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THE BIGGER PICTURE Knowledge graphs (KGs) have recently gained attention due to their flexible data
model, which reduces the effort needed for integration across different, possibly heterogeneous, data sour-
ces. In this tutorial, we learn how to access scientific data stored in a relational database through the virtual
knowledge graph (VKG) approach. In such an approach, the data are exposed as a KG and enriched with se-
mantic information coming fromadomain ontology. TheKG is ‘‘virtual’’ in the sense that the data are not repli-
cated but stay within the data sources and are accessed at query time.
We demonstrate the approach over scientific data coming from the biomedical domain and using the open-
source VKG systemOntop. Since legacy data are exposed as a KG, users can access the data by means of a
more convenient vocabulary provided by the domain ontology, benefit from automated reasoning capabil-
ities, and do not need to focus on how the data are actually stored. Furthermore, the virtual approach allows
for the use of KGs even in those contexts where the user does not own the data nor is granted the rights to
make a copy of them.
By relying on existing federation tools, the approach described here for accessing scientific data can also be
used to integrate multiple, heterogeneous, and possibly semi-structured and unstructured data sources.

Production: Data science output is validated, understood,
and regularly used for multiple domains/platforms
SUMMARY

In this tutorial, we learn how to set up and exploit the virtual knowledge graph (VKG) approach to access data
stored in relational legacy systems and to enrich such data with domain knowledge coming from different
heterogeneous (biomedical) resources. The VKG approach is based on an ontology that describes a domain
of interest in terms of a vocabulary familiar to the user and exposes a high-level conceptual view of the data.
Users can access the data by exploiting the conceptual view, and in this way they do not need to be aware of
low-level storage details. They can easily integrate ontologies coming from different sources and can obtain
richer answers thanks to the interaction between data and domain knowledge.
INTRODUCTION AND MOTIVATION

Large-scale molecular biology experiments, the adoption of

computational tools and algorithms to study biological pathway

networks,1 the effective analysis of genome sequences from

various model organisms, and, more generally, the advent of a

systems approach for the analysis andmodeling of complex bio-

logical systems,2,3 all require advanced data management tech-

nologies that ease the access to and the integration of massive

amounts of information coming from different, usually heteroge-

neous, data sources.
This is an open access article und
Knowledge graphs (KGs) gained popularity recently4 as a

general mechanism to represent data that are not constrained

to a rigid schema, and to enrich such data with domain se-

mantics. The absence of a rigid schema, and the elementary

yet flexible abstraction provided by ‘‘subject-predicate-object’’

triples at the basis of KGs, allow on the one hand for the evo-

lution of data sources in all those situations where the

‘‘schema’’ of the data cannot be determined in advance, and

on the other hand for the integration and interoperability of het-

erogeneous data sources and among different scientific data

platforms.
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Figure 1. KG conceptual framework
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The semantic information in a KG is provided by an

ontology, which is a structured formal representation of the

concepts that are relevant in a domain of interest and of the

relationships between them. The purpose of the ontology is

2-fold. On the one hand, it defines a vocabulary of terms to

denote classes and properties that are familiar to the user.

On the other hand, it extends the data with background knowl-

edge, such as sub-class and sub-property axioms, axioms es-

tablishing which classes constitute the domain and range of

properties, and axioms expressing the disjointness between

classes or properties.

The data in a KG consists of a set of data assertions that use

the vocabulary of classes and properties provided in the

ontology. Data assertions are often obtained by mapping the

data stored in various data sources to the terms of the ontology

vocabulary. Intuitively, a mapping can be thought of as a

collection of queries that are used to construct the data asser-

tions of the ontology by retrieving the necessary data from the

sources.

The data sources are typically legacy systems andmight come

in different forms, such as relational databases (DBs), or as files

in various formats (such as CSV, XML, JSON, or proprietary for-

mats). For the purpose of this tutorial, we assume to deal with a

single relational data source. To deal with multiple heteroge-

neous data sources one can resort to a data federation tool,

such as Denodo,5 Dremio,6 or Teiid,7 which expose such sour-

ces as if they were part of a single relational DB.
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KGs, through an explicit and non-ambig-

uous representation of the semantics of

the data, promote:

d interoperability among different sci-

entific data platforms (e.g., GDC8

and ELIXIR,9 resources (e.g.,

UBERON10 and CHEBI,11 and data

models (e.g., SBML12 andBioPAX13);

d scientific reproducibility and replica-

bility of experimental studies;

d knowledge discovery and data min-

ing practices by exposing a concep-

tually sound view over a multiplicity

of distinct and possibly non-interop-

erable data sources, therefore

reducing the negative impact of

inputting nonsensical or inconsistent

data into statistical models and

learning algorithms;

d enrichment of the information origi-

nally present in the data sources

through the application of reasoning

techniques that combine domain

knowledge and data assertions.

In a virtual knowledge graph (VKG),14,15

the data assertions are not materialized in
a separate data store, but their presence in the KG is only virtual.

Systems operating on VKGs are able to retrieve the data directly

from the data sources only when it is required for a particular user

query. In fact, query processing is delegated to the data sources.

This is achieved by unfolding themappings, thus translating user

queries into queries over the data sources, while taking into

account also the ontology background knowledge through a

so-called query-rewriting step. The advantage of VKGs is that in-

formation is always fresh and up-to-date with the data sources.

Despite the advantages of the virtual approach, it is some-

times convenient to actually materialize the data assertions. In

such a case, we talk about materialized knowledge graphs

(MKGs). The main advantage of MKGs over VKGs is that usually

a better performance in query answering can be achieved, espe-

cially in those situations where mappings are very complex and

thus the unfolding of the virtual approach would give rise to com-

plex queries over the data sources. This comes at the cost of

maintaining a potentially very large MKG.

Figure 1 shows the conceptual framework of KGs, in both the

materialized and virtual flavors. The elements of the KG frame-

work are expressed in formal languages standardized by the

World Wide Web Consortium (W3C), specifically: the KG in

RDF,16 the ontology in OWL 2 QL,17 the mapping in R2RML,18

and the query in SPARQL.19

In this tutorial we make use of the VKG system Ontop20,21 to

set up a KG in the biomedical domain, specifically in the area

of cancer research.



Figure 2. EasyBgee data schema (portion)
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We observe thatOntop has been conceived as a VKG system,

but it offers also functionalities for materializing a KG from a VKG

specification consisting of an ontology, a relational data source,

and a mapping between the two.

All the material used in this tutorial, as well as full details for its

usage, are available in an online GitHub repository.22

Related work on VKG systems
Among the open-source VKG systems,Ontop is one of the most

popular (with over 30K+ downloads in the past 5 years, accord-

ing to Sourceforge). Ontop is a state-of-the-art VKG system

initially developed by the Research Center for Knowledge and

Data (KRDB) at the Free University of Bozen-Bolzano, and

currently maintained as a community effort, involving both aca-

demic institutions and companies (most notably, Birkbeck Uni-

versity of London and Ontopic S.R.L.). The system has been

adopted in many academic projects (most notably, the two

European projects FP7 Optique23 and H2020 INODE24), and it

also has a number of commercial deployments, such as the

UNiCS open data platform by SIRIS Academic25 (Spain) and

the Open Data Hub Virtual Knowledge Graph project for publish-

ing tourism data of South Tyrol (Italy). All the authors of this tuto-

rial have a profound expertise in the system, some being the

maintainers since its inception.

An overview of popular commercial and non-commercial

VKG systems, as well as a comparison between Ontop and

other systems, goes beyond the scope this work. For such as-
pects, we refer the interested reader to the vast scientific liter-

ature.15,26–29

THE EasyBgee DATASET

Gene expression is a key process to understand the relations be-

tween genes and their function. It indicates or mediates the gene

implication in functions, disease development, and organism,

species or gene diversity. In this context, the Bgee DB30 is a pub-

lic relational DB that consolidates and curates heterogeneous

gene expression data sources.31

Figure 2 illustrates the data schema of the EasyBgee DB

(which is available as a MySQL dump32,33), a simplified version

of the Bgee DB. Currently, EasyBgee 14.2 contains gene expres-

sion data of 29 species. In this tutorial, we consider a subset of

EasyBgee to explain and demonstrate the main principles of

the KG approach to data integration and data access. This sub-

set has exactly the same data schema as the entire EasyBgee

DB, however, with considerably fewer data. It solely includes

data related to 129 genes out of 17,559 in the fruit fly species

(i.e., Drosophila melanogaster). As a result, this subset corre-

sponds to less than 8 MB of data when serialized in a MySQL

or PostgreSQL dump text format. The DB subset dump is avail-

able for download in the GitHub repository of the tutorial.

As shown in Figure 2, EasyBgee consists of 6 tables, 29 col-

umns, and 6 foreign key constraints (represented with arrows).

We provide a brief description of the tables:
Patterns 2, October 8, 2021 3



Table 1. The namespace prefixes used in this tutorial

Prefix Namespace IRI

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

owl: http://www.w3.org/2002/07/owl#

xsd: http://www.w3.org/2001/XMLSchema#

orth: http://purl.org/net/orth#

up: http://purl.uniprot.org/core/

obo: http://purl.obolibrary.org/obo/

dcterms: http://purl.org/dc/terms/

genex: http://purl.org/genex#

oma: http://omabrowser.org/ontology/oma#

IRI, internationalized resource identifier.
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d the anatentity table contains data about anatomic en-

tities, such as organs (e.g., ‘‘brain’’);

d the stage table describes developmental stages related

to several species (e.g., the ‘‘egg stage’’);

d the gene table contains the gene names and descriptions

from different species;

d the species table contains information about animal spe-

cies, such as their scientific and common names;

d the globalcond table contains the experimental condi-

tions of a gene expression analysis, such as the species,

its developmental stage, and the anatomical entity consid-

ered in the analysis;

d the globalexpression table contains the gene expres-

sion patterns by relating with a score a gene to an experi-

mental condition where the gene is expressed or absent.
SETTING UP A VKG

In this section we discuss how to set up an instance of a VKG

system by means of a concrete use case coming from the

domain of bioinformatics.

Gene expression ontology
A crucial step in the deployment of a VKG system consists in the

design or re-use of an ontology that suitably represents the im-

plicit semantics of the underlying data. For the sake of the pre-

sent tutorial, in the gene expression domain we highlight the

gene expression ontology (GenEx),34 which is specifically de-

signed to structure gene expression data from DBs, such as

EasyBgee. In addition to new terms defined in the ontology itself,

GenEx imports terms from different vocabularies, such as

relation ontology (RO).35 As an example, GenEx imports

from RO the ‘‘expressed in’’ property (actually identified by

obo:RO_0002206) and its inverse property ‘‘expresses’’ (iden-

tified by obo:RO_0002292). Examples of data assertions using

these properties are: ‘‘the insulin gene is expressed in the body of

pancreas,’’ and its inverse statement, ‘‘the body of pancreas ex-

presses the insulin gene.’’ Moreover, GenEx specializes the RO

‘‘expressed in" property by defining genex:isExpressedIn

as its sub-property with a specific domain and range (see

also the bottom part of Figure 4). The domain and range of

genex:isExpressedIn include orth:Gene and genex:
Patterns 2, October 8, 2021
AnatomicalEntity, respectively. Therefore, we can assert

that a gene is expressed in an anatomical entity (e.g., the body

of the pancreas) using the genex:isExpressedIn property

and automatically infer a more general statement about its RO

super-property. Similar definitions in the ontology contribute to

enhance interoperability because different ontology terms (RO

and GenEx specific) can be interchangeably used to retrieve

gene expression calls. Notice that all terms are prefixed with la-

bels that indicate the ontology they were originally defined in and

that allow for compact identifiers (called URIs, in RDF terminol-

ogy). The prefixes used in the present article, such as genex:

and orth:, are defined in Table 1.

Furthermore, GenEx reuses other ontology terms not only as

part of its terminology but also as part of the data assertions

by acting as a controlled vocabulary. For example, in GenEx,

the Uber-anatomy (UBERON) ontology classes are considered

as instances of the classes genex:AnatomicalEntity or

efo:EFO_0000399 (i.e., ‘‘developmental stage’’) by punning.36

The classes of the species-specific developmental stage ontol-

ogies37 are also considered as instances of the efo:EFO_

0000399 class, which has been imported from the experimental

factor ontology (EFO).38 Therefore, these controlled vocabulary

terms are assigned as specific values of the genex:is

ExpressedIn property. As a result, we enhance semantic

and data interoperability with other data sources that also

adhere to the same controlled vocabularies. For example, while

re-using the term obo:UBERON_0000955 (labeled as ‘‘brain’’) in

our data assertions, we know that we are referring without any

ambiguity to the very same organ as the one defined in the

UBERON ontology. Notice also that, by applying the above strat-

egy, we enable the enrichment of the information coming from

the original data sources with further assertions coming from

the ontology specification. For example, this enrichment allow

us to retrieve the UBERON data assertions, such as cross-refer-

ences (i.e., similar terms), related synonyms, and ‘‘part of’’ asser-

tions (e.g., ‘‘the brain is part of the central nervous system’’) that

are not available in the original data source (e.g., EasyBgee). For

further details about GenEx, please consult its documentation.34

Mapping EasyBgee to GenEx
The second main step in deploying a VKG system consists in the

specification of its mapping. If we consider the EasyBgee data

source, we can observe that for each of its tables there is at least

one corresponding class in GenEx. Now, to populate GenEx us-

ing a system, such asOntop, we need to define suitablemapping

assertions from the tables we are interested in to their corre-

sponding classes and properties in the ontology. Each of these

mapping assertions consists of three components:

1. Themapping identifier, which uniquely identifies the map-

ping assertion.

2. The source part, which is an ordinary SQL query ex-

pressed over the (relational) data source.

3. The target part, consisting of a set of RDF triple patterns

that make use of the answer variables of the SQL query

in the source part. Such answer variables are written by

enclosing them in curly brackets ‘{’ and ‘}’.

obo:{anatEntityIdSPARQL} a

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2001/XMLSchema#
http://purl.org/net/orth#
http://purl.uniprot.org/core/
http://purl.obolibrary.org/obo/
http://purl.org/dc/terms/
http://purl.org/genex#
http://omabrowser.org/ontology/oma#


Figure 3. Examples of Ontop mapping
assertions from the EasyBgee relational DB
to a KG based on gene expression ontology
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genex:AnatomicalEntity .

obo:{anatEntityIdSPARQL} dcterms:description

{anatEntityDescription} .

obo:{anatEntityIdSPARQL} rdfs:label

{anatEntityName} .

The meaning of such a mapping assertion is that it constructs

a portion of the KG as specified in the target part, by retrieving

the required data from the data source through the SQL query

in the source part. More specifically, for each answer tuple t
!

re-

turned by such SQL query, the triples in the target part are as-

serted to hold in the KG constructed by the mapping. These tri-

ples are obtained by substituting in the triple pattern each SQL

answer variable (enclosed in ‘{’ and ‘}’) with the corresponding

value in the answer tuple t
!
. We remark that, when the KG is kept

virtual, the triples are actually not constructed, but SPARQL

queries are answered over the VKG (as if they were evaluated

over such triples) by unfolding them to (SQL) queries over the

data source.

Let us also notice that the mappings that are introduced in this

tutorial are specified in the Ontop native mapping language,

which is easier to learn and use. However, Ontop allows users

to convert native mappings into R2RML mappings and vice

versa, and the R2RML version of the mappings introduced

here is available in the tutorial GitHub repository.

To illustrate the use of mappings, let us consider the mapping

assertion depicted in the upper part of Figure 3, between the

EasyBgee DB and the GenEx ontology:

1. The mapping identifier is AnatomicalEntity.

2. The source part is an SQL query over the relation anat

Entity, with answer variables anatEntityId, anat

EntityIdSPARQL, anatEntityName, and anat

EntityDescription (see also the data schema in

Figure 2).

3. The target part consists of the following three RDF triple

patterns, which refer to the answer variables of the SQL

query (shown in violet, in Figure 3).
Notice that in Figure 3 we have used the standard abbreviated

notation for RDF triple patterns (and triples), where one avoids to
repeat the subject in multiple triples with

the same subject, by separating these tri-

ples with ‘; ’ (instead of ‘.’).

When designing the mapping, we can

take advantage of SQL functions and ex-

isting ontologies to deal with potential se-

mantic and data heterogeneity in the

source data. As illustrated in Figure 3, we

use the SQL function replace() to

modify the anatomical entity identifiers

stored in the anatEntity table by

replacing each ‘:’ with ‘_.’ In addition,
we prepend the obo: prefix to the modified ids in order to obtain

the exact corresponding UBERON term, such as the obo:U-

BERON_0000955 term labeled as brain. Another example is a

mapping assertion for the species table, where we use the

SQL function concat() to concatenate the values from the

two columns species.genus and species.

species into a single value, which is then assigned as a value

for the property up:scientificName of a species from the Uni-

Prot core ontology,39 which GenEx imports.

A relevant feature that we can exploit when designing ontology

and mapping in the VKG approach is the possibility to semanti-

cally enrich the original data sources by making implicit informa-

tion explicit. To illustrate such semantic enrichment, let us

consider the second mapping assertion in Figure 3. There is

no foreign key constraint in the original DB directly relating

a gene (in the gene table) to an anatomical entity (in the

anatentity table), as shown in Figure 2. Moreover, there is

no column or table stating the explicit relation between

genes and anatomic entities, as the one defined in the

GenEx ontology by means of the genex:isExpressedIn

property. Nonetheless, by means of the mapping assertion

with id Gene_IsExpressedIn_anatEntity, the VKG

system is able to assert genex:isExpressedIn properties

(between instances of the classes orth:Gene and genex:

AnatomicalEntity). In addition, thanks to the reasoning ca-

pabilities of Ontop and the sub-property and inverse property

axioms in the GenEx ontology discussed in the section ‘‘The

gene expression ontology’’ (see also bottom part of Figure 4),

the system automatically derives also data assertions for the

property obo:RO_0002292 (i.e., ‘‘expresses’’). This is because

genex:isExpressedIn is a sub-property of the inverse of

obo:RO_0002292. Therefore, although we explicitly specified

only amapping assertion for the genex:isExpressedIn prop-

erty, when the VKG system retrieves the corresponding data

assertions, due to its reasoning capabilities, it infers also data as-

sertions for the property obo:RO_0002292.

Similarly to inferences concerning the RO property ‘‘ex-

presses,’’ via reasoning the VKG system is also capable of infer-

ring instances of equivalent classes, i.e., classes that have been

aligned in the ontology by means of owl:equivalentClass36

statements. For example, GenEx states that orth:Gene from
Patterns 2, October 8, 2021 5



Figure 4. Class view and property view of
Protégé
The top part of the figure shows the class view of
Protégé. The selected class obo:SO_0000704 has
been declared to be as equivalent to the class
orth:Gene. The bottom part of the figure shows
the property view of Protégé. The selected property
genex:isExpressedIn has been declared as a
sub-property of obo:RO_0002206 and inferred as
a sub-property of the inverse of the obo:R0_
0002292 property. This inference occurs because
obo:RO_0002206 is explicitly defined as the in-
verse of obo:R0_0002292.
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the othology ontology (ORTH)40 and obo:SO_0000704 (which

stands for ‘‘gene’’) from the sequence ontology (SO) are equiva-

lent, as shown in the top part of Figure 4. Therefore, the instances

of one concept are also instances of the other one and vice

versa, although in the VKG specifications we include only a map-

ping assertion for the orth:Gene concept. As a result, we can

interchangeably use orth:Gene and obo:SO_

0000704, and consider them as synonyms (see query 2 in

‘‘Querying the KG’’).

Designing the ontology and mapping
As we have seen in the previous section, to enable the VKG

approach one needs an ontology describing the domain of inter-

est and a mapping populating such ontology starting from the

content of the database.

Designing an ontology is not an easy task, and in many

domains (e.g., the biomedical one) ontologies are developed
6 Patterns 2, October 8, 2021
independently by trained experts and are

already available to be re-used. However,

if a domain ontology that suits the user re-

quirements is not available, the user can

rely on the open-source tool Protégé

shown in this tutorial, which provides a

graphical interface that helps in designing

an ontology from scratch or in modifying

an already existing one. Protégé also

comes with a set of plugins for debugging

and visualizing the ontology, and inte-

grated reasoners that help the conceptual

modeling activity.

Writing a mapping manually is a time-

consuming, error-prone task, and auto-

matic approaches to mapping generation

are still an open research topic. Notable

recent developments in this area involve

both foundational research41,42 and imple-

mented systems.41,43

QUERYING THE KG

We are now ready to query the KG, created

as described in the previous sections,

through the SPARQL query language,

a W3C recommendation for querying

KGs.19 We rely on the Ontop plugin for

the ontology editor Protégé,44 which pro-
vides a graphical user interface both for managing the mapping

between a DB and an ontology, and also for specifying and

executing queries over the resulting KG specification in the vir-

tual setting. The Ontop plugin visualizes the result of the query

in a dedicated window.

We illustrate themain ideas behind query answering over a KG

on three example queries.

Query 1
The queryQ1 shown in Figure 5 asks for the gene information that

is associated to a given gene name, in this case the ‘‘boss’’ (the

bride of sevenless) gene product that acts as a ligand for the sev-

enless tyrosine-kinase receptor during eye development.45

Figure 5 shows the graphical interface provided by the Ontop

plugin for Protégé for formulating SPARQL queries and visual-

izing the result of their execution. The bottom part of the window

shows the result of the execution of Q1, which in case is a single



Figure 5. SPARQL query interface of the Ontop plugin for Protégé
Query 1 and the result of its execution are shown.
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set of bindings for the three answer variables of the

SPARQL query.

Query 2
The following query Q2 retrieves the anatomical entities, such as

organs, where the gene labeled "boss" is expressed. We

observe that results are still returned, although Q2 asks for indi-

viduals of the non-mapped class obo:SO_0000704. This hap-

pens since the ontology states that obo:SO_0000704 (which

is labeled as gene) from SO is equivalent to the class orth:-

Gene from ORTH, and reasoning over the ontology axioms is

applied. Intuitively, this happens by rewriting the query into one

that uses the term orth:Gene, instead of obo:SO_0000704,

and by retrieving results also for this rewritten query. Therefore,

we can interchangeably use both terms, although we only wrote

a mapping assertion for orth:Gene. As already mentioned in

the previous section, this simplifies the design of the mapping,

because it allows one to avoid to extensively and explicitly write

a mapping assertion for each term in the ontology.

SELECT DISTINCT ?organ {

VALUES ?gene_name {"boss"}

?gene a obo:SO_0000704 ;
# equivalent to orth:Gene

rdfs:label ?gene_name ;

genex:isExpressedIn ?organ .

?organ a genex:AnatomicalEntity .

}

Query 3
Consider now the following query Q3, which retrieves all genes

expressed in the brain.

SELECT ?gene_name ?gene_page {

?organ obo:RO_0002292 ?gene ;

rdfs:label "brain" .

?gene rdfs:seeAlso ?gene_page ;

rdfs:label ?gene_name .

}

By reasoning over the axioms that state sub-properties and in-

verse properties in the ontology, we can safely expect to get re-

sults forQ3, althoughwe did not introduce in the VKG systemany

specific mapping assertion for the property obo:RO_0002292

used in the query. In this context, we exploit the axioms

stating that obo:RO_0002292 is the inverse property of

obo:RO_0002206, and that genex:isExpressedIn from
Patterns 2, October 8, 2021 7
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Genex is a sub-property of the latter. Similarly to what happened

for Q2, the query-rewriting algorithm enriches Q3 with a

query making use of genex:isExpressedIn instead of

obo:RO_0002292, and since we introduced in the VKG system

a mapping assertion for genex:isExpressedIn, we can

obtain indeed answers using the data stored in the underly-

ing DB.

DEPLOYMENT

Once the VKG has been developed, we can also make it avail-

able to external users. To do so, we can follow two approaches:

(1) materialize the RDF triples into a file, which can then be up-

loaded to a file server and downloaded by other users; (2) set

up an SPARQL endpoint so that users can query it. We now

discuss these two options.

Materialization
For VKGs over a dataset of small size, one can use the Ontop

plugin for Protégé to materialize the triples that make up the

KG. Otherwise, it is recommended to use the command line

interface (CLI) of Ontop. To do so, one can download Ontop

CLI, unzip it, and invoke Ontop passing it the ‘‘materialize’’

directive. For example, to use the files provided in the online Gi-

tHub repository accompanying this tutorial, one can issue the

following command (the –ontology and –mapping options

are used to specify the files containing, respectively, an OWL 2

QL ontology and a set of mapping assertions (in the specific On-

top syntax), while the file supplied with the –properties option

contains the connection parameter for the DB):

ontop materialize \

–ontology=bgee_v14_genex.owl \

–mapping=bgee_v14_genex.obda \

–properties=bgee_v14_genex.properties \

–output=bgee_v14_genex.ttl

Then the triples are materialized into the file bgee_v14_ge-

nex.ttl. Such a file can be shared and further analyzed, or it

can be loaded into a triple store.

SPARQL endpoint
Setting up a SPARQL endpoint makes the VKG queryable as a

standard HTTP service. This can be done either through a

manual setup using the CLI of Ontop, or through a container-

based deployment using Docker. We discuss now both options.

Using the CLI on Ontop
The following command starts the SPARQL endpoint andmakes

it available at URL http://localhost:8080/sparql.

ontop endpoint \

–ontology=bgee_v14_genex.owl \

–mapping=bgee_v14_genex.obda \

–properties=bgee_v14_genex.properties \

–portal=bgee_v14_genex.toml

The SPARQL endpoint may be accessed using any HTTP

client, including SPARQL clients and tools using the standard

SPARQL HTTP protocol. For instance, using curl46:

curl –request POST \

–urlhttp://localhost:8880/sparql\

–header ’accept: application/json’ \

–header \
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’content-type: application/sparql-query’ \

–data ’SELECT * { ?s ?p ?o } LIMIT 5’

The endpoint also comes with a handy web interface at http://

localhost:8080, where users can formulate SPARQL queries.

Using the Ontop Docker image

Wehave also developed aDocker-based deployment (defined in

the docker-compose.yml file), which consists of two services:

one for the MySQL DB, and another for the Ontop SPARQL

endpoint. With this setup, one avoids manually configuring the

MySQL DB and installing Java and Ontop. Instead, the following

single command starts the whole tutorial, with the same services

as those offered by the CLI:

docker-compose up

CONCLUSIONS

In this tutorial we have learned how to set up and exploit the VKG

approach to access data stored in relational legacy systems, and

to enrich such data with domain knowledge coming from

different heterogeneous (biomedical) resources. Specifically,

we have shown how the gene expression ontology can be map-

ped to the EasyBgee database to expose its content as a KG,

and how to query such a KGbymeans of the VKG systemOntop.

All the software artifacts presented in this tutorial (ontology,

mappings, data, etc.) are available through the online re-

pository.22
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