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Abstract
Modelling of multiple simultaneous failures in insurance, finance and other areas
of applied probability is important especially from the point of view of pandemic-
type events. A benchmark limiting model for the analysis of multiple failures is the
classical d-dimensional Brownian risk model (Brm), see Delsing et al. (Methodol.
Comput. Appl. Probab. 22(3), 927–948 2020). From both theoretical and practical
point of view, of interest is the calculation of the probability of multiple simultane-
ous failures in a given time horizon. The main findings of this contribution concern
the approximation of the probability that at least k out of d components of Brm
fail simultaneously. We derive both sharp bounds and asymptotic approximations of
the probability of interest for the finite and the infinite time horizon. Our results
extend previous findings of Dȩbicki et al. (J. Appl. Probab. 57(2), 597–612 2020)
and Dȩbicki et al. (Stoch. Proc. Appl. 128(12), 4171–4206 2018).

Keywords Multivariate Brownian risk model · Probability of multiple simultaneous
failures · Simultaneous ruin probability · Failure time · Exact asymptotics ·
Pandemic-type events

AMS 2000 Subject Classifications Primary–60G15; Secondary–60G70

� Krzysztof Dȩbicki
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1 Introduction

In this paper we are interested in the probabilistic aspects of multiple simultane-
ous failures typically occurring due to pandemic-type events. A key benchmark risk
model considered here is the d-dimensional Brownian risk model (Brm)

R(t,u) = (R1(t, u1), . . . , Rd(t, ud))� = u+ct − W (t), t ≥ 0,

where c = (c1, . . . , cd)�, u = (u1, . . . , ud)� are vectors in R
d and

W (t) = �B(t), t ∈ R,

with � a d ×d real-valued non-singular matrix and B(t) = (B1(t), . . . , Bd(t))�, t ∈
R a d-dimensional Brownian motion with independent components which are
standard Brownian motions.

By bold symbols we denote column vectors, operations with vectors are meant
component-wise and ax = (ax1, . . . , axd)� for any scalar a ∈ R and any x ∈ R

d .
Indeed, Brm is a natural limiting model in many statistical applications. Moreover,

as shown in Delsing et al. (2020) such a risk model appears naturally in insurance
applications.Since Brm is a natural limiting model, it can be used as a benchmark for
various complex models. Given the fundamental role of Brownian motion in applied
probability and statistics, it is also of theoretical interest to study failure events arising
from this model. Specifically, in this contribution we are interested in the behaviour
of the probability of multiple simultaneous failures occurring in a given time horizon
[S, T ] ⊂ [0, ∞].

In our settings failures can be defined in various ways. Let us consider first the
failure of a given component of our risk model. Namely, we say that the ith com-
ponent of our Brm has a failure (or ruin occurs) if Ri(t, ui)= ui+ci t − Wi(t) < 0
for some t ∈ [S, T ]. The extreme case of a catastrophic event is when d multiple
simultaneous failures occurs. Typically, for pandemic-type events there are at least k

components of the model with simultaneous failures and k is large with the extreme
case k = d. In mathematical notation, for given positive integer k ≤ d of interest is
the calculation of the following probability

ψk(S, T , u) = P {∃t ∈ [S, T ], ∃I ⊂ {1, . . . , d}, |I| = k : ∩i∈I{Ri(t, ui) < 0}}
= P {∃t ∈ [S, T ], ∃I ⊂ {1, . . . , d}, |I|=k : ∩i∈I {Wi(t) − ci t >ui}} ,

where |I| denotes the cardinality of the set I. If T is finite, by the self-similarity
property of the Brownian motion ψk(S, T , u) can be derived from the case T = 1,
whereas T = ∞ has to be treated separately.

There are no results in the literature investigating ψk(S, T , u) for general k. The
particular case k = d, for which ψd(S, T , u) coincides with the simultaneous ruin
probability has been studies in different contexts, see e.g., Lieshout and Mandjes
(2007), Avram et al. (2008a), Avram et al. (2008b), Dȩbicki et al. (2018), Ji and
Robert (2018), Foss et al. (2017), Pan and Borovkov (2019), Borovkov and Pal-
mowski (2019), Ji (2020), Hu and Jiang (2013), Samorodnitsky and Sun (2016),
and Dombry and Rabehasaina (2017). The case d = 2 of Brm has been recently
investigated in Dȩbicki et al. (2020).
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Although the probability of multiple simultaneous failures seems very difficult
to compute, our first result below, motivated by Korshunov and Wang (2020)[Thm
1.1], shows that ψk(S, T , u) can be bounded by the multivariate Gaussian survival
probability, namely by

pT (u) = P {(W1(T ) − c1T , . . . , Wd(T ) − cdT ) ∈ E(u)} ,

where

E(u) =
⋃

I⊂{1,...,d}
|I|=k

EI(u) =
⋃

I⊂{1,...,d}
|I|=k

{x ∈ R
d : ∀i ∈ I : xi ≥ ui}. (1)

When u → ∞ we can approximate pT (u) utilising Laplace asymptotic method, see
e.g., Korshunov et al. (2015), whereas for small and moderate values of u it can be
calculated or simulated with sufficient accuracy. Our next result gives bounds for
ψk(S, T , u) in terms of pT (u).

Theorem 1.1 If the matrix � is non-singular, then for any positive integer k ≤ d, all
constants 0 ≤ S < T < ∞ and all c, u ∈ R

d

pT (u) ≤ ψk(S, T , u) ≤ KpT (u), (2)

where K = 1/ minI⊂{1,...,d},|I|=k P {∀i∈I : Wi(T ) > max(0, ciT )} > 0.

The bounds in Eq. 2 indicate that it might be possible to derive an approximations
of ψk(S, T , u) for large threshold u, which has been already shown for k = d = 2
in Dȩbicki et al. (2020). In this paper we consider the general case k ≤ d, d > 2
discussing both the finite time interval (i.e., T = 1) and the infinite time horizon case
with T = ∞ extending the results of Dȩbicki et al. (2018) where d = k is considered.

In Section 2 we explain the main ideas that lead to the approximation of
ψk(S, T , u). Section 3 discusses some interesting special cases, whereas the proofs
are postponed to Section 4. Some technical calculations are displayed in Appendix.

2 Main results

In this section W (t), t ≥ 0 is as in the Introduction and for a given positive integer
k ≤ d we shall investigate the approximation of ψk(S, T , u) where we fix u = au,
with a in R

d \ (−∞, 0]d and u is sufficiently large.
Let hereafter I denote a non-empty index set of {1, . . . , d}. For a given vector,

say x ∈ R
d we shall write xI to denote a subvector of x obtained by dropping its

components not in I. Set next

ψI(S, T , aIu) = P {∃t ∈ [S, T ] : AI(t)} ,

with

AI(t) = {W (t) − ct ∈ EI(au)} = {∀i ∈ I : Wi(t) − ci t ≥ aiu}, (3)

where EI(au) was defined in Eq. 1.
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In vector notation for any u ∈ R

ψk(S, T , au) = P

⎧
⎪⎪⎨

⎪⎪⎩
∃t ∈ [S, T ] :

⋃

I⊂{1,...,d}
|I|=k

AI(t)

⎫
⎪⎪⎬

⎪⎪⎭
= P

⎧
⎪⎪⎨

⎪⎪⎩

⋃

I⊂{1,...,d}
|I|=k

{∃t ∈ [S, T ] : AI(t)}

⎫
⎪⎪⎬

⎪⎪⎭
.

The following lower bound (by Bonferroni inequality)

ψk(S, T , au) ≥
∑

I⊂{1,...,d}
|I|=k

ψI(S, T , aIu)−
∑

I,J ⊂ {1, . . . , d}
|I| = |J | = k

I �= J

P {∃t, s ∈ [S, T ] : AI(t) ∩ AJ (s)}

(4)

together with the upper bound

ψk(S, T , au) ≤
∑

I⊂{1,...,d}
|I|=k

ψI(S, T , aIu) (5)

are crucial for the derivation of the exact asymptotics of ψk(S, T , au) as u → ∞.
As we shall show below, the upper bound (5) turns out to be exact asymptotically as
u → ∞. The following theorem constitutes the main finding of this contribution.

Theorem 2.1 Suppose that the square d × d real-valued matrix � is non-singular. If
a has no more than k−1 non-positive components, where k ≤ d is a positive integer,
then for all 0 ≤ S < T < ∞, c ∈ R

d

ψk(S, T , au) ∼
∑

I⊂{1,...,d}
|I|=k

ψI(0, T , aIu), u → ∞. (6)

Moreover, Eq. 6 holds also if T = ∞, provided that c and a + ct have no more than
k − 1 non-positive components for all t ≥ 0.

Essentially, the above result is the claim that the second term in the Bonferroni
lower bound (4) is asymptotically negligible. In order to prove that, the asymptotics
of ψ|I|(S, T , aIu) has to be derived. For the special case that I has only two elements
and S = 0, its approximation has been obtained in Dȩbicki et al. (2020). Note in
passing that the assumption in Theorem 2.1 that a has no more than k−1 non-positive
components excludes the case that there exists a set I ⊂ {1, . . . , d}, |I| = k such
that ψI(0, T , aIu) does not tend to 0 as u → ∞, which due to its non-rare event
nature is out of interest in this contribution.

The next result extends the findings of Dȩbicki et al. (2020) to the case d > 2. For
notational simplicity we consider the case I has d elements and thus avoid index-
ing by I. Recall that in our model W (t) = �B(t) where B(t) has independent
standard Brownian motion components and � is a d × d non-singular real-valued
matrix. Consequently � = ��� is a positive definite matrix. Hereafter 0 ∈ R

d is the
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column vector with all elements equal 0. Denote by ��(a) the quadratic program-
ming problem:

minimise x��−1x, for all x ≥ a.
Its unique solution ã is such that

ãI = aI , (�II )
−1aI > 0I , ãJ = �JI (�II )

−1aI ≥ aJ , (7)

where ãJ is defined if J = {1, . . . , d} \ I is non-empty. The index set I is unique
with m = |I | ≥ 1 elements, see the next lemma (or Dȩbicki et al. (2018)[Lem 2.1])
for more details.

Lemma 2.2 Let � be a d × d positive definite matrix and let a ∈ R
d \ (−∞, 0]d .

��(a) has a unique solution ã given in (7) with I a unique non-empty index set with
m ≤ d elements such that

min
x≥a

x��−1x = ã��−1ã = a�
I (�II )

−1aI > 0, (8)

x��−1ã = x�
F (�FF )−1ãF , ∀x ∈ R

d (9)
for any index set F ⊂ {1, . . . , d} containing I . Further if a = (a, . . . , a)�, a ∈
(0, ∞), then 2 ≤ |I | ≤ d.

In the following we set
λ = �−1ã.

In view of the above lemma

λI = (�II )
−1aI > 0I , λJ ≥ 0J , (10)

with the convention that when J is empty the indexing should be disregarded so that
the last inequality above is irrelevant.

The next theorem extends the main result in Dȩbicki et al. (2020) and further
complements findings presented in Theorem 2.1 showing that the simultaneous ruin
probability (i.e., k = d) behaves up to some constant, asymptotically as u → ∞ the
same as pT (u). For notational simplicity and without loss of generality we consider
next T = 1.

Theorem 2.3 If a ∈ R
d has at least one positive component and � is non-singular,

then for all S ∈ [0, 1)

ψd(S, 1, au) ∼ C(a)p1(au), u → ∞, (11)

where C(a) =∏i∈I λi

∫
Rm P

{∃t≥0 : W I (t) − taI > xI

}
eλ�

I xI dxI ∈ (0, ∞).

Remark 2.4 i) By Lemma 4.6 below taking T = 1 therein (hereafter ϕ denotes the
probability density function (pdf) of �B(1))

p1(au) = P {W (1) − c > ua} ∼
∏

i∈I

λ−1
i P {WU (1) > cU |W I (1) > cI } u−|I |ϕ(uã + c) (12)

as u → ∞, where λ = �−1ã and if J = {1, . . . , d} \ I is non-empty, then U = {j ∈
J : ãj = aj }. When J is empty the conditional probability related to U above is set
to 1.
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ii) Combining Theorems 2.1 and 2.3 for all S ∈ [0, 1) and all a ∈ R
d with no more

than k − 1 non-positive components we have

ψk(S, 1, au) ∼
∑

I⊂{1,...,d}
|I|=k

C(aI)ψ|I|(0, 1, aIu) ∼ CP {∀i∈I∗ : Wi(1) > uai + ci} , u → ∞

(13)

for some C > 0 and some I∗ ⊂ {1, . . . , d} with k elements.

iii) Comparing the results of Theorem 2.3 and Dȩbicki et al. (2018) we obtain

lim sup
u→∞

(− ln ψk(S1, 1, au))1/2

− ln ψk(S2, ∞, au)
< ∞

for all S1 ∈ [0, T ], S2 ∈ [0, ∞).

iv) Define the failure time (consider for simplicity k = d) for our multidimensional
model by

τ(u) = inf{t ≥ 0 : W (t) − tc > au}, u > 0.
If a has at least one positive component, then for all T > S ≥ 0, x > 0

lim
u→∞P

{
u2(T − τ(u)) ≥ x|τ(u)∈ [S, T ]

}
= e

−x ã��−1 ã

2T 2 , (14)

see the proof in Section 4.

3 Examples

In order to illustrate our findings we shall consider three examples assuming that
��� is a positive definite correlation matrix. The first example is dedicated to the
simplest case k = 1. In the second one we discuss k = 2 restricting a to have all
components equal to 1 followed then by the last example where only the assumption
��� is an equi-correlated correlation matrix is imposed. In this section T = 1 and
S ∈ [0, 1) is fixed.

Example 1 (k = 1): Suppose that a has all components positive. In view of Theorem
2.1 we have that

ψk(S, 1, au) ∼
d∑

i=1

ψ{i}(0, 1, aiu)

as u → ∞. Note that for any positive integer i ≤ d

ψ{i}(0, 1, aiu) = P
{∃t∈[0,1] : B(t) − ci t > aiu

}
,

where B is a standard Brownian motion. It follows easily that

ψk(S, 1, au) ∼ 2
d∑

i=1

P {B(1) > aiu + ci} , u → ∞.
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Example 2 (k = 2 and a = 1): Suppose next k = 2 and a has all components equal
1. By Theorems 2.1 and 2.3 we have that

ψk(S, 1, 1u) ∼
∑

{i,j}⊂{1,...,d}
Ci,j (1)P

{
min

k∈{i,j}(Wk(1) − ck) > u)

}

as u → ∞, where 1 ∈ R
d has all components equal to 1. Using further Remark 2.4

we obtain

P

{
min

k∈{i,j}(Wk(1) − ck) > u)

}
∼ u−2

(1 − ρi,j )2
√

2π(1 − ρ2
i,j )

e
− u2

1+ρi,j
− (ci +cj )u

1+ρi,j
− c2

i
−2ρi,j ci cj +c2

j

2(1−ρ2
i,j

)
, u → ∞.

Here we set ρi,j = corr(Wi(1), Wj (1)). Consequently, if ρi,j > ρi∗,j∗ , then as
u → ∞

P

{
min

k∈{i∗,j∗}(Wk(1) − ck > u)

}
= o

(
P

{
min

k∈{i,j}(Wk(1) − ck > u)

})
.

The same holds also if ρi,j = ρi∗,j∗ and ci + cj > ci∗ + cj∗ . If we denote by τ

the maximum of all ρi,j ’s and by c∗ the maximum of ci + cj for all i, j ’s such that
ρi,j = τ , then we conclude that

ψk(S, 1, au) ∼
∑

i,j∈{1,...,d},ρi,j =τ, ci+cj =c∗
Ci,j (1)P

{
min

k∈{i,j}(Wk(1) − ck > u)

}
.

Note that in this case Ci,j (1) does not depend on i and j and is equals to

(1 − τ)2
∫

R2
P
{∃t≥0 : B1(t) − t > x, B2(t) − t > y

}
e(1−τ 2)(x+y)dxdy,

where (B1(t), B2(t)), t ≥ 0 is a 2-dimensional Gaussian process with Bi’s being
standard Brownian motions with constant correlation τ . Consequently, as u → ∞

ψ2(S, 1, 1u) ∼ C∗u−2e
− u2

1+τ
− c∗u

2(1+τ) ,

where

C∗ = e
− c2∗

2(1−τ2)

√
2π(1 − τ 2)

∑

i,j∈{1,...,d},ρi,j =τ, ci+cj =c∗
e

ci cj
1−τ

×
∫

R2
P
{∃t≥0 : B1(t) − t > x, B2(t) − t > y

}
e(1−τ 2)(x+y)dxdy ∈ (0, ∞).

Example 3 (Equi-correlated risk model) : We consider the matrix � such that � =
��� is an equi-correlated non-singular correlation matrix with off-diagonal entries
equal to ρ ∈ (−1/(d − 1), 1). Let a ∈ R

d with at least one positive component and
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assume for simplicity that its components are ordered, i.e., a1 ≥ a2 ≥ · · · ≥ ad and
thus a1 > 0. The inverse of � equals

[
Jd − 11� ρ

1 + ρ(d − 1)

]
1

1 − ρ
,

where Jd is the identity matrix. First we determine the index set I corresponding to
the unique solution of ��(a). We have for this case that I with m elements is unique
and in view of Eq. 7

λI = (�II )
−1aI = 1

1 − ρ

[
aI − ρ

∑
i∈I ai

1 + ρ(m − 1)
1I

]
> 0I , (15)

with 0 ∈ R
d the origin. From the above m = |I | = d if and only if

ad > ρ

∑d
i=1 ai

1 + ρ(d − 1)
,

which holds in the particular case that all ai’s are equal and positive.
When the above does not hold, the second condition on the index set I given in

Eq. 7 reads
�JI�

−1
II aI = ρ(11�)J I�

−1
II aI ≥ aJ .

Next, suppose that ai = a > 0, ci = c ∈ R for all i ≤ d. In view of Eq. 13 for any
positive integer k ≤ d and any S ∈ [0, 1) we have

ψk(S, 1, au) ∼ CP
{∀i≤k : Wi(1) > ua + c

}
, u → ∞, (16)

where (set I = {1, . . . , k})
C = d!

k!(d − k)!
∏

i∈I

λi

∫

Rk

P
{∃t≥0 : W I (t) − taI > xI

}
eλ�

I xI dxI ∈ (0, ∞).

Note that the case ρ = 0 is treated in Bai et al. (2018)[Prop. 3.6] and follows as a
special case of this example.

4 Proofs

4.1 Proof of Theorem 1.1

Our proof below is based on the idea of the proof of Korshunov and Wang
(2020)[Thm 1.1], where c has zero components, k = d and S = 0 has been con-
sidered. Recall the definition of sets EI(u) and E(u) introduced in Eq. 1 for any
non-empty I ⊂ {1, . . . , d} such that |I| = k ≤ d. With this notation we have

ψk(S, T , u) = P {∃t ∈ [S, T ] : W (t) − ct ∈ E(u)} = P {τk(u) ≤ T } ,

where τk(u) is the ruin time defined by

τk(u) = inf{t ≥ S : W (t) − ct ∈ E(u)}.
For the lower bound, we note that

ψk(S, T , u) = P {∃t ∈ [S, T ] : W (t) − ct ∈ E(u)} ≥ P {W (T ) − cT ∈ E(u)} .

8 K. De¸bicki et al.



By the fact that Brownian motion has continuous sample paths

W (τk(u)) − cτk(u) ∈ ∂E(u) (17)

almost surely, where ∂A stands for the topological boundary (frontier) of the set
A ⊂ R

d .
Consequently, by the strong Markov property of the Brownian motion, we can write
further

P {W (T ) − cT ∈ E(u)}
=
∫ T

0

∫

∂E(u)

P {W (t) − ct ∈ dx|τk(u) = t}P {W (T ) − cT ∈ E(u)|W (t) − ct = x}P {τk(u) ∈ dt} .

Crucial is that the boundary ∂E(u) can be represented as the following union

∂E(u) =
⋃

I⊂{1,...,d}
|I|=k

(∂EI(u) ∩ ∂E(u)) =:
⋃

I⊂{1,...,d}
|I|=k

FI(u).

For every x ∈ FI(u) using the self-similarity of Brownian motion for all non-
empty index sets I ⊂ {1, . . . , d} and all t ∈ (S, T )

P {W (T ) − cT ∈ E(u)|W (t) − ct = x} ≥ P {W (T ) − cT ∈ EI(u)|W (t) − ct = x}
= P {WI(T ) − cIT ≥ uI |W (t) − ct = x}
≥ P {WI(T − t) − cI(T − t) ≥ 0}
≥ P {WI(T − t) ≥ cI(T − t)}
= P

{
WI(1) ≥ cI

√
T − t

}

≥ P

{
WI(1) ≥ c̃I

√
T
}

= P {WI(T ) ≥ c̃IT }
≥ min

I⊂{1,...,d}
|I|=k

P {WI(T ) ≥ c̃IT } ,

where c̃i = max(0, ci), hence for all x ∈ ∂E(u)

P {W (T ) − cT ∈ E(u)|W (t) − ct = x} ≥ min
I⊂{1,...,d}

|I|=k

P {WI(T ) ≥ c̃IT } .

Consequently, using further Eq. 17 we obtain

P {W (T ) − cT ∈ E(u)}
≥ min
I⊂{1,...,d}

|I|=k

P {WI(T ) ≥ c̃IT }
∫ T

S

∫

∂E(u)

P {W (t) − ct ∈ dx|τk(u) = t}P {τk(u) ∈ dt}

= min
I⊂{1,...,d}

|I|=k

P {WI(T ) ≥ c̃IT } ψk(S, T , u)

establishing the proof.
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4.2 Proof of Theorem 2.1

The results in this section hold under the assumption that � = ��� is positive
definite, which is equivalent with our assumption that � is non-singular. The next
lemma is a consequence of Hashorva (2019)[Lem 2]. We recall that ϕ denotes the
probability density function of �B(1).

Lemma 4.1 For any a ∈ R
d \ (−∞, 0]d we have for some positive constants C1, C2

P {W (1)−c > au} ∼ C1P {∀i∈I : Wi(1)−ci > aiu} ∼ C2u
−αϕ(ãu+c), u → ∞,

where α is some integer and ã is the solution of quadratic programming problem
��(a), � = ��� and I is the unique index set that determines the solution of
��(a).

We agree in the following that if I is empty, then simply the term AI(t) should be
deleted from the expressions below; recall that AI(t) is defined in Eq. 3.

We state next three lemmas utilised in the case T < ∞. Their proofs are displayed
Appendix.

Lemma 4.2 Let I,J ⊂ {1, . . . , d} be two index sets such that I �= J and |I| =
|J | = k≥1. If aI∪J has at least two positive components, then for any s, t ∈ [0, 1]
there exists some ν = ν(s, t) > 0 such that as u → ∞

P
{
AI(t) ∩ AJ (s)

} = o
(
e−νu2

) ∑

I∗⊂{1,...,d}
|I∗|=k

P {AI∗(1)} , (18)

and

P
{
AI\J (t), AJ \I(s), AI∩J (min(t, s))

} = o
(
e−νu2

) ∑

I∗⊂{1,...,d}
|I∗|=k

P {AI∗(1)} . (19)

Lemma 4.3 Let S > 0, k ≤ d be a positive integer and let a ∈ R
d be given. If

I,J ⊂ {1, . . . , d} are two different index sets with k ≥ 1 elements such that aI∪J
has at least one positive component, then there exist s1, s2 ∈ [S, 1] and some positive
constant τ such that as u → ∞
P
{∃s, t ∈ [S, 1] : AI(s) ∩ AJ (t)

}=o
(
eτu
)
P
{
AI\J (s1) ∩ AJ \I(s2) ∩ AI∩J (min(s1, s2))

}
.

(20)

Case T < ∞ According to Theorem 1.1 and Lemma 4.1 it is enough to show the
proof for S ∈ (0, T ). In view of the self-similarity of Brownian motion we assume
for simplicity T = 1. Recall that in our notation � = ��� is the covariance matrix
of W (1) which is non-singular and we denote its pdf by ϕ. In view of Eqs. 19 and 20
for all S ∈ (0, 1) there exists some ν > 0 such that as u → ∞

∑

I,J⊂{1,...,d}
|I|=|J |=k,I �=J

P
{∃s, t ∈ [S, 1] : AI(s) ∩ AJ (t)

} = o
(
e−νu2

) ∑

I⊂{1,...,d}
|I|=k

P {AI(1)} .

10 K. De¸bicki et al.



Note that we may utilise Eqs. 19 and 20 for sets I and J of length k, because of
the assumption that a has no more than k − 1 non-positive components. Hence any
vector aI has at least one positive component.

Further, by Theorem 1.1 and the inclusion-exclusion formula we have that for
some K > 0 and all u sufficiently large

ψk(S, 1, u) ≤ K
∑

I⊂{1,...,d}
|I |=k

P {AI(1)} .

Hence the claim follows from Eqs. 4 and 5.

Case T = ∞ Using the self-similarity of Brownian motion we have

P {∃t > 0 : AI(t)} = P {∃t > 0 : WI(ut) ≥ (a + ct)Iu} = P
{∃t > 0 : WI(t) ≥ (a + ct)I

√
u
}

= P
{∃t > 0 : A∗

I(t)
}
,

where

A∗
I(t) = {WI(t) ≥ (a + ct)I

√
u}. (21)

For t > 0 define

rI(t) = min
x≥aI+cI t

1

t
x��−1

IIx, �II = V ar(WI(1)), �−1
II = (�II)−1. (22)

Since limt↓0 rI(t) = ∞ we set below rI(0) = ∞.
In view of Lemma 4.1 we have as u → ∞

P
{
A∗
I(t)

} ∼ C1u
−α/2ϕI,t (( ˜aI + cI t)

√
u) = C2u

−α/2e− rI (t)u

2 ,

where ˜aI + cI t is the solution of quadratic programming problem �t�II (aI + cI t)

and ϕI,t (x) is the pdf of WI(t), α is some integer and C1, C2 are positive con-
stant that do not depend on u. For notational simplicity we shall omit below the
subscript I.

The rest of the proof is established by utilising the following lemmas, whose
proofs are displayed in Appendix.

Lemma 4.4 Let k ≤ d be a positive integer and let a, c ∈ R
d . Consider two different

sets I,J ⊂ {1, . . . , d} of cardinality k. If both aI + cI t and aJ + cJ t have at
least one positive component for all t > 0 and both cI and cJ also have at least one
positive component, then in case t̂I := arg min

t>0
rI(t) �= t̂J := arg min

t>0
rJ (t),

P
{∃s, t > 0 : A∗

I(t)∩A∗
J (s)

} = o(P
{
A∗
I(t̂I)

}+ P
{
A∗
J (t̂J )

}
), u → ∞.

11Pandemic-type failures in multivariate...



Lemma 4.5 Under the settings of Lemma 4.4, if a + ct has no more than k − 1
non-positive component for all t > 0 and c has no more than k − 1 non-positive
components, then in case t̂I := arg min

t>0
rI(t) = t̂J := arg min

t>0
rJ (t)

P
{∃s, t > 0 : A∗

I(t)∩A∗
J (s)

} = o

⎛

⎜⎜⎝
∑

K⊂{1...d}
|K|=k

P
{
A∗
K(t̂K)

}

⎞

⎟⎟⎠ , u → ∞.

Combining the above two lemmas we have that for any two index sets I,J ⊂
{1, . . . , d} of cardinality k, there is some index set K ⊂ {1, . . . , d} such that as
u → ∞

P
{∃s, t > 0 : A∗

I(s)∩A∗
J (t)

} = o
(
P
{∃t > 0 : A∗

K(t)
})

,

which is equivalent with

P
{∃s, t > 0 : AI(s)∩AJ (t)

} = o (P {∃t > 0 : AK(t)}) .

The proof follows now by Eqs. 4 and 5.

4.3 Proof of Theorem 2.3

Below we set
δ(u, �) := 1 − �u−2

and denote by ã the unique solution of the quadratic programming problem ��(a).
We denote below by I the index set that determines the unique solution of

��(a), where a ∈ R
d has at least one positive component (see Lemma 2.2). If

J = {1, . . . , d} \ I is non-empty, then we set below U = {j ∈ J : ãj = aj }. The
number of elements |I | of I is denoted by m, which is a positive integer.

The next lemma is proved in Appendix.

Lemma 4.6 For any � > 0, a ∈ R
d \ (−∞, 0]d , c ∈ R

d and all sufficiently large u
there exist C > 0 such that

m(u, �) := P
{∃t∈[0,δ(u,�)] : W (t) − tc > ua

} ≤ e−�/C P {W (1) ≥ au + c}
P {W (1) > max(c, 0)}

(23)
and further

M(u, �) := P
{∃t∈[δ(u,�),1] : W (t) − tc > ua

} ∼ C(c)K([0, �])u−mϕ(uã + c),

(24)
where C(c) = P {WU(1) > cU |W I (1) > cI } and for λ = �−1ã

E([�1, �2]) =
∫

Rm

P
{∃t∈[�1,�2] : W I (t) − taI > xI

}
eλ�

I xI dxI ∈ (0, ∞)

for all constants �1 < �2. We set C(c) equal 1 if U defined in Remark 2.4 is empty.
Further we have

lim
�→∞ E([0, �]) =

∫

Rm

P
{∃t≥0 : W I (t) − taI > xI

}
eλ�

I xI dxI ∈ (0, ∞). (25)
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First note that for all �, u positive

M(u, �) ≤ P
{∃t∈[0,1] : W (t) − tc > ua

} ≤ M(u, �) + m(u, �).

In view of Lemmas 4.6 and 4.1

lim
�→∞ lim

u→∞
m(u, �)

M(u, �)
= 0,

hence

lim
�→∞ lim

u→∞
P
{∃t∈[0,1] : W (t) − tc > ua

}

M(u, �)
= 1

and thus the proof follows applying Eq. 24.

4.4 Proof of Eq. 14

The proof is similar to that of Dȩbicki et al. (2017)[Thm 2.5] and therefore we
highlight only the main steps. If T > S ≥ 0 by the definition of τ(u) and the
self-similarity of Brownian motion

τ(u)

T
= inf{t ≥ 0 : W (T t) − tT c > au} = inf{t ≥ 0 : W (t) − t

√
T c > au/

√
T }.

Thus, without loss of generality in the rest of the proof we suppose that T = 1 >

S ≥ 0.
We note that

P

{
u2(1 − τ(u)) ≥ x|τ(u) ∈ [S, 1]

}
= P

{
u2(1 − τ(u)) ≥ x, τ (u) ∈ [S, 1]}

P {τ(u) ∈ [S, 1]}
= P

{
u2(1 − τ(u)) ≥ x, τ (u) ≤ 1

}

P {τ(u) ∈ [S, 1]} − P
{
u2(1 − τ(u)) ≥ x, τ (u) ≤ S

}

P {τ(u) ∈ [S, 1]}
= P1(u) − P2(u).

Next, for x̃(u) = 1 − x

u2

P1(u) = P {τ(u) ≤ x̃(u)}
P {τ(u) ∈ [S, 1]} ∼ P

{∃t∈[0,x̃(u)] : W (t) − ct > ua
}

P
{∃t∈[0,1] : W (t) − ct > ua

}

=
P

{
∃t∈[0,1] : W (t) − (c

√
x̃(u))t > u√

x̃(u)
a

}

P
{∃t∈[0,1] : W (t) − ct > ua

} , u → ∞.

Hence by Theorem 2.3, the fact that

ϕ

(
u

√
x̃(u)

ã + (c
√

x̃(u))

)
= ϕ(uã + c)e

− 1
2

(
1

x̃(u)
−1
)
u2ã��−1ã

e− 1
2 (x̃(u)−1)c��−1c

and

lim
u→∞ e

− 1
2

(
1

x̃(u)
−1
)
u2ã��−1ã = e−x ã��−1 ã

2 , lim
u→∞ e− 1

2 (x̃(u)−1)c��−1c = 1
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we obtain

lim
u→∞ P1(u) = e−x ã��−1 ã

2 . (26)

Moreover, following the same reasoning as above

P2(u) = P {τ(u) ≤ S}
P {τ(u) ∈ [S, 1]} ∼ P {τ(u) ≤ S}

P {τ(u) ≤ 1} → 0 (27)

as u → ∞. Thus, combination of Eqs. 26 with 27 leads to

lim
u→∞P

{
u2(1 − τ(u)) ≥ x|τ(u) ∈ [S, 1]

}
= e−x ã��−1 ã

2 .

Appendix

Lemma A.1 If for a ∈ (R ∪ {−∞})d and I ⊂ {1, . . . , d} such that aI has at least
two positive components and � is non-singular, then for all t > 0

P {AI(t)} = o
(
e−νu2

)∑

i∈I
P
{
AI\{i}(t)

}
, u → ∞,

where ν = ν(t, I) > 0 does not depend on u.

Remark A.2 Lemma A.1 implies that for any vector a ∈ (R ∪ {−∞})d and for any
d-dimensional Gaussian random vector W , if a has at least two positive components,
there exists some positive constant η and i ∈ {1 . . . d} such that as u → ∞

P {W > au} = o(e−ηu2
)P {WK > aKu} , K = {1, . . . , d} \ {i}.

Proof of Lemma A.1 For notational simplicity we shall assume that I = {1, . . . , d}
and set Ki = I \ {i}. By the assumption for all i ∈ I the vector aKi

has at least one
positive component and � = ��� is positive definite. In view of Lemma 4.1 for any
fixed t > 0 and some C1, C2 two positive constants we have

P {AI(t)} ∼ C1u
α1ϕt (ãu + c), P

{
AKi

(t)
} ∼ C2u

α2ϕt (āiu + c), u → ∞,

where ϕt is the pdf of W (t) with covariance matrix �(t) = t� and ã =
arg minx≥a x��−1(t)x, āi = arg minx∈Si

x��−1(t)x, with Si = {x ∈ R
d : ∀j ∈

Ki : xj ≥ aj }. Since {x ∈ R
d : x ≥ a} ⊂ Si , then clearly

ã��−1(t)ã ≥ āi
��−1(t)āi

for any i ≤ d. Next, if we have strict inequality for some i ≤ d, i.e., ã��−1(t)ã >

āi
��−1(t)āi , then it follows that

P {AI(t)} ∼ Cuα1ϕt (ãu + c) = o
(
e−νu2

P
{
AKi

(t)
})

, u → ∞

for ν = 1
2

(
ã��−1(t)ã − āi

��−1(t)āi

)
> 0, hence the claim follows.
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Let us consider now the extreme case that for all i ≤ d we have ã��−1ã =
āi

��−1āi . Define the following set

E = {x ∈ R
d : x��−1(t)x ≤ ã��−1(t)ã}.

Since �(t) is positive definite, E is a full dimensional ellipsoid in R
d . By the

definition, E ∩ Si = {ã}. Define the following lines in R
d

li = {x ∈ R
d : ∀i ∈ Ki, xi = ãi}

and observe that since li ∈ Si , then li ∩ E = {ã}, and they are linearly indepen-
dent. Since the boundary of E is smooth, there can not be more than d − 1 linearly
independent tangent lines at the point ã, which leads to a contradiction.

Proof of Lemma 4.2 First note that since I �= J , then |I∪J | ≥ k+1. Consequently,
we can find some index set K such that

|K| = k + 1, K ⊂ I ∪ J

and further aK has at least two positive components. Applying Lemma A.1 for any
t ∈ [0, 1] and some ν > 0

P {AK(t)} = o
(
e−νu2

)∑

j∈K
P
{
AK\{j}(t)

}
, u → ∞.

If s = t , then applying Lemma 4.1

0 ≤ P
{
AI(t) ∩ AJ (t)

} = P
{
AI∪J (t)

} ≤ P {AK(t)} = o
(
e−νu2

) ∑

I∗⊂{1,...,d}
I∗|=k

P
{
A∗
I(t)

}
.

Next, if s < 1, then applying Lemma 4.1 we obtain

0 ≤ P {AI(t) ∩ AJ (s)} ≤ P {AJ (s)} = o
(
e−νu2

P {AJ (1)}
)

= o
(
e−νu2

) ∑

I∗⊂{1,...,d}
|I∗|=k

P {AI∗ (1)} .

A similar asymptotic bound follows for t < 1, whereas if s = t = 1, the first
claim follows directly from the case s = t discussed above. We show next Eq. 19. If
s < t , then s < 1 and applying Lemma 4.1 we obtain

0 ≤ P
{
AI\J (t), AJ \I(s), AI∩J (min(t, s))

}

≤ P
{
AJ (s)

} = o
(
e−νu2

P
{
AJ (1)

})

= o
(
e−νu2

) ∑

K⊂{1,...,d}
|K|=k

P {AK(1)} .

A similar asymptotic bound follows for t < s or s = t ≤ 1 by applying Eq. 18
establishing the proof.
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Proof of Lemma 4.3 Define for s, t ∈ [S, 1] the Gaussian random vector

W(s, t) = (WI\J (s)�, WJ \I(t)�, WI∩J (min(s, t))�)�,

with covariance matrix D(s, t). We show first that this matrix is positive definite. For
this we assume that s ≤ t . As D(s, t) is some covariance matrix, we know that it
is non-negative definite. Choose some vector v ∈ R

d . It is sufficient to show that if
v�D(s, t)v = 0, then v = 0 (here 0 = (0, . . . , 0)� ∈ R

d ). Note that

v�D(s, t)v = V ar(〈W(s, t), v〉) = V ar(〈W (s), v〉+〈WJ \I(t)−WJ \I(s), vJ \I〉).
Using that W (t) has independent increments, this variance is equal to the sum of the
variances. Hence, both of them should be equal to zero. In particular it means that
V ar(〈W (s), v〉) = 0. Hence, as s � S > 0, we have that v = 0. Thus, D(s, t) is
positive definite and D−1(s, t) exists.
Set further

a = (a�
I\J , a�

J \I , a�
I∩J )�, c(s, t) = (sc�

I\J , tc�
J \I , min(s, t)c�

I∩J )�.

With this notation we have

P
{∃s, t ∈ [S, 1] : AI(s) ∩ AJ (t)

} ≤ P {∃s, t ∈ [S, 1] : W(s, t) − c(s, t) ≥ au} .

Let ã(s, t) = arg minx≥a x�D−1(s, t)x be the unique solution of �D(s,t)(a) and
let further w(s, t) = D−1(s, t)ã(s, t) be the solution of the dual problem. We denote
by I (s, t) the index set related to the quadratic programming problem �D(s,t)(a).
Then w(s, t) has non-negative components and according to Lemma 2.2 since both
s, t ≥ S > 0 we have

a�w(s, t) = ã�(s, t)w(s, t) = ã�(s, t)D−1(s, t)ã(s, t) > 0.

Consequently, we have

P {∃s, t ∈ [S, 1] : W(s, t) − c(s, t) ≥ au} ≤ P

{
∃s, t ∈ [S, 1] : w�(s, t) (W(s, t) − c(s, t)) ≥ uw�(s, t)ã(s, t)

}

= P

{
∃s, t ∈ [S, 1] : w�(s, t) (W(s, t) − c(s, t))

w�(s, t)ã(s, t)
≥ u

}

≤ P

{
∃s, t ∈ [S, 1] : w�(s, t)W(s, t)

w�(s, t)ã(s, t)
≥ u + C

}

for any positive u, where C = mins,t∈[S,1] w�(s,t)c(s,t)

w�(s,t)ã(s,t)
. Moreover, for some s1, s2 ∈

[S, 1]

σ 2 = sup
s,t∈[S,1]

E

{(
w�(s, t)W(s, t)

w�(s, t)ã(s, t)

)2
}

= sup
s,t∈[S,1]

1

ã�(s, t)D−1(s, t)ã(s, t)
= 1

ã�(s1, s2)D−1(s1, s2)ã(s1, s2)

since [S, 1]2 is compact. Moreover, one can check that for some positive constant G
and s1, s2, t1, t2 ∈ [S, 1]

E

{(
w�(s1, t1)W(s1, t1)

w�(s1, t1)ã(s, t)
− w�(s2, t2)W(s2, t2)

w�(s2, t2)ã(s, t)

)2
}

≤ G[|s1 − s2| + |t1 − t2|]. (28)
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Thus, utilizing Piterbarg inequality, see e.g., Piterbarg (1996)[Thm 8.1], we have
that there exist positive constants C, γ such that

P {∃s, t ∈ [S, 1] : W(s, t) − c(s, t) ≥ au} ≤ Cuγ e−(u+C)2/2σ 2

for all u positive. Further, by Lemma 4.1 for some constants α, C∗, C+ as u → ∞
P
{
AI\J (s1), AJ \I(s2), AI∩J (min(s1, s2))

}

= P {W(s1, s2) − c(s1, s2) ≥ au}
∼ C∗u−αe− 1

2 (ã(s1,s2)u+c(s1,s2))
�D−1(s1,s2)(ã(s1,s2)u+c(s1,s2))

= C+u−αe
− u2

2σ2 e−u(ãs1,s2 )�D−1(s1,s2)(c(s1,s2)).

Hence the claim follows for τ = |C/σ 2| + sups,t∈[S,1] |ã(s, t)D−1(s, t)c(s, t)| +
1.

Lemma A.3 The function rI(t), t > 0 defined in Eq. 22 is convex and if cI has at
least one positive component, then there exists T > 0 such that for some positive s

and any t > 0
rI(T + t) ≥ rI(T ) + st . (29)

Moreover, if aI + cI t for any t > 0 have at least one positive component, then
rI(t), t > 0 has a unique point of minimum.

The proof of Lemma A.3 is purely analytical, thus we skip the details, referring
for precise argumentation to the extended version of this contribution (Dȩbicki et al.
2021).

Lemma A.4 Suppose that � = ��� is positive definite. For any non-empty subset
I ⊂ {1, . . . , d} if cI and aI +cI t for all t ≥ 0 have at least one positive component,
then for any point 0 < t �= t̂ = arg mint>0 rI(t) there exists some positive constant
ν such that

P
{
WI(t) > (aI + cI t)

√
u
} = o

(
e−νu

)
P
{
WI(t̂) > (aI + cI t̂ )

√
u
}
, u → ∞.

Proof of Lemma A.4 For notational simplicity we omit below the subscript I. Since
for any t > 0 we have V ar(W (t)) = t�, then by Lemma 4.1

P
{
W (t) > (a + ct)

√
u
} ∼ Cu−α(t)/2e− u

2t
p̃(t)��−1p̃(t),

where C is some positive constant, α(t) is an integer and p̃(t) is the unique solution
of �t�(a + ct), which can be reformulated also as

P
{
W (t) > (a + ct)

√
u
} ∼ Cu−α(t)/2e− u

2 r(t), u → ∞.

If t �= t̂ , then r(t) − r(t̂) = τ > 0 and

P
{
W (t) > (a + ct)

√
u
}

P
{
W (t̂) > (a + ct̂ )

√
u
} ∼ C∗u(α(t̂)−α(t))/2e− τu

2 = o
(
e− τ

3 u
)

as u → ∞.
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Lemma A.5 Let a, c ∈ R
d be such that a + ct has at least one positive component

for all t in a compact set T ⊂ (0, ∞). If � = ��� is positive definite, then there
exist constants C > 0, γ > 0 and t ∈ T such that for all u > 0

P
{∃t ∈ T : W (t) > (a + ct)

√
u
} ≤ Cuγ e− u

2 r(t).

If we also have that for some non-overlapping index sets I,J ⊂ {1, . . . , d} and
some compact subset T ⊂ [0, ∞)2 both ((aI + cI t1)

�, (aJ + cJ t2)
�)� have at

least one positive component for all (t1, t2) ∈ T , then for some t = (t1, t2) ∈ T as
u → ∞
P
{∃t ∈ T : WI(t1) > (aI + cI t1)

√
u, WJ (t2) > (aJ + cJ t2)

√
u
}

= o(e
√

u
P
{
WI(t1) > (aI + cI t1)

√
u, WJ (t2) > (aJ + cJ t2)

√
u
}
).

Moreover, the same estimate holds if I andJ are overlapping and for all (t1, t2) ∈
T we have t1 �= t2.

Proof of Lemma A.5 Denote by D(t) the covariance matrix of W (t), which by
assumption on � is positive definite. Let ã(t) = arg min

x≥a+ct
x�D−1(t)x be the

solution of �D(a + ct), t > 0 and let further

w(t) = D−1(t)ã(t)

be the solution of the dual optimization problem. In view of Eq. 10 wI (t) has positive
components for I the unique index set related to �D(t)(a+ct) and moreover by Eq. 9

f (t) = w�(t)(a + ct) = ã�(t)D−1(t)ã(t) > 0

implying

P
{∃t ∈ T : W (t) ≥ (a + ct)

√
u
} ≤ P

{
∃t ∈ T : w�(t)W (t)

w�(t)(a + ct)
≥ √

u

}
.

We have further that

σ 2 = sup
t∈T

E

{(
w�(t)W (t)

w�(t)(a + ct)

)2
}

= sup
t∈T

1

ã�(t)D−1(t)ã(t)
= 1

ã�(t)D−1(t)ã(t)
> 0

for some t ∈ T , since T is compact. Since f (t) > 0, t ∈ T is continuous, we may
apply Piterbarg inequality (as in the proof of Eq. 20) and obtain

P
{∃t ∈ T : W (t) ≥ (a + ct)

√
u
} ≤ Cuγ e−u/2σ 2

for some positive constants γ and C, which depend only on W (t) and d. Since, by
the definition we have r(t) = 1/σ 2, the proof of the first inequality is complete.

The next assertion may be obtained with the same arguments but for vector-valued
random process

W(s, t) = (W�
I (s), W�

J (t))�.
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By the definition of T , for any (s, t) ∈ T we have |V ar(W(s, t))| > 0, thus
we can apply Piterbarg inequality and in consequence, using Lemma 4.1, the claim
follows.

Lemma A.6 Suppose that � = ��� is positive definite. For any subset I ⊂
{1, . . . , d} if cI ∈ R

|I| has at least one positive component and aI + cI t ∈ R
|I|

has at least one positive component for all non-negative t , then for some positive
constants ν, t̂ = arg min

t>0
rI(t) and all T large

P
{∃t > T : WI(t) > (aI + cI t)

√
u
} = o(e−νu)P

{
WI(t̂) > (aI + cI t̂ )

√
u
}
, u → ∞.

Proof of Lemma A.6 For notational simplicity we omit below the subscript I. For
some given T > t̂ we have using Lemmas A.5, A.3

P
{∃t > T : W (t) > (a + ct)

√
u
} ≤

∞∑

i=0

P
{∃t ∈ [T + i, T + i + 1] : W (t) > (a + ct)

√
u
}

≤
∞∑

i=0

Cuγ e− r(ti )

2 u

≤ Cuγ e− r(T )
2 u

∞∑

i=0

e−isu

≤ Cuγ e− r(T )
2 u

(
1 +

∫ ∞

0
e−suxdx

)
,

where s > 0 and ti ∈ [T + i, T + i + 1]. The last integral is finite and decreasing for
sufficiently large u. Hence the claim follows with the same arguments as in the proof
of Lemma A.4.

Proof of Lemma 4.4 Using Lemma A.6 we know that there exist points tI , tJ such
that

P
{∃t ≥ TI : A∗

I(t)
} = o(P

{
A∗
I(t̂I)

}
), P

{∃t ≥ TJ : A∗
J (t)

} = o(P
{
A∗
J (t̂J )

}
), u → ∞.

Next, for some positive ε < |t̂I − t̂J |/3 we have

P
{∃s, t > 0 : A∗

I(t)∩A∗
J (s)

} ≤ P
{∃(s, t) ∈ [t̂I − ε, t̂I + ε] × [t̂J − ε, t̂J + ε] : A∗

I(t) ∩ A∗
J (s)

}

+ P
{∃t ∈ [0, t̂I − ε] : A∗

I(t)
}+ P

{∃t ∈ [t̂I + ε, TI ] : A∗
I(t)

}

+ P
{∃t ∈ [0, t̂J − ε] : A∗

J (t)
}+ P

{∃t ∈ [t̂J + ε, TJ ] : A∗
J (t)

}

+ P
{∃t ≥ TI : A∗

I(t)
}+ P

{∃t ≥ TJ : A∗
J (t)

}
.

Using Lemmas A.5, A.6 and

P
{
A∗
I(t)

} ∼ Cu−αe−r(t)u/2, P
{
A∗
I(t)

} = o(ue−r(t)u/2), u → ∞
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we obtain

P
{∃s, t > 0 : A∗

I(t)∩A∗
J (s)

} = o(e
√

u
P
{
A∗
I(s1) ∩ A∗

J (s2)
}
)

+ o(uτ3P
{
A∗
I(t3)

}
) + o(uτ4P

{
A∗
I(t4)

}
)

+ o(uτ5P
{
A∗
J (t5)

}
) + o(uτ6P

{
A∗
J (t6)

}
)

+ o(P
{
A∗
I(t̂I)

}
) + o(P

{
A∗
J (t̂J )

}
)

for some positive constants ti , 3 ≤ i ≤ 6, where

t3 ∈ [0, t̂I−ε], t4 ∈ [t̂I+ε, TI ], t5 ∈ [0, t̂J −ε], t6 ∈ [t̂J +ε, TJ ] s1 ∈ [t̂I−ε, t̂I+ε] s2 ∈ [t̂J −ε, t̂J +ε].

Note that for i = 3, 4, ti �= t̂I . Hence by Lemma A.4

uτiP
{
A∗
I(ti)

} = o(P
{
A∗
I(t̂I)

}
).

The same works also for j = 5, 6

uτjP
{
A∗
J (tj )

} = o(P
{
A∗
J (t̂J )

}
).

Thus we can focus only on the first probability. By the definition of A∗
I and A∗

J
in Eq. 21

P
{
A∗
I(s1) ∩ A∗

J (s2)
} = P

{
W(s1, s2) > b

√
u
}
,

where b = ((aI + cIs1)
�, (aJ + cJ s2)

�) and W(s, t) = (WI(s)�, WJ (t)�)�.
Define î = I ∪J \ {i}. Applying Remark A.2, there exists an index i and a constant
η > 0 such that

P
{
A∗
I(s1) ∩ A∗

J (s2)
} = o

(
e−ηu

)
P
{
(W(s1, s2))̂i > b̂i

√
u
}

.

If i ∈ I, then

P
{
(W(s1, s2))̂i > b̂i

√
u
} ≤ P

{
WJ (s2) > (aJ + cJ s2)u

}
,

or

P
{
(W(s1, s2))̂i > b̂i

√
u
} ≤ P {WI(s1) > (aI + cIs1)u} .

In both cases

e
√

u
P
{
A∗
I(s1) ∩ A∗

J (s2)
} = o (P {WI(s1) > (aI + cIs1)u} + P {WJ (s1) > (aJ + cJ s1)u})

= o
(
P
{
WI(t̂I) > (aI + cI t̂I)u

}+ P
{
WJ (t̂I) > (aJ + cJ t̂J )u

})

establishing the proof.

Proof of Lemma 4.5 Using Lemma A.6 we have

P
{∃s, t > 0 : A∗

I(s)∩A∗
J (t)

} ≤ P
{∃(s, t) ∈ T1 : A∗

I(s)∩A∗
J (t)

}+ P
{∃(s, t) ∈ T2 : A∗

I(s)∩A∗
J (t)

}

+ o(P
{
A∗
I(t̂I)

}
) + o(P

{
A∗
J (t̂J )

}
),
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where

T1 = {(s, t) ∈ [0, TI ] × [0, TJ ] : |s − t̂I | ≥ |t − t̂I |},
T2 = {(s, t) ∈ [0, TI ] × [0, TJ ] : |s − t̂I | ≤ |t − t̂I |}

and TI and TJ are the constants from Eq. 29. According to Lemma A.5 for some
(si , ti) ∈ Ti

P
{∃(s, t) ∈ Ti : A∗

I(s) ∩ A∗
J (t)

} = o
(
e
√

u
)
P

{
A∗
I(si) ∩ A∗

J \I(ti)
}

.

If s1 �= t̂I , then according to Lemma A.4

e
√

u
P

{
A∗
I(s1) ∩ A∗

J \I(t1)
}

≤ e
√

u
P
{
A∗
I(s1)

} = o(P
{
A∗
I(t̂I)

}
).

Otherwise, using the definition of T1, |t1 − t̂I | ≤ |s1 − t̂I | = 0, so t1 = t̂I and thus

P

{
A∗
I(s1) ∩ A∗

J \I(t1)
}

= P
{
A∗
I∪J (t̂I)

}
.

This probability can be bounded using Remark A.2, namely we have

P
{
A∗
I∪J (t̂I)

} = o
(
e−νu

)
P

{
A∗
I∪J \{i}(t̂I)

}

for some i ∈ I ∪J and η > 0. As |I| = |J | = k, and I �= J , then |I ∪J | ≥ k + 1
and thus |I ∪ J \ {i}| ≥ k. Consequently, we have

e
√

u
P
{
A∗
I∪J (t̂I)

} = o
(
P

{
A∗
I∪J \{i}(t̂I)

}
) = o

⎛

⎜⎜⎝
∑

K⊂{1...d}
|K|=k

P
{
A∗
K(t̂K)

}

⎞

⎟⎟⎠ .

With similar arguments we obtain further

P
{∃(s, t) ∈ T2 : A∗

I(s)∩A∗
J (t)

} = o

⎛

⎜⎜⎜⎝
∑

K⊂{1...d}
|K|=k

P
{
A∗
K(t̂K)

}

⎞

⎟⎟⎟⎠ .

Hence the claim follows.

Recall that ã stands for the unique solution of the quadratic programming problem
��(a).

Proof of Lemma 4.6 By the self-similarity of Brownian motion for all u > 0

m(u,�) := P
{∃t∈[0,δ(u,�)] : W (t) − tc > ua

} = P

{
∃t∈[0,1] : W (t) − δ1/2(u,�)tc > δ−1/2(u,�)ua

}
.

Hence, applying Theorem 1.1 we obtain

m(u, �) ≤ P
{
W (1) ≥ δ−1/2(u, �)ua + δ1/2(u, �)c

}

P {W (1) > max(c, 0)} ,

which after some standard algebraic manipulations, straightforwardly implies
inequality (23).
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Equation 24 and limit (25) follow by the same idea as the proof of “Pickands’
lemma” in e.g. Dȩbicki et al. (2018); see Lemmas 4.2 and 4.3 therein. We skip long
but standard proof, referring for details to the extended version of this contribution
(Dȩbicki et al. 2021).
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