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« Automated EEG interpretation is increasingly used in ICU recordings, where periodic discharges are
relatively common.

o This study shows that the overall performance of automated EEG interpretation is good.

« However, the presence of periodic discharges seems to reduce its reliability.
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ABSTRACT

Objective: To evaluate an automated seizure detection (ASD) algorithm in EEGs with periodic and other

challenging patterns.

Methods: Selected EEGs recorded in patients over 1 year old were classified into four groups: A. Periodic

lateralized epileptiform discharges (PLEDs) with intermixed electrical seizures. B. PLEDs without seizures.

C. Electrical seizures and no PLEDs. D. No PLEDs or seizures. Recordings were analyzed by the Persyst P12

software, and compared to the raw EEG, interpreted by two experienced neurophysiologists; Positive per-

cent agreement (PPA) and false-positive rates/hour (FPR) were calculated.

Results: We assessed 98 recordings (Group A =21 patients; B=29, C=17, D=31). Total duration was

82.7 h (median: 1h); containing 268 seizures. The software detected 204 (=76.1%) seizures; all ictal

events were captured in 29/38 (76.3%) patients; in only in 3 (7.7%) no seizures were detected. Median

PPA was 100% (range 0-100; interquartile range 50-100), and the median FPR 0/h (range 0-75.8; inter-

quartile range 0-4.5); however, lower performances were seen in the groups containing periodic dis-

charges.

Conclusion: This analysis provides data regarding the yield of the ASD in a particularly difficult subset of

EEG recordings, showing that periodic discharges may bias the results.

Significance: Ongoing refinements in this technique might enhance its utility and lead to a more exten-

sive application.

© 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights
reserved.

1. Introduction 1994; DeLorenzo et al., 1998; Towne et al., 2000; Scheuer, 2002;

Claassen et al., 2004). In both clinical situations, long-term EEG

Electroencephalography (EEG) represents a standard examina-
tion of brain function in patients living with epilepsy, and it is also
increasingly used in subjects with acute consciousness impairment
in an intensive care setting, where seizures may occur in 8-34% of
patients, mostly with subclinical presentations (Privitera et al.,
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monitoring allows continuous surveillance of the cerebral activity,
but it implies a thorough and time-consuming interpretation by
trained neurophysiologists. Over the last few decades, automatic
methods have been developed to highlight significant electro-
graphic events, providing insight into the EEG trends, reducing
evaluation time and potentially increasing patient security by
alerting medical staff sooner concerning the presence of seizures.
Seizure detection algorithms are available in commercial software
packages, based on the analysis of rhythmic patterns with a certain
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waveform morphology, distribution, and evolution over time, until
a threshold is achieved. Nevertheless, a major problem is the inter-
patient (and, at times, intra-patient) variability of ictal patterns,
ranging from quasi rhythmic or periodic discharges, over high fre-
quency activities variation or abrupt phase changes, to more irreg-
ular groups of epileptiform transients (Gotman, 1990; Furbass
et al,, 2012).

Despite the increasing implementation of these automated sys-
tems and the previous literature regarding the sensitivity or spec-
ificity rates to detect seizures (Gotman, 1982, 1990; Pauri et al.,
1992; Gabor, 1998; Wilson et al., 2004; Saab and Gotman, 2005;
Wilson, 2005; Meier et al., 2008; Kelly et al., 2010; Hartmann
et al., 2011), the application of these algorithms to patients with
particular challenging EEG records has received little attention to
date. Our study was conducted to address this aspect.

2. Methods
2.1. Study population

Routine and long-term EEG recordings, acquired using 23 scalp
electrodes placed according to the international 10-20 system in
adults and children over 1 year of age, were used for this analysis.
All studies were recorded on a digital system (Viasys Neurocare,
Madison, WI, USA), for standard evaluations (with intermittent
photic stimulation and hyperventilation in certain cases), or in
the in-patient clinics including the Intensive Care Unit (ICU),
between January 2012 and March 2013.

Recordings were retrospectively selected for this study accord-
ing to their features, and classified into the following groups:

A. Periodic lateralized epileptiform discharges (PLEDs, synony-
mous with lateralized periodic discharges (Hirsch et al.,
2013)) or periodic epileptiform discharges (PEDs, synony-
mous with generalized periodic discharges (Hirsch et al.,
2013)) with intermixed electrical seizures, defined as accel-
eration of their frequency over at least 2 Hz within a few sec-
onds and/or progressive change in field and morphology, of
more than 1 s of duration (Fig. 1).

B. Monotonous PLEDs/PEDs with no seizures (first control
group).

C. Electrical seizures without PLEDs/PEDs, defined as any
variation of the background amplitude, together with an
acceleration of frequency over 4 Hz (Hirsch et al., 2013) or
a spike-and wave pattern below 4 Hz consistent with typical
seizures associated with idiopathic (genetic) generalized
epilepsy, and/or progressive change in field and morphology,
regardless of duration.

D. No PLEDs/PEDs nor seizures (second control group), in
recordings suggestive of changes in vigilance states, contain-
ing considerable artifacts, or epileptiform-looking variants of
normality suggesting seizures to an untrained reader, such
as prolonged runs of rhythmic mid-temporal discharges, or
wicket spikes.

2.2. Persyst 12 seizure detection description

This algorithm (version 2013.06.25), is designed to evaluate the
scalp EEG signal for changes in background activity exhibiting
rhythmicity, evolution in amplitude and/or frequency, and asym-
metry, and produce outputs concerning electrographic seizure
activity. The algorithm is built by combining the output of many
small artificial neural networks (few input and hidden nodes), each
of which were trained to recognize a particular feature, e.g. fre-
quency evolution. Uncertainty is propagated through each level

of the processing, resulting in a single “is-seizure” output (0-1)
per each one-second epoch. Two outputs of the algorithm are
available: the identification of discrete electrographic seizure
events with a minimum duration of 11 seconds, which we used
for this analysis, and a seizure probability curve that displays the
probability that any one-second epoch would be marked as “sei-
zure”. The algorithm was trained on a set of varied EEG recordings
containing seizures identified by human experts, drawn from Epi-
lepsy Monitoring Unit, Intensive Care Unit, and ambulatory set-
tings. Non-seizure records were also utilized in training the
detection algorithm; these contained a broad sampling of EEG pat-
terns and states, including records from the ICU. There was no
algorithm training to specifically or systematically attempt to iden-
tify and differentiate certain types of patterns, like lateralized or
generalized periodic discharges, or gray area ICU patterns that fall
into the ictal-interictal continuum (where expert electroencepha-
lographers might have legitimate disagreements in interpretation).

2.3. Algorithm interpretation

Each recording was analyzed using the automated seizure
detection (ASD) function, which presents on the screen as a red
mark above a given threshold, being considered as a binary vari-
able for practical purposes. We also inspected the color-coded
rhythmicity and fast Fourier transformed (FFT) power spectro-
grams (both averaged for each hemisphere), in order to determine
the presence of patterns suggestive of electrographic seizures.
These analyses were always assessed using the artifact reduction
device, on a time scale between 30 min and 1 h. The visual inter-
pretation of the corresponding whole raw recording represented
the gold standard comparator; all analyses were the result of
agreement between two experienced neurophysiologists (ASM,
AOR).

2.4. Data analysis

On the whole dataset, we calculated the percentage of seizures
detected (either with the ASD only, or using also the spectro-
grams), as well as the rate of patients with seizures in whom at
least one event was detected by the software. False negatives
(FN) were defined as expert-marked seizures on raw recordings,
not detected by any automated method. Expert-marked seizures
that were also detected by the automated software represented
true positives (TP). Positive percentage agreement (PPA), a term
preferred rather than “sensitivity” to describe the comparison of
a new test to a non-reference standard, was calculated for each
record individually, regarding both automated approaches: TP
was divided by the sum of TP and FN for each patient, and
described with a median (given the assumed non-normal distribu-
tions) for each group, and in order to reduce any biasing by individ-
ual patients having many seizures.

False positive (FP) detections were defined as any event identi-
fied by the ASD as a seizure, but not corresponding to any expert-
marked seizure. The false positive rate (FPR), corresponding to FP
divided by recording time, was described using the median of each
individual FPRs across a given group; to complement this approach
we also calculated FPR using the sum of individual FP divided by
the whole recording time by group.

3. Results

We analyzed 98 recordings: 21 patients in Group A (with 170
seizures), 29 in group B, 17 in group C (with 98 seizures), and 31
in group D; globally, these recordings contained 268 seizures
(groups A and C). In group A, the median number of seizures per
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Fig. 1. (A, B): two consecutive screenshots of a patient with pseudo-periodic discharges on the left posterior region, evolving to a semi-rhythmic activity over the left
temporal region. Longitudinal bipolar montage (right over left), 30 mm/sec, 10 uV/mm.
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Table 1
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Results regarding the positive percent agreement (PPA) and false positive ratio (FPR) per hour in each group and in the whole studied cohort. PPA 1: Median PPA using only the
automated seizure detection (ASD) function. PPA 2: Median PPA including ASD function and spectrograms. FPR 1 (per hour): Median false positive rate using the ASD function
only. FPR 2 (per hour): Median false positive rate through both methods. FPR* relates to the sum of false positive across each groups, divided by the total recording time in the
group. Results are formulated in terms of median (range), interquartile range (IQR), except in the last column.

PPA 1 median (range)IQR  PPA 2 median (range)IQR  FPR 1 median (range)IQR  FPR 2 median (range)IQR ~ FPR*
Group A(periodic patterns and seizures) 75 (0-100)4.8-100 75 (0-100)50-100 0 (0-6.1)0-0 0(0-17.1)0-0 0.76
Group B(periodic patterns only) 0 (0-27.0)0-0 6.06 (0-75.8)3-9.09 4.28
Group C(seizures only) 100 (0-100)13.33-100 100 (0-100)50-100 0 (0-6.1)0-0 0 (0-28.3)0-3 0.06
Group D(no seizures, no periodic patterns) 0 (0-0)0-0 0(0-9.1)0-2.9 0.0
Total 100 (0-100)5.9-100 100 (0-100)50-100 0 (0-27.0)0-0 0 (0-75.8)0-4.5 0.97
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Fig. 2. A seizure from group A is detected by the visual analysis with the raw EEG (pseudo-periodic discharges on the left posterior region with intermixed faster rhythmic
activity over less than 10 s), but is not marked on the automated detection. Longitudinal bipolar montage (right over left), 20 mm/s, 10 pV/mm.

recording was 4 (range 1-50); in group C the median was 3 (range
1-18). The total duration of all recordings was 82.7 hour, and the
median recording time 1 hour (range: 20 minutes - 19 h).

Regarding the clinical characteristics of the patient population,
median age was 57 [range: 3-88] years and 48 (49%) were women.
The presumed etiology was structural-metabolic in 66 (67.3%),
genetic in 7 (7.1%), and unknown in 25 patients (25.5%) (Berg
et al., 2010).

Table 1 gives the overview of the results. Overall, the software
detected 204/268 (=76.1%) of seizures. Mean detection rate per
subject was 90.5% (median 100%, range 0-100; interquartile range
50-100). The 64 “undetected seizures” corresponded to subtle ictal
patterns without clear evolution in frequency or amplitude in 30
(46.9%), short events (duration less than 10s, Fig. 2) in 21
(32.8%), fast rhythms in 8 (12.5%) and to seizures masked by mus-
cular artifacts in 5 (7.8%) cases. Considering the two groups pre-
senting seizures (A and C), applying both detection methods
(ASD function and spectrogram), all ictal events were captured in
29 out of 38 (76.3%) patients, whereas only in three subjects
(7.7%) no seizures at all were detected. The median PPA in Group
A (PLEDs plus intermixed seizures), was 75%; while in Group C (sei-
zures only) was 100%, regardless of the methods.

Eighty false positive events were identified by the detector,
overall. Across the entire dataset (82.7 h), this gives an FPR of

0.97/h; if two extreme outliers in group B were removed (with a
very high FPR, see Fig. 3; these events occurred in EEGs showing
monotonous, prolonged GPEDs in both), the falsely detected events
dropped to 20, with an FPR of 0.24/h. Of note, the median FPR
across all recordings was 0 (range 0-75.8; interquartile range 0-
4.5). False-positive detections were concentrated in groups A and
B, both with periodic patterns, often due to artifacts (Fig. 4), or pro-
longed GPEDs. FPR calculated by adding all false positive events
across each group, divided by the total recording time of the group,
are somewhat higher.

Finally, the combination of the ASD function and the spectro-
gram analysis increased the FPR, particularly in group B. In the
control group (D), no FPs were detected using only the ASD
function.

4. Discussion

In this study, the Persyst P12 software was evaluated in terms
of PPA and FPR in a particularly difficult group of EEG patterns,
including patients with periodic patterns (Group B), and with epi-
leptiform-looking variants of normality or artifacts suggestive of
ictal events (Group D). This software detected 76.1% of all seizures.
The medians show high PPA and low FPR overall, but with lower
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Fig. 3. (A, B): Graphs showing A (upper panel): positive percentage agreement (PPA) using only the automated seizure detection (ASD) function, and B (lower panel): false

positive rates (FPR) by case for the ASD function.

performances in patients having periodic patterns, intermixed or
not with seizures.

A variety of quantitative EEG analyses and display techniques
have been proposed to ease EEG interpretation. Review of
quantitative displays usually quickly reveals an irregular structure,
abrupt phase changes or distortions, appearance or increasing
of focal slowing, generalized suppression, loss of faster frequencies,
or increasing or decreasing EEG variability, suggesting an
ictal event. However, the distinction between seizures from

artifact-related changes, variants of normality or repetitive epilep-
tiform elements may remain very challenging.

Since the automatic EEG detection system described by Hjorth
more than forty years ago (Hjorth, 1970), different algorithms have
been tested regarding their yield in identifying epileptic seizures,
and their results show a wide variability, which relates not only
to the properties inherent to each software, but also to the types
of EEG that were used for the validations. The “older” generation
(Gotman, 1982, 1990; Pauri et al., 1992) showed results in terms
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of sensitivity from 0.43 to 0.64, with FPR up to 3.3/h for Monitor
3.0 (Pauri et al., 1992). With software such as CNet and Monitor
8.0c, sensitivities of 0.93 and 0.74, and FPR of 1.4/ h and 3.0/h,
respectively, were reported (Gabor, 1998). Otherwise, the Reveal
system demonstrated a sensitivity between 0.74 and 0.8, with an
FPR of 0.1-0.2/h only (Wilson et al., 2004). Using a neural network
method for automatic and incremental learning applied to a
patient-specific seizure detection (probabilistic neural network),
a sensitivity of 0.89 and a FPR of 0.56/h were obtained in a small
group of epilepsy monitoring and intensive care unit patients
(Wilson, 2005). With the Stellate Harmonie system, the sensitivity
was 0.76 and the FPR 0.34/h, with a median detection delay of 10 s,
operating as an on-line seizure detection (Saab and Gotman, 2005).
The overall detection sensitivity of IdentEvent in epilepsy monitor-
ing unit patients was 0.80 with a very low FPR of 0.09/h (Kelly
et al., 2010). Detection of seizures with the EpiScan has proved to
achieve an overall sensitivity ranging from 0.73 to 0.83, with a
FPR of 0.30/h (Hartmann et al., 2011; Furbass et al., 2012). Finally,
with a multimorphologic ictal-pattern recognition system, the
average correct detection rate was higher than 96%, with a mean
false alarm rate of 0.25/h (Meier et al., 2008). It is of note that most
of the studies of automated seizure detection algorithms were con-
ducted primarily using recordings obtained on patients in the epi-
lepsy monitoring units or EEG laboratories, and assessed very little
data concerning seizures recorded in ICU settings. When the Ident-
Event and Reveal algorithms were used to assess a small number
(N=11) of ICU recordings containing seizures, their detection sen-
sitivities fell to 10.1% and 12.9%, respectively (Sackellares et al.,
2011).

As compared to the aforementioned data, in the present study,
including a large percentage of ICU patients with complex EEG pat-
terns, we found a lower PPA and higher FPR in the subgroups with
periodic patterns; this is probably related to the selection of record-
ings with particularly challenging EEGs. The Persyst 12 seizure
detection algorithm functions as a general purpose seizure detec-
tor, and was not specifically designed to address ICU EEG patterns
that can sometimes possess features bordering on electrographic
ictal activity without clearly being seizures. Nevertheless, the char-
acteristics of the detector showed good performances overall. The
majority of missed seizures presented with a short duration (below
10 s), subtle diffuse electrodecrements, without any obvious evolu-
tion (Fig. 2). Conversely, false detections corresponded to muscle
artifacts or electrode failures, or to prolonged GPEDs. It is important
to underscore that overall only less than 8% of patients having at
least one seizure did not get any detected.

This study has some limitations; first, the assessment between
the two methods was not blinded. Second, the definition seizures,
especially in patients having additional PLEDs (group A) did not rely
on robust evidence-based criteria, but was somewhat subjective,
integrating also the clinical situation, as it is common in clinical
practice; for example, a patient with focal periodic discharges over
the dominant temporal lobe and an intermixed acceleration-decel-
eration of the electrogenesis is generally regarded to be in status
epilepticus and deserves a consequent treatment (Sutter and
Kaplan, 2012). Third, the evaluation of spectrograms includes some
subjectivity, as opposed to the ASD function. Finally, we analyzed a
selected group of EEGs, therefore generalizability is not implicit.

In view of these results and the above mentioned literature, cur-
rent computer-assisted EEG interpretation techniques may be con-
sidered an important help for the human observer (Scheuer, 2002).
However, some limitations should be outlined: in the presence of
periodic patterns, false negative and false positive results may
become more frequent; conversely, the use of the rhythmicity
and power spectrograms in addition to the ASD increases the

PPA, but also the FPR. It appears therefore important that EEG auto-
mated detections, especially in long-term monitoring, should be
critically assessed for each specific patient, particularly at the
beginning of the recording (Hartmann et al., 2011). Nevertheless,
it is likely that ongoing refinements in seizure detection algorithms
and EEG trending software will enhance their utility and lead to
even more extensive applications.

This analysis provides data regarding the performance of an
automated seizure detection algorithm in a difficult subset of
EEG recordings, particularly including periodic patterns. This may
help clinicians in the application of automated EEG algorithms,
and provide developers with valuable data for possible
improvements.
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