, 1, . . . ,m, (2.6.3)

where m is a positive integer.

From (2.6.1), we can see that the recursive formula for compound binomial distributions

can also be used to compute the n-fold convolution of a discrete probability function

28

with a positive probability mass at zero. In this case, the parameters of the binomial

distribution are m = n and q = 1 − fX(0). This result can be found in De Pril (1985).

Finally, the computation of the probability function of a compound binomial distribution

is equivalent to determining the coefficient of a polynomial (the probability generating

function) raised to the power m.

To illustrate our computations in this section, we consider three examples, each of which

has an individual claim amount distribution on the integers from 1 to 10.

Example 1: We consider the distribution of Example 8 of Panjer and Wang (1993, p. 249).

Its probability function fZ1 is given in Table 2.5. Its expected value, variance and skewness

are 3.7, 5.36 and 1.007, respectively.

Example 2: We consider the random variable obtained by Z2 = 11 − Z1, where Z1 is

distributed according to the distribution of Example 1. Its probability function fZ2 is

given in Table 2.5. Its expected value, variance and skewness are 7.3, 5.36 and −1.007,

respectively.

Example 3: For this example, we consider a skewness free distribution. Its probability

function fZ3 is given in Table 2.5. Its expected value and variance are 5.5 and 3.95,

respectively.

Table 2.5: Individual claim amount probability functions of the three examples

x 1 2 3 4 5 6 7 8 9 10

fZ1(x) 0.150 0.200 0.250 0.125 0.075 0.050 0.050 0.050 0.025 0.025

fZ2(x) 0.025 0.025 0.050 0.050 0.050 0.075 0.125 0.250 0.200 0.150

fZ3(x) 0.025 0.050 0.075 0.150 0.200 0.200 0.150 0.075 0.050 0.025

2.6.2 Recurrence relations

For a binomial distribution with probability function (2.6.3) the coefficients a and b defined

in (2.2.3) are

a = −q
p

and b = (m+ 1)
q

p
, (2.6.4)

29

where p = 1− q. The recursive formula for compound binomial distributions is obtained

by substituting (2.6.4) into (2.2.5). It is

fS(x) =
q

px

x∧s∑
y=1

((m+ 1) y − x) fX(y)fS(x− y), x = 1, 2, . . . ,ms, (2.6.5)

with initial value fS(0) = pm. Notice that we can stop the recursion at stage ms which

is the maximum value of the support of such a compound binomial distribution. As

mentioned in Section 2.3, Panjer and Wang (1993) showed that (2.6.5) is unstable and

could be ineffective in the recursive evaluation of fS. The instability starts when at least

one coefficient (m+ 1) y − x in the sum of (2.6.5) is negative for some y. The first point

where it happens is x = m+2, which means that (2.6.5) is stable over the range [0,m+1]

as pointed out by Panjer and Wang (1993).

For compound binomial distributions, we know that the event S = ms is reached when

we have m claims of amount s. Thus, the probability of this event is given by

fS(ms) = Pr [N = m]
m∏

i=1

Pr [Xi = s] = (q fX(s))m . (2.6.6)

Therefore, in contrast to the other Panjer’s recursive formulas, we can calculate the rela-

tive error at ms after an evaluation using (2.6.5). This relative error can be considered as

an accuracy measure since the accuracy at a given point is obtained by taking the integer

part of the negative logarithm to the base ten of the relative error at this point. Observe

that if the accuracy is negative the evaluation is ineffective since the related relative error

is greater than one.

For a given precision of the floating-point representation, the propagation of round-off

errors depends on the parameters m and q and on the shape of fX . The relative error

at ms is an increasing function of m since the number of stages increases with respect to

m. We can show that it also increases with respect to q. Figure 2.4 below illustrates this

property.

Another consequence of knowing the final value is that we can evaluate recursively in the

backward direction i.e. from fS(ms) to fS(0). By rearranging (2.6.5), we get

fS(x) =
p

q
(x+ s)u(x)fS(x+ s)

+u(x)
s−1∑
y=1

(x+ s− y (m+ 1)) fX(y)fS(x+ s− y), (2.6.7)

for x = ms − 1,ms − 2, . . . , 0, where u(x) = ((ms− x) fX(s))−1. The initial values of

(2.6.7) are (2.6.6) and fS(z) = 0, z = ms + 1,ms + 2, . . . ,ms + s− 1. Notice that these

30

initial values lead to a subordinate solution of (2.6.7) because fS(x) = 0 for x < 0. For

(2.6.7), at least one coefficient x + s − y (m+ 1) is negative for some y from the point

x = ms − m − 2 on. Therefore, it is stable over the range [ms − m − 1,ms]. We can

measure the accuracy of this recursive evaluation from the relative error at zero. This

relative error increases with respect to m and q like in the forward direction. We illustrate

the behavior of this relative error with respect to q in the next subsection.

2.6.3 Forward vs backward directions

The idea is now to determine which direction is preferable for the recursive evaluation of

the probability function of a given compound binomial distribution over its whole support.

Figure 2.4 shows the logarithms to the base ten of the relative errors at the last evaluation

(a) Example 1 (b) Example 2

(c) Example 3

Figure 2.4: Logarithms of the relative errors at the last evaluation points as functions of

q for both directions with m = 1000 and a precision of 128 bits

points in the forward and backward recursive evaluations as functions of q and for the

three examples. In order to make these three graphs easier to understand, we choose

31

m = 1000 and the precision (128 bits) such that the recursive evaluations are ineffective.

We observe that the relative error at the last evaluation point increases with respect

to q for each direction. We also remark that the evaluation in the forward direction is

preferable for small values of q, while the evaluation in the backward direction is preferable

when the value of q is near one. This property generally holds for every distribution of X.

We denote by q̂, the value of q where the two curves cross. This value depends to a large

extent on the characteristics of the individual claim amount distribution. When fX has

a positive skewness, q̂ is usually smaller than 0.5, while it is generally greater than 0.5 if

fX has a negative skewness. Moreover, for some distributions, one direction is preferable

for almost all q. Unfortunately, there is no simple rule to determine q̂ from fX . If it were

the case, it would be recommended to evaluate in the forward direction if q < q̂ and in

the backward direction if q > q̂. We can conclude that the forward evaluation is better

for small values of q and if fX has a negative skewness, while the backward evaluation is

preferable for large values of q and if fX has a positive skewness.

Panjer and Wang (1993) proposed a combined usage of both directions. It consists in

evaluating fS in both directions for the most part of the support. If we use a sufficient

precision the first digits of both evaluations will be the same for some points in an interval.

If such an interval exists an accurate probability function of S is given by the forward

evaluation over the left side of the support and by the backward evaluation over its

right side. This method has the advantage that the precision which is necessary to get

an accurate evaluation is smaller than the one for an evaluation in only one direction.

However, we do not know beforehand the location of such an interval and if it exists

for the precision used in the evaluation. Moreover, if we do not obtain the same first

digits for any point, we will not be able to know how many bits that we have to add in

order to guarantee an accurate evaluation since we do not have any accuracy measure.

This means that we may evaluate several times before having an adequate accuracy of

the considered probability function. Figure 2.5 shows the evolution of the relative errors

as we go along with the recursions in both directions for the three examples and three

values of q. A precision of 128 bits is assigned to floating-point objects and we choose

m = 1000. In order to calculate these relative errors, we need to know the exact values.

They are evaluated recursively with a precision of 10 016 bits which can be considered

as the “infinite” precision. This precision which corresponds to a representation of real

numbers with more than 3000 decimal digits is chosen such that we obtain an evaluation

with a more than sufficient accuracy. The interval over which the first digits of the

evaluations are equal in both directions is the set of points where both curves are below

32

(a) Example 1 with q=0.05 (b) Example 2 with q=0.05 (c) Example 3 with q=0.05

(d) Example 1 with q=0.5 (e) Example 2 with q=0.5 (f) Example 3 with q=0.5

(g) Example 1 with q=0.95 (h) Example 2 with q=0.95 (i) Example 3 with q=0.95

Figure 2.5: Evolution of the logarithms of the relative errors as we go along with the

recursions in both directions with m = 1000 and a precision of 128 bits

33

zero. We can observe that it becomes smaller as q increases and it even does not exist

for Examples 1 and 3 with q = 0.95 (see Figures 2.5g and 2.5i). For these two cases, we

have to use a greater precision in order to obtain such an interval. Furthermore, if we

increase m we will have more cases where this interval does not exist. From Figure 2.5,

we also remark that the forward and backward evaluations are accurate over a smaller

and greater range as q increases, respectively. Thus, the interval described above moves

to the left as q increases.

2.6.4 Which precision is necessary?

From now on, we consider only evaluations in the forward direction and similar results hold

for evaluations in the backward direction. We start to use the computational properties of

GMP, especially the fact that we can change easily the precision of an object in a program.

We come back to the illustration that we did in Section 2.3 and show numerically that the

recursive evaluation is ineffective if we compute the first stage with a “finite” precision.

Table 2.6 gives, for the three examples, the relative error at ms of an evaluation using a

Table 2.6: Relative error at ms according to an evaluation using a “finite” precision for

the first k stages

Relative error at ms
k

Example 1 Example 2 Example 3

Never 6.73871 · 10−1838 3.92434 · 10−1940 2.34821 · 10−1461

0 8.64004 · 10−22 8.64004 · 10−22 8.64004 · 10−22

1 3.44691 · 10218 4.48025 · 10360 3.24581 · 10590

10 3.11429 · 10230 2.63760 · 10362 1.14339 · 10593

100 7.20225 · 10280 1.16377 · 10375 8.88992 · 10614

1000 1.07758 · 10447 8.12733 · 10418 4.79148 · 10734

10 000 2.58066 · 10609 4.95376 · 10507 4.51330 · 10985

precision of 64 bits up to the k-th stage and using a precision of 8192 bits for the following

stages. We choose m = 1000 and q = 0.3, which gives ms = 10 000. The precision of

8192 bits is considered to be the “infinite” precision since it is much greater than the

one needed to have an accurate evaluation. From (2.4.4), we know that the precisions of

64 and 8192 bits represent real numbers with 20 and 2467 decimal digits, respectively.

34

When k = 0, we represent the initial value fS(0) using a precision of 64 bits and then

we evaluate recursively each stage with a precision of 8192 bits. We observe that this

evaluation leads to accurate values since the accuracy of the last point is of 21 decimal

digits for each of the three examples. The magnitude of this relative error comes from the

round-off error made in the representation of fS(0) with a “finite” precision. Precisions

of 8192 and 64 bits are assigned to each object involved in recursive evaluations for the

“never” case and when k = 10 000, respectively. The evaluation takes approximatively 15

seconds for each case except for k = 10 000 for which it takes only one second.

We can notice that there is a relation between the relative errors obtained in the “never”

case and when k = 10 000. We observe that the difference between the exponents of the

relative errors for each example is approximatively equal to the difference between the

numbers of decimal digits used in the floating-point representation for both precisions.

In Example 1, the computation with a precision of 8192 bits leads to an accuracy of

1837 digits at ms. If we want to obtain an accuracy of only 10 digits at this point we

can set a smaller precision in order to have a faster evaluation. The difference between

the obtained and the desired accuracies is 1827 digits. Thus, what happens if we reduce

the floating-point representation by 1827 decimal digits? The consequence is that the

relative errors of the first points of the perturbed solution h̃, discussed in Section 2.3, are

approximatively multiplied by 10−1827. Then, the relative errors of further points are also

approximatively multiplied by 10−1827 including the one at ms which should be of the

magnitude of 10−11. From (2.4.7), this corresponds to assign a precision of 2123 bits to

the objects. Due to code optimization, setting a precision of 2123 bits with GMP assigns

actually a precision of 2144 bits. If this precision is set to each object we obtain a relative

error at ms of 1.90147 · 10−17 for a computation time of 2 seconds. However, we can also

start from the relative error obtained in the “never” case of Table 2.6. For Example 1,

this relative error is greater than one and its logarithm, 609.41, can be considered as a

lack of decimal digits used in the floating-point representation. If we add the 10 desired

digits of accuracy, it follows from (2.4.7) that we should use a precision of 2122 bits. It is

one bit smaller than the precision obtained starting from the evaluation using an original

precision of 8192. This relation holds for every distribution of X.

We have now a method that guarantees an accurate recursive evaluation. It consists in

evaluating recursively fS using the lowest precision possible (r = 64 bits) and calculating

the relative error at ms denoted by η. This evaluation is accurate if η is smaller than

10−(v+1), where v is the desired accuracy. If it is not the case, we determine the precision,

35

r̂, which is necessary to obtain an accurate evaluation by

r̂ = r + dlog2 (η · 10v)e , (2.6.8)

which follows from (2.4.7). The GMP objects have actually a precision of

r̂GMP = 32

⌈
r̂

32

⌉
. (2.6.9)

Table 2.7 contains the values of η, r̂ and r̂GMP in addition to the relative error (η̂) obtained

Table 2.7: Values of η, r̂, r̂GMP and η̂ if m = 1000 and q = 0.3

Variable Example 1 Example 2 Example 3

η 2.58066 · 10609 4.95376 · 10507 4.51330 · 10985

r̂ 2122 1784 3372

r̂GMP 2144 1792 3392

η̂ 1.90147 · 10−17 1.13409 · 10−13 1.57129 · 10−16

at ms for a recursive evaluation with a precision of r̂GMP calculated for v = 10. This

procedure is summarized in Algorithm 2. Figure 2.6 shows the evolution of the relative

errors as we go along with the recursive evaluations using precisions of 64 and r̂GMP bits

for the three examples. We observe that the difference between the logarithms of the

relative errors obtained using both precisions is equal to d̂GMP − 20 for each point, where

d̂GMP is the number of decimal digits used in the floating-point representation with a

precision of r̂GMP . This means that the relative error is multiplied by 1020−d̂GMP at each

point between the evaluations using 64 and r̂GMP bits. These two recursive evaluations

are parts of Algorithm 2.

In Section 2.4, we wrote that there is no logarithm function defined in GMP. However,

we can notice that at step 15 of Algorithm 2, a logarithm to the base two has to be

computed in order to determine the precision needed to get an accurate evaluation. We

can also observe that we need the smallest integer greater than or equal to this logarithm.

Nevertheless, there exists a GMP function that we can adjust to find this integer. This

function, called mpf_class_get_d_2exp, returns a double variable d and admits two

arguments: a pointer to a signed long int variable exp and a floating-point number

variable op. The value of d is the solution of op = d · 2exp with 0.5 ≤ d < 1. The value

of the exponent is stored to exp. This value corresponds to the ceiling function of the

36

Algorithm 2: Recursive evaluation of a compound binomial distribution by

finding the needed precision

1. Set the default precision r to 64 bits

2. Declare a table f with elements from 0 to s− 1 and an intermediate variable sum

3. Define a table g with elements from 1 to s for fX

4. Define m and q and set p = 1− q

5. Set f [0] = pm and h = (q · g[s])m

6. Store f [0] with v decimal digits

7. For i = 1 to m ∗ s

8. sum = 0

9. For k = 1 to min(i, s)

10. sum = sum+ ((m+ 1) k − i) · g[k] · f [i− k mod s]

11. f [i mod s] = sum·q
p·i

12. Store f [i mod s] with v decimal digits

13. Calculate η =
∣∣∣h−f [0]

h

∣∣∣
14. If η < 10−(v+1) then stop

15. Set a precision of r + dlog2 (η · 10v)e to each element of f and g, to p, q and sum

16. Redefine p, q and g

17. Redo steps 5 to 12

logarithm to the base two of op if d 6= 0.5. If d = 0.5, the ceiling function of the logarithm

to the base two of op is equal to exp − 1. Therefore, in order to obtain a function that

computes the ceiling function of the logarithm to the base two of a number, we can create

a function, which uses the function mpf_class_get_d_2exp and add a condition on the

value of d to adapt the value of exp. This function can be:

signed long int ceil_log_2(mpf_class number){

double d; signed long int exp;

d = mpf_get_d_2exp (&exp, number.get_mpf_t());

if (d == 0.5)

exp -= 1;

return exp;

}

37

(a) Example 1 (b) Example 2

(c) Example 3

Figure 2.6: Evolution of the relative errors of the recursive evaluation using two different

precisions

2.6.5 Precision management

Looking at Algorithm 2, we observe that we have to set a new precision to each object at

step 15 and then to redefine each one according to this new precision at step 16. What

happens if we assign a precision r with r < r̂ to the objects representing p, q and fX?

Although we represent their value with a smaller precision, their representation is still close

to their exact value. Therefore, we have a new compound binomial distribution whose

probability function is a very good approximation of the exact one. We have to choose r

in function of the desired accuracy, in fact it must be greater than d(v − 1) log2 10e.

Such an approximation is interesting since time can be saved due to the use of a smaller

precision. The computation time of the recursive evaluation and the corresponding relative

error obtained in five cases described below and for each of the three examples can be

found in Table 2.8. In order to be easier to compare the computation times, we increase

them by using a greater parameter m chosen to be 10 000. The parameter q remains

38

Table 2.8: Relative errors and computation times in five cases

Example 1 Example 2 Example 3
Case

Relative error Time Relative error Time Relative error Time

(1) 9.64475 · 10−21 78 9.64475 · 10−21 79 9.64475 · 10−21 78

(2) 4.70198 · 10−34 884 7.83663 · 10−35 883 4.70198 · 10−34 884

(3) 9.64475 · 10−21 2625 9.64475 · 10−21 2623 9.64475 · 10−21 2619

(4) 1.54837 · 10−13415 3432 6.76541 · 10−14435 3431 2.66930 · 10−9648 3427

(5) 1.14991 · 106295 4 1.82767 · 105275 4 1.68812 · 1010061 4

equal to 0.3. In case (1), a precision of 64 bits is assigned to the objects representing p,

q and fX . In case (2), a precision of 64 bits is set only to the objects representing fX . In

case (3), a precision of 64 bits is set only to the objects representing p and q. In case (4),

each object has a precision of 65 536 bits, the “infinite” precision which was assigned to

the other objects in the three previous cases. In case (5), each object has a precision of

64 bits. This last case corresponds to the first evaluation of Algorithm 2 that is used

to determine r̂. From Table 2.8, we observe that we can save a lot of time by setting a

smaller precision to the “non-recursive” objects while keeping an adequate accuracy.

To save much more time, we can even split step 10 of Algorithm 2 in two parts. The first

one consists in doing the multiplication of the objects which accept a smaller precision

and store the product in an intermediate object w declared with a precision of r. The

second part concerns the accumulation of the products of the value of w and the proba-

bility function of S at the right point in the object sum. Algorithm 3 is obtained from

Algorithm 2 with the use of a precision of r set to the objects representing p, q and fX and

with the inclusion of the split of multiplications. Notice that in most of the applications,

steps 17 and 18 can be removed because r = 64 is generally sufficient to guarantee the

desired accuracy. The cases (1) and (2) of Table 2.8 are reproduced in Table 2.9 with

the inclusion of the split of multiplications. Table 2.10 contains the values of η, r̂ and

r̂GMP with v = 10 in addition to the relative error (η̂) obtained at ms with a recursive

evaluation using Algorithm 3. The computation time (Time 1) of step 19 of Algorithm 3

can also be found in Table 2.10 as well as the computation time (Time 2) of the evalua-

tion using a precision of r̂GMP assigned to each object. The difference between these two

computation times is the time that we save by using Algorithm 3 instead of Algorithm 2

for each example.

39

Algorithm 3: Recursive evaluation of a compound binomial distribution by

finding the needed precision with the inclusion of the split of multiplications

1. Set the default precision r to 64 bits

2. Declare a table f with elements from 0 to s− 1 and the variables w and sum

3. Define a table g with elements from 1 to s for fX

4. Define m and q and set p = 1− q

5. Set f [0] = pm and h = (q · g[s])m

6. Store f [0] with v decimal digits

7. For i = 1 to m ∗ s

8. sum = 0

9. For k = 1 to min(i, s)

10. w = ((m+ 1) k − i) · g[k]

11. sum = sum+ w · f [i− k mod s]

12. f [i mod s] = sum·q
p·i

13. Store f [i mod s] with v decimal digits

14. Calculate η =
∣∣∣h−f [0]

h

∣∣∣
15. If η < 10−(v+1) then stop

16. Set a precision of r + dlog2 (η · 10v)e to each element of f and to sum

17. Set a precision of max (dv log2 10e , 64) to each element of g, to p, q and w

18. Redefine p, q and g

19. Redo steps 5 to 13

Table 2.9: Relative errors and computation times in two cases with the inclusion of the

split of multiplications

Example 1 Example 2 Example 3
Case

Relative error Time Relative error Time Relative error Time

(1) 9.64677 · 10−21 68 9.64509 · 10−21 67 9.64677 · 10−21 67

(2) 2.01948 · 10−24 874 3.36581 · 10−25 874 2.01948 · 10−24 873

40

Table 2.10: Values of η, r̂, r̂GMP and η̂ with computation times if m = 10 000 and q = 0.3

Variable Example 1 Example 2 Example 3

η 1.14991 · 106295 1.82767 · 105275 1.68812 · 1010061

r̂ 21 009 17 622 33 520

r̂GMP 21 024 17 632 33 536

η̂ 1.01105 · 10−14 9.94587 · 10−15 1.68333 · 10−15

Time 1 25 21 37

Time 2 622 468 1235

We might put here a figure similar to Figure 2.6 on the evolution of the relative error

of the two recursive evaluations of Algorithm 3. However, it would not be so nice since

the relative error is always on the same magnitude during the computation of step 19 of

Algorithm 3.

2.6.6 Effects of m on stability

There is a last parameter for which we did not discuss its influences on the stability of

recursive evaluation yet. It is the parameter m. From Tables 2.7 and 2.10, we observe

that the needed precision given a parameter m, r̂ (m), is approximatively 10 times greater

in the case m = 10 000 than in the case m = 1000 for each of the three examples. In both

tables the desired accuracy is 10 digits, but to compare these precisions it is better to

use v = 0. Table 2.11 gives the values of r̂ (m) for v = 0 for the same distributions as in

Table 2.11: Values of r̂ (m) for two values of m and v = 0

r̂ (m)
m

Example 1 Example 2 Example 3

1000 2089 1751 3339

10 000 20 976 17 589 33 487

Tables 2.7 and 2.10. We remark that the ratio is actually a bit greater than 10, the ratio

between the two values of m. In reality, this is true for almost every distribution of X.

This can be interpreted because multiplying the parameter m = l by a factor c amounts to

41

the same as finding the coefficient of a polynomial raised to the power c l. Moreover, the

recursive evaluation requires c times more stages and is stable over the range [0, c l + 1],

approximatively c times the one in the case m = l.

In order to find a relation between m and the needed precision, we do a multiple linear

regression based on the needed precisions for nine values of m and 21 distributions of X.

These precisions follow from (2.6.8) with r = 64 and v = 0 but without taking the ceiling

function. The two explanatory variables used in the regression are c and the product of

c and r̂(l), while the dependent variable is r̂(cl). We obtain the following relation

r̂ (c l) = 9.99029c+ cr̂ (l)− 9.75509. (2.6.10)

Notice that this relation is better for small values of c and that r̂(cl) may be insufficient

for some distributions of X for some values of c. In order to increase the probability

that this precision is sufficient, we add a margin proportional to c− 1 such that (2.6.10)

becomes

r̂ (c l) = c · r̂ (l) + 13 (c− 1) . (2.6.11)

We have now a more efficient method which consists in evaluating recursively with a

parameter m = l and a precision of 64 bits and calculating η, the relative error at ls. It

follows from (2.6.8) and (2.6.11) that

r̂ (c l) = dc (r + log2 (η)) + 13 (c− 1) + v log2 10e , (2.6.12)

which leads to

r̂GMP (c l) = 32

⌈
r̂ (c l)

32

⌉
. (2.6.13)

Then, we evaluate fS with the parameter m = c l and a precision of r̂GMP (c l) in order to

obtain accurate values. This procedure is summarized in Algorithm 4. For a very small

number of distributions the margin chosen in (2.6.11) is still not sufficient. However, if this

happens we can use the other direction to evaluate the remaining points until we obtain

a stage where the required accuracy is reached. Remark that the number of additional

evaluation points is very small since r̂GMP (c l) is close to the precision really needed.

Table 2.12 shows the values of r̂ (cm) for c = 2, 5 and 10, an original parameter m = 1000

and a desired accuracy of 10 digits. The value of q remains equal to 0.3. This table also

contains the needed precision r̂ calculated using (2.6.8) where η is the relative error

obtained at the last evaluation point with a precision of 64 bits and m = 1000c. Notice

42

Algorithm 4: Recursive evaluation of a compound binomial distribution by

finding the needed precision from a first evaluation with a smaller value of m

1. Set the default precision r to 64 bits

2. Declare a table f with elements from 0 to s− 1 and the variables w and sum

3. Define a table g with elements from 1 to s for fX

4. Define m and q and set p = 1− q

5. Set f [0] = pm and h = (q · g[s])m

6. For i = 1 to m ∗ s

7. sum = 0

8. For k = 1 to min(i, s)

9. w = ((m+ 1) k − i) · g[k]

10. sum = sum+ w · f [i− k mod s]

11. f [i mod s] = sum·q
p·i

12. Calculate η =
∣∣∣h−f [0]

h

∣∣∣
13. Set a precision of dc (r + log2 η) + 13 (c− 1) + v log2 10e to each element of f and

to sum

14. Set a precision of max (dv log2 10e , 64) to each element of g, to p, q and w

15. Redefine p, q and g

16. Redo steps 5 to 11 by setting m = cm and storing values with v decimal digits

Table 2.12: Comparisons between r̂ (1000c) and r̂

Example 1 Example 2 Example 3
c

r̂ (cm) r̂ r̂ (cm) r̂ r̂ (cm) r̂

2 4224 4221 3548 3544 6723 6724

5 10 528 10 518 8838 8821 16 777 16 772

10 21 035 21 012 17 656 17 623 33 533 33 522

43

that the real precision set to GMP objects is the same for six cases over the nine considered

in Table 2.12. For the three other cases, the precision assigned to GMP objects according

to (2.6.13) is 32 bits greater than the one obtained by (2.6.9). Example 1 with c = 10

and Example 2 with c = 5 and c = 10 are these three cases for which the difference comes

from the margin chosen in (2.6.11). Figure 2.7 shows the evolution of the relative error

in the evaluation according to Algorithm 4 for the three examples with m = 1000 and

c = 2. In order to obtain nice curves, the second evaluation of Algorithm 4 is done by

setting a precision of r̂ (cm) to each object. If the precision of objects representing p, q

and fX was 64 bits, the relative error would be always on the same magnitude as we go

along the recursive evaluation.

2.7 Further remarks

Some extensions of Panjer’s recursion can be found e.g. in Sundt (1992) and Sundt and

Jewell (1981). The latter derived a recursive formula when (2.2.3) holds from an integer

k on such that

pn =

(
a+

b

n

)
pn−1, n = k + 1, k + 2, . . . , (2.7.1)

with pn ≥ 0 for n = 0, 1, . . . , k − 1 and pk > 0, which gives

fS(x) = p1fX(x) +
k∑

n=2

(
pn −

(
a+

b

n

)
pn−1

)
f ∗nX (x)

+
x−1∑
y=1

(
a+ b

y

x

)
fX(y)fS(x− y), x = 1, 2, . . . , (2.7.2)

with fS(0) = p0. Sundt (1992) extends Panjer’s recursion for the distributions of N that

satisfy

pn =
k∑

j=1

(
aj +

bj
n

)
pn−j, n = 1, 2, . . . , (2.7.3)

with pn = 0 for n < 0 and p0 > 0, which leads to

fS(x) =
x∑

y=1

fS(x− y)
k∑

j=1

(
aj +

bj
j

y

x

)
f ∗jX (y), x = 1, 2, . . . , (2.7.4)

with initial value fS(0) = p0. The use of a smaller precision for the floating-point repre-

sentation of the parameters of N and for the representation of fX also gives an accurate

44

(a) Example 1

(b) Example 2

(c) Example 3

Figure 2.7: Evolution of the relative error evaluating according to Algorithm 4

45

evaluation using (2.7.2) or (2.7.4). This method can be generalized to any recursive eval-

uation. However, we still need to know an exact value for fS in order to be able to

determine the needed precision after a first evaluation.

Another method to compute the probability function of S is to use the fast Fourier trans-

form (FFT) that can be applied for any random variable N with probability generating

function PN . It consists in evaluating fS(0), fS(1) . . . , fS(n− 1) using the inverse discrete

Fourier transform by

fS(x) =
1

n

n−1∑
k=0

φS

(
2πk

n

)
e
−i2πxk

n , x = 0, 1, 2, . . . , n− 1, (2.7.5)

where i =
√
−1 and φS is the characteristic function of S which is defined by

φS(z) = E
[
eizS
]

= PN (φX(z)) . (2.7.6)

The terms φS

(
2πk
n

)
of (2.7.5) can be determined by the substitution of the discrete Fourier

transform

φX(z) =
n−1∑
k=0

fX(k)e
i2πzk

n , (2.7.7)

into (2.7.6). If n is chosen to be a power of two, (2.7.5) and (2.7.7) can be computed

efficiently using an FFT algorithm. However, this method introduces an aliasing error

which is equal to

fS(x)− Pr [S = x] =
∞∑

j=1

Pr [S = x+ jn] , x = 0, 1, 2, . . . , n− 1, (2.7.8)

where Pr [S = s] denotes the exact value of the probability function of S at s. We refer

to Bühlmann (1984) for a comparison between evaluations using Panjer’s recursion and a

method based on the fast Fourier transform algorithm. An exponential tilting procedure

was proposed by Grübel and Hermesmeier (1999) in order to reduce the aliasing error (see

also Embrechts and Frei (2009)). Nevertheless, using the floating-point representation,

this error is of the magnitude of 10−d+1 for each point over the interval [0, n− 1], where d

is the number of exact decimal digits used in the floating-point representation. Therefore,

when the exact probability function is smaller than 10−d+1 at a point, the absolute value

of its evaluation is approximatively equal to 10−d+1. The use of an exponential tilting

decreases the accuracy of fS since the aliasing error occurs on the tilted probability func-

tion. Finally, the use of a smaller precision for the floating-point representation of the

parameters of N and for the representation of fX in the implementation of this method

46

gives aliasing errors of the same magnitude as when all variables are represented using

this smaller precision. Therefore, the gain of time is useless since the accuracy of the

results decreases.

2.8 Conclusion

The use of an efficient computational tool like GMP is essential for evaluations involving

a large number of arithmetic operations. GMP has to be used to evaluate recursively

the probability function of compound distributions especially when their expected value

is large. It also offers several useful functions which allow us to work with different

precisions assigned to objects and it avoids the use of scaling functions. The gain of time

resulting from the use of a smaller precision of the floating-point representation of “non-

recursive” objects is considerable without loosing any useful accuracy. This is why we

have to use GMP and its precision management properties in order to obtain an efficient

evaluation of a subordinate solution of a recurrence relation like the one for the probability

function of compound binomial distributions.

47

48

Chapter 3

From approximations of De Pril

transforms to approximations of t-th

order cumulative distribution

functions

3.1 Introduction

The term De Pril transform was introduced by Sundt (1995) as a reference to a function

derived in De Pril (1989, p. 11). Given a value of a probability function, the De Pril

transform defines uniquely this probability function and there exist recursive formulas

from one function to the other. The main result in relation to De Pril transforms is that

the De Pril transform of a convolution of functions is the sum of the De Pril transforms of

these functions. Therefore, they are useful when an efficient evaluation of the probability

function of a convolution is required. Further results on De Pril transforms can be found

in Sundt (1998) and Sundt and Ekuma (1999).

Convolutions appear frequently in actuarial applications, for example to model the aggre-

gate claims amount of a portfolio of insurance policies like in the collective risk model or in

the individual risk model. In the former model, the aggregate claims amount is modelled

by the sum of the amounts of a random number of claims. In this case, recursions for the

evaluation of the aggregate claims amount probability function can be found in Panjer

(1981). In the individual risk model, the aggregate claims amount is modelled by the sum

of independent random variables where one random variable represents the claim amount

49

of one policy. This model can be generalized to the evaluation of the probability function

of a convolution of probability functions of independent random variables. Several exact

or approximative recursions for the probability function of this model are discussed in

the actuarial literature (see e.g. De Pril (1986b, 1988, 1989), Dhaene and Vandebroek

(1995), Hipp (1985, 1986), Kornya (1983) and Waldmann (1994)). All these recursive

evaluations are reviewed in Sundt (2002) and Sundt and Vernic (2009). In comparison

to an evaluation involving convolutions, recursive evaluations are good strategies to save

time since they reduce significantly the number of operations. The main approximations

generally decrease again this number to save much more time while keeping a required

accuracy in evaluations. We refer to Dhaene et al. (2006) for comparisons between the

numbers of operations of the different exact evaluations and approximations.

Dhaene and Sundt (1998) developed error bounds for the distribution function and the

stop-loss transform of several classes of distributions resulting from an approximation

of their De Pril transforms. Other results on error bounds in connection with De Pril

transforms can be found in De Pril (1989), Dhaene and De Pril (1994), Dhaene and Sundt

(1997) and Sundt et al. (1998). Their approach consists in evaluating the distribution

function and the stop-loss transform from an approximation of the probability function

that is computed from an approximative De Pril transform. Their more accurate error

bounds depend on the evaluations, which means that we know their value only after

having found the approximation of the desired quantities. Moreover, for some of these

error bounds we have to evaluate the probability function over its whole support which is

numerically impossible in most cases.

A recursive formula for the evaluation of the t-th order cumulative distribution function

based on the De Pril transform of the probability function is derived in Dhaene et al.

(1999). They pointed out that frequently calculated quantities like distribution functions

or stop-loss transforms are obtained directly from a given order of such functions. Sundt

(1999b) expressed this recursion for discrete uniform distributions. Recursive formulas for

the t-th order cumulative distribution function and the t-th order cumulative tail function

of compound Poisson distributions are developed in Antzoulakos and Chadjiconstantinidis

(2004) and improved in Chadjiconstantinidis and Pitselis (2009).

In Section 3.2, we define the notion of De Pril transforms and discuss the utility of

recursive evaluations of t-th order cumulative distribution functions. In Section 3.3, we

express the exact error of the approximation of the t-th order cumulative distribution

function resulting from a De Pril transform approximation. Theoretical error bounds for

such approximations are derived in Section 3.4. In Section 3.5, we expose error bounds

50

in relation to stop-loss contracts. Some comparisons between these error bounds and the

ones developed by Dhaene and De Pril (1994) are made in Section 3.6. Finally, we apply

the results to some frequently used approximations and do numerical applications.

In the sequel, we assume that the functions are defined on the nonnegative integers. The

notations a ≥ b and a > b are used to simplify the facts that a = b, b + 1, b + 2, . . . and

a = b+ 1, b+ 2, . . ., respectively. We also assume that
∑b

k=a h(k) = 0 whenever b < a.

3.2 De Pril transforms and recursions for t-th order

cumulative distribution functions

3.2.1 Definitions and review

The t-th order cumulative operator Γt of a function h is defined by

Γth(x) =
x∑

y=0

Γt−1h(y), x ≥ 0, t ≥ 1, (3.2.1)

with Γ0h(x) = h(x) and Γ ≡ Γ1. It is shown in Antzoulakos and Chadjiconstantinidis

(2004, p. 165) that this operator is equivalent to

Γth(x) =
x∑

y=0

Ct−1
x−y h(y), x ≥ 0, t ≥ 0, (3.2.2)

where Ca
b =

(
a+ b

a

)
1.

Dhaene et al. (1999) showed that if the recursive formula for a probability function

f(s) =
1

s

s∑
x=1

ϕ(x)f(s− x), s ≥ 1, (3.2.3)

with initial value f(0) holds then the t-th order cumulative distribution function can be

evaluated by

Γtf(s) =
1

s

s∑
x=1

(ϕ(x) + t)Γtf(s− x), s ≥ 1, t ≥ 0, (3.2.4)

1This is not the common notation for the binomial coefficient but our definition is used here in order

to simplify expressions

51

with initial value Γtf(0) = f(0). In the actuarial literature, the function ϕ is known under

the name of De Pril transform (see Sundt (1995)). The De Pril transform of a function f

is determined by

ϕ(x) =
1

f(0)

[
xf(x)−

x−1∑
y=1

ϕ(x− y)f(y)

]
, x ≥ 1. (3.2.5)

The most useful property of De Pril transforms is that the De Pril transform of a convo-

lution of probability functions of independent random variables is the sum of the De Pril

transforms of these probability functions. This property was proved by De Pril (1989).

Some additional properties of De Pril transforms that are discussed in Dhaene and De

Pril (1994) may be useful. Let P (u) and ϕ be the probability generating function and the

De Pril transform of a random variable Y , respectively. They showed that under some

convergence condition, we have

lnP (u) = ln f(0) +
∞∑

x=1

ϕ(x)

x
ux, (3.2.6)

where f is the probability function of Y and

P (u) =
∞∑

y=0

f(y)uy. (3.2.7)

Therefore, by combining (3.2.6) and (3.2.7) and setting u = 1 we get

∞∑
x=1

ϕ(x)

x
= − ln f(0). (3.2.8)

We obtain

P ′(u)

P (u)
=

∞∑
y=1

yf(y)uy−1

∞∑
y=0

f(y)uy

=
∞∑

x=1

ϕ(x)ux−1, (3.2.9)

by taking the first derivative with respect to u in (3.2.6) and (3.2.7). It follows that

E[Y] =
∞∑

x=1

ϕ(x), (3.2.10)

by setting u = 1 in (3.2.9). If we take higher order derivatives of (3.2.6) and set u = 1

for each order we obtain Theorem 4.1 of Sundt et al. (1998) that gives an expression to

calculate the cumulants of Y from ϕ.

52

3.2.2 A more efficient recursive evaluation

We develop now a more efficient way for the evaluation of t-th order cumulative distri-

bution functions. It is particularly useful when the De Pril transform converges to zero.

Equation (3.2.4) can be rewritten as

Γtf(s) =
1

s

[
s∑

x=1

ϕ(x) Γtf(s− x) +
s∑

x=1

tΓtf(s− x)

]
, s ≥ 1, t ≥ 0. (3.2.11)

From this last equation, an embedded recursion follows for Γtf which is

Γtf(s) =
1

s

[
tΓt+1f(s− 1) +

s∑
x=1

ϕ(x) Γtf(s− x)

]
, s ≥ 1, t ≥ 0, (3.2.12)

where

Γt+1f(s) = Γt+1f(s− 1) + Γtf(s), (3.2.13)

and with initial values Γuf(0) = f(0), u = t, t+ 1.

We can notice that in recursion (3.2.4) the terms ϕ(x)+t for t 6= 0 and x ≥ 1 are generally

different from zero. Therefore, we have to do s multiplications in order to evaluate Γtf(s),

while time can be saved using (3.2.12) because some multiplications may be avoided if

the De Pril transform is equal to zero at some points. In the case where ϕ(y) = 0 for

y > r, the embedded recursion (3.2.12) becomes

Γtf(s) =
1

s

tΓt+1f(s− 1) +

min(s,r)∑
x=1

ϕ(x) Γtf(s− x)

 , s ≥ 1, t ≥ 0, (3.2.14)

using (3.2.13) and with initial values Γuf(0) = f(0), u = t, t+ 1. This is the case for the

De Pril transform of a compound Poisson distribution with parameters (λ, g(x)), x ≥ 1,

where

ϕ(y) =

{
λyg(y), y = 1, . . . , ω

0, y > ω
, (3.2.15)

where ω = sup{y : g(y) > 0} (see Sundt (1995, p. 25)).

When the De Pril transform satisfies

lim
x→+∞

ϕ(x) = 0, (3.2.16)

we can truncate it by setting it to zero from a given point r + 1. The gain of time is

double since we need to evaluate the De Pril transform for a smaller number of points and

since we can use (3.2.14) instead of (3.2.4). Compound negative binomial distributions

and some cases of compound binomial distributions satisfy (3.2.16) (see Theorem 6.1 in

Dhaene and Sundt (1998)).

53

3.2.3 Some applications

One could say that it is displeasing to need the (t+ 1)-th order cumulative distribution

function to evaluate the t-th order one. However, its evaluation using (3.2.13) is very

simple and the time that can be saved using (3.2.14) is substantial compared to the

evaluation using (3.2.4). Moreover, it gives more information about the distribution of

the random variable that may be useful as we will see in the following applications.

Let Id = (S − d)+ be the amount paid by the reinsurer for a stop-loss contract with

deductible d ≥ 0 given a random loss S. From the second order cumulative distribution

function, the stop-loss premium is determined by

E[Id] = Γ2f(d− 1) + E[S]− d, d ≥ 0, (3.2.17)

given that we know the expected value of the loss (see Dhaene et al. (1999)). The following

theorem gives a new expression for the variance of the stop-loss reinsurer’s payment.

Theorem 1 Given a random loss S, the variance of the stop-loss reinsurer’s payment

with deductible d can be determined from the second and the third order cumulative dis-

tribution functions by

Var[Id] = E
[
(S − d)2

]
− 2 Γ3f(d− 1) + Γ2f(d− 1)− (E[Id])

2 , d ≥ 0.(3.2.18)

Proof. By definition, we have

Var[Id] = E
[
I2
d

]
− (E[Id])

2 . (3.2.19)

From Antzoulakos and Chadjiconstantinidis (2004, p. 181), we know that

E
[
I2
d

]
= 2 Λ3f(d− 1) + Λ2f(d− 1), d ≥ 0, (3.2.20)

where Λt is the t-th order tail operator and is defined by

Λth(x) =
∞∑

y=x+1

Λt−1h(y), x ≥ 0, t ≥ 1, (3.2.21)

with Λ0h(x) = h(x). From their Lemma 3.1 (d), it follows that

Λ2f(d− 1) = Γ2f(d− 1) + E[S]− d, d ≥ 0, (3.2.22a)

Λ3f(d− 1) = −Γ3f(d− 1) +
1

2
E
[
(S − d)2

]
− 1

2
E[S] +

d

2
, d ≥ 0. (3.2.22b)

54

The substitution of (3.2.22) into (3.2.20) leads to

E
[
I2
d

]
= E

[
(S − d)2

]
− 2 Γ3f(d− 1) + Γ2f(d− 1). (3.2.23)

Equation (3.2.18) follows by substituting (3.2.23) into (3.2.19) and the proof of Theorem 1

is complete.

Another expression for the variance of the stop-loss reinsurer’s payment which contains

only cumulative distribution functions and central moments of S follows from the substi-

tution of (3.2.17) into (3.2.18). We get

Var[Id] = Var[S]− 2 Γ3f(d− 1) + Γ2f(d− 1)
(
2d+ 1− 2E[S]− Γ2f(d− 1)

)
, (3.2.24)

for d ≥ 0.

An application of the embedded recursion (3.2.14) for t = 1 is the computation of the

expected shortfall (ES) of a random variable S at a given probability level α, which is

defined by

ESα[S] =
E[S;S > VaRα[S]] + (Pr [S ≤ VaRα[S]]− α) VaRα[S]

1− α

= VaRα[S] +
1

1− α
E
[
(S − VaRα[S])+

]
, (3.2.25)

where VaRα[S] is the Value-at-Risk at level α. The idea consists in evaluating the dis-

tribution function using the embedded recursion (3.2.14) with t = 1 until Γf(s) > α, so

that VaRα[S] = s. The expected shortfall is then determined by

ESα[S] =
E[S] + Γ2f(s− 1)− αs

1− α
, (3.2.26)

where Γ2f(s − 1) is immediately given by (3.2.13). The evaluation of the second order

cumulative distribution function using (3.2.14) is useful if we want to calculate the stop-

loss premium and the variance of the stop-loss reinsurer’s payment for a given deductible

using (3.2.17) and Theorem 1, respectively. One can find similar applications for higher

orders.

3.3 Approximations of t-th order cumulative distri-

bution functions

Using the embedded recursion (3.2.14), an approximation of the De Pril transform leads

to an approximation of the t-th order cumulative distribution function. For such approxi-

mations, bounds for the absolute error of the distribution function and stop-loss premiums

55

have been developed in the actuarial literature (see e.g. Dhaene and De Pril (1994) and

Dhaene and Sundt (1997, 1998)). In this section, we determine the exact error of the t-th

order cumulative distribution function occurring in its evaluation using an approximation

of the De Pril transform.

Let ϕ̃ be an approximation of the De Pril transform of a given probability function f . Let

f̃ be the approximation of this probability function evaluated using (3.2.3) with ϕ̃ and

initial value f̃(0). We define the function ψ by

ψ(x) =

{
0, x = 0
ϕ̃(x)−ϕ(x)

x
, x ≥ 1

. (3.3.1)

It follows from (3.2.8) that
∞∑

x=1

ψ(x) = ln f(0) +
∞∑

x=1

ϕ̃(x)

x
. (3.3.2)

Equation (3.2.9) also holds for approximations. Therefore, the expected value of the

approximation is given by
∞∑

y=1

yf̃(y) =
∞∑

x=1

ϕ̃(x) ·
∞∑

y=0

f̃(y). (3.3.3)

The cumulants of the approximation can be determined similarly to Theorem 4.1 in Sundt

et al. (1998).

The following theorem gives an expression for the exact error of the probability function

resulting from an evaluation using an approximation of its De Pril transform.

Theorem 2 Let ζ(s) = f̃(s) − f(s), s ≥ 0, be the error of the probability function at s

when it is evaluated using (3.2.3) with the approximative De Pril transform ϕ̃ and initial

value f̃(0) = f(0). If ψ is defined by (3.3.1) we have

ζ(s) =
s∑

y=1

y∑
n=1

1

n!
ψ∗n(y)f(s− y), s ≥ 1, (3.3.4)

where ψ∗n is the n-fold convolution of ψ.

Proof. From Dhaene and De Pril (1994, p. 185), we know that if f̃(0) = f(0) we have

ζ(s) =
s∑

y=1

a(y)f(s− y), s ≥ 1, (3.3.5)

where the function a is the solution of the recurrence equation

xa(x) =
x∑

z=1

z ψ(z)a(x− z), x ≥ 1, (3.3.6)

with initial value a(0) = 1. Therefore, to prove (3.3.4), it is sufficient to prove by induction

56

on y that

a(y) =

y∑
n=1

1

n!
ψ∗n(y), y ≥ 1, (3.3.7)

is the solution of (3.3.6) with initial value a(0) = 1. For y = 1, it holds straightforwardly

that (3.3.7) is equivalent to (3.3.6) with x = 1. Now let us assume that (3.3.7) holds for

y = 1, . . . , w, we obtain from (3.3.6) that

(w + 1)a(w + 1) =
w+1∑
z=1

z ψ(z)a(w + 1− z)

= (w + 1)ψ(w + 1) +
w∑

n=1

w+1−n∑
z=1

z

n!
ψ∗n(w + 1− z)ψ(z). (3.3.8)

We know that the n-fold convolution ψ∗n(s) is the coefficient of xs of the polynomial(
∞∑

y=1

ψ(y)xy

)n

, (3.3.9)

(see e.g. Knuth (1992)). Remark that ψ∗n(s) = 0 for s < n and that the sum in (3.3.9)

can be taken only over y = 1, 2, . . . , s+ 1− n in order to determine the coefficient of xs,

s ≥ n. Therefore, we have

ψ∗n(s) =
∑

∑
ui=n∑
iui=s

(
n

u1, . . . , us+1−n

) s+1−n∏
i=1

ψ(i)ui , s ≥ 1, n ≥ 1, (3.3.10)

where ui, i = 1, . . . , s+ 1− n, are nonnegative integers. By substituting (3.3.10) into the

inner sum of (3.3.8) and letting k = w + 1− n, it follows that

k∑
z=1

z

n!
ψ∗n(w + 1− z)ψ(z) =

k∑
z=1

∑
∑

ui=n∑
iui=w+1−z

z

n!

(
n

u1, . . . , uk+1−z

)
ψ(z)

k+1−z∏
i=1

ψ(i)ui

=
k∑

z=1

∑
∑

ui=n∑
iui=w+1−z

z

n!

(
n

u1, . . . , uk

)
ψ(z)

k∏
i=1

ψ(i)ui

=
k∑

z=1

∑
∑

ui=n+1∑
iui=w+1

zuz

(n+ 1)!

(
n+ 1

u1, . . . , uk

) k∏
i=1

ψ(i)ui

=
∑

∑
ui=n+1∑
iui=w+1

k∑
z=1

zuz

(n+ 1)!

(
n+ 1

u1, . . . , uk

) k∏
i=1

ψ(i)ui

=
w + 1

(n+ 1)!
ψ∗(n+1)(w + 1). (3.3.11)

57

The substitution of (3.3.11) into (3.3.8) and the division of the latter by w + 1 on both

sides lead to

a(w + 1) = ψ(w + 1) +
w∑

n=1

1

(n+ 1)!
ψ∗(n+1)(w + 1) =

w+1∑
n=1

1

n!
ψ∗n(w + 1). (3.3.12)

This proves that (3.3.7) holds for y = w + 1. Thus, (3.3.7) is the solution of (3.3.6) with

initial value a(0) = 1 and the proof of Theorem 2 is complete.

Corollary 3 Let Γ̃tf , t ≥ 0, be the approximation of the t-th order cumulative distribu-

tion function evaluated using (3.2.4) or (3.2.12) with ϕ̃ and initial values Γ̃uf(0) = f̃(0),

u = t, t+ 1. The error of Γ̃tf is given by

Γ̃tf(s)− Γtf(s) = Γtζ(s), s ≥ 0, t ≥ 0. (3.3.13)

Proof. For t = 0, (3.3.13) is Theorem 2. Let us now assume that (3.3.13) holds for t = u,

we obtain

Γ̃u+1f(s)− Γu+1f(s) =
s∑

x=0

(
Γ̃uf(x)− Γuf(x)

)
=

s∑
x=0

Γuζ(x) = Γu+1ζ(s), s ≥ 0. (3.3.14)

Therefore, (3.3.13) holds for t = u+1 and the proof of Corollary 3 is complete by induction

on t.

In particular, when t = 1 Corollary 3 is

F̃ (s)− F (s) =
s∑

y=1

y∑
n=1

1

n!
ψ∗n(y)F (s− y), s ≥ 0, (3.3.15)

where F and F̃ denote the distribution function and its approximation, respectively. It

follows in the limit s→∞ that

lim
s→∞

(
F̃ (s)− F (s)

)
=

∞∑
y=1

y∑
n=1

1

n!
ψ∗n(y) =

∞∑
n=1

1

n!

(
∞∑

y=1

ψ(y)

)n

= exp

{
∞∑

y=1

ψ(y)

}
− 1. (3.3.16)

In opposition to the results in Dhaene and De Pril (1994), we also consider the sign of

the error in Theorem 2 and Corollary 3, which leads to an expression for the exact error

58

instead of giving error bounds. If we take the absolute value of addends on both sides of

(3.3.16) we arrive to an error bound that they derived, that is

lim
s→∞

∣∣∣F̃ (s)− F (s)
∣∣∣ ≤ ∞∑

x=0

∣∣∣f̃(x)− f(x)
∣∣∣ ≤ exp

{
∞∑

y=1

|ψ(y)|

}
− 1. (3.3.17)

The latter inequality of (3.3.17) will be proved later.

Remark 1: We get from Theorem 2 and Corollary 3 that

Γ̃tf(s)− Γtf(s) =
s∑

y=1

y∑
n=1

1

n!
ψ∗n(y)Γtf(s− y), s ≥ 0, t ≥ 0. (3.3.18)

However, this error depends on the exact values of the t-th order cumulative distribution

function that should not be known if an approximation is made.

Remark 2: From the substitution of (3.3.2) into (3.3.16), it follows that

lim
s→∞

(
F̃ (s)− F (s)

)
= f(0) · exp

{
∞∑

x=1

ϕ̃(x)

x

}
− 1, (3.3.19)

which leads to

lim
s→∞

F̃ (s) = f(0) · exp

{
∞∑

x=1

ϕ̃(x)

x

}
. (3.3.20)

Remark 3: If the assumption f̃(0) = f(0) is released, the initial value of recursion

(3.3.6) is a(0) = f̃(0)
f(0)

(see Dhaene and De Pril (1994, p. 185)). Equations (3.3.4), (3.3.15),

(3.3.16), (3.3.17), (3.3.19) and (3.3.20) become respectively

ζ(s) = (a(0)− 1)f(s) + a(0)
s∑

y=1

y∑
n=1

1

n!
ψ∗n(y)f(s− y), s ≥ 0; (3.3.21)

F̃ (s)− F (s) = (a(0)− 1)F (s) + a(0)
s∑

y=1

y∑
n=1

1

n!
ψ∗n(y)F (s− y), s ≥ 0; (3.3.22)

lim
s→∞

(
F̃ (s)− F (s)

)
= a(0) · exp

{
∞∑

y=1

ψ(y)

}
− 1; (3.3.23)

lim
s→∞

∣∣∣F̃ (s)− F (s)
∣∣∣ ≤ ∞∑

k=0

∣∣∣f̃(k)− f(k)
∣∣∣ ≤ exp

{∣∣∣∣∣ln
(
f̃(0)

f(0)

)∣∣∣∣∣+
∞∑

y=1

|ψ(y)|

}
− 1; (3.3.24)

59

lim
s→∞

(
F̃ (s)− F (s)

)
= f̃(0) · exp

{
∞∑

x=1

ϕ̃(x)

x

}
− 1; (3.3.25)

lim
s→∞

F̃ (s) = f̃(0) · exp

{
∞∑

x=1

ϕ̃(x)

x

}
. (3.3.26)

However, if we consider the t-th order cumulative distribution function, the error of f̃(0)

will have a large effect on this function because it is accumulated at each point for t

orders. Therefore, it is always better to start recursions with the exact value, which is

easy in practice.

Remark 4: The substitution of (3.3.26) into (3.3.3) leads to

∞∑
y=1

yf̃(y) = f̃(0) · exp

{
∞∑

x=1

ϕ̃(x)

x

}
·

∞∑
x=1

ϕ̃(x), (3.3.27)

which gives an expression for the expected value of the approximation in the general case.

3.4 Error bounds for t-th order cumulative distribu-

tion functions

In the previous section, the exact error of Γ̃tf is expressed as a function of ψ but depends

on exact values. Hence, we use it to built a bound for such an error. This error bound

is given in the following theorem. From now on, we will generally consider cumulative

distribution functions with an order greater than or equal to one. Therefore, in the sequel

the expressions in relation to Γtf will hold for t ≥ 1 unless stated.

Theorem 4 Let ε(s) =
∑s

k=1 |ψ(k)|, s ≥ 0. If we assume that ε(s− 1) 6= 0, a bound for

the absolute error of Γ̃tf evaluated using (3.2.4) or (3.2.12) according to the approximation

(3.3.1) is given by ∣∣∣Γ̃tf(s)− Γtf(s)
∣∣∣ ≤ ηt(s), s ≥ 0, (3.4.1)

where ηt(s) is defined by

ηt(s) =


0, s = 0

ε(1)f(0), s = 1
eε(s−1)−1

ε(s−1)
Γt−1ε(s), s > 1

. (3.4.2)

60

Proof. For s = 1 the prove of (3.4.1) is straightforward from Theorem 2 and Corollary 3.

We even have the equality

Γ̃tf(1)− Γtf(1) = ψ(1)f(0), t ≥ 0. (3.4.3)

Let us now prove (3.4.1) for t = 1 and s > 1. First, we rewrite (3.3.15) as

F̃ (s)− F (s) =
s∑

n=1

s∑
y=n

1

n!
ψ∗n(y)F (s− y), s ≥ 0. (3.4.4)

It follows that∣∣∣F̃ (s)− F (s)
∣∣∣ ≤

s∑
n=1

s∑
y=n

1

n!
|ψ∗n(y)| ≤

s∑
n=1

1

n!
ε(s+ 1− n)n ≤ ε(s) +

∞∑
n=2

1

n!
ε(s− 1)n

= ε(s) + eε(s−1) − 1− ε(s− 1), s ≥ 1. (3.4.5)

We assume now that ε(s − 1) 6= 0. Since ε(s) = ε(s − 1) + |ψ(s)|, we have ε(s) 6= 0 and

we obtain from (3.4.5) that∣∣∣F̃ (s)− F (s)
∣∣∣ ≤ ε(s)

[
1 +

eε(s−1) − 1− ε(s− 1)

ε(s)

]
≤ ε(s)

[
1 +

eε(s−1) − 1− ε(s− 1)

ε(s− 1)

]
=

eε(s−1) − 1

ε(s− 1)
ε(s) = η1(s), s > 1. (3.4.6)

This proves that Theorem 4 holds for t = 1 and s > 1. In the general case, we have∣∣∣Γ̃t−1F (s)− Γt−1F (s)
∣∣∣ ≤ Γt−1

∣∣∣F̃ (s)− F (s)
∣∣∣ ≤ Γt−1

[
eε(s−1) − 1

ε(s− 1)
ε(s)

]
, s > 1. (3.4.7)

Since ε(s) is nondecreasing with respect to s and ex−1
x

is a positive increasing function for

any real number x, we arrive to

Γt−1

[
eε(s−1) − 1

ε(s− 1)
ε(s)

]
≤ eε(s−1) − 1

ε(s− 1)
Γt−1ε(s) = ηt(s), s > 1. (3.4.8)

The proof of Theorem 4 is complete by substituting (3.4.8) into (3.4.7).

Remark 5: The assumption ε(s − 1) 6= 0 is not restricting, otherwise there would not

be any error until s − 1 and we would have Γ̃tf(s) − Γtf(s) = ψ(s)f(0). This equality

follows immediately from Theorem 2 and Corollary 3.

Remark 6: The term eε(s−1)−1
ε(s−1)

tends to one if ε(s− 1) tends to zero. It is generally close

to one in reasonable applications, which means that ηt(s) grows similarly to Γt−1ε(s).

61

Corollary 5 In the limit s → ∞, the error bound defined in Theorem 4 is also a bound

for the distance between the approximative and the exact (t− 1)-th order cumulative dis-

tribution functions. We have

∞∑
x=0

∣∣∣Γ̃t−1f(x)− Γt−1f(x)
∣∣∣ ≤ lim

s→∞
ηt(s). (3.4.9)

Proof. For t = 1, (3.4.9) is proved using successively Theorem 2, (3.4.5) and (3.4.6) in

∞∑
x=0

∣∣∣f̃(x)− f(x)
∣∣∣ ≤

∞∑
x=0

x∑
y=1

y∑
n=1

1

n!
|ψ∗n(y)| f(x− y)

≤
x∑

y=1

y∑
n=1

1

n!
|ψ∗n(y)| ≤ lim

s→∞
η1(s). (3.4.10)

We assume now that (3.4.9) holds for t = u. It follows for the same reasons as for (3.4.8)

that

∞∑
x=0

∣∣∣Γ̃uf(x)− Γuf(x)
∣∣∣ ≤

∞∑
x=0

x∑
y=0

∣∣∣Γ̃u−1f(y)− Γu−1f(y)
∣∣∣

≤
∞∑

x=0

ηu(x) ≤ lim
s→∞

ηu+1(s). (3.4.11)

Therefore, (3.4.9) holds for t = u+1 and the proof of Corollary 5 is complete by induction

on t.

We consider now the case where the De Pril transform is approximated according to

ϕ̃(y) =

{
ϕ(y), y = 1, . . . , r

0, y > r
, r ≥ 1, (3.4.12)

such that the evaluation using the embedded recursion (3.2.14) is more efficient than the

evaluation using (3.2.4). Let

ε(r)(s) =
s∑

k=r+1

|ϕ(k)|
k

, r ≥ 0, s > r, (3.4.13)

denote the equivalent to ε(s) for such an approximation by truncating the De Pril trans-

form. Notice that (3.4.13) is nonincreasing with respect to r. Thus, from the error bound

defined in Theorem 4, a truncation point can be determined for any required accuracy for

the approximation of the t-th order cumulative distribution function. From (3.2.2) and

(3.4.13), it follows that

Γtε(r)(s) = Γtε(r−1)(s)− Ct−1
s−r

|ϕ(r)|
r

, r ≥ 1, s > r, (3.4.14)

62

from which we can obtain a better guaranteed accuracy by setting the De Pril transform

to zero from r + 1 instead of r. We can also use it in the other direction if we want to

have a faster evaluation of Γ̃tf by reducing its guaranteed accuracy. Observe that the

guaranteed accuracy of Γ̃tf(s) is given by

η
(r)
t (s) =

eε(r)(s−1) − 1

ε(r)(s− 1)
Γt−1ε(r)(s), r ≥ 1, s > r + 1, (3.4.15)

which behaves similarly to Γt−1ε(r)(s).

3.5 Error bounds for stop-loss contracts

In this section, we combine the results of Sections 3.2.3 and 3.4. We derive intervals for

the approximation of the stop-loss premium and for the approximation of the variance of

the stop-loss reinsurer’s payment. Unless specified, the expressions in this section hold

for any deductible d ≥ 0.

Let Ẽ[Id] be the approximation of the stop-loss premium resulting from the approximative

De Pril transform ϕ̃. It is determined by

Ẽ[Id] = Γ̃2f(d− 1) + E[S]− d. (3.5.1)

We also introduce the approximations associated to (3.2.23) and (3.2.18), which are ob-

tained by

Ẽ[I2
d] = E

[
(S − d)2

]
− 2 Γ̃3f(d− 1) + Γ̃2f(d− 1) (3.5.2)

and

Ṽar[Id] = Ẽ[I2
d]−

(
Ẽ[Id]

)2

, (3.5.3)

respectively.

From (3.2.17), (3.5.1) and Theorem 4, an error bound for the stop-loss premium with

deductible d is given by ∣∣∣Ẽ[Id]− E[Id]
∣∣∣ ≤ η2(d− 1). (3.5.4)

From (3.2.23), (3.5.2) and Theorem 4, it follows that∣∣∣Ẽ[I2
d]− E

[
I2
d

]∣∣∣ ≤ 2 η3(d− 1) + η2(d− 1). (3.5.5)

63

Moreover, if ε(d− 2) 6= 0 we have∣∣∣Ẽ[I2
d]− E

[
I2
d

]∣∣∣ ≤ eε(d−2) − 1

ε(d− 2)
[2 Γε(d− 1) + ε(d− 1)] , d > 2. (3.5.6)

Since E[Id] ≥ 0, we obtain from (3.5.4) that[(
Ẽ[Id]− η2(d− 1)

)
+

]2

≤ E[Id]
2 ≤

(
Ẽ[Id] + η2(d− 1)

)2

. (3.5.7)

An interval for the variance of the stop-loss reinsurer’s payment follows from (3.5.5) and

(3.5.7). It is given by

Var[Id] ≥
(
Ṽar[Id]− 2 η3(d− 1)− η2(d− 1)− 2 Ẽ[Id] η2(d− 1)− [η2(d− 1)]2

)
+
(3.5.8a)

Var[Id] ≤ Ẽ[I2
d] + 2 η3(d− 1) + η2(d− 1)−

[(
Ẽ[Id]− η2(d− 1)

)
+

]2

. (3.5.8b)

In some cases, we are able to determine if the approximation made in the De Pril transform

will lead to an underestimation or an overestimation of Γtf . In such cases, the intervals

defined in (3.5.4), (3.5.5) and (3.5.8) can be reduced.

On the one hand, if we know that we underestimate Γtf for at least t ≥ 2, we get from

Theorem 4 that

Γ̃tf(s) ≤ Γtf(s) ≤ Γ̃tf(s) + ηt(s), s ≥ 0, t ≥ 2. (3.5.9)

It follows from (3.2.17) and (3.5.1) that(
Ẽ[Id]

)
+
≤ E[Id] ≤ Ẽ[Id] + η2(d− 1), (3.5.10)

and squaring it leads to[(
Ẽ[Id]

)
+

]2

≤ E[Id]
2 ≤

(
Ẽ[Id] + η2(d− 1)

)2

. (3.5.11)

Let us subtract (3.5.2) from (3.2.23), we get

E
[
I2
d

]
− Ẽ[I2

d] = Γ2f(d− 1)− Γ̃2f(d− 1)−
(
2 Γ3f(d− 1)− 2 Γ̃3f(d− 1)

)
. (3.5.12)

Since Γ̃2f(d − 1) and Γ̃3f(d − 1) are underestimation of Γ2f(d − 1) and Γ3f(d − 1),

respectively, both errors partly compensate in (3.5.12). Moreover, from Corollary 3 and

(3.5.9) we know that

Γt+1f(s)− Γ̃t+1f(s) ≥ Γtf(s)− Γ̃tf(s), s ≥ 0, t ≥ 2, (3.5.13)

64

which leads to

− 2η3(d− 1) ≤ Γ2f(d− 1)− Γ̃2f(d− 1)−
(
2 Γ3f(d− 1)− 2 Γ̃3f(d− 1)

)
≤ 0. (3.5.14)

Therefore, we obtain (
Ẽ[I2

d]− 2η3(d− 1)
)

+
≤ E

[
I2
d

]
≤ Ẽ[I2

d], (3.5.15)

by combining (3.5.12) and (3.5.14). An interval for the variance of the stop-loss reinsurer’s

payment follows from (3.5.11) and (3.5.15). It is given by(
Ṽar[Id]− 2 η3(d− 1)− 2 Ẽ[Id] η2(d− 1)− [η2(d− 1)]2

)
+
≤ Var[Id] ≤ Ṽar[Id]. (3.5.16)

On the other hand, if we know that we overestimate Γtf for at least t ≥ 2, the intervals

(3.5.9), (3.5.10), (3.5.11), (3.5.15) and (3.5.16) become respectively:(
Γ̃tf(s)− ηt(s)

)
+
≤ Γtf(s) ≤ Γ̃tf(s), s ≥ 0, t ≥ 2; (3.5.17)

(
Ẽ[Id]− η2(d− 1)

)
+
≤ E[Id] ≤ Ẽ[Id]; (3.5.18)

[(
Ẽ[Id]− η2(d− 1)

)
+

]2

≤ E[Id]
2 ≤

[
Ẽ[Id]

]2
; (3.5.19)

(
Ẽ[I2

d]
)

+
≤ E

[
I2
d

]
≤ Ẽ[I2

d] + 2η3(d− 1); (3.5.20)

(
Ṽar[Id]

)
+
≤ Var[Id] ≤ Ẽ[I2

d] + 2 η3(d− 1)−
[(

Ẽ[Id]− η2(d− 1)
)

+

]2

. (3.5.21)

Observe that we always take the positive part of the lower bounds because the exact

values are positive and these lower bounds may be negative.

3.6 Error bounds analysis

Dhaene and De Pril (1994) developed bounds for the absolute error of the distribution

function and stop-loss premiums (see also Dhaene and Sundt (1997, 1998) and Sundt and

Vernic (2009, Chapter 10)). Their results are based on the computation of these two

quantities from the probability function evaluated according to (3.2.3).

65

The error bounds defined in Corollaries 2 and 4 of Dhaene and De Pril (1994) for the dis-

tribution function and stop-loss premiums, respectively, depend on the evaluations. This

means that first we have to approximate the quantities in order to be able to determine

the corresponding error bound. Hence, we cannot compare them in terms of accuracy

to the error bounds defined in Theorem 4 and (3.5.4) that can be calculated before the

evaluation and hold for any De Pril transform approximation. They also developed error

bounds for approximations of stop-loss premiums that depend on the tail of the proba-

bility function. However, they involve the evaluation of the whole probability function,

which is numerically impossible in some cases and is generally more demanding in terms

of computing time in comparison to a recursive evaluation of Γ2f using the embedded

recursion (3.2.14).

The only comparison that we can make is between the error bound defined in Corollary 1

of Dhaene and De Pril (1994) and the one defined in Theorem 4 with t = 1. We can show

that the latter is more accurate than the other one, that is

eε(s−1) − 1

ε(s− 1)
ε(s) ≤ lim

s→∞
eε(s) − 1, s > 1. (3.6.1)

Since ε(s) is nondecreasing with respect to s, (3.6.1) follows by taking the limit s → ∞
on the right-hand side of

eε(s−1) − 1

ε(s− 1)
ε(s) ≤ eε(s) − 1, s > 1. (3.6.2)

This inequality holds because

eε(s) − 1− eε(s−1) − 1

ε(s− 1)
ε(s) =

∞∑
k=1

1

k!
ε(s)k − ε(s)

ε(s− 1)

∞∑
k=1

1

k!
ε(s− 1)k

= ε(s)
∞∑

k=1

1

k!

(
ε(s)k−1 − ε(s− 1)k−1

)
≥ 0, s > 1. (3.6.3)

Notice that we obtain equality in (3.6.1) if we take the limit s→∞ on its left-hand side.

3.7 Applications

3.7.1 Error bounds for compound Poisson distributions

We consider a compound Poisson distribution with parameters (λ, g(x)), x = 1, 2, . . . , ω.

We let G be the distribution function related to the probability function g. The De Pril

66

transform of such a compound Poisson distribution is given by (3.2.15) where ω may be

infinity. Therefore, the approximation by truncating g such that

ϕ̃(y) =

{
λyg(y), y = 1, . . . , r

0, y > r
, r ≥ 1, (3.7.1)

leads to

ψ(y) =

{
0, y = 1, . . . , r

−λg(y), y > r
, r ≥ 1. (3.7.2)

Since we eliminate the probabilities in the tail of g, the truncation according to (3.7.1)

gives an underestimation of Γtf for t ≥ 0. Thus, the intervals (3.5.9), (3.5.10), (3.5.11),

(3.5.15) and (3.5.16) hold for this approximation. In this case, we can also use (3.4.14)

to adapt the guaranteed accuracy if necessary.

For such an approximation we can show that

Γt−1ε(s) = λ
s∑

k=r+1

Ct−1
s−k g(k) = λ

[
Γtg(s)−

t∑
k=1

Ct−k
s−r−1Γ

kg(r)

]
, s > r. (3.7.3)

The first equality of (3.7.3) follows immediately from (3.2.2) and (3.7.2). In order to prove

the second equality of (3.7.3), it is sufficient to prove that

r∑
k=1

Ct−1
s−k g(k) =

t∑
k=1

Ct−k
s−r−1Γ

kg(r), s > r, (3.7.4)

since we have

Γtg(s) =
s∑

k=1

Ct−1
s−k g(k), s > 1, (3.7.5)

from (3.2.2). The substitution of (3.2.2) into the right-hand side of (3.7.4) leads to

t∑
k=1

Ct−k
s−r−1Γ

kg(r) =
t∑

k=1

Ct−k
s−r−1

r∑
y=1

Ck−1
r−y g(y) =

r∑
y=1

g(y)
t∑

k=1

Ct−k
s−r−1C

k−1
r−y

=
r∑

y=1

Ct−1
s−y g(y), s > r, (3.7.6)

which proves (3.7.3).

Remark that we can obtain an expression for Γt−1ε(s), which only depends on the t-th

order cumulative distribution function of g. Let ∇n
x be the n-th order backward difference

operator with respect to x, which is defined by

∇n
xh(x) = ∇n−1

x h(x)−∇n−1
x h(x− 1), x ≥ 1, n ≥ 1, (3.7.7)

67

with ∇0
xh(x) = h(x). Since ∇1

xΓ
th(x) = Γt−1h(x), we have

Γkg(r) = ∇t−k
r Γtg(r) =

t−k∑
j=0

(−1)jCt−k−j
j Γtg(r − j), r ≥ 1. (3.7.8)

By substituting (3.7.8) into (3.7.3), we arrive to

Γt−1ε(s) = λ

[
Γtg(s)−

t∑
k=1

t−k∑
j=0

(−1)jCt−k
s−r−1C

t−k−j
j Γtg(r − j)

]

= λ

[
Γtg(s)−

t−1∑
j=0

(−1)j Γtg(r − j)

t−j∑
k=1

Ct−k
s−r−1C

t−k−j
j

]

= λ

[
Γtg(s)− Ct−1

s−r

t−1∑
j=0

(−1)j s− r

s− r + j
Ct−1−j

j Γtg(r − j)

]
, s > r.(3.7.9)

For t = 1, (3.7.3) or (3.7.9) is

ε(s) = λ
s∑

y=r+1

g(y) = λ (G(s)−G(r)) , s > r, (3.7.10)

which leads to

η1(s) =
eλ(G(s−1)−G(r)) − 1

G(s− 1)−G(r)
(G(s)−G(r)) , s > r + 1. (3.7.11)

In particular, we obtain

lim
s→∞

(
F̃ (s)− F (s)

)
= eλ(G(r)−1) − 1, (3.7.12)

from (3.3.16). This expression shows the effect on the compound Poisson distribution

function of the probabilities that are neglected in the tail of g.

In the case where t = 2, (3.7.3) is

Γε(s) = λ
(
Γ2g(s)− Γ2g(r)− (s− r)G(r)

)
= λ (E[(X − s− 1)+]− E[(X − r − 1)+] + (s− r)(1−G(r))) , s > r,(3.7.13)

which leads to

η2(s) =
eλ(G(s−1)−G(r)) − 1

G(s− 1)−G(r)

(
Γ2g(s)− Γ2g(r)− (s− r)G(r)

)
, s > r + 1. (3.7.14)

In this case, (3.7.9) is

Γε(s) = λ
(
Γ2g(s)− (s− r + 1)Γ2g(r) + (s− r)Γ2g(r − 1)

)
, s > r, (3.7.15)

68

which gives another expression for the evaluation of η2(s).

The approximation defined in (3.7.1) does not correspond to the De Pril transform of a

probability function with initial value f̃(0) = f(0) = e−λ because the right-hand side of

(3.7.12) is negative. In order to obtain a De Pril transform of a probability function with

an exact initial value, Dhaene and Sundt (1997) proposed the approximation

ϕ̃(y) =


λyg(y), y = 1, . . . , r − 1

λr(1−G(r − 1)), y = r

0, y > r

, r ≥ 1, (3.7.16)

which gives

ψ(y) =


0, y = 1, . . . , r − 1

λ(1−G(r)), y = r

−λg(y), y > r

. (3.7.17)

Such an approximation leads to an overestimation of Γtf for t ≥ 1 since we accumulate the

probabilities of the tail of g at r. Thus, the intervals (3.5.17), (3.5.18), (3.5.19), (3.5.20)

and (3.5.21) hold for this approximation.

We can observe that (3.7.2) and (3.7.17) are equal at each point except r. Therefore,

we only need to include this error into the expressions derived for the approximation

according to (3.7.1). Let δa,b be the Kronecker delta defined by

δa,b =

{
1, if a = b

0, if a 6= b
. (3.7.18)

From (3.2.2), it follows that

Γtδs,b =
s∑

a=0

Γt−1δa,b = Ct−1
s−b =

(
s− b+ t− 1

s− b

)
, b ≥ 0, s ≥ b, t ≥ 0, (3.7.19)

where Γ0δa,b ≡ δa,b. The inclusion of |ψ(r)| into (3.7.3) using (3.7.19) gives

Γt−1ε(s) = λ

[
Ct−1

s−r (1−G(r)) + Γtg(s)−
t∑

k=1

Ct−k
s−r−1 Γkg(r)

]
, s > r, (3.7.20)

from which we can derive an expression similar to (3.7.9) by following the same way.

In the case where t = 1, we have

ε(s) = λ (1 +G(s)− 2G(r)) , s > r. (3.7.21)

69

An upper bound for the distance between the approximative and the exact probability

functions is given by

∞∑
x=0

∣∣∣f̃(x)− f(x)
∣∣∣ ≤ e2λ(1−G(r)) − 1. (3.7.22)

This upper bound is greater than the one obtained in the approximation according to

(3.7.1) which is equal to the absolute value of the right-hand side of (3.7.12). From

(3.3.16), we can verify that (3.7.16) is the De Pril transform of a probability function

with an exact initial value since we have
∑∞

y=1 ψ(y) = 0, which leads to

lim
s→∞

(
F̃ (s)− F (s)

)
= 0. (3.7.23)

3.7.2 Error bounds for the individual risk model

We consider now an insurance policies portfolio. The policies are grouped in different

classes according to their probability that a claim occurs and the severity of this claim

given that it occurs. We assume that there are nij policies in class (i, j) where the proba-

bility that a claim occurs is qj, j = 1, . . . , b, and where the probability function of the claim

amount given it occurs is gi(x) for x ≥ 1 and i = 1, . . . , a. Dhaene et al. (2006) compared

different methods for exact evaluations or approximations of the probability function of

the aggregate claims amount of such a portfolio (see also Dhaene and Vandebroek (1995)).

The De Pril transform of the aggregate claims amount probability function is given by

ϕ(y) =
a∑

i=1

b∑
j=1

nijϕij(y) =
a∑

i=1

b∑
j=1

nij y

y∑
k=1

(−1)k+1

k

(
qj
pj

)k

g∗ki (y), y ≥ 1, (3.7.24)

where pj = 1 − qj, g
∗k
i is the k-fold convolution of gi and ϕij is the De Pril transform

of the probability function of the claim amount of a policy in class (i, j) (see De Pril

(1989)). The De Pril transform ϕij can be evaluated recursively using (3.2.5) with initial

value fij(0) = pj for i = 1, . . . , a and j = 1, . . . , b. If we assume that qj <
1
2
, j = 1, . . . , b,

(3.7.24) converges to zero when y tends to infinity and an accurate approximation can be

obtained by truncating the De Pril transform. The truncation of (3.7.24) from the point

r + 1 leads to

ψ(y) =


0, y = 1, . . . , r
a∑

i=1

b∑
j=1

nij

y∑
k=1

(−1)k

k

(
qj

pj

)k

g∗ki (y), y > r
, r ≥ 1. (3.7.25)

70

De Pril (1989) and Dhaene and Sundt (1998, Application 8D) developed error bounds for

an approximation such that the terms
(

qj

pj

)k

in (3.7.24) are set to zero for k > z. It is

known under the name of De Pril’s z-th order approximation.

Theorem 6 Let ωi = sup{x : gi(x) > 0} and ri =
⌊

r
ωi

⌋
for i = 1, . . . , a. If we approxi-

mate the De Pril transform of the aggregate claims amount probability function according

to (3.7.25) we obtain

Γt−1ε(s) ≤
a∑

i=1

b∑
j=1

nij

ri + 1

[
Ct−1

s−r−1

qj
pj − qj

(
qj
pj

)ri

+

(
qj

qj − pj

)t(
qj
pj

)s

−
t∑

u=2

Ct−u
s−r−1

(
qj

qj − pj

)u(
qj
pj

)r
]
, s > r. (3.7.26)

The substitution of this expression into (3.4.2) gives an error bound for the approximation

of the t-th order cumulative distribution function.

Proof. First, we prove (3.7.26) for t = 1. By following a similar way to the one in Dhaene

et al. (2006, p. 552) for each policy in class (i, j), i = 1, . . . , a, and j = 1, . . . , b, we get

εij(s) =
s∑

y=r+1

|ψij(y)| =
s∑

y=r+1

s∑
k=ri+1

1

k

(
qj
pj

)k

g∗ki (y)

≤ 1

ri + 1

qj
pj − qj

[(
qj
pj

)ri

−
(
qj
pj

)s]
, s > r, (3.7.27)

where ri =
⌊

r
ωi

⌋
and b·c is the floor function. If we sum (3.7.27) over all policies we obtain

ε(s) ≤
a∑

i=1

b∑
j=1

nij

ri + 1

qj
pj − qj

[(
qj
pj

)ri

−
(
qj
pj

)s]
, s > r, (3.7.28)

which is (3.7.26) with t = 1. We assume now that (3.7.26) holds for t = v. Given that

s∑
y=r+1

Cv−u
y−r−1 = Cv−u+1

s−r−1 , s > r, v ≥ u, (3.7.29)

and that

s∑
y=r+1

(
qj
pj

)y

=
qj

pj − qj

[(
qj
pj

)r

−
(
qj
pj

)s]
, s > r, (3.7.30)

71

we arrive to

Γvε(s) =
s∑

y=r+1

Γv−1ε(y)

≤
s∑

y=r+1

a∑
i=1

b∑
j=1

nij

ri + 1

[
Cv−1

y−r−1

qj
pj − qj

(
qj
pj

)ri

+

(
qj

qj − pj

)v (
qj
pj

)y

−
v∑

u=2

Cv−u
y−r−1

(
qj

qj − pj

)u(
qj
pj

)r
]

=
a∑

i=1

b∑
j=1

nij

ri + 1

[
Cv

s−r−1

qj
pj − qj

(
qj
pj

)ri

+

(
qj

qj − pj

)v+1 [(
qj
pj

)s

−
(
qj
pj

)r]

−
v∑

u=2

Cv+1−u
s−r−1

(
qj

qj − pj

)u(
qj
pj

)r
]
, s > r. (3.7.31)

Therefore, (3.7.26) holds for t = v + 1 and the proof of (3.7.26) is complete by induction

on t. Finally, it is sufficient to refer to Theorem 4 to complete the proof of Theorem 6.

Remark 7: One can say that the error bound of Theorem 6 grows too much with respect

to t, but this is a bound for the absolute error of Γ̃tf and the values of Γtf also grow very

fast with respect to t.

Remark 8: An upper bound for the expression (3.7.26) is given by

Γt−1ε(s) ≤ Ct−1
s−r−1

a∑
i=1

b∑
j=1

nij

ri + 1

qj
pj − qj

[(
qj
pj

)ri

−
(
qj
pj

)s]
, s > r. (3.7.32)

It holds from (3.7.28) and (3.7.29) since ε(s) ≥ ε(y) for s ≥ y. Notice that (3.7.26) and

(3.7.32) hold for all 0 <
∣∣qj − 1

2

∣∣ < 1
2
, j = 1, . . . , b. However, if at least one qj is greater

than 1
2
, a truncation may give very bad results because the De Pril transform may diverge.

If we assume qj <
1
2
, j = 1, . . . , b, we obtain from (3.7.28) that

ε(s) ≤ lim
s→∞

ε(s) ≤
b∑

j=1

qj
pj − qj

a∑
i=1

nij

ri + 1

(
qj
pj

)ri

, s > r, (3.7.33)

which leads to

Γt−1ε(s) ≤ Ct−1
s−r−1

b∑
j=1

qj
pj − qj

a∑
i=1

nij

ri + 1

(
qj
pj

)ri

, s > r. (3.7.34)

Expressions (3.7.26), (3.7.32) and (3.7.34) are numerically close to each other if the values

of the qj’s are small or when s� r.

72

Remark 9: It should be noted that the approximation defined in (3.7.25) is more accurate

than the De Pril’s z-th order approximation where z = min ({ri}a
i=1) ≤ r. Some terms(

qj

pj

)k

with k > z are taken into account such that the first r values are exact. In the De

Pril’s z-th order approximation, only the first z values are exact.

Remark 10: If we set gi(1) = 1 such that ωi = 1 for i = 1, . . . , a, (3.7.26) becomes

Γt−1ε(s) ≤
a∑

i=1

b∑
j=1

nij

r + 1

[(
−qj

pj − qj

)t(
qj
pj

)s

−
t∑

u=1

Ct−u
s−r−1

(
qj

qj − pj

)u(
qj
pj

)r
]
, (3.7.35)

for s > r. The substitution of (3.7.35) into (3.4.2) gives an error bound for the t-th order

cumulative distribution function of the number of claims for which White and Greville

(1959) derived an algorithm to calculate its probability function. In the limit s→∞ and

for t = 1, we obtain the same error bound as De Pril (1989) if qj <
1
2
, j = 1, . . . , b.

3.7.3 Error bounds for approximations of the individual life

model by compound Poisson distributions

In the actuarial literature, error bounds for approximations of the aggregate claims amount

distribution in the individual risk model by compound Poisson distributions have been

largely discussed (see e.g. De Pril and Dhaene (1992), Gerber (1984) and Hipp (1985,

1986)). We consider here the individual life model, a special case of the individual risk

model described in Section 3.7.2. We assume that we have a portfolio of n life insurance

policies where the policy number i has an amount at risk of bi, i = 1, . . . , n, such that

gi(x) = δx,bi
, x ≥ 1, i = 1, . . . , n. (3.7.36)

The De Pril transform of the claim amount of this policy is given by

ϕi(x) =

 −bi
(
− qi

pi

) x
bi , x = bi, 2bi, . . .

0, elsewhere
, i = 1, . . . , n, (3.7.37)

where qi is the probability that a claim occurs for this policy and pi = 1− qi. We derive

now error bounds considering two methods of approximating the aggregate claims amount

distribution of such a portfolio by a compound Poisson distribution.

In the first method, we approximate the aggregate claims amount by a compound Pois-

son such that λi = |ln pi|, i = 1 . . . , n, in order to satisfy f̃(0) = f(0) = e−λ, where

73

λ =
∑n

i=1 λi. We have a compound Poisson distribution with parameters (λ, g) where g is

given by

g(x) =
n∑

i=1

1

λ
δx,bi

|ln pi| , x ≥ 1. (3.7.38)

The probability function of the aggregate claims amount is underestimated since more

than one claim per policy may occur with compound Poisson distributions and since we

have f̃(0) = f(0). Thus, Γtf is also underestimated and the intervals (3.5.9), (3.5.10),

(3.5.11), (3.5.15) and (3.5.16) hold for this approximation.

As a simplification we consider a portfolio which contains only the policy number i to

derive expressions for this policy. The expressions for the portfolio with n policies will

follow by adding them over all policies since the De Pril transform of a convolution is

the sum of the De Pril transforms of the individual policies. The approximative De Pril

transform of the claim amount of policy number i is given by

ϕ̃i(x) = biδx,bi
|ln pi| , x ≥ 1. (3.7.39)

From (3.7.37) and (3.7.39), it follows that

ψi(y) =


|ln pi| − qi

pi
, y = bi

bi

y

(
− qi

pi

) y
bi , y = 2bi, 3bi, . . .

0, elsewhere

. (3.7.40)

If we assume that qi <
1
2
, we have

|ψi(bi)| = ln pi +
qi
pi

, (3.7.41)

which leads to

lim
s→∞

εi(s) = ln pi +
∞∑

y=1

δy mod bi,0
bi
y

(
qi
pi

) y
bi

= ln pi +
∞∑

k=1

1

k

(
qi
pi

)k

= ln pi − ln

(
1− qi

pi

)
= ln

(
p2

i

pi − qi

)
, (3.7.42)

where a mod b is the modulo operation. It follows that

ε(s) =
n∑

i=1

εi(s), s ≥ 1, (3.7.43)

and that
∞∑

x=0

∣∣∣f̃(x)− f(x)
∣∣∣ ≤

n∏
i=1

p2
i

pi − qi
− 1, (3.7.44)

74

from Corollary 5. In this case, we can also develop an expression for ε(s) following the

same approach as in the previous application. It is obtained by (3.7.43) with

εi(s) = ln pi +
s∑

y=1

δy mod bi,0
bi
y

(
qi
pi

) y
bi

≤ ln pi +

⌊
s
bi

⌋∑
k=1

(
qi
pi

)k

= ln pi +
qi

pi − qi

1−
(
qi
pi

)⌊
s
bi

⌋ , s ≥ 1, i = 1, . . . , n. (3.7.45)

An expression for Γt−1ε(s) can be derived using the same way as in Theorem 6 such

that we are able to determine an error bound for the t-th order cumulative distribution

function using Theorem 4.

The second approximation concerns the common approximation where λi = qi such that

the expected value of the approximation is exact. The condition f̃(0) = f(0) is no

more fulfilled. However, we are able to determine a bound for the distance between

the approximative and the exact probability functions from (3.3.24). In this case, the

approximative De Pril transform of the claim amount of policy number i is given by

ϕ̃i(x) = biδx,bi
qi, x ≥ 1. (3.7.46)

From (3.7.37) and (3.7.46), it follows that

ψi(y) =


qi − qi

pi
, y = bi

bi

y

(
− qi

pi

) y
bi , y = 2bi, 3bi, . . .

0, elsewhere

. (3.7.47)

If we assume that qi <
1
2
, i = 1, . . . , n, we have

|ψi(bi)| =
qi
pi

− qi, (3.7.48)

which leads to

lim
s→∞

εi(s) = −qi +
∞∑

y=1

δy mod bi,0
bi
y

(
qi
pi

) y
bi

= −qi +
∞∑

k=1

1

k

(
qi
pi

)k

= −qi − ln

(
1− qi

pi

)
. (3.7.49)

Since we have ∣∣∣ln f̃(0)− ln f(0)
∣∣∣ = −qi − ln pi, (3.7.50)

75

we obtain from (3.3.24) and (3.7.43) that

∞∑
x=0

∣∣∣f̃(x)− f(x)
∣∣∣ ≤

exp

{
−2

n∑
i=1

qi

}
n∏

i=1

(pi − qi)
− 1. (3.7.51)

This bound is close to the one derived in Gerber (1984), but it is always greater than it.

Finally, the expected value of this approximation is exact since

∞∑
x=1

ϕ(x) =
∞∑

x=1

ϕ̃(x). (3.7.52)

3.8 Numerical applications

In this section we implement numerically the results obtained in the applications of Sec-

tions 3.7.2 and 3.7.3. We consider the example of Gerber (1979) where we have a portfolio

of life insurance policies that are grouped according to Table 3.1 and where the claim

Table 3.1: Number of policies in each class for the example of Gerber (1979)

j qj i = 1 i = 2 i = 3 i = 4 i = 5

1 0.03 2 3 1 2 -

2 0.04 - 1 2 2 1

3 0.05 - 2 4 2 2

4 0.06 - 2 2 2 1

amount distribution is gi(x) = δx,i for x ≥ 1 and i = 1, . . . , 5.

First, we consider the application of Section 3.7.2. In this case, the numerical values

of (3.7.26), (3.7.32) and (3.7.34) are extremely close to each other since the values of

the qj’s are small. Table 3.2 contains exact values, approximations and error bounds

for the t-th order cumulative distribution function for two points and for two truncation

points. Notice that error bounds in the case where s = 97 (Tables 3.2c and 3.2d) are also

error bounds for the distance between the exact and the approximative (t− 1)-th order

cumulative distribution functions since 97 is the maximum point of the support of the

aggregate claims amount distribution of this portfolio.

We consider now the application of Section 3.7.3. For this application, the portfolio

contains 31 policies with parameters qi and bi = i, i = 1, . . . , 31, given in Table 3.1. For

76

Table 3.2: Approximations of Γtf(s) by setting ϕ(y) for y > r

(a) r = 5 and s = 20

t Γtf(20) Γ̃tf(20) Γtζ(20) ηt(20)

1 0.99890 1.02402 0.02511 0.02935

2 16.5116 16.7483 0.2368 0.4403

3 152.193 153.594 1.400 3.522

(b) r = 12 and s = 20

t Γtf(20) Γ̃tf(20) Γtζ(20) ηt(20)

1 0.99890 0.99878 -0.000128 0.000236

2 16.5116 16.5111 -0.000496 0.001890

3 152.193 152.192 -0.001447 0.008503

(c) r = 5 and s = 97

t Γtf(97) Γ̃tf(97) Γtζ(97) ηt(97)

1 1 1.0261 0.02613 0.02935

2 93.51 95.757 2.2468 2.7003

3 4426.47 4524.41 97.948 125.566

(d) r = 12 and s = 97

t Γtf(97) Γ̃tf(97) Γtζ(97) ηt(97)

1 1 0.9998 -0.000187 0.000236

2 93.51 93.495 -0.01473 0.02008

3 4426.47 4425.88 -0.5888 0.8633

the approximation λi = |ln pi|, the bound (3.7.44) for the distance between the exact and

the approximative probability functions is 0.07724 while the exact distance is 0.02449.

For the common approximation λi = qi, the bound (3.7.51) for the distance between the

exact and the approximative probability functions is 0.15457 while the exact distance is

0.02629. The bound developed in Gerber (1984) is equal to 0.134 in the latter case.

3.9 Conclusion

In the recursive evaluation of t-th order cumulative distribution functions, a truncation

of the De Pril transform may provide a considerable gain of time. Moreover, it gives

more information about the distribution that may be useful, e.g., in relation to stop-

loss contracts. When the De Pril transform converges to zero this approximation has a

negligible effect on the accuracy of the evaluation. Moreover, a bound for the absolute

error of the t-th order cumulative distribution function can be determined before the

evaluation for any approximation of the De Pril transform as well as a bound for the

distance between the exact values and the approximations of such functions. Both bounds

hold for any kind of approximation if we are given the exact and approximative De Pril

transforms.

77

78

Chapter 4

On the stability of recursive

evaluations of t-th order cumulative

distribution functions

4.1 Introduction

The aggregate claims amount of a portfolio of insurance policies can be modelled according

to the so-called individual risk model. This model can be generalized to determine the

distribution of a sum of independent random variables. Several exact or approximative

recursive evaluations for its probability function are discussed in the actuarial literature

(see e.g. De Pril (1986b, 1988, 1989), Dhaene and Vandebroek (1995), Hipp (1985, 1986),

Kornya (1983) and Waldmann (1994)). These methods are reviewed in Sundt (2002)

and Sundt and Vernic (2009). In comparison to an evaluation involving convolutions,

recursions are good strategies to save time since they reduce the number of operations.

Dhaene et al. (2006) and Dhaene and Vandebroek (1995) made some comparisons between

the different methods of evaluation. It results that the Dhaene-Vandebroek algorithm is

in many cases the most efficient among the exact recursive evaluations.

In the actuarial literature, recursions for the t-th order cumulative distribution function

of a random variable were introduced by Dhaene et al. (1999). This function is useful to

calculate some quantities like stop-loss premiums. Its recursive evaluation is based on the

De Pril transform of its probability function. The recursive evaluation for convolutions

of discrete uniform distributions and compound Poisson distributions are considered in

Sundt (1999b) and Antzoulakos and Chadjiconstantinidis (2004), respectively. The lat-

79

ter paper also discusses recursive formulas for the t-th order cumulative tail function of

compound Poisson distributions. Their results are improved in Chadjiconstantinidis and

Pitselis (2009).

The De Pril transform is a function derived in De Pril (1989, p. 11) which leads to a

two-stage recursive evaluation scheme under the individual risk model. This function was

named by Sundt (1995) who expressed it for some special cases. The usefulness of De

Pril transforms appears if we want to evaluate the probability function of a convolution

since the De Pril transform of a convolution of functions is the sum of the De Pril trans-

forms of these functions. Further results on De Pril transforms can be found in Sundt

(1998) and Sundt and Ekuma (1999). An expression for the exact error of the t-th order

cumulative distribution function resulting from an evaluation using an approximative De

Pril transform is derived in Chapter 3 as well as an upper bound for this error. A more

efficient recursive evaluation is also discussed that leads to accurate results when the De

Pril transform converges to zero. Some additional results on error bounds in relation to

De Pril transform approximations can be found in De Pril (1989), Dhaene and De Pril

(1994), Dhaene and Sundt (1997, 1998), and Sundt et al. (1998).

Numerical problems may occur with recursive evaluations if we use the floating-point

representation of numbers. Such a representation generates round-off errors whose prop-

agation may lead to meaningless results. Oliver (1967) proposed a classification of error

propagation based on the consideration of relative errors. In the actuarial literature,

Panjer and Wang (1993) discussed the stability against round-off errors of the recursive

evaluations developed in Panjer (1981) for the probability function of a family of com-

pound distributions. The stability of the evaluations using recursive formulas discussed in

Sundt (1992) is studied in Panjer and Wang (1995). An efficient method for the recursive

evaluation of the probability function of a compound binomial distribution is discussed

in Chapter 2. It consists in using an arbitrary-precision arithmetic library that allows

the representation of real numbers by floating-point numbers with different precisions

in a computer program. The precision is only limited by the available memory of the

computer.

In Section 4.2, we present some exact evaluations and approximations of the t-th order

cumulative distribution function and define the individual risk model with its associated

recursive formulas. We extend the Dhaene-Vandebroek algorithm to the recursive eval-

uation of the t-th order cumulative distribution function in Section 4.3. In Section 4.4,

we study the convergence of De Pril transforms and consider the case of some compound

distributions. The stability against round-off errors of recursive evaluations of the t-th

80

order cumulative distribution function is studied in Section 4.5, where we find that the

convergence or divergence rate of the De Pril transform is crucial to determine the ef-

fect of round-off errors. Finally, in Section 4.6, we illustrate numerically the results of

Section 4.5.

In the sequel, we assume that the functions are defined on the nonnegative integers. The

notations a ≥ b and a > b are used to simplify the facts that a = b, b + 1, b + 2, . . . and

a = b+ 1, b+ 2, . . ., respectively, when a is used as a function argument. We also assume

that
∑b

k=a h(k) = 0 whenever b < a.

4.2 Definitions and review

4.2.1 Some exact evaluations and approximations of t-th order

cumulative distribution functions

The t-th order cumulative operator Γt of a function h is defined by

Γth(x) =
x∑

y=0

Γt−1h(y), x ≥ 0, t ≥ 1, (4.2.1)

with Γ0h(x) = h(x). When h is a probability function of a random variable X, Γth is

the t-th order cumulative distribution function of X. Some frequently used quantities like

stop-loss transforms can be computed from some order of this function.

In the actuarial literature, recursive formulas for exact evaluations and approximations

were developed for t-th order cumulative distribution functions. Dhaene et al. (1999)

showed that this function can be evaluated by

Γtf(s) =
1

s

s∑
y=1

(ϕ(y) + t) Γtf(s− y), s ≥ 1, t ≥ 0. (4.2.2)

where ϕ is the De Pril transform of f and with initial value Γtf(0) = f(0). The De Pril

transform is determined from the probability function by

ϕ(y) =
1

f(0)

(
yf(y)−

y−1∑
x=1

ϕ(x)f(y − x)

)
, y ≥ 1, (4.2.3)

and defines uniquely a probability function given a value of it (e.g. f(0)). In Chapter 3,

we showed that a lot of computing time can be saved by truncating the De Pril transform

81

from a given point such that

ϕ̃(y) =

{
ϕ(y), y = 1, . . . , r

0, y > r
, r ≥ 1, (4.2.4)

when ϕ(y) converges to zero in the limit y →∞. It is equivalent to approximating Γtf(s)

by Γ̃tf(s) using the embedded recursion

Γ̃tf(s) =
1

s

[
t Γ̃t+1f(s− 1) +

s∧r∑
y=1

ϕ(y)Γ̃tf(s− y)

]
, s ≥ 1, t ≥ 0, (4.2.5)

where a ∧ b = min(a, b) and

Γ̃t+1f(s) = Γ̃t+1f(s− 1) + Γ̃tf(s), s ≥ 1, t ≥ 0, (4.2.6)

with initial values Γ̃uf(0) = f(0), u = t, t + 1. Expressions for the exact error of Γ̃tf(s)

and a bound for its absolute value are derived in Chapter 3 for any De Pril transform

approximation. Approximations of the form of (4.2.4) appear implicitly when floating-

point numbers are used in evaluations. We explain why this is the case and discuss the

propagation of round-off errors for such recursive evaluations in Section 4.5.

4.2.2 The individual risk model

The individual risk model is generally used to model the aggregate claims amount of a

portfolio of insurance policies during a given period of time. The insurance policies are

assumed to be mutually independent and grouped in different classes according to their

probability that a claim occurs and their claim severity given that it occurs. We assume

that there are nij policies in class (i, j) where the probability that a claim occurs is qj,

j = 1, . . . , b, and the probability function of the claim amount given that it occurs is gi(x)

for x ≥ 1 and i = 1, . . . , a. The aggregate claims amount random variable S is modelled

as

S =
a∑

i=1

b∑
j=1

nij∑
k=1

IijkBijk, (4.2.7)

where Iijk and Bijk are the indicator if a claim occurs and the conditional claim amount

random variable for the policy number k in class (i, j), respectively. Notice that IijkBijk

follows a compound Bernouilli distribution and that
∑nij

k=1 IijkBijk follows a compound

binomial distribution.

82

Since the De Pril transform of a convolution of probability functions is the sum of the

De Pril transforms of these probability functions, the t-th order cumulative distribution

function can be evaluated by

Γtf(s) =
1

s

[
tΓt+1f(s− 1) +

a∑
i=1

b∑
j=1

nij

s∑
y=1

ϕij(y)Γ
tf(s− y)

]
, s ≥ 1, t ≥ 0, (4.2.8)

where ϕij is the De Pril transform of IijkBijk, k = 1, . . . , nij and

Γt+1f(s) = Γt+1f(s− 1) + Γtf(s), s ≥ 1, t ≥ 0. (4.2.9)

The initial values of (4.2.8) and (4.2.9) are

Γuf(0) =
a∏

i=1

b∏
j=1

(pj)
nij , u = t, t+ 1, (4.2.10)

where pj = 1− qj. De Pril (1989) showed that ϕij can be determined either by

ϕij(y) =
qj
pj

(
ygi(y)−

y−1∑
x=1

ϕij(x)gi(y − x)

)
, y ≥ 1, (4.2.11)

or by

ϕij(y) = y

y∑
k=1

(−1)k+1

k

(
qj
pj

)k

g∗ki (y), y ≥ 1, (4.2.12)

where g∗ki denotes the k-fold convolution of gi.

We discuss now an important property of the individual risk model which is that we are

able to know the exact value of Γtf(ξ), t ≥ 0, where ξ is the maximum value of the support

of S. This result which is used later to measure the accuracy of a recursive evaluation

using the floating-point representation is given in the following theorem.

Theorem 7 Let ξ = sup{s : f(s) > 0} which is determined by

ξ =
a∑

i=1

b∑
j=1

nij ωi, (4.2.13)

where ωi = sup{x : gi(x) > 0}. We have

Γtf(ξ) =


a∏

i=1

b∏
j=1

[qjgi(ωi)]
nij , t = 0

1
(t−1)!

E
[
(ξ − S + 1)t−1

]
, t ≥ 1

, (4.2.14)

where E
[
Xk
]

is the k-th rising factorial moment with E
[
X0
]

= 1.

83

Proof. For t = 0, the event S = ξ takes place when a claim of amount ωi occurs for

each policy. Thus, (4.2.14) holds because the claim amounts of policies are assumed to

be mutually independent.

From Antzoulakos and Chadjiconstantinidis (2004, p. 173), we know that

Γtf(s) = (−1)tΛtf(s) +
t−1∑
j=0

(−1)j Ct−j−1
x

E
[
Sj
]

j!
, s ≥ 0, t ≥ 0, (4.2.15)

where E
[
Xk
]

is the k-th falling factorial moment, Ca
b =

(
a+ b

a

)
1 and Λt is the t-th order

tail operator, which is defined by

Λth(x) =
∞∑

y=x+1

Λt−1h(y), x ≥ 0, t ≥ 1, (4.2.16)

with Λ0h(x) = h(x). Since f(s) = 0 for s > ξ, we have Λtf(ξ) = 0 for t ≥ 1. It follows

that

Γtf(ξ) = E

[
t−1∑
j=0

(−1)j Ct−j−1
ξ

Sj

j!

]
= E

[
t−1∑
j=0

(−1)j Ct−j−1
ξ CS−j

j

]
= E

[
(−1)t−1Ct−1

S−ξ−t

]
= E

[
Ct−1

ξ−S

]
=

1

(t− 1)!
E
[
(ξ − S + 1)t−1

]
, t ≥ 1, (4.2.17)

and the proof of Theorem 7 is complete.

4.3 Dhaene-Vandebroek algorithm for t-th order cu-

mulative distribution functions

The Dhaene-Vandebroek algorithm derived in Dhaene and Vandebroek (1995) is another

exact recursive evaluation for the probability function of S under the individual risk model.

This algorithm is in many cases more efficient than the evaluation using the embedded

recursion (4.2.8) with (4.2.11) and t = 0 (see Dhaene et al. (2006) and Dhaene and

Vandebroek (1995)). In the following theorem we extend this algorithm to the recursive

evaluation of t-th order cumulative distribution functions.

Theorem 8 The t-th order cumulative distribution function of the aggregate claims a-

mount under the individual risk model is obtained by

Γtf(s) =
1

s

[
tΓt+1f(s− 1) +

a∑
i=1

b∑
j=1

nijΓ
tvij(s)

]
, s ≥ 1, t ≥ 0, (4.3.1)

1This is not the common notation for the binomial coefficient but our definition is used here in order

to simplify expressions

84

where Γt+1f(s− 1) is given by (4.2.9) and the coefficients Γtvij(s) are determined by

Γtvij(s) =
qj
pj

s∑
k=1

gi(k)
(
k Γtf(s− k)− Γtvij(s− k)

)
. (4.3.2)

The initial values for this algorithm are given by (4.2.10) and Γtvij(0) = 0, t ≥ 0.

Proof. For t = 0, Theorem 8 is the Dhaene-Vandebroek algorithm.

We prove now recurrence equations (4.3.1) and (4.3.2) by induction on t. First, let us

assume that (4.3.2) holds for t = u, we have

Γu+1vij(s) =
s∑

x=1

Γuvij(x) =
s∑

x=1

qj
pj

x∑
k=1

gi(k) (k Γuf(x− k)− Γuvij(x− k))

=
qj
pj

s∑
k=1

gi(k)

[
k

s∑
x=k

Γuf(x− k)−
s∑

x=k

Γuvij(x− k)

]

=
qj
pj

s∑
k=1

gi(k)
(
k Γu+1f(s− k)− Γu+1vij(s− k)

)
. (4.3.3)

This proves that (4.3.2) holds for t = u + 1. The multiplication by s on both sides of

(4.3.1) gives

sΓtf(s) = tΓt+1f(s− 1) +
a∑

i=1

b∑
j=1

nijΓ
tvij(s), s ≥ 1, t ≥ 0. (4.3.4)

Moreover, since Γth(y) = Γt+1h(y) − Γt+1h(y − 1) for y ≥ 1 and t ≥ 0, we obtain using

summation by parts that

s∑
y=1

y Γth(y) = sΓt+1h(s)− Γt+2h(s− 1), s ≥ 1, t ≥ 0. (4.3.5)

Let us now assume that (4.3.4) holds for t = u. It follows successively from (4.3.5) and

(4.3.4) that

sΓu+1f(s) = Γu+2f(s− 1) +
s∑

y=1

y Γuf(y)

= Γu+2f(s− 1) +
s∑

y=1

[
uΓu+1f(y − 1) +

a∑
i=1

b∑
j=1

nijΓ
uvij(y)

]

= (u+ 1)Γu+2f(s− 1) +
a∑

i=1

b∑
j=1

nijΓ
u+1vij(s). (4.3.6)

This proves that (4.3.4) holds for t = u + 1. The equation (4.3.1) follows by dividing

(4.3.6) by s on both sides, which completes the proof of Theorem 8.

85

The comparison between Theorem 8 and the recursive evaluation using (4.2.8) with

(4.2.11) leads to the same conclusions as comparisons between the corresponding eval-

uations of the probability function that are made in Dhaene et al. (2006) and Dhaene and

Vandebroek (1995). Similarly to (4.2.8) we also evaluate the (t+ 1)-th order cumulative

distribution function, which gives more information about the distribution. Applications

involving both orders may be developed, two of them are discussed in Chapter 3. We study

the stability against round-off errors in the implementation of Theorem 8 in Section 4.5.

4.4 Convergence of De Pril transforms

4.4.1 General case

Let us now discuss the cases where the approximation by a truncation of the De Pril

transform may be implemented or when it is involved in computations using the floating-

point representation. The results derived in this section are important for Section 4.5

where we discuss the stability against round-off errors of the recursive evaluation of t-th

order cumulative distribution functions.

Theorem 9 Let h(x), x = 0, 1, . . . , ω, be a probability function with h(0) > 0 and

h(ω) > 0. The De Pril transform of h is given by

ϕ(y) = −
ω∑

k=1

λy
k, y ≥ 1, (4.4.1)

where λ1, . . . , λω are the roots of the polynomial

ω∑
x=0

h(ω − x)λx. (4.4.2)

Proof. The De Pril transform of a probability function h is the solution of (4.2.3).

However, it is also the solution of the ω-th order recurrence equation

ϕ(y) = − 1

h(0)

ω∑
x=1

ϕ(y − x)h(x), y > ω, (4.4.3)

with initial values ϕ(1), . . . , ϕ(ω) that are determined by the first ω steps of (4.2.3). The

characteristic polynomial of (4.4.3) is

λω +
ω∑

x=1

h(x)

h(0)
λω−x, (4.4.4)

86

which has the same roots as (4.4.2). We assume that (4.4.4) has the roots µ1, . . . , µl,

l ≤ ω, with multiplicities α1, . . . , αl, respectively. The solution of (4.4.3) is given by

ϕ(y) =
l∑

k=1

µy
k

αk−1∑
u=0

Cku y
u, y > ω, (4.4.5)

where the ω coefficients Cku’s are uniquely determined from ω initial values. From New-

ton’s identities, we are able to determine recursively sk =
∑n

i=1 r
k
i , where ri, i = 1, . . . , n,

are the roots of the polynomial xn + an−1x
n−1 + · · ·+ a1x+ a0 by

sk = −kan−k −
k−1∑
j=1

an−jsk−j, k = 1, . . . , n. (4.4.6)

Note the similarity of (4.4.6) with (4.2.3). Thus, by substituting n = ω and aω−j = h(j)
h(0)

into (4.4.6) we obtain that ϕ(y) = −sy, y = 1, . . . , ω. Therefore, using the initial values

of (4.4.3) we find that

Cku =

{
−αk, u = 0

0, otherwise
, k = 1, . . . , l. (4.4.7)

It follows that the De Pril transform of h is given by (4.4.1) where λ1, . . . , λω are the roots

of (4.4.4) and the proof of Theorem 9 is complete.

Corollary 10 Let h(x), x = 0, 1, . . . , ω, be a probability function with h(0) > 0 and

h(ω) > 0. The De Pril transform of h converges to zero in absolute value if the roots of

(4.4.2) satisfy |λk| < 1, k = 1, . . . , ω, where |z| denotes the complex modulus of z.

Proof. The De Pril transform of a probability function is given by Theorem 9 but the

roots of (4.4.2) may be complex. Using the polar representation of complex numbers in

(4.4.1), we get

ϕ(y) = −
ω∑

k=1

|λk|y (cos(y θk) + i sin(y θk)) , y ≥ 1, (4.4.8)

where θk is the complex argument of λk. Therefore, the De Pril transform converges to

zero in absolute value if |λk| < 1 for k = 1, . . . , ω.

Corollary 11 The De Pril transform of a convolution of probability functions converges

to zero if the De Pril transform of each probability function satisfies Corollary 10.

87

Proof. The proof is immediate since the De Pril transform of a convolution of probability

functions is the sum of the De Pril transforms of the probability functions and that the

sum of convergent sequences converges in absolute value to the sum of their limits which

are here equal to zero.

Notice that if we use Corollary 10 in order to determine if the approximation of the t-th

order cumulative distribution function obtained by truncating the De Pril transform is

effective, we have to know its associated probability function. However, from Corollary 11

we are able to know if such an approximation for a convolution is appropriate before

evaluating the De Pril transforms. We are also able to determine in advance if the De

Pril transform of a compound distribution is convergent. This point is discussed in the

next subsection.

4.4.2 Convergence of De Pril transforms of some compound dis-

tributions

Compound distributions are frequently used to model the aggregate claims amount dis-

tribution. Such a model is known under the name of collective risk model in the actuarial

literature. The aggregate claims amount random variable is defined as

S = X1 +X2 + · · ·+XN , (4.4.9)

where N and Xi represent the number of claims and the amount of the i-th claim, re-

spectively. The Xi’s and N are assumed to be mutually independent. We assume that

the Xi’s are identically distributed with common probability function g(x), x = 1, . . . , ω.

Corollary 10 holds for compound Poisson and compound negative binomial distributions.

These results follow from Theorem 6.1 in Dhaene and Sundt (1998) since the De Pril

transforms of the Poisson and the negative binomial distributions are bounded and con-

vergent. For compound Poisson distributions, we even have ϕ(y) = 0 for y > ω (see e.g.

Sundt (1995, p. 25)). Corollary 10 does not hold for all compound binomial distributions,

the convergence of their De Pril transforms depends on the shape of g and on the param-

eters of the binomial distribution. Sundt and Ekuma (1999, p. 183) developed recursive

forms for the De Pril transforms of compound negative binomial and compound binomial

distributions that we use now to express these De Pril transforms as sums of polynomial

roots raised to a power.

First, we consider compound negative binomial distributions. Let N be a negative bino-

88

mial distribution with parameters r > 0 and 0 < q < 1 such that

Pr [N = n] =

(
r + n− 1

n

)
(1− q)r qn, n ≥ 0, (4.4.10)

Sundt and Ekuma (1999, p. 183) showed that the De Pril transform of a compound

negative binomial probability function can be evaluated by

ϕ(y) = qryg(y) + q

ω∧(y−1)∑
x=1

g(x)ϕ(y − x), y ≥ 1. (4.4.11)

This De Pril transform is the solution of

ϕ(y) = q
ω∑

x=1

g(x)ϕ(y − x), y > ω, (4.4.12)

with initial values ϕ(1), . . . , ϕ(ω) determined by (4.4.11). The corresponding characteris-

tic polynomial is

λω − q
ω∑

x=1

g(x)λω−x. (4.4.13)

By substituting n = ω and aw−j = −qg(j) into (4.4.6), and multiplying it by r, we obtain

from (4.4.11) that

ϕ(y) = r
ω∑

k=1

λy
k, y ≥ 1, (4.4.14)

where the λk’s are the roots of (4.4.13). Moreover, from Descartes’ rule of signs, this

polynomial has exactly one positive real root, let it be λ1. Furthermore, λ1 < 1 because∑ω
x=1 qg(x) = q < 1. Since Cauchy (1829, p. 122), we know that

|λk| ≤ λ1, k = 2, . . . , ω, (4.4.15)

which proves that the De Pril transform of a compound negative binomial distribution

always converges to zero.

We consider now the case of compound binomial distributions. Let N be a binomial

distribution with parameters m and 0 < q < 1 such that

Pr [N = n] =

(
m

n

)
qnpm−n, n = 0, 1, . . . ,m, (4.4.16)

where p = 1−q and m is a positive integer. Sundt and Ekuma (1999, p. 183) showed that

the De Pril transform of a compound binomial probability function can be evaluated by

ϕ(y) =
mqyg(y)

p
− q

p

ω∧(y−1)∑
x=1

g(x)ϕ(y − x), y ≥ 1. (4.4.17)

89

This De Pril transform is the solution of

ϕ(y) = −q
p

ω∑
x=1

g(x)ϕ(y − x), y > ω, (4.4.18)

with initial values ϕ(1), . . . , ϕ(ω) determined by (4.4.17). The characteristic polynomial

of (4.4.18) is

λω +
q

p

ω∑
x=1

g(x)λω−x. (4.4.19)

By substituting n = ω and aw−j = q
p
g(j) into (4.4.6), and multiplying it by −m we obtain

from (4.4.17) that

ϕ(y) = −m
ω∑

k=1

λy
k, y ≥ 1, (4.4.20)

where the λk’s are the roots of (4.4.19) that does not depend on m. From Cauchy (1829,

p. 122), we have that (4.4.20) converges to zero when q
p
< 1, which is equivalent to q < 1

2
.

However, in this case the corresponding upper bound of (4.4.15) is not a root of (4.4.19)

since it has no positive root. This means that (4.4.20) also converges for some q ≥ 1
2

depending on g. The following corollary shows this property for the case where ω = 2

and m = 1.

Corollary 12 For an individual claim amount random variable with a probability that a

claim occurs of q and a conditional claim amount distribution satisfying g(1) + g(2) = 1,

the De Pril transform of its probability function converges to zero if

q < min

(
1

2− g(1)
,

1

2g(1)

)
, 0 ≤ g(1) ≤ 1. (4.4.21)

Proof. In this case, the claim amount distribution follows a compound Bernouilli distri-

bution with parameter q and conditional claim amount probability function g such that

g(2) = 1− g(1). The roots of (4.4.19) are

λ1 =
−qg(1)−

√
q2g(1)2 − 4qpg(2)

2p
and λ2 =

−qg(1) +
√
q2g(1)2 − 4qpg(2)

2p
. (4.4.22)

If q < 4(1−g(1))

(2−g(1))2
, both roots are complex with |λ1| = |λ2|. Therefore, we have |λ1| ≥ |λ2|

for any (g(1), q) in the unit square and in order to determine if the De Pril transform

converges it is sufficient to find for which values of (g(1), q) the inequality |λ1| < 1 holds.

In the case of complex roots, one can show that |λ1| < 1 is satisfied over the range

90

q < (2− g(1))−1. Together with the condition of having complex roots, the range of

convergence is

q < min

(
1

2− g(1)
,
4 (1− g (1))

(2− g (1))2

)
, 0 ≤ g(1) ≤ 1. (4.4.23)

In the case of real roots, one can show that |λ1| < 1 holds if q < 2 · (2 + g(1))−1 and

q < (2g(1))−1. Together with the condition of having real roots, the range of convergence

becomes

4 (1− g (1))

(2− g (1))2 < q <
1

2g(1)
,

2

3
≤ g(1) ≤ 1. (4.4.24)

The union of (4.4.23) and (4.4.24) leads to (4.4.21) and the proof is complete. Figure 4.1

shows the different functions encountered above and the area where the De Pril transform

is convergent in this particular case.

Figure 4.1: Area where the De Pril transform is convergent in the case of Corollary 12

From Corollary 11 and (4.4.20), it follows that the De Pril transform of the aggregate

claims amount under the individual model is given by

ϕ(y) = −
a∑

i=1

b∑
j=1

ωi∑
k=1

nijλ
y
ijk, y ≥ 1, (4.4.25)

where λijk, k = 1, . . . , ωi, are the roots of

pjλ
ωi + qj

ωi∑
x=1

gi(x)λ
ωi−x, (4.4.26)

91

for i = 1, . . . , a and j = 1, . . . , b. Therefore, (4.4.25) converges to zero if the modulus of

every root is smaller than one.

Remark 11: If a = 1 and wi = 1 such that g(1) = 1, the roots of (4.4.26) are λ1j1 = −pj

qj
,

j = 1, . . . , b. Moreover, if n1j = 1, j = 1, . . . , b, a recursive evaluation of the probability

function equivalent to (4.2.2) with (4.4.25) and t = 0 is given by formulas (7) and (8) of

White and Greville (1959).

4.5 Stability against round-off errors

4.5.1 Some definitions and general results

In this section, we study the propagation of round-off errors when floating-point numbers

are used for the evaluation of Γtf according to the recursive formulas considered above.

The use of floating-point numbers is highly recommended to save time when a large

number of computations have to be done. A floating-point number is generally represented

as±s0s1s2 . . . sρ−1·βe according to a base β ≥ 2 and a precision ρ. The sequence of integers

s0s1s2 . . . sρ−1 is called the significand or mantissa and the integer e is the exponent. The

floating-point number ±s0s1s2 . . . sρ−1 · βe represents the number

± βe

ρ−1∑
j=0

sjβ
−j, sj ∈ {0, 1, . . . , β − 1}. (4.5.1)

We denote by ε the maximal relative error of the floating-point representation x̃ of a real

number x if the computer rounds to the nearest floating-point number. It is defined by∣∣∣∣x− x̃

x

∣∣∣∣ ≤ β1−ρ

2
= ε. (4.5.2)

The propagation of such round-off errors in a recursive evaluation may grow without

bound and may lead to meaningless values. The relative error is used as a measure of

accuracy. The accuracy is defined to be the number of decimal digits that are exact

in an evaluation. We refer to Oliver (1967) for a classification of stability of recursive

evaluations. Panjer and Wang (1993) showed that the evaluation of a recursion of the

form

h(s) = b(s) +
s∑

y=1

ay(s)h(s− y), s ≥ 1, (4.5.3)

is strongly stable if b(s), the coefficients ay(s) and the initial values are nonnegative.

92

Dhaene et al. (1999) wrote that for any random variable with probability function h, there

exists an order u such that the recursive evaluation of Γth(z) using (4.2.2) is strongly stable

for t ≥ u. Due to Panjer and Wang (1993), a sufficient condition for u is that

u+ ϕ(y) ≥ 0, y = 1, 2, . . . , z. (4.5.4)

On the one hand, if ϕ converges to zero but has negative values then u may be quite small.

Its value will depend on the first values of the De Pril transform. On the other hand,

if ϕ diverges and has negative values, the order u will be extremely large and close to

ϕ(z). However, if we desire to evaluate Γth(z) with t < u the first digits of the significand

of Γuh(z) cancel out by taking the finite differences to obtain that order because Γth(z)

is smaller than Γuh(z). The evaluation obtained for Γth(z) is not better in terms of

accuracy than the one resulting from a recursive evaluation for the order t, which avoids

the computation of finite differences. Notice that for compound Poisson and compound

negative binomial distributions (4.5.4) holds for u = 0 since their De Pril transforms are

nonnegative. It follows that the recursive evaluation of Γth is stable for any positive order.

Panjer and Wang (1993) showed this result for a recursive evaluation with t = 0.

Panjer and Wang (1993) defined the notions of dominant and subordinate solutions of a

recurrence equation and showed that the evaluation of a dominant solution is stable while

evaluating a subordinate solution is unstable (see also Chapter 2). Under the individual

risk model, the recurrence equation (4.2.8) with (4.2.11) or (4.2.12) and the system of

recurrence equations of Theorem 8 have the same set of solutions since they are built

from the same power series (see Dhaene et al. (2006, pp. 546-547)). Therefore, their

solutions with their respective initial values are equal and the propagation of round-off

errors behaves similarly in both cases. The same results are obtained by considering

the recursion of the form of (4.2.2) under the individual risk model. Thus, if we know

that one of these recursive evaluations is unstable then the other ones are unstable and

conversely. In general the evaluation according to Theorem 8 produces smaller relative

errors but not significantly. Moreover, as pointed out by Dhaene and Vandebroek (1995),

this algorithm needs to store a smaller number of values at each evaluation stage of the

recursion. This difference is reduced if the De Pril transform can be truncated according to

(4.2.4). For all these reasons we conclude that the evaluation of the t-th order cumulative

distribution function according to Theorem 8 is the most efficient amongst the recursions

considered in this paper. Since it is easier to study the propagation of round-off errors

for recurrence equations (4.2.2) and (4.2.5) than for Theorem 8, we focus on these two

recursive evaluations and the results will also hold for Theorem 8.

93

4.5.2 Stability with a convergent De Pril transform

When floating-point numbers are used in the evaluation of (4.2.2) or (4.2.5), the De Pril

transform cannot be represented exactly and we implicitly have an approximative De Pril

transform. An expression for the error of Γ̃tf resulting from a recursive evaluation using

any De Pril transform approximation ϕ̃ is developed in Chapter 3. This expression is

Γ̃tf(s)− Γtf(s) =
s∑

y=1

y∑
n=1

1

n!
ψ∗n(y)Γtf(s− y), s ≥ 0, t ≥ 0, (4.5.5)

where we assume Γ̃tf(0) = Γtf(0), t ≥ 0, and ψ is defined by

ψ(x) =

{
0, x = 0
ϕ̃(x)−ϕ(x)

x
, x ≥ 1

. (4.5.6)

Since Γtf is a nondecreasing function for t ≥ 1, an upper bound for the relative error of

Γ̃tf(s) follows from (4.5.5). It is∣∣∣∣∣ Γ̃tf(s)− Γtf(s)

Γtf(s)

∣∣∣∣∣ ≤
s∑

y=1

y∑
n=1

1

n!
|ψ∗n(y)| ≤ exp

{
s∑

y=1

|ψ(y)|

}
− 1

≤ exp

{
∞∑

y=1

|ψ(y)|

}
− 1, s ≥ 0, t ≥ 1. (4.5.7)

However, this error bound holds only if there is not any round-off errors propagation during

the recursive evaluation for example by setting an “infinite” precision to the variables

representing the t-th order cumulative distribution function.

If the computer uses a precision of ρ to represent the De Pril transform, we obtain from

(4.5.2) that

|ϕ(y)− ϕ̃(y)| ≤ ε |ϕ(y)| , y ≥ 1, (4.5.8)

where ϕ̃ denotes the floating-point representation of ϕ. If we evaluate the t-th order

cumulative distribution function, whose variables are assumed to be represented using an

“infinite” precision, it follows that∣∣∣∣∣ Γ̃tf(s)− Γtf(s)

Γtf(s)

∣∣∣∣∣ ≤ exp

{
ε

∞∑
y=1

|ϕ(y)|
y

}
− 1, s ≥ 0, t ≥ 1. (4.5.9)

From (4.4.8) we have

|ϕ(y)| ≤
∑

k

|λk|y , y ≥ 1, (4.5.10)

94

where the λk’s are the roots of the characteristic polynomial of (4.2.3). Under the indi-

vidual risk model, we can see from (4.4.25) that the sum of (4.5.10) contains ωi roots per

policy. Assuming that Corollary 10 holds for this De Pril transform, the substitution of

(4.5.10) into (4.5.9) leads to∣∣∣∣∣ Γ̃tf(s)− Γtf(s)

Γtf(s)

∣∣∣∣∣ ≤ exp

{
ε

∞∑
y=1

∑
k

|λk|y

y

}
− 1 =

∏
k

(1− |λk|)−ε − 1, (4.5.11)

for s ≥ 0 and t ≥ 1. Using the first order multivariate Taylor series expansion we get∏
k

(1− |λk|)−ε ≈ 1 + ε
∑

k

|λk| . (4.5.12)

It follows that ∣∣∣∣∣ Γ̃tf(s)− Γtf(s)

Γtf(s)

∣∣∣∣∣ ≤ ε
∑

k

|λk| , s ≥ 0, t ≥ 1. (4.5.13)

which shows that the recursive evaluation of Γtf for t ≥ 1 obtained from the representation

of a convergent De Pril transform using a reasonable precision is accurate even though

t+ ϕ(y) is negative for some y.

The idea of truncating a convergent De Pril transform comes from looking at (4.2.2).

When floating-point numbers are used for the evaluation of Γtf using (4.2.2), the value

of ϕ(y) + t is represented by t when |ϕ(y)| ≤ tε. We denote by rt the maximal point for

which the term ϕ(y) + t is not represented only by t, it is determined by

rt = sup{y ≥ 1 : |ϕ(y)| > tε}, t ≥ 1. (4.5.14)

This is equivalent to setting ϕ(y) = 0 for y > rt. In this case it is more efficient to evaluate

Γtf using (4.2.5) where r is given by (4.5.14) instead of (4.2.2) because time can be saved

without losing accuracy. For such an evaluation, (4.5.9) becomes∣∣∣∣∣ Γ̃tf(s)− Γtf(s)

Γtf(s)

∣∣∣∣∣ ≤ exp

{
ε

rt∑
y=1

|ϕ(y)|
y

+
∞∑

y=rt+1

|ϕ(y)|
y

}
− 1

≤ exp

{
ε

∞∑
y=1

∑
k

|λk|y

y
+

1− ε

rt + 1

∞∑
y=rt+1

∑
k

|λk|y
}
− 1

= exp

{
1− ε

rt + 1

∑
k

|λk|rt+1

1− |λk|

}∏
k

(1− |λk|)−ε − 1, (4.5.15)

for s ≥ 0 and t ≥ 1. Using the (rt + 1)-th order multivariate Taylor series expansion, we

obtain

exp

{
1− ε

rt + 1

∑
k

|λk|rt+1

1− |λk|

}
≈ 1 +

1− ε

rt + 1

∑
k

|λk|rt+1 ≈ 1 +
tε

rt + 1
, t ≥ 1,(4.5.16)

95

since
∑

k |λk|rt+1 ≈ tε from (4.5.14). The substitution of (4.5.12) and (4.5.16) into (4.5.15)

leads to

exp

{
1− ε

rt + 1

∑
k

|λk|rt+1

1− |λk|

}∏
k

(1− |λk|)−ε − 1 ≈ ε
∑

k

|λk|+
tε

rt + 1
, t ≥ 1. (4.5.17)

Therefore, the recursive evaluation using (4.2.5) with r given by (4.5.14) is accurate for

t ≥ 1 if we use a reasonable precision and if the De Pril transform converges to zero.

Until now we considered only the effect of round-off errors coming from the representation

of ϕ by floating-point numbers. However, it is important to consider also the propagation

of such errors as we go along with the recursive evaluation of Γtf using a “finite” precision

ρ. The recursions (4.2.2) and (4.2.5) are both of the form of (4.5.3) therefore the propaga-

tion of round-off errors as we go along with these recursions is similar and does not create

numerical problems. Such problems may arise with (4.2.5) when ϕ(y) is negative for some

y’s, which is the case under the individual risk model. They happen when a difference

between two numbers is significantly smaller in absolute value than both numbers, which

means that the first digits of the significands of both numbers vanish and the exact signif-

icand of the difference has a smaller precision. Here, since sΓtf(s) ≥ tΓt+1f(s − 1) ≥ 0

for s ≥ 1 and t ≥ 0, the two numbers that may cause such problems are the maximum

and minimum values of the products ϕ(y)Γtf(s − y) over y = 1, 2, . . . , s. However, such

problems are already taken into account in (4.5.15). Therefore, the evaluation of Γtf

using the floating-point representation is strongly stable for t ≥ 1 when ϕ converges to

zero. In this case, the values of y−s,t and y+
s,t defined such that

π−s,t = ϕ(y−s,t) Γtf(s− y−s,t) = min
y=1,...,s

(ϕ(y) Γtf(s− y))

π+
s,t = ϕ(y+

s,t) Γtf(s− y+
s,t) = max

y=1,...,s
(ϕ(y) Γtf(s− y))

, s ≥ 1, t ≥ 0, (4.5.18)

are small for any s ≥ 1 and remain constant when s becomes large. Moreover, the

products π−s,t and π+
s,t are of the same magnitude as sΓtf(s), for s ≥ 1. Remark that

as long as π−s,t is positive, the recursion satisfies the condition of stability of Panjer and

Wang (1993).

The last point concerns the accuracy of the evaluation of the De Pril transform. Under

the individual risk model, if we have

λijk 6= λijl, k 6= l, (4.5.19)

in (4.4.25) the solution of (4.2.11) is dominant and its evaluation is strongly stable. If

this holds for each class of policies, the De Pril transform of the probability function of

96

S is accurate. However, if it does not hold for all classes, a subordinate solution has to

be evaluated but it is generally accurate up to the implicit truncation point. Another

way to calculate the De Pril transform is using (4.4.25), which is more efficient than an

evaluation using (4.2.12) but less efficient than the recursive evaluation with (4.2.11).

Notice that (4.5.7) does not hold for t = 0 since the probability function is nonincreasing.

In general the probability function under the individual risk model is roughly concave and

unimodal. For the points above the mode, the probability function decreases exponentially

involving that f(s) converges to zero at a decreasing rate with respect to s, i.e. f(s+1)
f(s)

decreases with respect to s if s is above the mode. In this case, numerical problems arise

in the recursive evaluation from the point c where the convergence rate of f becomes

smaller than τ , which is the convergence rate of τ y with respect to y. The point c is then

defined by

f(s+ 1)

f(s)
≤ τ, for all s ≥ c, (4.5.20)

where

τ = max
k
|λk| , (4.5.21)

where the maximum is taken over all the roots that compose the De Pril transform such

that ϕ(y) behaves like τ y. For the points s > c, y−s,0 and y+
s,0 are both approximatively

equal to s − c and the values of
∣∣π−s,0∣∣ and π+

s,0 become much greater than sf(s), which

creates a lack of precision in f̃(s). Therefore, if the De Pril transform converges to zero,

the recursive evaluation of the probability function is strongly stable up to the stage c

and is unstable from this stage on. Over the unstable range we have actually

f̃(s) ≈

{
f(s), s = c+ 1, c+ 2, . . . , dρ

dρ

s
τ s−dρ

f(dρ), s > dρ
, (4.5.22)

where dρ is the maximal stage for which all previous evaluations have at least one exact

digit in their significand. It can be approximatively determined by

dρ ≈ inf{s > c : |ϕ(s− c)| f(c) ε > sf(s)} − 1, (4.5.23)

which increases with respect to ρ. This is an approximation since the relative error of

f̃(s), s > c, depends on the relative error of f̃(c), which is generally greater than ε. We

explain now how (4.5.22) is derived. For the points s = c + 1, c + 2, . . . , dρ, f̃(s) evolves

similarly to f(s) because the loss of precision in π+
s,t +π−s,t is smaller than ρ. However, the

97

accuracy of f̃(s) decreases with respect to s but f̃(dρ) has at least one exact digit in its

significand. For the points s > dρ, we have from (4.5.2) and (4.5.23) that

sf̃(s) ≈ π+
s,t ε ≈

∣∣π−s,t ε∣∣ ≈ |ϕ(s− c)| f(c) ε > sf(s), s > dρ, (4.5.24)

which leads to

(s+ 1)f̃(s+ 1) ≈ |ϕ(s+ 1− c)| f(c) ε ≈ τ |ϕ(s− c)| f(c) ε ≈ τsf̃(s), s > dρ. (4.5.25)

Given f(dρ) ≈ f̃(dρ), it follows that

sf̃(s) ≈ τ s−dρ

dρf̃(dρ), s > dρ. (4.5.26)

which is equivalent to (4.5.22). Therefore, sf̃(s) converges to zero at a rate of τ from dρ

on and the relative error grows exponentially. The main problem is that we do not know

the points c and dρ before the evaluation. A method to obtain an accurate probability

function of a compound binomial distribution over its entire support is developed in

Chapter 2. This method, which consists in increasing ρ efficiently, can be generalized for

the individual risk model described in Section 4.2.2. We come back to this method in the

next subsection. We illustrate these results through a numerical example in Section 4.6.

4.5.3 Stability with a divergent De Pril transform

When the De Pril transform diverges the upper bound of (4.5.9) tends to infinity. This

implies that the evaluation may be inaccurate. However, we know that a stable evaluation

is obtained at least from a given order defined in (4.5.4). Nevertheless, this order is not

the smallest one for which the recursive evaluation is stable as we have seen above.

We consider here the stability of recursive evaluation when the De Pril transform diverges.

From Theorem 9 we know that ϕ(y) behaves like τ y where τ ≥ 1 and is defined by (4.5.21).

Like in Section 4.5.2 for the case where t = 0, we let ct be the point where Γtf becomes

less increasing than the De Pril transform. This is equivalent to writing that

Γtf(s+ 1)

Γtf(s)
≤ τ, for all s ≥ ct, t ≥ 0. (4.5.27)

Then, the values of y−s,t and y+
s,t are both approximatively equal to s − ct for s > ct and

we can define dρ
t as the maximal stage for which all previous evaluations have at least one

exact digit in their significand. It can be approximatively determined by

dρ
t = inf{s > ct : |ϕ(s− ct)|Γtf(ct) ε > sΓtf(s)} − 1, t ≥ 0, (4.5.28)

98

and is an increasing function of ρ. For the same reasons as mentioned above the recursive

evaluation of Γtf(s) is strongly stable up to the stage s = ct and is unstable from this

stage on. For s > ct, we obtain similarly to (4.5.22) that

Γ̃tf(s) ≈

{
Γtf(s), s = ct + 1, ct + 2, . . . , dρ

t

dρ
t

s
τ s−dρ

t Γtf(dρ
t), s > dρ

t

, t ≥ 0, (4.5.29)

Notice that Γ̃tf(s) > Γtf(s) for s > dρ
t and t ≥ 0. This statement can be justified in the

same way as in (4.5.24).

We can observe that Γt+1f(s) is generally more increasing with respect to s than Γtf(s)

because we usually have

Γt+1f(s1)

Γt+1f(s2)
≤ Γtf(s1)

Γtf(s2)
, s2 ≥ s1 ≥ 0, t ≥ 0. (4.5.30)

It follows that ct and dρ
t increase with respect to t while the values of y−s,t and y+

s,t decrease

with respect to t. Thus, the recursive evaluation is stable over a greater interval and

becomes more accurate as t increases. Moreover, from (4.5.29) we obtain that∣∣∣∣∣ Γ̃tf(s)− Γtf(s)

Γtf(s)

∣∣∣∣∣ < 1, s = ct + 1, ct + 2, . . . , dρ
t , t ≥ 0, (4.5.31)

because there is at least one exact digit in the significand of Γ̃tf(s). We also get that∣∣∣∣∣ Γ̃tf(s)− Γtf(s)

Γtf(s)

∣∣∣∣∣ ≈ dρ
t τ

s−dρ
t Γtf(dρ

t)

sΓtf(s)
− 1 ≈ dρ

t τ
s−dρ

t Γtf(dρ
t)

sΓtf(s)
, s > dρ

t , t ≥ 0. (4.5.32)

Remark that the relative errors in (4.5.31) and (4.5.32) both increase exponentially with

respect to s as explained in Section 4.5.2. We can show that (4.5.32) decreases with

respect to t, which is not a surprise since the recursive evaluation is more accurate as t

increases. We have from (4.5.28) that

dρ
t Γtf(dρ

t) ≈ |ϕ(dρ
t − ct)|Γtf(ct) ε, t ≥ 0. (4.5.33)

If (4.5.30) holds, it follows that

dρ
t+1 Γt+1f(dρ

t+1)

sΓt+1f(s)
≈
∣∣ϕ(dρ

t+1 − ct+1)
∣∣Γt+1f(ct+1) ε

sΓt+1f(s)
≤
∣∣ϕ(dρ

t+1 − ct+1)
∣∣Γtf(ct+1) ε

sΓtf(s)
, (4.5.34)

for s > dρ
t+1 and t ≥ 0. Moreover, using (4.5.27) and (4.5.33), we have

τ s−dρ
t+1

∣∣ϕ(dρ
t+1 − ct+1)

∣∣Γtf(ct+1) ε ≤ τ s−dρ
t+1+ct+1−ct

∣∣ϕ(dρ
t+1 − ct+1)

∣∣Γtf(ct) ε

≈ τ s−dρ
t |ϕ(dρ

t − ct)|Γtf(ct) ε

≈ τ s−dρ
t dρ

t Γtf(dρ
t), s > dρ

t+1, t > 0. (4.5.35)

99

The combination of (4.5.34) and (4.5.35) shows that the relative error of Γ̃t+1f(s) is smaller

than the one of Γ̃tf(s) over the range s > dρ
t+1. For the points s = dρ

t +1, dρ
t +2, . . . , dρ

t+1,

the relative error of Γ̃t+1f(s) is smaller than one which is smaller than the relative error

of Γ̃tf(s). This proves that the accuracy of Γ̃tf becomes better as t increases.

Hence, there exists an order uc for which the recursive evaluation of Γtf is strongly stable

up to the point z for t ≥ uc. There also exists an order uρ
d for which the recursive

evaluation of Γtf using a precision ρ leads to values with at least one exact digit in their

significand up to the point z for t ≥ uρ
d. These orders are determined by

uc = inf{t ≥ 0 : ct ≥ z}, z ≥ 1, (4.5.36)

and

uρ
d = inf{t ≥ 0 : dρ

t ≥ z}, z ≥ 1, (4.5.37)

which are much smaller than the order defined in (4.5.4). However, we do not know the

values of ct and dρ
t , t ≥ 0, in advance and if we want to evaluate Γtf(z) with t < uρ

d

we lose some accuracy in taking finite differences as explained above. The relative error

obtained for that value is of the same magnitude as (4.5.32). Therefore, the most efficient

approach consists in the calculation of Γtf using a recursive evaluation for the order t and

augmenting ρ in order to increase dρ
t and to obtain an accurate value of Γtf(z).

The question is now to determine the smallest precision that we can use in order to

obtain a value for Γtf(z), z ≥ 1 and t ≥ 0, with at least one exact digit in its significand.

We denote this precision by ρ̂z,t. Remark that if we desire an accuracy of at least v

decimal digits in Γ̃tf(z) we only have to add logβ 10v to ρ̂z,t. The evaluation of Γ̃tf(s)

for s = 0, 1, . . . , z using this precision will then have an accuracy of at least v digits since

(4.5.31) and (4.5.32) increase with respect to s. Similarly as in Chapter 2, we can consider

the base-β logarithm of the relative error at a given point as a lack of precision of the

floating-point representation in order to determine ρ̂z,t.

Under the individual risk model, a first method is to evaluate Γtf using a reasonable

precision ρ up to the final value ξ and then to evaluate it again using a precision of

ρ̂ξ,t = ρ+ logβ

∣∣∣∣∣ Γ̃tf(ξ)− Γtf(ξ)

Γtf(ξ)

∣∣∣∣∣ , t ≥ 0, (4.5.38)

where Γtf(ξ) is determined by Theorem 7. It is assumed here that the evaluation of

Γ̃tf(ξ) with a precision of ρ is inaccurate. The second evaluation using the precision ρ̂ξ,t

gives accurate values for Γtf over the entire support of S.

100

We develop now another method to determine ρ̂z,t which may involve a smaller number of

operations during the first evaluation. If we consider the base-β logarithm of the relative

error at z, which is obtained in an evaluation using a precision ρ, as a lack of precision,

it follows from (4.5.32) that

ρ̂z,t ≈ ρ+ logβ

dρ
t τ

z−dρ
t Γtf(dρ

t)

z Γtf(z)
, z > dρ

t , (4.5.39)

which holds for any ρ for which Γ̃tf(z) is inaccurate. Notice that the precision in (4.5.39)

cannot be determined before an evaluation since it depends on exact values and on dρ
t

that are unknown. However, we get from (4.5.29) and (4.5.33) that

zΓ̃tf(z) ≈ dρ
t τ

z−dρ
t Γtf(dρ

t) ≈ |ϕ(dρ
t − ct)| τ z−dρ

t Γtf(ct) ε ≈ |ϕ(z − ct)|Γtf(ct) ε, (4.5.40)

for t ≥ 0, which leads to

ρ̂z,t ≈ 1 + logβ

|ϕ(z − ct)| Γtf(ct)

2z Γtf(z)
, z > ct, t ≥ 0, (4.5.41)

which no more depends on any other precision but still depends on exact values and

on ct. From (4.5.41), we are able to calculate ρ̂ξ,t which is an upper bound of ρ̂z,t for

z = ct+1, ct+2 . . . , ξ, if we are given Γtf(ξ) and after a first evaluation using a reasonable

precision up to the point ct. This point can be determined using (4.5.27). This is possible

under the individual risk model because Theorem 7 gives the final value and since the first

evaluation gives an accurate value of Γtf(ct) whichever precision we use. The recursive

evaluation of Γtf using a precision of ρ̂ξ,t is accurate over the whole support of S. However,

we cannot determine exactly ρ̂z,t and using a precision ρ̂ξ,t in the evaluation of Γtf(z) may

consume too much time if the difference between these two precisions is significantly large.

Remark 12: The precision given by (4.5.39) or (4.5.41) corresponds to the precision for

which |ϕ(z − ct)| Γtf(ct) ε̂z,t = zΓtf(z), where ε̂z,t is the maximal relative error occurring

in the floating-point representation with a precision of ρ̂z,t. It is similar to write that ρ̂z,t

is the value of ρ that satisfies z = dρ
t , t ≥ 0.

Remark 13: The recursive evaluation using (4.2.5) with a precision obtained by (4.5.41)

with z = ξ is accurate over the range [0, ξ] for any random variable with De Pril transform

ϕ if we know Γtf(ξ) and if log Γtf is roughly concave. The latter condition is generally

fulfilled for any random variable.

101

Remark 14: If the claim amount random variables of all policies are identically dis-

tributed, the precision ρ̂ξ,0 given by (4.5.38) or (4.5.41) with β = 2 and Theorem 7

corresponds to the needed precision discussed in Chapter 2.

Remark 15: Both methods developed above also hold for the recursive evaluation of a

probability function when its De Pril transform converges absolutely to zero.

We discuss now a method to determine a precision that guarantees accurate values up to

the point z. It can be used for any random variable with a divergent De Pril transform

and without any other information else than the De Pril transform. Under the individual

risk model, this method, which can be used only for t ≥ 1, is more adapted if we want to

evaluate only the first z values of Γtf . It follows from (4.5.41) that

ρ̂z,t ≤ 1 + logβ

|ϕ(z − ct)|
2z

, z > ct, t ≥ 1, (4.5.42)

which does not depend on any exact value. Therefore, it is sufficient to represent exactly

the integer part of ϕ(z−ct) to obtain an accurate value of Γtf(z), z > ct. Nevertheless, we

still need a first evaluation in order to determine the point ct. However, since ϕ diverges

we have

ρ̂z,t ≤ 1 + logβ

|ϕ(z)|
2z

, z ≥ 1, t ≥ 1, (4.5.43)

which does no more depend on ct and on t. Under the individual model, when y becomes

large the De Pril transform is given by

|ϕ(y)| ≈ nτ
ijτ

y, (4.5.44)

where nτ
ij is the number of policies in the class where the largest root appears. Thus, it

follows that

ρ̂z,t ≤ 1 + z logβ τ + logβ

nτ
ij

2z
, z ≥ 1, t ≥ 1. (4.5.45)

Remark 16: To be prudent we should define a reasonable minimal precision that should

be used in evaluations when we calculate a sufficient precision using (4.5.41), (4.5.42),

(4.5.43) or (4.5.45).

Remark 17: The truncation of a divergent De Pril transform is not possible. Therefore,

in such a case the most efficient strategy consists in the evaluation of Γtf according to

Theorem 8 even if the precision that is necessary depends on the De Pril transform that

we can approximate by (4.5.44).

102

Remark 18: We can derive a recursive formula for the t-th order tail probability func-

tion, Λtf , defined in (4.2.16), from the substitution of the terms λxf(x) by ϕ(x) into

Lemma 3.2 of Antzoulakos and Chadjiconstantinidis (2004) that holds for compound

Poisson distributions. However, such a recursive evaluation requires a greater number of

operations than the one of Γtf . Moreover, for t ≥ 1, Λtf(s) decreases with respect to s

and is thus unstable for any kind of distributions. In addition, we need a large precision

in order to obtain accurate results because the exact values become smaller and smaller

as we go along with the recursion. The same problems arise for a backward recursive

formula for Γtf that can be derived from (4.2.8) in the case where a truncation of the De

Pril transform is effective. An idea to obtain a stable evaluation for Λtf could be to derive

a backward recursive evaluation when the De Pril transform can be truncated. However,

in this case such functions can be obtained by (4.2.15) from a stable evaluation of Γtf .

4.6 Numerical illustrations

In this section we illustrate the results of Sections 4.5.2 and 4.5.3. For the first illustration

we consider an example with a convergent De Pril transform. We consider an adaptation

of the example of Gerber (1979) where we have a portfolio of life insurance policies that

are grouped according to Table 4.1 and where the individual claim amount distribution

is

Table 4.1: Number of policies in each class

j qj i = 1 i = 2 i = 3 i = 4 i = 5

1 0.03 20 30 10 20 -

2 0.04 - 10 20 20 10

3 0.05 - 20 40 20 20

4 0.06 - 20 20 20 10

gi(x) =

{
1, if x = i

0, if x 6= i
, x ≥ 1, i = 1, . . . , 5. (4.6.1)

We have ξ = 970 for this portfolio. For each class (i, j), we have |λijk| =
(

qj

pj

) 1
i
, for

k = 1, . . . , i, which leads to τ =
(

q4

p4

) 1
5

= 0.57677.

103

We evaluate the probability function according to Theorem 8 using ten decimal digits in

the representation of real numbers by floating-point numbers i.e. β = 10 and ρ = 10.

It turns out that c = 260 and dρ = 445 when they are determined by (4.5.20) and

(4.5.23), respectively. Table 4.2 gives the exact values and the evaluations using the

Table 4.2: Values of f(s) and f̃(s) with relative errors for some points

s f(s) f̃(s)

∣∣∣∣∣ f̃(s)− f(s)

f(s)

∣∣∣∣∣
c 2.9435 · 10−34 2.9435 · 10−34 1.6987 · 10−9

dρ 8.8074 · 10−89 8.6401 · 10−89 0.0190

ξ 4.5802 · 10−422 2.7667 · 10−217 6.0405 · 10204

floating-point representation with their relative error for some points of the probability

function. Figure 4.2 illustrates the fact that sf̃(s) converges to zero at the rate τ from the

Figure 4.2: log10 f̃(s), log10 f(s) and log10 |ϕ|

point dρ = 445 on. It shows the logarithm of the recursive evaluation using the floating-

point representation, the logarithm of f and the logarithm of the De Pril transform. We

observe that the logarithm of the De Pril transform is composed by five lines. This is

not surprising since here
∑ωi

k=1 λ
y
ijk = 0 if y is not a multiple of i. However, the upper

line behaves similarly to s log10 τ and is parallel to log10 f̃(s) for s ≥ dρ. The fact that

these curves are parallel shows that sf̃(s) converges to zero at the same rate as τ s for

104

s ≥ dρ. Finally, the evolution of the relative error as we go along with the recursion using

the floating-point representation is displayed in Figure 4.3. Notice that the recursive

Figure 4.3: Logarithm of the relative error resulting from an evaluation using the floating-

point representation

evaluation of Γtf for t ≥ 1 is stable and that the implicit truncation point defined in

(4.5.14) is rt = 45 for t ∈ {1, 2}.

For the second illustration we consider the recursive evaluation of the t-th order cumulative

distribution function of a compound binomial distribution with the same parametrization

as in Section 4.4.2. The probability function g is chosen to be the same as Example 8 of

Panjer and Wang (1993, p. 249). It is given in Table 4.3. We set m = 100 and p = 0.09

Table 4.3: Probability function of the Xi’s

x 1 2 3 4 5 6 7 8 9 10

g(x) 0.150 0.200 0.250 0.125 0.075 0.050 0.050 0.050 0.025 0.025

and we use the floating-point representation with β = 10 and ρ = 10. Thus, we have

ξ = 1000 and τ = 1.17234. Table 4.4 gives, for some orders, the values of ct and dρ
t that

Table 4.4: Values of ct and dρ
t for some orders

t 0 1 2 10 30 50

ct 255 261 266 311 426 541

dρ
t 408 447 466 575 780 965

are determined by (4.5.27) and (4.5.28), respectively. We remark that both values increase

105

Table 4.5: Values of Γtf(ξ) and Γ̃tf(ξ) for some orders, approximations of Γ̃tf(ξ) and

relative errors at ξ

t Γtf(ξ) Γ̃tf(ξ)
|ϕ(ξ − ct)|Γtf(ct) ε

ξ

∣∣∣∣∣ Γ̃tf(ξ)− Γtf(ξ)

Γtf(ξ)

∣∣∣∣∣
0 4.9905 · 10−165 2.0062 · 1036 1.0128 · 1037 4.0200 · 10200

1 1 1.3152 · 1038 5.8972 · 1037 1.3152 · 1038

2 664.3 1.0647 · 1039 3.1557 · 1038 1.6027 · 1036

10 7.6841 · 1019 2.0061 · 1045 1.3621 · 1045 2.6108 · 1025

30 2.3990 · 1051 1.6752 · 1062 3.8397 · 1061 6.9830 · 1010

50 7.0414 · 1076 −5.2747 · 1078 1.1894 · 1078 75.909

with respect to t. Table 4.5 contains the values of Γtf(ξ) and Γ̃tf(ξ) with their relative

error for some orders as well as the approximation of Γ̃tf(ξ) that follows from (4.5.40)

for each order. It shows that the relative error decreases with respect to t and that the

approximation |ϕ(ξ−ct)|Γtf(ct) ε
ξ

is close to Γ̃tf(ξ). Moreover, the orders defined by (4.5.36)

and (4.5.37) that guarantee a stable or an accurate evaluation up to ξ are uc = 130 and

uρ
d = 55, respectively. Figure 4.4 shows the logarithm of the evaluation using the floating-

point representation, the logarithm of the exact evaluation and the logarithm of the De Pril

transform for some orders. We observe that sΓ̃tf(s) grows at a rate of τ = 1.17234 from

the point dρ
t on and for each t, since log10 Γ̃tf(s) is parallel to s log10 τ for s > dρ

t . We can

also remark that dρ
t increases with respect to t, which means that the recursive evaluation

using floating-point representation is more accurate as t increases. This statement can

also be observed in Figure 4.5 where we display the relative error of Γ̃tf as we go along

with the recursion for the same orders as in Figure 4.4. Table 4.6 shows the values of the

precisions and their upper bounds discussed in Section 4.5.3. These precisions guarantee

an accurate evaluation over the entire support of S. Remark that we have nτ
ij = m for

the evaluation of (4.5.45). Table 4.7 contains the same precisions and their upper bounds

but when we desire an accurate evaluation up to the point 600 only. Notice that the third

column of Table 4.7 cannot be determined from a first evaluation since it depends on

the exact value of Γtf(600). We remark that the values of ρ̂z,t obtained from (4.5.41) for

t = 30 and t = 50 are smaller that ρ. This is not surprising since dρ
t > 600 for both cases.

We also observe that the upper bound for the needed precision computed by (4.5.42) is

smaller than ρ̂ξ,t for each case where it can be evaluated with z = 600.

106

(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 10

(e) t = 30 (f) t = 50

Figure 4.4: log10 Γ̃tf(s), log10 Γtf(s) and log10 |ϕ|

107

Figure 4.5: Logarithm of the relative error occurring from an evaluation using the floating-

point representation for some orders

Table 4.6: Values of ρ̂ξ,t and their upper bounds that guarantee an accurate evaluation

up to ξ

t ρ̂ξ,t From (4.5.41) From (4.5.42) From (4.5.43) From (4.5.45)

0 210.60 211.31 - - -

1 48.12 47.77 50.96 68.59 68.75

2 46.20 45.68 50.52 68.59 68.75

10 35.42 35.25 47.50 68.59 68.75

30 20.84 20.20 39.50 68.59 68.75

50 11.88 11.23 31.48 68.59 68.75

108

Table 4.7: Approximations for ρ̂z,t and their upper bounds that guarantee an accurate

evaluation for the first 600 points

t ρ̂z,t From (4.5.42) From (4.5.43) From (4.5.45)

0 42.02 - - -

1 20.33 23.51 40.97 41.35

2 18.73 23.18 40.97 41.35

10 11.35 20.13 40.97 41.35

30 3.21 12.15 40.97 41.35

50 0.37 4.15 40.97 41.35

4.7 Conclusion

We have seen that the convergence of divergence rate of the De Pril transform has a large

effect on the stability against round-off errors of the recursive evaluation of t-th order

cumulative distribution functions. In particular, the evaluation of such a function with

t ≥ 1 is strongly stable if the De Pril transform converges to zero. We also obtain that

the only way to get an accurate evaluation of a given order is to increase the precision of

the floating-point representation. An upper bound for the precision that is necessary in

order to guarantee an accurate evaluation can be determined from the De Pril transform

without doing a first evaluation with a small precision.

109

110

Bibliography

Adelson, R. M. (1966). Compound Poisson distributions. Operations Research Quar-

terly 17, 73–75.

Ambagaspitiya, R. S. (1995). A family of discrete distributions. Insurance: Mathematics

and Economics 16, 107 – 127.

Antzoulakos, D. L. and S. Chadjiconstantinidis (2004). On mixed and compound mixed

Poisson distributions. Scandinavian Actuarial Journal , 161–188.

Beall, G. and R. R. Rescia (1953). A generalization of Neyman’s contagious distributions.

Biometrics 9, 354–386.

Bühlmann, H. (1984). Numerical evaluation of the compound Poisson distribution: Re-

cursion or fast Fourier transform. Scandinavian Actuarial Journal , 116–126.

Carver, H. C. (1919). On the graduation of frequency distributions. Proceedings of the

Casualty Actuarial and Statistical Society 6, 52–72.

Cash, J. R. (1980). Stable Recursions: with Applications to the Numerical Solution of

Stiff Systems. London: Academic Press.

Cauchy, A. L. (1829). Exercices de mathématiques. Quatrième année. Paris.

Chadjiconstantinidis, S. and G. Pitselis (2009). Further improved recursions for a class

of compound Poisson distributions. Insurance: Mathematics and Economics 44, 278 –

286.

Chan, B. (1982a). Recursive formulas for aggregate claims. Scandinavian Actuarial Jour-

nal , 38–40.

Chan, B. (1982b). Recursive formulas for discrete distributions. Insurance: Mathematics

and Economics 1, 241–243.

111

De Pril, N. (1985). Recursions for convolutions of arithmetic distributions. ASTIN Bul-

letin 15, 135–139.

De Pril, N. (1986a). Improved recursions for some compound distributions. Insurance:

Mathematics and Economics 5, 129–132.

De Pril, N. (1986b). On the exact computation of the aggregate claims distribution in

the individual life model. ASTIN Bulletin 16, 109–112.

De Pril, N. (1988). Improved approximations for the aggregate claims distribution of a

life insurance portfolio. Scandinavian Actuarial Journal , 61–68.

De Pril, N. (1989). The aggregate claims distribution in the individual model with arbi-

trary positive claims. ASTIN Bulletin 19, 9–24.

De Pril, N. and J. Dhaene (1992). Error bounds for compound Poisson approximations

of the individual risk model. ASTIN Bulletin 22, 135–148.

Dhaene, J. and N. De Pril (1994). On a class of approximative computation methods in

the individual risk model. Insurance: Mathematics and Economics 14, 181–196.

Dhaene, J., C. Ribas, and R. Vernic (2006). Recursions for the individual risk model.

Acta Mathematicae Applicatae Sinica, English Series 22, 543–564.

Dhaene, J. and B. Sundt (1997). On error bounds for approximations to aggregate claims

distributions. ASTIN Bulletin 27, 243–262.

Dhaene, J. and B. Sundt (1998). On approximating distributions by approximating their

De Pril transforms. Scandinavian Actuarial Journal , 1–23.

Dhaene, J. and M. Vandebroek (1995). Recursions for the individual model. Insurance:

Mathematics and Economics 16, 31–38.

Dhaene, J., G. E. Willmot, and B. Sundt (1999). Recursions for distribution functions

and stop-loss transforms. Scandinavian Actuarial Journal , 52–65.

Eisele, K.-T. (2006). Recursions for compound phase distributions. Insurance: Mathe-

matics and Economics 38, 149–156.

Eisele, K.-T. (2008). Recursions for multivariate compound phase variables. Insurance:

Mathematics and Economics 42, 65–72.

112

Embrechts, P. and M. Frei (2009). Panjer recursion versus FFT for compound distribu-

tions. Mathematical Methods of Operations Research 69, 497–508.

Euler, L. (1748). Introductio in analysin infinitorum. Lausanne: Marc-Michel Bousquet

et Cie.

Euler, L. (1751). Observationes analyticae variae de combinationibus. Commentarii

academiae scientiarum Petropolitanae 13, 64–93.

Euler, L. (1755). Institutiones calculi differentialis cum eius usu in analysi finitorum ac

doctrina serierum. St. Petersburg: Academiae scientiarum Petropolitanae.

Gathy, M. and C. Lefèvre (2010). On the Lagrangian Katz family of distributions as a

claim frequency model. Insurance: Mathematics and Economics 47, 76 – 83.

Gautschi, W. (1967). Computational aspects of three-term recurrence relations. SIAM

Review 9, 24–82.

Gerber, H. U. (1979). An Introduction to Mathematical Risk Theory. Philadelphia: S.S.

Heubner Foundation Monograph Series 8.

Gerber, H. U. (1984). Error bounds for the compound Poisson approximation. Insurance:

Mathematics and Economics 3, 191–194.

Gerhold, S., U. Schmock, and R. Warnung (2010). A generalization of Panjer’s recursion

and numerically stable risk aggregation. Finance and Stochastics 14, 81–128.

Granlund, T. (2007, August). GNU MP: The GNU Multiple Precision Arithmetic Library

(4.2.2 ed.).

Grübel, R. and R. Hermesmeier (1999). Computation of compound distributions I: Alias-

ing errors and exponential tilting. ASTIN Bulletin 29, 197–214.

Hess, K., A. Liewald, and K. Schmidt (2002). An extension of Panjer’s recursion. ASTIN

Bulletin 32, 283–297.

Hesselager, O. (1994). A recursive procedure for calculation of some compound distribu-

tions. ASTIN Bulletin 24, 19–32.

Hesselager, O. (1996). Recursions for certain bivariate counting distributions and their

compound distributions. ASTIN Bulletin 26, 35–52.

113

Hipp, C. (1985). Approximation of aggregate claims distributions by compound Poisson

distributions. Insurance: Mathematics and Economics 4, 227–232.

Hipp, C. (1986). Improved approximations for the aggregate claims distribution in the

individual model. ASTIN Bulletin 16, 89–100.

Hipp, C. (2006). Speedy convolution algorithms and Panjer recursions for phase-type

distributions. Insurance: Mathematics and Economics 38, 176–188.

Johnson, N. L., A. W. Kemp, and S. Kotz (2005). Univariate Discrete Distributions

(Third ed.). Wiley Series in Probability and Statistics. Hoboken, NJ: John Wiley &

Sons.

Kaas, R., M. Goovaerts, J. Dhaene, and M. Denuit (2008). Modern Actuarial Risk Theory

– Using R. Berlin Heidelberg: Springer-Verlag.

Katz, L. (1945). Characteristics of frequency functions defined by first-order difference

equations. Dissertation, University of Michigan, Ann Arbor, MI.

Katz, L. (1965). Unified treatment of a broad class of discrete probability distributions. In

G. P. Patil (Ed.), Classical and Contagious Discrete Distributions, Oxford, pp. 64–93.

Pergamon Press.

Khatri, C. G. and I. R. Patel (1961). Three classes of univariate discrete distributions.

Biometrics 17, 567–575.

Knuth, D. (1992). Convolution polynomials. The Mathematica Journal 2, 67–78.

Kornya, P. S. (1983). Distribution of the aggregate claims in the individual risk theory

model. Transactions of Society of Actuaries 35, 823–836.

Neyman, J. (1939). On a new class of “contagious” distributions, applicable in entomology

and bacteriology. The Annals of Mathematical Statistics 10, 35–57.

Oliver, J. (1967). Relative error propagation in the recursive solution of linear recurrence

relations. Numerische Mathematik 9, 323–340.

Olver, F. W. J. (1964). Error analysis of Miller’s recurrence algorithm. Mathematics of

Computation 18, 65–74.

Panjer, H. H. (1980). The aggregate claims distribution and stop-loss reinsurance. Trans-

actions of the Society of Actuaries 32, 523–545.

114

Panjer, H. H. (1981). Recursive evaluation of a family of compound distributions. ASTIN

Bulletin 12, 22–26.

Panjer, H. H. and S. Wang (1993). On the stability of recursive formulas. ASTIN Bul-

letin 23, 227–258.

Panjer, H. H. and S. Wang (1995). Computational aspects of Sundt’s generalized class.

ASTIN Bulletin 25, 5–17.

Panjer, H. H. and G. E. Willmot (1982). Recursions for compound distributions. ASTIN

Bulletin 13, 1–11.

Panjer, H. H. and G. E. Willmot (1986). Computational aspects of recursive evaluation

of compound distributions. Insurance: Mathematics and Economics 5, 113–116.

Plackett, R. L. (1969). Stochastic models of capital investment. Journal of the Royal

Statistical Society. Series B (Methodological) 11, 1–28.

Schröter, K. J. (1990). Recursions for compound distributions. Scandinavian Actuarial

Journal , 161–175.

Seal, H. L. (1971). Numerical calculation of the Bohman-Escher family convolution-mixed

negative binomial distribution functions. Mitteilungen der Vereinigung Schweizerischer

Versicherungsmathematiker 71, 71–94.

Shiu, E. S. W. (1983). Discussion on Kornya’s paper: Distribution of aggregate claims in

the individual risk theory model. Transactions of Society of Actuaries 35, 847–850.

Stroh, E. (1978). Actuarial note: The distribution functions of collective risk theory as

linear compounds. Actuarial Research Clearing House.

Ströter, B. (1985). The numerical evaluation of the aggregate claim density function via in-

tegral equations. Blatter der Deutschen Gesellschaft fur Versicherungs-mathematik 17,

1–14.

Sundt, B. (1992). On some extensions of Panjer’s class of counting distributions. ASTIN

Bulletin 22, 61–80.

Sundt, B. (1995). On some properties of De Pril transforms of counting distributions.

ASTIN Bulletin 25, 19–31.

115

Sundt, B. (1998). A generalization of the De Pril transform. Scandinavian Actuarial

Journal , 41–48.

Sundt, B. (1999a). On multivariate Panjer recursions. ASTIN Bulletin 29, 29–45.

Sundt, B. (1999b). Recursions for convolutions of discrete uniform distributions revisited.

Insurance: Mathematics and Economics 24, 15–21.

Sundt, B. (2000). On multivariate Vernic recursions. ASTIN Bulletin 30, 111–122.

Sundt, B. (2002). Recursive evaluation of aggregate claims distributions. Insurance:

Mathematics and Economics 30, 297–322.

Sundt, B., J. Dhaene, and N. De Pril (1998). Some results on moments and cumulants.

Scandinavian Actuarial Journal , 24–40.

Sundt, B. and O. Ekuma (1999). The De Pril transform of a compound Rk distribution.

Bulletin of the Swiss Association of Actuaries , 179–189.

Sundt, B. and W. S. Jewell (1981). Further results on recursive evaluation of compound

distributions. ASTIN Bulletin 12, 27–39.

Sundt, B. and R. Vernic (2009). Recursions for Convolutions and Compound Distributions

with Insurance Applications. EAA Lecture Notes. Berlin Heidelberg: Springer-Verlag.

Tilley, J. A. (1980). Discussion on the aggregate claims distribution and stop-loss rein-

surance. Transactions of the Society of Actuaries 32, 538–544.

Vernic, R. (1999). Recursive evaluation of some bivariate compound distributions. ASTIN

Bulletin 29, 315–325.

Waldmann, K. H. (1994). On the exact calculation of the aggregate claims distribution

in the individual life model. ASTIN Bulletin 24, 89–96.

White, R. P. and T. N. E. Greville (1959). On computing the probability that exactly k

out of n independent events will occur. Transactions of Society of Actuaries 11, 88–99.

Williams, R. E. (1980). Computing the probability density function for aggregate claims.

Proceedings of the Canadian Institute of Actuaries 11, 39–47.

Zahar, R. V. M. (1977). A mathematical analysis of Miller’s algorithm. Numerische

Mathematik 27, 427–447.

116

	these_copyright
	These_Sebastien_Viquerat
	Synthesis report
	Introduction
	How to get rid of round-off errors in recursive formulas
	Introduction
	The collective risk model
	Recurrence equations and stability
	The GNU Multiple Precision Arithmetic Library
	Efficiency with Panjer's recursion
	Compound binomial distributions
	Definitions and examples
	Recurrence relations
	Forward vs backward directions
	Which precision is necessary?
	Precision management
	Effects of m on stability

	Further remarks
	Conclusion

	From approximations of De Pril transforms to approximations of t-th order cumulative distribution functions
	Introduction
	De Pril transforms and recursions for t-th order cumulative distribution functions
	Definitions and review
	A more efficient recursive evaluation
	Some applications

	Approximations of t-th order cumulative distribution functions
	Error bounds for t-th order cumulative distribution functions
	Error bounds for stop-loss contracts
	Error bounds analysis
	Applications
	Error bounds for compound Poisson distributions
	Error bounds for the individual risk model
	Error bounds for approximations of the individual life model by compound Poisson distributions

	Numerical applications
	Conclusion

	On the stability of recursive evaluations of t-th order cumulative distribution functions
	Introduction
	Definitions and review
	Some exact evaluations and approximations of t-th order cumulative distribution functions
	The individual risk model

	Dhaene-Vandebroek algorithm for t-th order cumulative distribution functions
	Convergence of De Pril transforms
	General case
	Convergence of De Pril transforms of some compound distributions

	Stability against round-off errors
	Some definitions and general results
	Stability with a convergent De Pril transform
	Stability with a divergent De Pril transform

	Numerical illustrations
	Conclusion

