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MHC-I upregulation safeguards neoplastic
T cells in the skin against NK cell-mediated
eradication in mycosis fungoides
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Cancer-associated immune dysfunction is a major challenge for effective
therapies. The emergence of antibodies targeting tumor cell-surface antigens
led to advancements in the treatment of hematopoietic malignancies, parti-
cularly blood cancers. Yet their impact is constrained against tumors of
hematopoietic origin manifesting in the skin. In this study, we employ a
clonality-supervised deep learning methodology to dissect key pathological
features implicated in mycosis fungoides, the most common cutaneous T-cell
lymphoma. Our investigations unveil the prominence of the IL-32β–major
histocompatibility complex (MHC)-I axis as a critical determinant in tumor
T-cell immune evasion within the skin microenvironment. In patients’ skin, we
findMHC-I to detrimentally impact the functionality of natural killer (NK) cells,
diminishing antibody-dependent cellular cytotoxicity and promoting resis-
tance of tumor skin T-cells to cell-surface targeting therapies. Throughmurine
experiments in female mice, we demonstrate that disruption of the MHC-I
interaction with NK cell inhibitory Ly49 receptors restores NK cell anti-tumor
activity and targeted T-cell lymphoma elimination in vivo. These findings
underscore the significance of attenuating the MHC-I-dependent immuno-
suppressive networks within skin tumors. Overall, our study introduces a
strategy to reinvigorate NK cell-mediated anti-tumor responses to overcome
treatment resistance to existing cell-surface targeted therapies for skin
lymphoma.

Therapeutic approaches harnessing immune responses are hall-
marks of modern oncology. Monoclonal antibodies (mAbs), spe-
cialized proteins designed to target tumor cell-surface antigens,
have emerged as agents capable of eliminating malignant cells
and inducing disease remission1,2. In addition to inducing tumor-
cell apoptosis, therapeutic mAbs initiate immune effector sig-
naling cascades that rely on the complement system and natural

killer (NK) cell-mediated antibody-dependent cellular cytotoxicity
(ADCC) as anti-cancer modes of action.

Mycosis fungoides (MF), a malignancy of skin-homing T cells,
represents the most common form of cutaneous T-cell lymphoma
(CTCL)3. Due to the high heterogeneity among malignant T cells in
CTCL, both intra- and inter-individually4–7, there is no single specific
marker to unequivocally identify CTCL tumor cells. However, T-cell
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receptors (TCRs), which are natural identifiers of T-cells, are routinely
used to define patient-specific malignant T-cell clones8–11.

Progressive impairment of cell-mediated immunity is a hallmark
of cancer, and in patients with CTCL, inadequate immune response has
been reported12. Tumorous T cells play a significant role in suppressing
the patient’s immune system, thereby blunting the response of other
immune cells that would otherwise mount an anti-tumor defense. This
impairment of cellular immunity may negatively affect all therapeutic
approaches that rely on a functional immune system. Modern
therapeutic strategies basedonmAbs that target specificT-cell subsets
or multiple blood cell lineages are now established for the treatment
of CTCL13,14. For instance, anti-CD52-mAb targets CD52, a pan-
lymphocytic transmembrane glycoprotein expressed on mature T
and B lymphocytes and a subset of monocytes and dendritic cells,
while anti-CCR4-mAb targets CCR4+ skin-homing lymphocytes. These
therapeutic mAbs are highly effective at treating blood tumoral dis-
ease in patients with Sézary syndrome (SS; also known as leukemic
CTCL, L-CTCL), with anti-CCR4-mAb treatment showing increased
efficacy in patients with high blood tumor burden15. Interestingly,
however, both mAbs have been shown to be less effective in treating
skin lesions in patients with MF16–20.

Immune checkpoint blockade represents a promising approach
to restore the anti-tumor responses of endogenous immune cells. NK-
cell inhibition-blocking mAbs acting as NK-immune checkpoint inhi-
bitors show great potential when combined with NK-mediated anti-
cancer therapy21. The anti-KIR2DL1/2/3-mAb-IgG4 targets inhibitory
KIR2DL1/2/3 receptors on NK cells and blocks their interaction with
human leukocyte antigen (HLA)-C (classical MHC-I), thereby enhan-
cing NK-mediated anti-tumor activity22,23. Likewise, the anti-NKG2A-
mAb-IgG4 targets inhibitory NKG2A receptors onNK cells and disrupts
their interaction with HLA-E (nonclassical MHC-I), strengthening NK-
mediated anti-tumor responses24,25. Both anti-KIR2DL1/2/3-mAb-IgG423

and anti-NKG2A-mAb-IgG426 have demonstrated the enhancement of
NK-mediated ADCC and anti-tumor immunity.

In this study, we functionally characterize the tumor intrinsic
factors responsible for impaired cellular immunity and resistance to
skin therapies. We perform single-cell sequencing of skin T cells from
patients with MF patients, mathematically reconstruct the TCRs of
individual T cells, and categorize them into clonal and non-clonal
groups based on TCR similarity. Using a clonality-supervised deep
learning methodology, we develop a neural network logistic regres-
sion (NN-log-reg)machine-learning (ML)method to predict key tumor-
related genes. Functional analysis of these genes reveals a high
expression ofMHC-I, potentiated by interleukin (IL) 32β, on skin tumor
T cells as a mechanism rendering targeted therapy ineffective in MF.
We confirm the relevance of these findings both ex vivo and in vivo.

Results
A clonality-guided deep learning approach to identify genes
with predictive value for cancer in skin tumor T cells
Within MF lesions, the population of skin T cells consists of both
malignant T cells and a variable count of benign bystander skin
T cells27,28. For a thorough analysis of the skin tumor-specific tran-
scriptome, we conducted single-cell RNA sequencing (scRNA-seq) on
total T cells isolated from MF skin lesions and blood of MF patients
with blood involvement, as well as T cells from healthy individuals, all
pre-enriched using fluorescence-activated cell sorting (FACS) for live
CD45+/CD3+ T cells. Leveraging TCR sequences as inherent clonality
markers, we implemented a computational approach to segregate
T cells from MF skin lesions into distinct clonal malignant and non-
clonal, heterogeneous bystander T-cell populations. This was achieved
bymathematically reconstructing complete, pairedα and β sequences
of the TCR for each individual cell and subsequent use of these
sequences as labels for clonality-guided deep learning approach. This
served as the foundation for trainingMLmethods to detect genes with

predictive value for cancer in skin tumor T cells. Furthermore, it
allowed for subsequent single-cell RNA transcriptomic analysis and
predictions of disease-specific clinical outcomes at the level of indivi-
dual T cells (Fig. 1a).

We conducted scRNA-seq using the Fluidigm C1 platform, known
for its superior sensitivity and high-quality results29, particularly apt for
TCR reconstruction and concurrent transcriptome analysis of indivi-
dual T cells. However, amajor constraint of the FluidigmC1 platform is
its capacity to capture and process a maximum of 96 individual cells
per sample. Consequently, with this method, we were able to profile a
cumulative count of no more than 1174 high-quality T cells extracted
from 17 tumor skin lesions belonging to 14 patients with MF. Addi-
tionally, we collected 573bloodT cells from threeout of the 14patients
with MF who exhibited blood involvement and 192 T cells from four
healthy individuals. The clinical characteristics of the patients are
provided in Supplementary Table 1.

The cell capture rate reached 87.2%, with a corresponding quali-
fication rate of 90.7% among the captured cells. The TCR reconstruc-
tion rates were 48.1% for the α chain and 71.8% for the β chain
(Supplementary Table 2). T cells that successfully passed the FastQC
control exhibited a low mitochondrial content and a high number of
detected genes (Supplementary Fig. 1a). Healthy T cells demonstrated
the expected high level of TCR diversity in their V-(D)-J combinations.
In contrast, skin T cells from patients with MF displayed dominance in
at least one V-(D)-J combination, signifying the presence of malignant
clones. “ImMunoGeneTics” (IMGT), serves as an established resource
offering a standardized nomenclature for genes and alleles, encom-
passing diverse variable immune structures, such as TCRs. According
to the IMGT gene nomenclature, each human variable α-/β- chain of
the TCR protein is precisely designated by a corresponding TCRα/β V
gene (TRAV-/TRBV-). To visually represent the protein-level aspects of
the computationally defined dominant TCRβ sequence within the
primarymalignant T-cell clone,we relied on the IMGTnomenclature to
specify the exact Vβ protein segments on the surface of T cells (Sup-
plementary Table 3). This methodology allowed us to conduct Vβ
clonality assessment using flow cytometry for each patient sample.
Among the 14 patients with MF, the corresponding TCR Vβ protein
chain aligned with the predominant V gene was readily visualized in 10
cases (Supplementary Fig. 1b). In the case of the remaining 3 out of 4
patients, identification of the malignant clones relied solely on math-
ematical TCR reconstruction, underscoring the enhanced sensitivity of
the sequencing approach for detecting T-cell clonality (Supplementary
Table 3). Mathematical TCR reconstruction achieved a detection rate
of 92.9% (13 out of 14) formalignant clones (Fig. 1b), outperforming the
recognition rate of 71.4% (10 out of 14) obtained through flow-
cytometric TCR Vβ chain detection. A single case (7.1%, 1 out of 14) did
not yield detection of a malignant clone using either method. Conse-
quently, this case has been excluded from subsequent analyses.

Subsequently, we established clonality criteria (see Methods),
allowing us to further categorize the T cells into two populations
linked to the main clone, namely “main-clone” and “related-to-main-
clone”, as well as two nonclonal bystander populations, referred to as
“bystander groups” and “single bystanders” (Fig. 1c; Supplementary
Fig. 2). After excluding CD8-expressing TCR-reconstructed T cells, the
classification yielded 63.8% of all CD4+ T cells in the “main-clone”, 17.1%
in the “related-to-main-clone”, and 6.1% and 13.1% in the “bystander
groups” and “single bystanders”, respectively.

For a comprehensive single T-cell RNA transcriptomic analysis of
skin T cells, we implemented a NN-log-reg model, an adaptive logistic
regression model for which the model weights were set with a neural
network, to identify genes with predictive potential for cancer in skin
MF tumor T cells (Fig. 1d). Given that T-cell clonality was primarily
inferred from TCR genes (clonality-guided approach), we omitted
all TCR genes from the analysis. First, we conducted a comparative
analysis of our NN-log-reg method with other machine learning
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approaches: a standard artificial neural network30 (sta-ANN), logistic
regression31 (log-reg), support vector machines31 (SVM), neural net-
work for interpretable classification of tabular data (tabnet32) and
gradient-boosted treemodel (XGBoost33). By training thesemodels on
skin cells from all patients, we observed thatmost models successfully
discerned the category of skin CD4+ T cells (Supplementary Fig. 3a).
The various machine learning methods displayed distinct learning

behaviors (Supplementary Fig. 3b). However, our NN-log-reg method
demonstrated superior performance compared to all other tested
approaches (Fig. 1e). It exhibited strong generalization and, notably,
maintained nearly equivalent performance on both the validation and
test sets (Fig. 1f). When assessing the robustness of the NN-log-reg
method, we identified a significant positive correlation between the
network’s prediction error and its precision (Supplementary Fig. 3c).
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We configured our NN-log-reg architecture to predict whether
each T cell derived from a patient with MF was either malignant or a
bystander, relying exclusively on non-TCR-related genes within the
transcript subset. Beyond ascertaining the distinction between malig-
nant and benign cell types, we additionally trained the NN-log-reg to
recognize all transcripts factored into its considerations for precise
predictions (Supplementary Fig. 3d). These predictions were exclu-
sively based on cells that were accurately classified. Among the sig-
nificant clonal genes identified, 79 were discerned by the training set,
and 50 were identified by the test set, with 48 genes overlapping
between both sets (Fig. 1g).

MHC-I is significantly upregulated onmalignant T cells fromMF
skin lesions
To gain mechanistic insights into the list of 48 overlapping and
important geneswith predictive value for cancer,weperformed a gene
set enrichment analysis. Two key pathways linked to tumor T cells in
MF were identified: (1) the MHC class I protein complex; and (2)
negative regulation of NK cell-mediated immunity (Fig. 2a).

For all 14 patients with MF, clinical characteristics and disease
stage were assessed at baseline (sample acquisition) and 5 years later
or at death, whichever came first (Supplementary Table 1). All patients
were diagnosed with early-stage disease (stage IA, IB or IIA) at the time
of sample collection. This prompted an exploration into transcriptome
dynamics in individual tumor cells. Single-cell transcriptomic analysis
depicted the disease progression of tumoral skin T cells based on the
real-timedisease stage that patients withMF reached either at death or
within a 5-year follow-up period. Leveraging this insight, we evaluated
the gene expression of some of the most important genes (identified
via the NN-log-reg method [Fig. 1g]) on their real-time disease stage
andobservednotable escalation in the expressionofMHC-I, IFITM1 and
IFITM2 as disease progressed (stage IIB-IV) compared to early stage
(stage I-IIA) (Fig. 2b).

Furthermore, this current analysis extended our recently pub-
lished single-cell RNA dataset [GSE173205]34, encompassing patch
(early stage) and plaque/tumor (late stage) skin lesions from three
patients with MF. This dataset, derived from 10X single-cell RNA
sequencing with TCR information, offered a substantial number of
sequenced single cells for identifying each patient’s malignant clone.
By comparing differentially expressed genes (DEGs) of malignant
clonal skin tumor T cells between patch and plaque/tumor lesions of
the three patients, we pinpointed genes that exhibited an increasewith
disease progression. This alternative approach to scRNA-seq using the
C1 Fluidigmplatformalso highlighted a statistically significant increase
in the expression of three classical MHC-I genes—HLA-A, HLA-B, and
HLA-C—in tumor T cells from plaque/tumor late-stage skin lesions
(Supplementary Fig. 4a).

To validate these findings functionally, we assessed the protein
expression levels of HLA-A, HLA-B, and HLA-C, the non-classical MHC-I

(HLA-E), aswell as IFITM1and IFITM2 inTcells derived frombothhealthy
skin and MF skin lesions using Western blot analysis. All three HLA-A,
HLA-B, and HLA-C exhibited a highly significant increase in expression
on T cells from MF skin lesions when compared to T cells from healthy
skin (Fig. 2c). While HLA-E also displayed a significant increase on T cells
from MF skin lesions, its expression remained lower than that of the
three classical MHC-I proteins (Fig. 2c). Given the minimal detectable
expression of the remaining two genes (IFITM1 and IFITM2) (Supple-
mentary Fig. 4b), they were excluded from subsequent analysis.

Consequently, we assessed classical and non-classical MHC-I
expression on bystander andmalignant T cells derived from both skin
and blood of three patients with late-stage MF and blood involvement
(L-CTCL) via flow cytometry. Interestingly, the mean fluorescence
intensity (MFI) of classical MHC-I (HLA-ABC) displayed a noteworthy
increase on skinmalignant T cells (Fig. 2f). However, the expression of
non-classical MHC-I (HLA-E) remained low, with no statistically sig-
nificant difference observed between samples (Fig. 2d; Supplementary
Fig. 4c). This observation directed our focus toward classical MHC-I
(HLA-ABC).

We used flow cytometric analysis to assess classical MHC-I
expression on viable bystander and malignant T cells derived
from both skin and blood of patients with MF and L-CTCL, as well as
benign T cells from the skin and blood of healthy individuals.
The proportion of classical MHC-Ihigh T cells was higher in the MF
malignant T-cell population compared to all other studied T-cell
populations (Fig. 2e). The mean fluorescence intensity (MFI) of clas-
sical MHC-I was most pronounced exclusively in MF skin malignant
T cells (Fig. 2f). Furthermore, we performed a comparative analysis of
different skin tumor types, such as basal cell carcinoma (BCC), squa-
mous cell carcinoma (SCC), cutaneous B-cell lymphoma (CBCL) and
melanoma (Fig. 2g). This confirmed our computational prediction for
clear and statistically significant upregulation of inhibitory classical
MHC-I protein specifically on malignant T cells from MF skin and
allowed us to postulate a skin- and T-cell lymphoma-specific finding.

Amoredetailed intra-individual pair-wise comparisonproved that
MHC-I is upregulated inmalignant T cells fromMF skin lesions in each
individual patient (Supplementary Fig. 4d). Moreover, CD45 expres-
sion remained comparable between bystander andmalignant T cells of
patients with L-CTCL and MF (Supplementary Fig. 4e); however, we
observed a tendency toward decreased CD3 expression on malignant
T cells (Supplementary Fig. 4f), as previously reported35.

The classical MHC-I molecule is not only important for antigen
presentation, but also as an inhibitory ligand for NK cells, key effectors
in tumor cell-surface antigen-targeted therapy (Supplementary
Fig. 4g). Indeed, our gene set enrichment analysis uncovered both
MHC-I and negative regulation of NK cell-mediated immunity as key
pathways linked to tumorT cells (Fig. 2a). Hence, we hypothesized that
classical MHC-I, highly expressed on tumor skin T cells, negatively
regulates NK cell-mediated immunity and ADCC activity in MF skin.

Fig. 1 | A clonality supervised deep-learning approach to identify cancer-
predicting genes in skin tumor T cells. a General experimental approach for
single T-cell sequencing and data analysis. Generation of scRNA-seq data from MF
skin lesions and healthy blood samples, FACS sorting and computational segre-
gation of total blood and skin T-cell populations using natural clonality identifiers,
the T-cell receptor sequences, as labels in a supervised approach. The artificial
neural network and single T-cell RNA transcriptomic analysis were subsequently
based on computational segregation of clonal and nonclonal skin T-cell popula-
tions. The co-author O.P. creates the schematic representations. TCR reconstruc-
tion and clonality rules. b The distribution of T-cell receptor β variable genes, as
determined by scRNA-seq data from clinical samples, demonstrates the hetero-
geneity of MF (N = 13 patients). Malignant clones in each sample are labeled as red;
the healthy sample (collected from N = 4 individuals) was used as a control.
c, Clonogram illustrating the classification of two clone‑related populations, ‘main-
clone’ and ‘related-to-main-clone’, and two nonclonal bystander populations,

‘bystander groups’ and ‘single bystanders’. The detailed illustrations of the clono-
grams refer to Supplementary Fig.2. ANN and single T-cell RNA transcriptomic
analysis of skin T cells (N = 825 cells from 13 patients).dArchitecture of the NN-log-
reg. M represents the original expression value of each gene in the initial list as
detected in the single T-cell sequencing, while A represents the importance for
prediction value of each gene in the important weights. e, The receiver operating
characteristic curve (ROC) of different MLmethods on the skin test set, composed
of cells from donors previously unseen by themodels. f The ROC of the NN-log-reg
method on skin in training, validation and test sets. g The 48 overlapping, cancer-
related genes identifiedby the training and test sets of NN-log-regmethod in tumor
skin T cells. The x axis indicates the percentage of cells for which the specific gene
(on the y axis) is among these top 0.5% in the ‘feature importance’ list. For instance,
a value of 100% for “gene A” means that “gene A” is among the top 0.5% of
‘important genes’ for 100% of correctly classified cells. Source data are provided as
a Source Data file.
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Classical MHC-I negatively impacts NK cell-mediated ADCC
activity against malignant T cells in the skin
Therapies that rely on ADCC are effective against hematopoietic
tumors, particularly B-cell malignancies. Anti-CD20-mAb, which tar-
gets the B-cell surface marker CD20, provides a documented clinical
response against skin-limited B-cell tumors36,37, and this activity of
depleting B cells in the skin is paralleled by depletion of B lymphocytes
in the blood (Fig. 3a).

Conversely, T-cell tumors in the skin do not respond well to
therapies targeted against tumor cell-surface antigens. Skin-limitedMF
has only a moderate response to both anti-CD52-mAb and anti-CCR4-
mAb, even though the targeted CD52+/CCR4+ lymphocyte population
is successfully depleted in the blood (Fig. 3b)16,19,38,39. In a rare clinical
case of advanced MF, B-cell–specific CD20 was aberrantly expressed
on tumor skin T cells (Supplementary Fig. 5a, b); this prompted the

initiation of anti-CD20-mAb therapy as a personalized treatment.
While this treatment depleted B lymphocytes in the blood, skin
symptoms worsened after treatment initiation, despite apparent
reduced CD20 expression on skin tumor cells (Fig. 3c; Supplemen-
tary Fig. 5c).

NK cells play a crucial role as effector cells in ADCC40, and their
presence within the skin is pivotal for the efficacy of treatment. For
insights into the proportion of skin NK cells across healthy skin and
various skin disorders, we analyzed our previously published and now
publicly available single-cell RNA datasets, encompassing MF
[GSE17320534 and GSE16562341], atopic dermatitis [GSE22284042], BCC
[GSE18190743] and CBCL [GSE17382044]. We defined NK cells using the
gene signature comprising NKG7, KLRB1, KLRC1, KLRD1, KLRK1, CD7,
GZMB, GNLY, NCAM1, GZMH, CCL4, IFNG, CCL4L2, FCGR3B, and FCGR3A
(Supplementary Fig. 6a). The average percentage of skin NK cells within
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the immune-cell population was ~2%, with no significant variance
observed between diseases (Supplementary Fig. 6b). Next, employing
multiparameter immunofluorescence staining, we visualized the NK
cells in both healthy andMF skin lesions (Fig. 3d). In the studied lesions,
the average percentage of NK cells was higher in the skin from patients
withMF compared to healthy individuals (Fig. 3e). Histologically, CD56+

NK cells were readily distinguishable amid tumor T cells in MF skin
lesions (Supplementary Fig. 6c). For in vitro experiments, we isolated
viable total skin single cell suspensions and specifically sorted theCD45+

lymphocyte population from MF skin lesions. We then segregated
malignant and bystander skin T cells based on patient-specific TCR Vβ
expression and skin NK cells using CD3– and CD56+ expression (Fig. 3f).

Functional analysis showed, while autologous NK cells effectively
initiated an ADCC response against L-CTCL blood tumor T cells, their
ADCC potency against MF skin tumor T cells was compromised
(Fig. 3g). More specifically, autologous skin NK cells elicited a potent
ADCC response against both healthy andMFbystander T cells, yet this
response was suppressed against MF malignant T cells (Fig. 3h).
Microscopically, ineffective ADCC activity resulted in a lack of visible
activity clusters against MF skin T cells, irrespective of the con-
centration of the therapeutic antibody. At the same time, the presence
of activity clusters visibly and concentration-dependently increased as
amarker for effectiveNK cell-mediatedADCC againstmalignant T cells
from L-CTCL blood (Supplementary Fig. 7a).

Drawing from these findings, we postulated a significant role in
this mechanism for the prominently expressed classical MHC-I on
tumor skin T cells. Our hypothesis gained additional support as we
excluded alternative resistance mechanisms. For example, we ruled
out trogocytosis, a process that can hinder ADCC by cleaving the tar-
geted antigen of tumor cells (Supplementary Fig. 7b, c). Furthermore,
we evaluated the presentation and effectiveness of the complement
systemactivation inducedby targeted therapy. In patientswith L-CTCL
and MF, serum C1q levels and the functionality of complement-
dependent cytotoxicity (CDC) did not significantly differ from those
observed in healthy individuals (Supplementary Fig. 7d, e). Therefore,
and building upon our earlier findings, we focused on investigating
whether blocking classical MHC-I could restore NK cell functionality
against malignant T cells from MF skin lesions.

Classical MHC-I blockade restores NK cell-mediated ADCC
activity against malignant T cells in MF skin lesions
In vitro, the inhibition of classical MHC-I effectively reinstated ADCC
activity in autologous NK cells against MF malignant T cells (Fig. 4a).

This confirmed the functional relevance of our findings and validated
our initial hypothesis.

To further decipher this phenomenon,weused carboxyfluorescein
succinimidyl ester (CFSE) to label NK cells, which emitted green fluor-
escence, while benign and MF malignant T cells were marked with Far
Red dye (red fluorescence). We observed discernible clusters of activity
emergedwithin theautologousNKcell group, signifying effectiveADCC
responses. These clusters revealed thatMFmalignant T cells, opsonized
by a cell surface-targeted antibody, were encircled by autologous NK
cells during classical MHC-I blockade, facilitated by either anti-classical-
MHC-I IgG or anti-classical-MHC-I F(ab’)2 (Fig. 4b). Furthermore, the
corresponding ADCC activity measurements for each group demon-
strated that the visible clusters accounted for the majority of the ADCC
response (Fig. 4c).

These results unequivocally validated the restoration of NK
cell-mediated ADCC activity against MF malignant skin T cells
through classical MHC-I blockade. However, due to the essential
role of classical MHC-I in antigen presentation, directly inhibiting
classical MHC-I on skin tumor T cells is not viable in practical real-
world scenarios. To overcome this challenge, a promising solution
lies in targeting inhibitory killer cell immunoglobulin-like receptors
(KIRs) on NK cells. This approach holds significant potential to dis-
rupt the interaction between classical MHC-I and KIR, presenting an
option for further exploration as a potential treatment strategy for
patients.

We used a human KIR-blocking IgG4 (lirilumab) to specifically
target inhibitory KIR2DL1/L2/L3, which interacts with HLA-C of classi-
cal MHC-I. As anticipated, inhibitory KIR2DL1/L2/L3 blockade resulted
in a significant restoration of NK cell-mediated ADCC activity against
MF malignant T cells, irrespective of the specific cell-surface antigen
being targeted. This effect was consistently observed across two dif-
ferent cell-surface targeted antibodies relevant for CTCL (anti-CD52-
mAb and anti-CCR4-mAb), which was validated through two distinct
experimental approaches: flow cytometry (Fig. 4d and Fig. 4e) and the
lactate dehydrogenase (LDH) release assay (Fig. 4f).

Inhibiting the interaction between classical MHC-I and Ly49-C/I
enhances NK cell-mediated anti-T-cell lymphoma activity in
mice skin in vitro and in vivo
Subsequently, we employed murine model systems to investigate the
hypothesis that targeting the blockade of classical MHC-I and its
inhibitory receptor on NK cells holds therapeutic potential for
CTCL treatment. Ly49, analogous to human KIR, binds to H-2Kb

Fig. 2 | MHC-I is significantly upregulated on malignant T cells from MF skin
lesions. a Gene set enrichment analysis of overlapping, important tumor (clonal)
cell-related genes (N = 48) discovered two important pathways, the MHC class I
protein complex and negative regulation of NK cell-mediated immunity. b Gene
expression of some of the most important genes (identified via the NN-log-reg
method [Fig. 1g]) on their real-time disease stage at follow-up indicated notable
escalation in the expression of MHC-I, IFITM1 and IFITM2 as disease progressed.
Each dot represented normalized expression of the given marker in a single cell.
The larger solid points represented mean normalized expression per patient
sample. N = 57 cells from 3 patients were used in stage I-IIA; N = 321 cells from 2
patients were used in stage IIB; N = 814 cells from 8 patients were used in stage III-
IVB. Data were presented as mean values +/– SEM of the larger solid points in each
stage. For HLA-A and HLA-C, the normalized expression of all transcripts was
summed. The p values were calculated using unpaired, two-tailed student’s t test to
compare normalized expression at the single-cell level taking the early stage (I-IIA)
as reference. n.s., not significant. c Western blot analysis revealing that protein
expressions of three classical MHC-I molecules (HLA-A, HLA-B, and HLA-C) were
significantly higher onT cells fromMF skin lesions (N = 3) compared to healthy skin
lesions (N = 3). Conversely, the expression of the non-classical MHC-I molecule
(HLA-E) was relatively low on T cells from MF skin lesions. Data were presented as
mean values +/– SEM. The p values were calculated using unpaired, two-tailed

student’s t test. d Classical MHC-I (HLA-ABC) expression markedly increased on
malignant skin T cells (N = 3) compared to bystander T cells in the skin (N = 3) and
malignant T cells in the blood (N = 3). Non-classical MHC-I (HLA-E) expression
remained low and showed no statistical difference between these samples (N = 3).
The p values were calculated using paired, two-tailed student’s t test. Gating
strategy is shown in supplementary Fig. 10. e A higher percentage of MHC-Ihigh

T cells was present in malignant T-cell populations from MF skin lesions versus
other T-cell populations (representative example of N = 7). f Strong expression of
MHC-I on malignant T cells from skin lesions of patients with MF (N = 7) compared
with bystander T cells fromMF skin lesions (N = 7) or benign T cells from the skin of
healthy individuals (N = 5). The expression ofMHC-I onmalignant T cells inMF skin
lesions (N = 7) was also stronger than on malignant and bystander T cells from the
bloodofpatientswith L-CTCL (N = 7) andbenignbloodTcells of healthy individuals
(N = 11). Data were presented asmean values +/– SEM. The p values were calculated
using unpaired, two-tailed student’s t test. Gating strategy is shown in supple-
mentary Fig. 10. g In addition, the MFI of MHC-I in malignant T cells from MF skin
lesions showed significantly greater intensity than in other types of skin tumors,
such as basal cell carcinoma (BCC, N = 4), squamous cell carcinoma (SCC, N = 2),
cutaneous B-cell lymphoma (CBCL, N = 4) and melanoma (N = 7). Data were pre-
sented as mean values +/– SEM. The p values were calculated using unpaired, two-
tailed student’s t test. Source data are provided as a Source Data file.
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(mouse MHC-I). In our study, we focused on Ly49-C/I, which are dis-
tinct inhibitory receptors on NK cells in mice.

We performed both in vitro and in vivo experiments using EL4-
hCD20, amurine T-lymphomacell line thatwas geneticallymodified to
express human CD20, luciferase, and green fluorescent protein. We
used human CD20 as the antigen for anti-hCD20 targeted therapy,
after verifying its stable expression on EL4-hCD20 cells (Supplemen-
tary Fig. 8a). With characteristics similar to MF malignant T cells, EL4-
hCD20 showed higher expression of H‑2Kb (mouse MHC-I) compared
to blood and splenic T cells from C57BL/6 mice (Fig. 5a). Inhibitory
Ly49-C/I blockade increased NK cell-mediated anti-hCD20 ADCC

activity against EL4-hCD20, as evidenced through in vitro assessments
involving flow cytometry and LDH release detection (Fig. 5b).

Next, we validated these outcomes in murine models in vivo.
Subcutaneous inoculation of EL4-hCD20 tumors was performed to
replicate the presence of tumor T cells observed in MF skin lesions. A
tumor growth assessment established that 100,000 tumor cells
represented the optimal quantity for subsequent in vivo investigations
(Supplementary Fig. 8b). The therapeutic anti-hCD20-mIgG2a anti-
body was administered once weekly for 3 weeks, while the blocking
anti-Ly49-C/I F(ab’)2 antibody was administered twice weekly for the
same duration (Fig. 5c). Isotype antibodies, specifically mouse IgG2a

Fig. 3 | MHC-I negatively impacts NK cell-mediated ADCC activity against
malignant T cells in the skin. a Cutaneous B-cell tumors respond to anti-CD20-
mAb (anti-CD20–targeted therapy), which also completely depletes B cells in the
blood. b Cutaneous T-cell tumors in MF resist anti-CD52-mAb, while CD52+ lym-
phocytes in the blood are completely depleted. c Cutaneous T-cell tumors with
aberrant CD20 expression in a patient with MF resist anti-CD20–targeted therapy
with anti-CD20-mAb, although CD20+ B cells in the blood are completely depleted.
d CD57+ NK cells detection in MF and healthy skin lesions. Immunofluorescence
staining was performed on MF skin lesions (N = 7 MF patients; 3 images were pre-
sent in the figure) and healthy skin lesions (N = 7 healthy individuals; 3 images were
present in the figure). Scale bar = 50 µm. e Increased percentage CD57+ NK cells in
MF skin lesions (N = 7) compared with healthy skin (N = 7). The calculation was
based on immunofluorescence staining in d. Data were presented as mean values
+/– SEM. The p values were calculated using unpaired, two-tailed student’s t test.
f Skin cells were isolated and gated on the CD45+ lymphocyte population from

T-lymphoma skin lesions of MF patients. Malignant and bystander T cells from
T-lymphoma skin lesions were further separated, based on patient T-lymphoma-
specific TCR Vβ antibody. The CD3– and CD56+ NK cell populations can be clearly
identified in the skin lesions of patients with MF by flow cytometric analysis
(representative example of N = 13 samples). g LDH release detection showed that
autologous blood NK cells mount effective ADCC against blood tumor T cells from
patients with L-CTCL (N = 3) but could not mount an ADCC response sufficient to
effectively kill skin tumorT cells frompatientswithMF (N = 3). Datawerepresented
as mean values +/– SEM. The p values were calculated using unpaired, two-tailed
student’s t test. h LDH release detection showed that autologous skin NK cells
triggered effective ADCCagainst healthy skin T cells (N = 3) and bystander T cells in
MF skin lesions (N = 4) but could not mount an effective ADCC against malignant
T cells inMFskin lesions (N = 3). Datawerepresented asmeanvalues +/– SEM. Thep
valueswere calculated using unpaired, two-tailed student’s t test.mAb,monoclonal
antibody. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-45083-8

Nature Communications |          (2024) 15:752 7



and IgG2a F(ab’)2, were used as controls. We employed an in vivo
imaging system (IVIS) to track tumor progression through lumines-
cence intensity measurement of EL4-hCD20 tumors. Prior to treat-
ment, baseline assessment on day 3 validated successful inoculation of
mice with EL4-hCD20 tumors, and luminescence signals exhibited a
comparable level across all groups (Fig. 5d; Supplementary Fig. 8c). By
day 9 post-treatment, EL4-hCD20 tumors were exclusively localized to
the skin. Notably, tumors in the two control groups exhibited well-
established growth, characterized by consistent and intense lumines-
cence signals.

Monotherapy with either the anti-Ly49-C/I blocking antibody
or the therapeutic anti-hCD20 antibody individually resulted in a
trend toward slower tumor growth. As anticipated based on the
in vitro findings, the combination of the ADCC-inducing ther-
apeutic antibody and the NK-cell immune checkpoint Ly49-C/I

blocking antibody led to enhanced tumor suppression, paralleled
by a significant reduction in luminescence intensity (Fig. 5d;
Supplementary Fig. 8c). Concurrently, the combination treatment
exhibited a delayed tumor growth (Fig. 5e), accompanied by a
reduction in tumor volume (Supplementary Fig. 8d, e) and an
enhancement in overall survival when contrasted to monotherapy
and control treatments (Fig. 5f).

Autocrine IL-32β acts as a stimulator for MHC-I expression in
malignant T cells
Cytokines are one of the key factors contributing to MHC-I induction.
Our NN-log-reg method identified 15 cytokine-related genes that were
consistently deemed significant for identifying malignant T cells across
both the training and test datasets (Supplementary Fig. 2g). By analyz-
ing the expression of those 15 cytokine-related genes, we found that

Fig. 4 | MHC-I blockade restores NK cell-mediated ADCC activity against
malignant T cells in MF skin lesions. aMHC-I blockade restored ADCC activity of
autologous NK cells againstmalignant T cells inMF tumor skin lesions (N = 4) when
cell-surface receptor-specific targetedmAb (CD52-mAb) was used as an opsonizing
agent. Data were presented as mean values +/– SEM. The p values were calculated
using unpaired, one-way ANOVA test. b, MHC-I blockade resulted in ADCC cluster
formation, showing that opsonized malignant T cells from tumor skin lesions were
surrounded by autologous NK cells. NK cells and T cells were labeledwith CFSE and
Far Red, respectively. Scale bar = 50 µm. c, The corresponding ADCC activity from
each group of cells in (b), demonstrating restored NK cell-mediated ADCC activity
against malignant T cells in MF skin lesions upon MHC-I blockade. N = 4 in group I;
N = 5 in group II;N = 6 in group III;N = 6 in group IV;N = 2 in group V;N = 6 in group

VI. Datawere presented asmean values +/– SEM. The p valueswere calculated using
unpaired, two-tailed student’s t test. n.s., not significant. d FACS analysis revealed
KIR blockade enhanced ADCC activity of autologous NK cells against malignant
T cells from MF skin lesions when anti-CD52-mAb or anti-CCR4-mAb was used as
the opsonizing agent. e, Flow cytometrical detection showed enhanced ADCC
against skin tumor T cells when KIR was blocked (N = 7). Data were presented as
mean values +/– SEM. The p values were calculated using paired, two-tailed stu-
dent’s t test. f LDH release detection showed increased ADCC against skin tumor
T cells when KIR was blocked (N = 7). Data were presented asmean values +/– SEM.
The p values were calculated using paired, two-tailed student’s t test. Source data
are provided as a Source Data file.
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malignant skin T cells can be distinguished from non-malignant T cells
by their significantly increased expression of IL32 and decreased
expression of IL7R (Fig. 6a; Supplementary Fig. 9). Using the transcript
per million results from scRNA-seq, we identified IL32β as the pre-
dominant isoform expressed in malignant T-cell populations in the
skin (Fig. 6b).

A noteworthy observation was the positive correlation between
the expression of classical MHC-I and IL32 in tumor skin T cells, a
connection not observed in single bystander or healthy T-cell popu-
lations (Fig. 6c). Furthermore, NanoString analysis revealed a parallel
increase in levels of classical MHC-I and IL32, which positively corre-
lated with the proportion of the malignant TCR clone in MF tumor
skin lesions. This relationship was not evident in skin lesions from
atopic dermatitis, a benign inflammatory skin condition (Fig. 6d).

Additionally, we conductedWestern blot analysis to assess the protein
expression level of IL-32 in T cells from both healthy skin and MF skin
lesions. IL-32 protein exhibited significant upregulation on MF skin
T cells in comparison to healthy skin T cells (Fig. 6e).

To demonstrate the relevance of our findings, we suppressed IL-32
expression by transfecting IL32 small inhibitory RNA (siIL32) intoMy-La
CD4+ cells, an MF-CTCL cell line. The siIL32 transfection not only
decreased the expression of IL32, the expression the classical MHC-I
molecules also decreased (Fig. 6f). In addition, siIL32 transfection
decreased the cell viability of My-La CD4+ cells (Fig. 6g), in line with its
recently reported role as an important CTCL tumor survival factor45.

While IL-32 has been shown to elicit various cellular responses and
influence cancer and inflammatory processes, the specific receptor that
directly binds and interacts with IL-32 has not yet been definitively

Fig. 5 | Blockade of theMHC-I–KIR interaction enhances NK cell-mediated anti-
T–cell lymphoma activity inmice in vitro and in vivo. aThemurine T-lymphoma
cell line, EL4-hCD20, highly expresses H-2Kb versus the normal T cells of wild-type
C57BL/6 mice. H-2Kb is the MHC class I molecule for C57BL/6 mice. b Two inde-
pendent sets of experiments, one based on flow cytometry and one based on LDH
release detection, indicated increased ADCC against murine T-lymphoma cells
during Ly49C/I blockade. Ly49C and Ly49 I are specific inhibitory receptors on NK
cells inmice (N = 6).Datawerepresented asmean values+/– SEM.Thep valueswere
calculated using paired, two-tailed student’s t test. c Schematic representation of
the in vivo mouse experiment. C57BL/6mice were inoculated subcutaneously with
1 × 105 EL4-hCD20T-lymphoma cells. After tumor inoculation,mice received 250 µg
of therapeutic anti-hCD20-mIgG2a or isotype IgG2a control on day 3 and once
weekly for three weeks, 200 µg of blocking anti-Ly49 C/I F(ab’)2 or isotype IgG2a
F(ab’)2 on day 3 and biweekly for three weeks, or a combination of anti-hCD20-
mIgG2a and anti‑Ly49 C/I F(ab’)2. Therapeutic and blocking antibodies were
administered i.p. The schematic representation is created with BioRender.com.
d Tumor tracking and intensity of luminescence signals from tumor cells as

measured by IVIS (N = 10). On day 3 before treatment, the mice were confirmed to
have successful EL4-hCD20 tumor inoculation, and the intensity of luminescence
signals was approximately equal in each group. On day 9 after treatment, tumor
cells remained only in the skin and no metastasis had occurred. In addition, the
intensity of luminescence signals indicated that Ly49 blockade enhances the anti-
T–cell lymphomaactivity of anti-hCD20 therapeutic antibody.Datawerepresented
asmean values +/– SEM. eThe tumorgrowth curve illustrated that both anti-hCD20
therapeutic antibody and Ly49 C/I F(ab’)2 blocking antibody were able to inhibit
tumor growth in the skin, and the combination of both antibodies significantly
inhibited tumorgrowth in the skin (N = 10). Datawerepresented asmean values +/–
SEM. The p values were calculated using unpaired, two-tailed student’s t test from
the data on day 13. n.s., not significant. f The combination of anti-hCD20 ther-
apeutic antibody and Ly49C/I F(ab’)2 blocking antibody against T-cell lymphoma in
the skin significantly increased overall survival (N = 10). The p values were calcu-
lated using simple survival analysis (Kaplan-Meier). n.s., not significant. Source data
are provided as a Source Data file.
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Fig. 6 | Malignant T cells secret IL-32β isoform to promote classical MHC-I
expression on malignant T cells. a–c Analyzing cytokine-related genes (N = 526
cells forMain Clone (MC);N = 141 cells for RelateMain Clone (RMC);N = 50 cells for
Bystander Groups (BG); N = 108 cells for Single Bystanders (SB); N = 85 cells for
Healthy (H)). a Malignant T-cell populations show significantly increased IL32
expression and decreased IL7R expression. b IL32β is the predominant IL32 isoform
expressed inmalignant T‑cell populations. cMHC-I expression positively correlated
with IL32 expression, specifically in malignant T-cell populations but not in single
bystander T-cell or healthy T-cell populations. The p values were calculated using
correlation test. d NanoString analysis showed that elevated levels of MHC-I
molecules and IL32 are positively correlated with the proportion of TCR clonal
T cells in the micro-environment of MF skin lesions (N = 3) but not in benign
inflammatory skin disease (N = 3). The color scale indicates higher gene expression
in red and lower gene expression in blue. e IL-32 upregulated at the protein level in
T cells from MF skin lesions (N = 3). Data were presented as mean values +/– SEM.

The p values were calculated using unpaired, two-tailed student’s t test. siIL32 RNA
transfection into My-La CD4+ cells. f RNA interference knockdown of IL32 resulted
in decreasedexpressionof IL-32 and three classicalMHC-Imolecules (HLA‑A,HLA-B
and HLA-C) in My-La CD4+ cells (N = 3), analyzed by qRT-PCR. Data were presented
as mean values +/– SEM. The p values were calculated using unpaired, two-tailed
student’s t test. g siIL32 decreased the viability of My-La CD4+ cells (N = 3). Control
siRNA served as a negative control. Data were presented as mean values +/– SEM.
The p values were calculated using unpaired, two-tailed student’s t test. h T cells
from MF skin lesions show high expression of IL-32β binding sites (IL-32βBS) on
their cell surface (N = 3). Data were presented asmean values +/– SEM. The p values
were calculated using unpaired, two-tailed student’s t test. i, Increased classical
MHC-I expression exclusively on T cells fromMF skin lesions in response to IL-32β
stimulation (N = 3). The p valueswere calculated using paired, two-tailed student’s t
test. Source data are provided as a Source Data file.
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identified. To assess the presence of the IL-32β binding sites (IL-32βBS)
on MF skin T cells, we labeled recombinant IL-32β (rIL-32β) with allo-
phycocyanin (APC) and incubated the APC-labeled rIL-32βwith healthy
T cells, MF skin T cells, and the My-La CD4+ MF-CTCL cell line. Both MF
skin T cells and My-La CD4+ MF-CTCL cells exhibited higher levels of
conjugated APC-labeled rIL-32β, underscoring a significant upregula-
tion of IL-32β binding sites on MF skin T cells in comparison to healthy
T cells (Fig. 6h). Furthermore, the addition of rIL-32β resulted in a
selective augmentation of classical MHC-I expression specifically in MF
skin T cells, while leaving healthy T cells unaffected (Fig. 6i). This
underscores the significance of the IL-32β -MHC-I axis inMF skinT cells,
implying that IL-32β functions as a crucial autocrine signal for survival
and expansion of malignant T cells, and a critical determinant in tumor
T-cell immune evasion within the human skin environment.

Discussion
Cancer is associated with progressive impairment of cellular immunity.
In MF, the most common type of cutaneous T-cell lymphoma, despite
the favorable response of blood disease to treatment, tumoral skin
lesions in themajority of patients exhibit resistance to therapeuticmAbs
targeting tumor cell-surface antigens. In the present study, the NN-log-
reg model reveal that MHC-I, also known as HLA-I in humans, is over-
expressed on tumor skin T cells, leading to the inhibition of NK cell
activity and NK-mediated ADCC, thereby conferring resistance to tar-
geted therapies. Blocking MHC-I and inhibitory KIR (inhibitory Ly49
murine homologue) restores ADCC and enhances the antitumoral
activity of therapeuticmAbs, both ex vivo in humans and in vitro/in vivo
in amurineT-cell lymphomamodel, resulting in reduced tumorvolumes
and significantly increased survival rates. Consequently, we propose a
tumor immune escape mechanism that accounts for impaired ADCC
due to the increased expression of MHC-I on tumor skin T cells.

The use of artificial intelligence (AI) and ML algorithms in medi-
cine has great potential to facilitate accurate diagnosis, disease stage
prediction, and discovery of biomarkers46–48. In CTCL, an AI and ML
algorithm modeling the distinct transcriptomic states within L-CTCL
has been developed with almost 80% accuracy in disease-stage
prediction6. A recent study addressed the combination of label-free
imaging and a weakly supervised deep learning approach for blood
diagnostics in L-CTCL49. The ever-increasing use of scRNA-seq has
inevitably led to an increasing application of ML and deep learning
methods to analyze these data. Recently, thesemethods were used for
batch-effect removal and unsupervised clustering of cells50, data
imputation51 and disease stage prediction52. The model for the math-
ematical reconstruction of T-cell receptors (TraCeR) was developed
from single-cell transcriptomes53 and is a powerful tool to use in stu-
dies of T-cell malignancies; nevertheless, there may still be a small
chance to define bystander T cell as malignant if bystander T cell
shares exactly the same TCR as malignant T cells.

In the specific context of our research, deep learning methods
were best suited for analyzes of our gene expression dataset54. This
dataset comprises a limited number of samples but includes numerous
features. We conducted deep sequencing exclusively on skin T cells,
resulting in small sample numbers but high coverage of sequenced
genes. This approach allowed ML methods to excel in identifying
features that distinguish the two T-cell subpopulations, namely tumor
and non-tumor T cells. Furthermore, the NN approach successfully
captured all relevant genes, whether they were upregulated or down-
regulated. This unbiased analysis facilitated the exploration of com-
plex transcriptome patterns through ML techniques, which are ideal
for handling high-dimensional data with nonlinear relationships. Sub-
sequently, weperformed traditional statistical and functional analyses,
further enhancing our understanding of tumor T cells in CTCL. This
approach also enabled us to directly analyze the transcriptomeof both
the malignant T-cell clone and bystander T cells, providing valuable
intra-individual control information.

In general, upregulatedMHC-I expression is related to a favorable
prognosis in solid tumors; however, tumor upregulation of classical
MHC-I has been shown in vivo to inhibit NK cells55. Further, MF skin
tumor T cells have significantly increasedMHC-I expression compared
to healthy CD4+ T cells56. We discovered that the overexpression of
classicalMHC-I on tumor T cells plays a pivotal role in immune evasion
within cancer, explaining the observed reduction in NK cell-mediated
ADCC in MF skin. These findings hold significant relevance in the
context of contemporary targeted therapies and immunotherapies
utilizing NK cells for anticancer treatment. A recent publication by
Scheffschick et al. further underscores the importance of NK cells in
skin T cell lymphoma lesions, offering additional evidence regarding
their presence and altered phenotype57.

Previous studies have reported that IL-32 is highly expressed in
the skin lesions of patients with MF and contributes to the survival of
malignant T cells in CTCL45,58. Moreover, the IL-32β isoform is pro-
duced by circulating T cells in L-CTCL59. In our current study, we
observed that malignant skin T cells display elevated levels of IL-32β
binding sites, and the supplementation of IL-32β leads to an increase in
MHC-I expression. The IL-32β produced by malignant T cells thus
functions as an autocrine signal, enhancing MHC-I expression and
thereby prolonging the survival of malignant T cells inMF skin lesions.
Consequently, we believe that the neutralization of IL-32β may prove
to be another crucial factor in supporting the efficacy of NK cell-
mediated antitumor therapies in MF.

Given the dependence of ADCC on the ratio of NK cell-activating
versus cell-inhibitory signals, a dual combination of tumor cell-surface
antigen-targetedmAbs and NK inhibition-blockingmAbs acting as NK-
immune checkpoint inhibitors may be a highly promising option for
individualized cancer treatment23. Recently, blocking the NKG2A
immune checkpoint by engaging HLA-E (nonclassical MHC-I) has
proven effective in enhancing the anti-metastatic functions of NK
cells24,60. Specifically, in cases such as pancreatic ductal adenocarci-
noma, Monalizumab (IPH2201), a human IgG4 blocking monoclonal
antibody targeting inhibitory NKG2A on NK cells and a subset of CD8+

T cells, disrupts the interaction between inhibitory NKG2A and HLA-E.
This disruption not only strengthens NK-mediated ADCC-inducing
anti-tumor responses but also enhances the effector functions of CD8+

T cells and prevents liver metastasis25.
In CTCL, our findings show that all three classical MHC-I proteins

(HLA-A, HLA-B, and HLA-C), but not the non-classical MHC-I (HLA-E),
exhibit high expression levels on tumor T cells from MF skin lesions.
Consequently, we posit that lirilumab may offer more significant
potential advantages in augmenting the effectiveness of NK cell-
mediated tumor-cell-surface-antigen targeted therapy inMF. Lirilumab
(IPH2102/BMS-986015), a fully human IgG4 monoclonal antibody that
targets inhibitory KIR2DL1/2/3 expressed on NK cells, is employed to
disrupt the interaction between inhibitory KIRs and HLA-C (a classical
MHC-I). In clinical settings, lirilumab has demonstrated the ability to
elevate NK-mediated antitumor activity and enhance tumor cell-
surface antigen-targeted therapy22,23,61. This observation suggests that
lirilumabmay hold promise in enhancing NK cell-mediated tumor-cell-
surface-antigen targeted therapy in MF as well.

Further, the first-in-class anti-KIR3DL2/CD158k humanized NK-
mediated ADCC-inducing antibody lacutamab (IPH4102), designed to
selectively destroy CTCL cancer cells, presents a compelling option62.
KIR3DL2 is preferentially expressed onmalignant T cells and accounts
for enhanced resistance to activation-induced cell death in CTCL63.
Based on this, the main mode of action of lacutamab in CTCL is cur-
rently believed to be a NK cell-mediated ADCC effect on KIR3DL2-
expressing tumor T cells64–66. Additionally, KIR3DL2 belongs to the KIR
group of NK cell inhibitory receptors, and as such is an ideal target for
NK cell-based checkpoint blockade.

The preferential targeting ofmalignant T cells by lacutamab and its
potential to restoreNK cell functionsmake it an option in the treatment
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of CTCL. It is possible that targeting KIR3DL2 with anti-KIR3DL2 mAbs
(aKIR3DL2 mAbs) may not only directly affect tumor T cells but cir-
cumvent an important cancer immune-suppressive mechanism by
restoringNKcell functions. Early results fromaphase II trial have shown
promising response rates in the skin of patients with KIR3DL2-
expressing advanced MF, reaching 57.1%. These response rates sur-
pass those typically observed with other therapeutic monoclonal anti-
bodies targeting T-cell derived markers, which further underscores the
translational potential of our findings in clinical practice67.

In summary, while these findings are promising, more research is
needed to fully realize the potential of these approaches. Nonetheless,
they provide insights into the ongoing efforts to advance cancer treat-
ment and may pave the way for personalized therapies in the future.

Methods
All experiments in this study were conducted in accordance with the
principles of the Declaration of Helsinki, and the study design was
approved by the Institutional Review Board of the University of Zurich
(KEK-ZH-Nr. 2015-0209).

Collection of human skin and blood samples
All patients in this study met diagnostic criteria for early-stage MF
according to the tumor/node/metastasis systemand stage classification
(Supplementary Table 1). The informed consent signed by each indivi-
dual patient for collecting samples and publishing clinical information
potentially identifying individuals was obtained. The authors affirm that
human research participants provided informed consent for publica-
tion of the images in Fig. 3a–c. Patient skin biopsies, serum and per-
ipheral blood samples, as well as discarded tissue from surgical
remnants, were obtained from the University of Zurich Biobank (EK No.
647) and from the VITA certifiedDermatology Biobank (CHUV_2103_12)
of the Lausanne University Hospital (CHUV). Blood and serum samples
from healthy individuals were obtained anonymously from the blood
banks of the University Hospital of Zurich and the Lausanne University
Hospital (CHUV), and informed consent was obtained from donors.

Cells, antibodies and reagents
Peripheral blood mononuclear cells (PBMCs) were separated from the
whole blood of patients and healthy individuals using Ficoll-Paque
density gradient centrifugation (GEHealthcare, 17-1440-03), andNKcells
were isolated using CD56 MicroBeads (Miltenyi Biotec, 130-050-401)
according to the manufacturer’s instructions. Skin T cells were isolated
from skin biopsies of patients with MF and healthy individuals using
collagen-coated CellFoam matrices and cultured in Iscove’s Modified
Dulbecco’s Medium (Thermo Fisher, 12440-053), supplemented with
20% Gold FBS (PAA Laboratories, A15-151), 1× antibiotic-antimycotic
(Thermo Fisher, 15240-062), 2mML‑glutamine (Biochrom, K0282), 100
IU/ml IL2 and 10ng/ml IL15 (Peprotech, 200-15)12. BCC, SCC and CBCL
cells were isolated from skin biopsies using Liberase (final concentration
0.5mg/ml, Roche 54001020001) and incubated at 37˚C for 1 h.

Raji (ATCC-CCL-86), a Burkitt’s lymphoma-derived B-cell line, was
maintained in complete RPMI 1640 culture medium containing 2 mM
L-glutamine, 1mM sodium pyruvate, 1× antibiotic and 10% Gold FBS.
Ramos (RA1, ATCC-CRL-1596), a Burkitt’s lymphoma-derived B-cell
line, was purchased from LGC Standards and maintained in modified
RPMI 1640 culture medium containing 2 mM L-glutamine, 10mM
HEPES, 1mM sodium pyruvate, 4500mg/L glucose, 1× antibiotic and
10% Gold FBS. My-La CD4+ (ECACC, catalog no. 95051032), an MF
cutaneous T-cell lymphoma cell line, was purchased from Merck and
cultured in RPMI 1640 culture medium containing 2 mM L-glutamine,
10 U/ml IL-2, 10 U/ml IL-4, 1× antibiotic and 10% human AB serum. EL4
(ATCCTIB-39), amouseT-cell lymphoma-induced in a C57BL/6mouse,
was cultured in complete RPMI 1640 medium. EL4-hCD20 (Clone
1E12A5), EL4 mouse T-lymphoma cells transduced with hCD20, luci-
ferase and green fluorescent protein-cDNA, was provided by Dr

Jeanette Leusen (Laboratory for Translational Immunology, UMC
Utrecht, the Netherlands) and cultured in complete RPMI 1640
medium.

Anti-CD20-mAb (a chimeric human IgG1; MabThera® 10mg/ml,
Roche Pharma [Schweiz] AG) and anti-CD52-mAb (human IgG1; Lem-
trada® 30mg/ml, Sanofi-Aventis) were obtained from the Cantonal
Pharmacy of Zürich, Switzerland. Anti-CCR4-mAb (human IgG1; Gly-
007CL) was purchased from Creative Biolabs. Anti-KIR-mAb, a fully
human IgG4 that targets KIR2D (lirilumab; HY-P99208-1MG), was
ordered from MedChemExpress. Commercially available monoclonal
blocking antibody against human MHC-I (clone B9.12.1; Beckman
Coulter, Krefeld, Germany), alongwith its F(ab’)2 fragment and isotype
control (mouse IgG2a; BioLegend), were used at a concentration of
10 µg/ml for the MHC-I blockade experiments. Anti-MHC-I F(ab’)2
fragments were prepared with the Pierce F(ab’)2 Micro Preparation Kit
(Thermo Fisher, 44688) and verified by nonreducing sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Monoclonal
mouse IgG2a antibody against human CD20, anti-hCD20-mIgG2a
(hcd20-mab10, InvivoGen), which features the constant region of the
mouse IgG2a isotype and the variable region of anti-CD20-mAb, was
used as a therapeutic antibody in in vitro and in vivo mouse experi-
ments. For in vitro experiments, anti-hCD20-mIgG2a was used at a
concentration of 10 µg/ml; for in vivo experiments, 250 µg of anti-
hCD20-mIgG2a was administered intraperitoneally (i.p.) once weekly
for three weeks. An equal amount of mouse IgG2a isotype control
(BioLegend, 401504) was used in control groups. The F(ab’)2 frag-
ments ofmousemonoclonal antibody againstmouse Ly49 C and Ly49
I (mouse IgG2a, clone 5E6; BD Biosciences) and isotype mouse IgG2a
(clone G155-178, BD Biosciences) were also used in vivo. Anti-Ly49 C/I
F(ab’)2 was used in vitro as a blocking antibody at a concentration of
10 µg/ml, and 200 µg of blocking anti-Ly49 C/I F(ab’)2 was adminis-
tered i.p. twiceweekly for three weeks in in vivo experiments. An equal
amount of mouse IgG2a isotype F(ab’)2 was used in control groups.

Flow cytometry
For flow cytometry analysis, cells were collected, washed and resus-
pended in 50μl of ice-cold magnetic-activated cell sorting (MACS)
buffer (phosphate-buffered saline [PBS, pH 7.2], 0.5% bovine serum
albumin, and 2mM ethylenediaminetetraacetic acid) and fluorescent-
conjugated antibodies for 20min on ice, followed by two washes with
MACS buffer.

Analysis of PBMCs and skin cells of patients and healthy donors
was performed using monoclonal antibodies against human CD3
(clone BW264/56; label PerCP; Miltenyi Biotec, 130-113-131), CD3
(clone: SK7; label FITC; Invitrogen, 11-0036-42), CD3 (clone: HIT3a;
label PerCP/Cyanine5.5; Biolegend, 300328), CD4 (clone VIT4; label
APC-Vio770; Miltenyi Biotec, 130-098-153), CD4 (clone: RPA-T4; label
APC/Cyanine7; Biolegend, 300518), CD8 (clone BW135/80; label PE-
Cy7;Miltenyi Biotec, 130-096-556), CD8 (clone: SK1; label PE/Cyanine7;
Biolegend, 344712), CD16 (clone VEP13; label APC;Miltenyi Biotec, 130-
091-246), CD20 (clone LT20; label FTIC;Miltenyi Biotec, 130-098-081),
CD45 (clone 5B1; label APC-Vio770; Miltenyi Biotec, 130-096-609),
CD45 (clone HI30; label PerCP-Cyanine5.5; eBioscience, 45-0459-41),
CD56 (clone AF12-7H3; label PE-Vio770; Miltenyi Biotec, 130-096-831),
TCR Vβ (clone ZOE; label PE; Beckman Coulter), HLA-A,B,C (clone
REA230; label FITC; Miltenyi Biotec, 130-101-447), HLA-A,B,C (clone:
W6/32; label APC; Biolegend, 311410) and HLA-E (clone: 3D12; label
Brilliant Violet 421; Biolegend, 342612). Isotype-matched negative
control antibodies were used to set the gates for positive staining. Vβ
clonal T-cell populations were assessed by flow cytometry using the
IOTest® Beta Mark TCR Vβ Repertoire Kit (Beckman Coulter, IM3497).

Analysis of PBMCs and splenocytes from wild-type C57BL/6 mice
and the EL4, EL4-hCD20 and Raji cell lines was performed using
monoclonal antibodies against mouse CD3 (clone 17A2; label PerCP/
Cyanine5.5; BioLegend, 100217), CD4 (clone RM4-5; label APC-Vio770;
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BioLegend, 100525), CD8 (clone 53-6.7; label PE-Vio770; BioLegend,
100721), CD45 (clone 30-F11; label APC; BioLegend, 103111), H-2Kb

(clone AF6-88.5; label PE; BioLegend, 116507) and APC-conjugated
anti-hCD20-mIgG2a (APC conjugation kit; Abcam, ab201807).

Validation statements and dilutions of all antibodies used for flow
cytometryweredescribed on themanufacturer’s website with relevant
citations. The stained cells were acquired at least 10,000 cells per
sample on Becton Dickinson FACSCantoTM and LSRFortessa™ instru-
ments, and data were analyzed using FCS Express 7 Flow Cytometry
RUO (De Novo Software) and Prism v9.1.0 (GraphPad) software.

ScRNA-seq, quality control, gene quantification and data
analysis
All samples for scRNA-seq were collected between 2013 and 2017
(Supplementary Table 1) and were processed between 2016 and 2018.
Capture and processing of single skin T cells was performed using the
Fluidigm C1 Autoprep system. Cells were loaded at a concentration of
2,000 cells/µl onto C1 integrated fluidic circuit chips for 5–10 µm cells.
All C1 capture sites weremicroscopically inspected to identify the sites
that contained only a single cell. Empty sites and those with multiple
cells were excluded from further analysis. External RNA Controls
Consortium spike-in RNAs served as a control. The SMARTer® Ultra®
Low RNA Kit (Clontech) was used for reverse transcription and cDNA
pre-amplification. The single-cell cDNA products from each cell were
then used to prepare Illumina sequencing libraries and sequenced as
paired-end 150-base reads on the IlluminaHiSeq 4000platform, which
was provided by the Functional Genomic Center Zürich.

Quality control was performed using FastQC v. 0.11.7 (Babraham
Bioinformatics, http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/), and the adaptors and low-quality bases with a Phred quality
score <20 were trimmed from the ends of the reads using Trim Galore
v. 0.4.4 (Babraham Bioinformatics)68.

TCR reconstruction for clonality analysis
Bioinformatics approaches based on scRNA-seq enable the reconstruc-
tionof completeTCR recombinants. TheTraCeR systemwasused in this
study to reconstruct TCR recombinants independently for every cell,
and gene expressions for cells with an identified TCR were quantified
with Kallisto v. 0.45.0 (Pachter Lab) as part of the TraCeR workflow.
Preliminary, TCR-clonality was evaluated by a modified TraCeR system
(https://github.com/pesho-ivanov/celldive/tree/main/src/tracer). The
result of this analysis for each skin T cell was a set of sequences in the
form ‘<V locus>_<junction sequence>_<J locus>’, where the gene loci are
represented by their names and the junction sequence is a short DNA
sequence foundbetween theVand J loci. Thegene-expressiondatawere
normalized with Scater v. 1.10.1 and Scran v. 1.10.2 (both available
through Bioconductor [https://www.bioconductor.org/]) using alter-
native normalization strategies based on counts per million.

Clonality criteria
We excluded non-TCR-reconstructed cells lacking both reconstructed
α and β chains from each sample. TCR-reconstructed cells were
required to have at least one TCR chain reconstructed. The clonality
criteria for the “main-clone” were defined on a per-patient basis; the
largest group of cells sharing the same combination of α and β chains
was designated as the “main-clone”. For instance, if the most prevalent
combinationwas “α1withβ1”, then “main-clone” cellswould encompass
either α1 or β1 chains in their TCR combination, such as “α1 with β1 (or
β2)” or “α1 (or α2) with β1”. The “related-to-main-clone” group included
cells that did not match the α or β chains of the “main-clone” but had a
relative association with “main-clone” cells, like “α2 with β3 (or β4)” or
“α3 (or α4) with β2”. “Bystander groups” comprised cells with recon-
structed chains that neither matched nor had any relative associations
with theαorβ chainsof “main-clone” cells; these cells needed to exhibit
at least two cells sharing the sameα andβ chainswithin the sample. The

“single bystanders” category encompassed cells lacking reconstructed
α or β chains shared with any other cells in the sample.

ML and neural network architecture
Basedon clonality rules, “main-clone” and “related-to-main-clone” cells
are considered as clonal cells, and “bystander groups” and “single
bystanders” cells are considered bystander cells. T cells without the
CD8 phenotype were pre‑selected for ML analysis. Only the TCR-
reconstructed T cells were exclusively selected for ML analysis,
ensuring the robustness and reliability of the analysis.

For ML analysis, all genes related to the variable parts of the TCR
(TRAVxx, TRAJxx, TRBVxx, TRBJxx) were excluded. Cells were divided
into training, validation, and test sets. A manual hyperparameter
search was performed. Models were trained using all available skin
T cells. Reads per kilobase million-normalized transcript counts were
used for ML analysis; normalized data were used as input, and malig-
nancy was used as target (clonal cells = 1, bystander cells = 0).

We compared logistic regression with L2 regularization31, support
vector machines31 a gradient-boosted tree-based model (XGBoost33),
TabNet32 and a ‘standard artificial neural network’ (five linear layers,
1000, 1000, 1000, 32 and 1 neurons, respectively, SELU activation
functions, last: sigmoid; implementedusingpytorch30) and an adaptive
logistic regressionmodel, for which themodel weights were set with a
neural network (NN-log-reg, implemented in pytorch30). For the NN-
log-reg method, a hypernetwork was used to calculate the adaptive
weights for an “adaptive logistic regression” analysis.

The input vector for this hypernetwork was the length of the
detected genes without TCR genes (n = 44,782 genes). The network
consists of three linear layers (1000 units each), with two tanh acti-
vation functions and a sigmoid (σ) function followed by a softmax
function at the end (Fig. 1d). The last layer is the same shape as the
input and represents the adaptive weights. After the softmax, each
value of this layer is multiplied with the input (logistic regression),
whereas the first value of the importance weight matrix represents the
weight for the first gene in the gene list, and so on. The sum of these
products is followed by a (1,1) linear layer and a sigmoid-activation
function. Binary cross‑entropy was used to calculate the loss. Mathe-
matically, the method can be described as follows:

output = sigmoid biasD +wD � hypernet xð ÞT � x
� �� �

where hypernet xð Þ= SoftMax
�
sigmoid biasC +WC � tanh biasB

��

+WB � tanh biasA +WA xð Þ� ���

The adaptive weights were used for determining the most
important genes for predicting the malignancy of each cell. The fea-
ture weights of all cells of both the training and test sets were com-
pared with each other. A transcript was considered as ‘important’ for
malignancy prediction for a cell if it was among the top 0.5% of tran-
scripts according to attention values. Only correctly classified cells
were considered. The percentage of cells forwhich this criterion is true
is indicated in the figures (Fig. 1g; Supplementary Fig. 3).

Clonality diagrams and single-cell gene-expression analysis
The TCRβ chain variable distribution plot was generated using
mosaicplot. Seurat (v.3.1)69 was used to scale and normalize gene-
expression data for clustering and differential gene-expression analy-
sis. Gene set enrichment analysis was conducted using gprofiler270.
The gene expression of the top pivotal clonal genes on real-time dis-
ease stage was performed by using SuperPlots71.

Western blotting
Skin T cells (1,000,000 cells)were lysed in RIPA buffer (ThermoFisher,
catalog #89900), mixed with SDS-loading buffer and denatured at
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95 ˚C for 5min. The denatured lysates were separated by 12% SDS-
PAGEand transferredontonitrocellulosemembranes. Themembranes
were incubated separately with primary antibodies: anti-HLA-A (1:1000
dilution; ThermoFisher, PA5-29911), anti-HLA-B (1:3000 dilution;
abcam, ab193415), anti-HLA-C (1:3000 dilution; abcam, ab193432),
anti-HLA-E (1:1000 dilution; abcam, ab300553), anti-IFITM1 (1:1000
dilution; ThermoFisher, MA5-35972), anti-IFITM2 (1:1000 dilution;
ThermoFisher, MA5-27503), anti-IL32 (1:500 dilution; ThermoFisher,
PA5-119847) and anti-actin (1:5000 dilution; BD Biosciences, 612657).
After incubation with primary antibody, the membranes were incu-
bated with secondary antibodies: either goat anti-mouse IgG-HRP
(1:10000 dilution; Thermo Fisher, 31430) or donkey anti-rabbit IgG-
HRP (1:5000 dilution) (Thermo Fisher, A16023), depending on the
source of the primary antibody. Validation statements of all antibodies
used for Western blotting were noted on the manufacturer’s website
with relevant citations. The antibodies were stripped out with strip
buffer between each protein detection. Proteins were visualized and
imaged with the WesternBrightTM Quantum HRP substrate (Advansta,
K-12042-D10) and the VILBER FUSION imaging system or the Image-
Quant LAS 4000 mini system.

Enzyme-linked immunosorbent assay
The concentration ofC1q in the sera of patients andhealthy individuals
was quantified using the C1q Human ELISA Kit (Thermo Fisher,
BMS2099) according to the manufacturer’s instructions.

siRNA transfection and real-time quantitative polymerase chain
reaction (PCR)
My-La CD4+ cells (1,000,000 cells) were transfected with IL32 siRNA
(100 pmol; siRNA ID:140003; Thermo Fisher, catalog #AM16708) or
negative-control siRNA (100 pmol; Thermo Fisher, catalog #4390843)
using the Neon transfection system (pulse voltage: 1350V; pulse width:
10ms;pulsenumber: 3). Twenty-fourhours after transfection, total RNA
was extracted using RNeasy Mini Kits (QIAGEN, 74104). The quality and
quantity of RNA was measured using a NanoDrop spectrophotometer.
cDNAwas synthesized fromRNAusing the SuperScriptTM IV First-Strand
Synthesis System (Thermo Fisher, catalog #18091050) according to
the manufacturer’s instructions. The Fast SYBR™ Green Master Mix
(ThermoFisher, catalog#4385612)was applied using theQuantStudio™
12K Flex Real-Time PCR System (Thermo Fisher, catalog #4471087).
The genes of interest in the real-time quantitative reverse transcription
PCR analysis were the IL32, HLA-A, HLA-B and HLA-C genes; gene
expression levels were quantified using a comparative Ct method and
normalized to the expression of the housekeeping gene ActB. The
sequences of primers are listed in Supplementary Table 4.

Complement-dependent cytotoxicity assay
Ramos cells (10,000 cells/well) were washed and plated in a 96-well U-
bottom plate in RPMI 1640 medium to serve as targets. Targets were
coated with anti-CD20-mAb and opsonized at 37 °C in 5% CO2 for
15min. Following opsonization, target cells were exposed to serum
(10 µl/well) from patients with MF, or L-CTCL, or from healthy indivi-
duals. Plates were incubated for 4 h and analyzed for CDC activity
using the aCellaTM TOX Kit (Cell Technology Inc., catalog #CLA-
TOX100-3) or the CyQUANT™ LDH Cytotoxicity Assay Kit (Thermo
Fisher, catalog #88954) according to the manufacturer’s instructions.

Antibody-dependent cellular cytotoxicity assay
Isolated NK cells were cultured and rested overnight in complete RPMI
1640 medium supplemented with 100 IU/ml IL2. T cells (10,000 cells/
well) that had been washed and plated in a 96-well U-bottom plate in
complete RPMI 1640 medium served as targets. Targets were coated
with anti-CD52-mAb or anti-CCR4-mAb, and then opsonized at 37 °C in
5% CO2 for 15min. Following opsonization, target cells were exposed
to effector cells in the presence or absence of human anti-MHC-I and

anti-KIR–blocking antibodies. NK cells (effectors) were washed,
counted and plated onto targets (100,000 NK cells/well; effector:tar-
get ratio, 10:1). Plates were incubated for 24 h, after which ADCC
activity was measured.

For live-cell immunofluorescence and ADCC visualization, targets
were labeled with Far Red whole-cell stain dye (Thermo Fisher, catalog
#C34564), and effector NK cells were labeled with eBioscienceTM CFSE
(Thermo Fisher, catalog #65-0850-84). Target cells were subsequently
exposed to anti-CD52-mAb at a concentration of 10μg/ml and opso-
nized at 37 °C in 5% CO2 for 15min. MHC-I-blocking F(ab’)2 fragments
were prepared by pepsin digestion and protein A purification and
verified by nonreduction SDS-PAGE (Supplementary Fig. 8f). Following
opsonization, target cells were exposed to effector cells in the pre-
sence or absence of human anti-MHC-I-blocking antibody and anti-
MHC-I F(ab’)2 fragments for 24h at 37 °C. Fluorescent images were
obtained using the CytationTM 3 cell imaging multi-mode reader (Bio-
Tek Instruments).

For the in vitro mouse ADCC assay, mouse NK cells were isolated
from splenocytes using NK Cell Isolation Kit, Mouse (Miltenyi Biotec,
catalog #130-115-818) and cultured in complete RPMI 1640 medium.
EL4-hCD20 cells werewashed andplated in a 96-wellU-bottomplate in
complete RPMI 1640 medium to serve as targets. Targets were coated
with anti-hCD20-mIgG2a and opsonized at 37 °C in 5% CO2 for 15min.
NK cells (effectors) were washed, counted and blocked with anti-
Ly49C/I F(ab’)2 fragments. Following opsonization, target cells were
exposed to effector cells for 4 h at 37 °C.

ADCC activity was analyzed by LDH release (measured using the
CyQUANT™ LDH Cytotoxicity Assay Kit [Thermo Fisher, catalog
#88954] according to the manufacturer’s instructions) or by flow
cytometry using propidium iodide (PI) staining. For the PI-FACS assay,
targets were first labeled with CFSE, a fluorescent green cell-staining
dye, in order to separate them from effectors on flow cytometry. After
opsonization with therapeutic antibody and incubation with effectors,
PI solution (Miltenyi Biotec, catalog #130-093-233) was added, and
ADCC activity was analyzed on Becton Dickinson FACSCantoTM

instruments. Data were analyzed using FCS Express 7 Flow Cytometry
RUO and Prism V9.1.0 (GraphPad) software.

Tissue microarray and MACSima imaging platform
Skin biopsies from patients with MF and discarded tissue from surgical
margins, serving as healthy controls, wereprocessed into formalin-fixed
paraffin-embedded (FFPE) histology blocks using standard pathology
procedures. Informed consent was obtained from all patients. A tissue
microarray (TMA) was then constructed from these FFPE histology
blocks using the TMA Grand Master system (3DHISTECH). Immunos-
taining was carried out using the MACSima Imaging Platform, with the
identification andquantification ofCD57+ NK cells achieved through the
use of an anti-human CD57 antibody (dilution: 1:50; clone: TB03; Mil-
tenyi Biotec) and 4′,6-diamidino-2-phenylindole (DAPI).

In vivo mouse tumor model
Wild-type C57BL/6 mice were purchased from Envigo. Age-matched
(6–12 weeks) female animals were used throughout experiments. To
prevent the potential factors affecting the tumor growth due to sex
differences, we used only the female animals in this study. Animal
experiments were approved by the Swiss regulatory authorities
(license ZH215/2017, ‘Anti-cancer therapies based on RNA’ and license
ZH175/2020, ‘Testing and optimizing anti-cutaneous T cell lymphoma
immunological treatments in mice’) and all mice were kept in accor-
dance with regulations from the Laboratory Animal Services Center at
the University Hospital of Zürich. Mice were inoculated sub-
cutaneously with 1 × 105 EL4-hCD20 tumor cells in 200 µl PBS. Post
tumor inoculation, mice received 250 µg of anti‑hCD20-mIgG2a or
isotype IgG2a control on day 3 and weekly for three weeks, 200 µg of
anti‑Ly49 C/I F(ab’)2 or isotype IgG2a F(ab’)2 on day 3 and biweekly for
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three weeks or a combination of anti-hCD20-mIgG2a and anti-Ly49 C/I
F(ab’)2. Ten mice were used for each experimental group. The ther-
apeutic and blocking antibodies were administered i.p. On day 3
before treatment and on day 9 after treatment, luciferin (D-Luciferin
free acid; Synchem UG & Co. KG, catalog #S039) was i.p. injected and
an IVIS was used to follow tumor development. Tumor sizes were
measured with a caliper three times a week for tumor volume calcu-
lation using the equation (width2 × length)/2.

The maximal tumor size permitted by the Swiss regulatory
authorities was 1 cm3 and themaximal tumor size was not exceeded in
this study. Mice were monitored for tumor volume (cm3), and mice
with tumors reaching 1 cm3 were euthanized. To calculate overall
survival, mice bearing tumors reaching 1 cm3 and those with open
tumors were euthanized.

RNA extraction and NanoString analysis
Skin biopsies from patients were immediately frozen in liquid nitro-
gen and stored at −80 °C until processing. RNA was isolated using
the TRIzol/chloroform method and a tissue homogenizer (Thermo
Fisher Scientific). The quality and quantity of RNA was measured
using a NanoDrop spectrophotometer and RNA integrity was ana-
lyzed on a Fragment Analyzer (Agilent). mRNA expression was ana-
lyzed with the nCounter CAR-T characterization panel and the
nCounter Human Immunology V2 panel on the nCounter platform
(NanoString Technologies, Seattle, WA, USA) using 100 ng of RNA
per skin sample. A quality check was done for each sample and data
were normalized and analyzed using nSolver 4.0 (NanoString Tech-
nologies). The expression of selected genes was used to generate the
heatmap using R. The full NanoString dataset is provided in the
Source data file.

Recombinant human IL-32β labeling and the expression of IL-
32β binding sites
Recombinant human IL-32β (rIL-32β) protein (R&D Systems, 6769-IL)
was prepared at a concentration of 25 µg/mL (25 µg in 1mL of PBS) and
labeled with APC using the APC Conjugation Kit (Abcam, ab201807)
following the manufacturer’s instructions.

For flow cytometric analysis, cells were initially stained with
fluorescent monoclonal antibodies. After washing, cells were resus-
pended in an APC-labeled rIL-32β solution at a concentration of
20.8 µg/mL and incubated at 4 °C for 3 h. Subsequently, they were
washed with MACS buffer. The stained cells were then acquired
(20,000 lymphocytes per sample) using LSRFortessa™ instruments,
and the data were analyzed with FCS Express 7 Flow Cytometry RUO
(De Novo Software) and Prism v9.1.0 (GraphPad) software.

IL-32β stimulation analysis
PBMCs and skin T cells were seeded into 48-well plates and sti-
mulated with recombinant human IL-32β (100 ng/mL; R&D Sys-
tems, 6769-IL) along with a cocktail of phorbol myristate acetate
(PMA) (50 ng/mL), ionomycin (750 ng/mL), and phytohemagglu-
tinin (PHA) (1%) for 48 h. Subsequently, IL-32β-stimulated skin
T cells, healthy T cells, and untreated control samples were
acquired using LSRFortessa™ instruments, and data were ana-
lyzed using FCS Express 7 Flow Cytometry RUO (De Novo Soft-
ware) and Prism v9.1.0 (GraphPad) software.

Statistical analysis
GraphPad Prism software (v9.1.0) was used to prepare graphs and
perform statistical analysis. Data are shown as individual data points
and as mean± standard error of mean (SEM). Comparison between
groups was done through an unpaired, two-tailed Student’s t-test.
Comparison within group was done through a paired, two-tailed Stu-
dent’s t-test. Survival curveswereplotted by theKaplan–Meiermethod
and compared using the log-rank test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The single-cell RNA seq data of patients with MF generated in this
study have been deposited in the GEO database under accession code
GSE224449. The single-cell RNA seq publicly available data of healthy
controls, MF patients, AD patients, BCC patients and CBCL patients
used in this study are available in the GEO database under accession
code GSE173205, GSE165623, GSE222840, GSE181907 and GSE173820.
The remaining data are available within the Article, Supplementary
Information or Source Data file. Source data are provided with
this paper.

Code availability
The neural network logistic regression (NN-log-reg) model is available
online with publication at https://github.com/suskim/NN-log-reg72.
The single-cell RNA seq analysis is available online with publication at
https://github.com/GuenovaLab/TumorLymphocytes73.

References
1. Maloney, D. G. Anti-CD20 antibody therapy for B-cell lymphomas.

N. Engl. J. Med. 366, 2008–2016 (2012).
2. Lokhorst, H. M. et al. Targeting CD38 with daratumumab mono-

therapy inmultiplemyeloma.N. Engl. J.Med.373, 1207–1219 (2015).
3. Dobos, G. et al. Epidemiology of cutaneous T-Cell Lymphomas: A

systematic review andmeta-analysis of 16,953 patients.Cancers 12,
2921 (2020).

4. Iyer, A. et al. Branched evolution and genomic intratumor hetero-
geneity in the pathogenesis of cutaneous T-cell lymphoma. Blood
Adv. 4, 2489–2500 (2020).

5. Rassek, K. & Iżykowska, K. Single-cell heterogeneity of cutaneous
T-cell lymphomas revealed using RNA-Seq technologies. Cancers
12, 2129 (2020).

6. Gaydosik, A. M. et al. Single-cell lymphocyte heterogeneity in
advanced cutaneous T-cell Lymphoma skin tumors. Clin. Cancer
Res. 25, 4443–4454 (2019).

7. Liu, X. et al. Single-cell transcriptomics linksmalignant T cells to the
tumor immune landscape in cutaneous T cell lymphoma. Nat.
Commun. 13, 1158 (2022).

8. Moczko, A. et al. Sensitivity and specificity of T-cell receptor PCR
BIOMED-2 clonality analysis for the diagnosis of cutaneous T-cell
lymphoma. Eur. J. Dermatol. 30, 12–15 (2020).

9. Gibson, J. F. et al. Cutaneous T-cell lymphoma (CTCL): Current
practices in blood assessment and the utility of T-cell receptor
(TCR)-Vβ chain restriction. J. Am. Acad. Dermatol. 74,
870–877 (2016).

10. Kirsch, I. R. et al. TCR sequencing facilitates diagnosis and identifies
mature T cells as the cell of origin in CTCL. Sci. Transl. Med 7,
308ra158 (2015).

11. Weng, W. K. et al. Minimal residual disease monitoring with high-
throughput sequencing of T cell receptors in cutaneous T cell
lymphoma. Sci. Transl. Med 5, 214ra171 (2013).

12. Guenova, E. et al. TH2 cytokines frommalignant cells suppress TH1
responses and enforce a global TH2 bias in leukemic cutaneous
T-cell lymphoma. Clin. Cancer Res. 19, 3755–3763 (2013).

13. Cheng, M., Zain, J., Rosen, S. T. & Querfeld, C. Emerging drugs for
the treatment of cutaneous T-cell lymphoma. Expert Opin. Emerg.
Drugs 27, 45–54 (2022).

14. Guenova, E. et al. Novel therapies for cutaneous T-cell lymphoma:
what does the future hold? Expert Opin. Investig. Drugs 23,
457–467 (2014).

15. Beylot-Barry, M. et al. Impact of blood involvement on efficacy and
time to response with mogamulizumab in mycosis fungoides and

Article https://doi.org/10.1038/s41467-024-45083-8

Nature Communications |          (2024) 15:752 15

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE224449
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE173205
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165623
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE222840
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181907
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE173820
https://github.com/suskim/NN-log-reg
https://github.com/GuenovaLab/TumorLymphocytes


Sezary syndrome. J. Eur. Acad. Dermatol Venereol. 37,
311–316 (2023).

16. de Masson, A. et al. Long‐term efficacy and safety of alemtuzumab
in advanced primary cutaneous T‐cell lymphomas. Br. J. Dermatol.
170, 720–724 (2014).

17. Watanabe, R., Teague, J. E., Fisher, D. C., Kupper, T. S. & Clark, R. A.
Alemtuzumab therapy for leukemic cutaneous T-cell lymphoma:
diffuse erythema as a positive predictor of complete remission.
JAMA Dermatol 150, 776–779 (2014).

18. Clark, R. A. et al. Skin effectormemoryT cells do not recirculate and
provide immune protection in Alemtuzumab-treated CTCL
patients. Sci. Transl. Med. 4, 117ra117 (2012).

19. Duvic,M. et al. Phase 1/2 studyofmogamulizumab, a defucosylated
anti-CCR4 antibody, in previously treated patients with cutaneous
T-cell lymphoma. Blood 125, 1883–1889 (2015).

20. Kim, Y. H. et al. Mogamulizumab versus vorinostat in previously
treated cutaneous T-cell lymphoma (MAVORIC): an international,
open-label, randomised, controlled phase 3 trial. Lancet Oncol. 19,
1192–1204 (2018).

21. Cao, Y. et al. Immune checkpoint molecules in natural killer cells as
potential targets for cancer immunotherapy. Signal Transduct.
Target. Ther. 5, 250 (2020).

22. Romagne, F. et al. Preclinical characterization of 1-7F9, a novel
human anti-KIR receptor therapeutic antibody that augments nat-
ural killer-mediated killing of tumor cells. Blood 114,
2667–2677 (2009).

23. Kohrt, H. E. et al. Anti-KIR antibody enhancement of anti-lymphoma
activity of natural killer cells as monotherapy and in combination
with anti-CD20 antibodies. Blood 123, 678–686 (2014).

24. Hall, T. V. et al. Monalizumab: inhibiting the novel immune check-
point NKG2A. J. Immunother. Cancer 7, 263 (2019).

25. Liu, X. et al. Immune checkpoint HLA-E:CD94-NKG2A mediates
evasion of circulating tumor cells fromNK cell surveillance.Cancer
Cell 41, 272–287.e279 (2023).

26. André, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that pro-
motes anti-tumor immunity by unleashing both T and NK cells. Cell
175, 1731–1743.e1713 (2018).

27. de Masson, A. et al. High-throughput sequencing of the T cell
receptor beta gene identifies aggressive early-stage mycosis fun-
goides. Sci. Transl. Med 10, eaar5894 (2018).

28. Gaydosik, A. M., Stonesifer, C. J., Khaleel, A. E., Geskin, L. J. &
Fuschiotti, P. Single-cell RNA sequencing unveils the clonal and
transcriptional landscape of cutaneous T-Cell Lymphomas. Clin.
Cancer Res 28, 2610–2622 (2022).

29. Ding, J. et al. Systematic comparison of single-cell and single-
nucleus RNA-sequencing methods. Nat. Biotechnol. 38,
737–746 (2020).

30. Paszke, A. et al. PyTorch: an imperative style, high-performance
deep learning library. in Proceedings of the 33rd International
Conference on Neural Information Processing Systems Article 721
(Curran Associates Inc., 2019).

31. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011).

32. Arik, S. O. & Pfister, T. TabNet: Attentive interpretable tabular
learning. (arXiv:1908.07442, 2019).

33. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System.
in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining 785–794 (Association for
Computing Machinery, San Francisco, California, USA, 2016).

34. Rindler, K. et al. Single-cell RNA sequencing reveals markers of
disease progression in primary cutaneous T-cell lymphoma. Mol.
Cancer 20, 124 (2021).

35. Najidh, S. et al. Improved Sezary cell detection and novel insights
into immunophenotypic and molecular heterogeneity in Sezary
syndrome. Blood 138, 2539–2554 (2021).

36. Brandenburg, A. et al. Long-term outcome of intravenous therapy
with rituximab in patients with primary cutaneous B-cell lympho-
mas. Br. J. Dermatol. 169, 1126–1132 (2013).

37. Porkert, S. et al. Long-term therapeutic success of intravenous
Rituximab in 26 patients with indolent primary cutaneous B-cell
Lymphoma. Acta Derm. Venereol. 101, adv00383 (2021).

38. Cowan, R. A. et al. Efficacy and safety of mogamulizumab by
patient baseline blood tumour burden: a post hoc analysis of the
MAVORIC trial. J. Eur. Acad. Dermatol. Venereol. 35, 2225–2238
(2021).

39. Ogura, M. et al. Multicenter phase II study of mogamulizumab (KW-
0761), a defucosylated anti-cc chemokine receptor 4 antibody, in
patients with relapsed peripheral T-cell lymphoma and cutaneous
T-cell lymphoma. J. Clin. Oncol. 32, 1157–1163 (2014).

40. Iselin, C. et al. Enhancement of antibody-dependent cellular cyto-
toxicity is associated with treatment response to extracorporeal
photopheresis in Sezary syndrome. Oncoimmunology 10,
1873530 (2021).

41. Rindler, K. et al. Single-cell RNA sequencing reveals tissue
compartment-specific plasticity of mycosis fungoides tumor cells.
Front Immunol. 12, 666935 (2021).

42. Alkon, N. et al. Single-cell RNA sequencing defines disease-specific
differences between chronic nodular prurigo and atopic dermatitis.
J. Allergy Clin. Immunol. 152, 420–435 (2023).

43. Yerly, L. et al. Integratedmulti-omics reveals cellular andmolecular
interactions governing the invasive niche of basal cell carcinoma.
Nat. Commun. 13, 4897 (2022).

44. Jonak, C. et al. Single-cell RNA sequencing profiling in a patient
with discordant primary cutaneous B-cell and T-cell lymphoma
reveals micromilieu-driven immune skewing. Br. J. Dermatol 185,
1013–1025 (2021).

45. Yu, K. K. et al. IL-32 supports the survival of malignant T cells in
cutaneous T-cell Lymphoma. J. Investig. Dermatol. 142,
2285–2288.e2282 (2022).

46. Esteva, A. et al. Dermatologist-level classification of skin cancer
with deep neural networks. Nature 542, 115–118 (2017).

47. Hyland, S. L. et al. Early prediction of circulatory failure in the
intensive care unit using machine learning. Nat. Med. 26,
364–373 (2020).

48. Lewis, J. E. & Kemp, M. L. Integration of machine learning and
genome-scale metabolic modeling identifies multi-omics bio-
markers for radiation resistance. Nat. Commun. 12, 2700 (2021).

49. Otesteanu, C. F. et al. A weakly supervised deep learning approach
for label-free imaging flow-cytometry-based blood diagnostics.
Cell Rep. Methods 1, 100094 (2021).

50. Li, X. et al. Deep learning enables accurate clustering with batch
effect removal in single-cell RNA-seq analysis. Nat. Commun. 11,
2338 (2020).

51. Arisdakessian, C., Poirion, O., Yunits, B., Zhu, X. & Garmire, L. X.
DeepImpute: an accurate, fast, and scalable deep neural network
method to impute single-cell RNA-seq data. Genome Biol. 20,
211 (2019).

52. Ravindra, N., Sehanobish, A., Pappalardo, J. L., Hafler, D. A. & van
Dijk, D. Disease state prediction from single-cell data using graph
attention networks. in Proceedings of the ACM Conference on
Health, Inference, and Learning 121–130 (Association for Computing
Machinery, Toronto, Ontario, Canada, 2020).

53. Stubbington, M. J. et al. T cell fate and clonality inference from
single-cell transcriptomes. Nat. Methods 13, 329–332 (2016).

54. Ravindran, U. & Gunavathi, C. A survey on gene expression data
analysis using deep learning methods for cancer diagnosis. Prog.
Biophys. Mol. Biol. 177, 1–13 (2023).

55. Dubrot, J. et al. In vivo CRISPR screens reveal the landscape of
immune evasion pathways across cancer. Nat. Immunol. 23,
1495–1506 (2022).

Article https://doi.org/10.1038/s41467-024-45083-8

Nature Communications |          (2024) 15:752 16



56. Murray, D. et al. Progression of mycosis fungoides occurs through
divergence of tumor immunophenotype by differential expression
of HLA-DR. Blood Adv. 3, 519–530 (2019).

57. Scheffschick, A. et al. Skin infiltrating NK cells in cutaneous T-cell
lymphoma are increased in number and display phenotypic
alterations partially driven by the tumor. Front Immunol. 14,
1168684 (2023).

58. Suga, H. et al. The Role of IL-32 in Cutaneous T-Cell Lymphoma. J.
Investig. Dermatol. 134, 1428–1435 (2014).

59. Wang, L. et al. Genomic profiling of Sézary syndrome identifies
alterations of key T cell signaling and differentiation genes. Nat.
Genet. 47, 1426–1434 (2015).

60. Carrette, F. & Vivier, E. NKG2A blocks the anti-metastatic functions
of natural killer cells. Cancer Cell 41, 232–234 (2023).

61. Nijhof, I. S. et al. Daratumumab-mediated lysis of primary multiple
myeloma cells is enhanced in combination with the human anti-KIR
antibody IPH2102 and lenalidomide. Haematologica 100,
263–268 (2015).

62. Marie-Cardine, A. et al. IPH4102, a humanized KIR3DL2 antibody
withpotent activity against cutaneousT-cell lymphoma.Cancer Res
74, 6060–6070 (2014).

63. Thonnart, N. et al. KIR3DL2 is a coinhibitory receptor on Sezary
syndromemalignant T cells that promotes resistance to activation-
induced cell death. Blood 124, 3330–3332 (2014).

64. Battistella, M. et al. KIR3DL2 (CD158k) is a potential therapeutic
target in primary cutaneous anaplastic large-cell lymphoma. Br. J.
Dermatol. 175, 325–333 (2016).

65. Sicard, H. et al. A novel targeted immunotherapy for CTCL is on its
way: Anti-KIR3DL2 mAb IPH4102 is potent and safe in non-clinical
studies. Oncoimmunology 4, e1022306 (2015).

66. Van Der Weyden, C., Bagot, M., Neeson, P., Darcy, P. K. & Prince, H.
M. IPH4102, a monoclonal antibody directed against the immune
receptor molecule KIR3DL2, for the treatment of cutaneous T-cell
lymphoma. Expert Opin. Investig. Drugs 27, 691–697 (2018).

67. Bagot, M. et al. Lacutamab in patients with advanced mycosis
fungoides according to KIR3DL2 expression: stage 1 results from
the TELLOMAK phase 2 trial. Eur. J. Cancer 173, S20–S21 (2022).

68. Krueger, F. Trim galore. A wrapper tool around Cutadapt and
FastQC to consistently apply quality and adapter trimming to FastQ
files. github. com. 516, 517 (2015).

69. Stuart, T. et al. Comprehensive integration of single-cell data. Cell
177, 1888–1902.e1821 (2019).

70. Raudvere, U. et al. g:Profiler: aweb server for functional enrichment
analysis and conversions of gene lists (2019 update). Nucleic Acids
Res. 47, W191–W198 (2019).

71. Lord, S. J., Velle, K. B., Mullins, R. D. & Fritz-Laylin, L. K. SuperPlots:
Communicating reproducibility and variability in cell biology. J. Cell
Biol. 219, e202001064 (2020).

72. Kimeswenger, S. A neural network logistic regression (NN-log-reg)
model to identify genes with predictive potential for cancer in skin
MF tumor T cells. GitHub (2023).

73. Chang, Y.-T. MHC-I Upregulation Safeguards Neoplastic T Cell in
the Skin Against NK Cell Eradication in Mycosis Fungoides.
GitHub (2023).

Acknowledgements
Wewould like to thank theUniversity ResearchPriority Program (URPP) in
translational cancer research at the University of Zürich for support of
this project. The bioinformatics work on TCR reconstruction was per-
formed by Genevia Technologies. We would like to thank Prof. Jeanette
Leusen for providing EL4-hCD20 cell line. We would like to thank Prof.
Günter Klambauer for providing the expertise on machine learning. EG,
FK, LEF and MPL are members of the SKINTEGRITY.CH collaborative

research Program. We thank the editorial support provided by Jo
Fetterman and Julie Smith from Parexel International. This work was
supported by the Promedica Stiftung (1406/M and 1412/M to EG), the
Swiss Cancer Research Foundation (KFS-4243-08-2017 to EG), the Swiss
National Science Foundation (IZLIZ3_200253/1 to EG), the European
Academy of Dermatology and Venereology (PPRC-2019-20 to EG), the
University of Lausanne (SKINTEGRITY.CH collaborative research pro-
gram to EG), the Fondation Recherche Cancer ISREC (CCP 10-3224-9 to
EG) and the Forschungskredit of the University of Zürich (FK-15-040 to
WH and FK-17-023 to YTC).

Author contributions
E.G. and W.H. designed the project and had the oversight. E.G. and
Y.T.C. conceived and designed the experiments. Y.T.C, F.K., P.M.B. and
D.I. acquired and flow cytometry and single-cell RNA seq data. S.K.
performed the artificial neural network machine learning. Y.T.C and P.P.
performed computational data analysis. C.I. prepared the tissue micro-
array. Y.T.C. andM.B. performed in vitro ADCC assays. Y.T.C. performed,
S.P. and E.G. advised the mouse experiments. Y.T.C., Y.C.T., O.P. and
E.G. prepared figures. E.G., M.P.L., L.E.F. and F.K. collected clinical
samples and clinical metadata. Y.T.C., D.I., S.K. and E.G. wrote the
materials andmethods. Y.T.C., S.K. and E.G. drafted the results. E.G. and
W.H. conceived and supervised the project. Y.T.C, Y.C.T. and E.G.
sharped the final version of the manuscript. All authors approved the
final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-45083-8.

Correspondence and requests for materials should be addressed to
Wolfram Hoetzenecker or Emmanuella Guenova.

Peer review information Nature Communications thanks Robert Gnia-
decki, Zewen Kelvin Tuong and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-45083-8

Nature Communications |          (2024) 15:752 17

https://doi.org/10.1038/s41467-024-45083-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
2Department of Dermatology and Venerology, Medical Faculty, Johannes Kepler University, Linz, Austria. 3Department of Dermatology, University Hospital of
Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland. 4Department of Dermatology and Allergology, Ludwig-Maximilians-University of
Munich, Munich, Germany. 5Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami,
FL, USA. 6Department of Immunology,Medical University ofWarsaw,Warsaw, Poland. 7Department of Dermatology, Icahn School ofMedicine atMount Sinai,
New York, USA. 8Department of Dermatology, Hospital 12 de Octubre, Medical School, University Complutense, Madrid, Spain. 9These authors jointly
supervised thiswork:WolframHoetzenecker, EmmanuellaGuenova. e-mail: wolfram.hoetzenecker@kepleruniklinikum.at; emmanuella.guenova@unil.ch

Article https://doi.org/10.1038/s41467-024-45083-8

Nature Communications |          (2024) 15:752 18

mailto:wolfram.hoetzenecker@kepleruniklinikum.at
mailto:emmanuella.guenova@unil.ch

	MHC-I upregulation safeguards neoplastic T�cells in the skin against NK cell-mediated eradication in mycosis fungoides
	Results
	A clonality-guided deep learning approach to identify genes with predictive value for cancer in skin tumor T�cells
	MHC-I is significantly upregulated on malignant T�cells from MF skin lesions
	Classical MHC-I negatively impacts NK cell-mediated ADCC activity against malignant T�cells in the�skin
	Classical MHC-I blockade restores NK cell-mediated ADCC activity against malignant T�cells in MF skin lesions
	Inhibiting the interaction between classical MHC-I and Ly49-C/I enhances NK cell-mediated anti-T-cell lymphoma activity in mice skin in�vitro and in�vivo
	Autocrine IL-32β acts as a stimulator for MHC-I expression in malignant T�cells

	Discussion
	Methods
	Collection of human skin and blood samples
	Cells, antibodies and reagents
	Flow cytometry
	ScRNA-seq, quality control, gene quantification and data analysis
	TCR reconstruction for clonality analysis
	Clonality criteria
	ML and neural network architecture
	Clonality diagrams and single-cell gene-expression analysis
	Western blotting
	Enzyme-linked immunosorbent�assay
	siRNA transfection and real-time quantitative polymerase chain reaction�(PCR)
	Complement-dependent cytotoxicity�assay
	Antibody-dependent cellular cytotoxicity�assay
	Tissue microarray and MACSima imaging platform
	In vivo mouse tumor�model
	RNA extraction and NanoString analysis
	Recombinant human IL-32β labeling and the expression of IL-32β binding�sites
	IL-32β stimulation analysis
	Statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




