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Abbreviations 

Cdc42    Cell division control protein 42 

CRIB    Cdc42/Rac-interactive binding 

Dis2    Defective in sister chromatid disjoining 

DYRK    Dual-specificity tyrosine-phosphorylation regulated kinase  

EMM    Edinburgh minimal medium 

Gef1    Guanine exchange factor 1 

GFP    Green fluorescent protein 

GTP    Guanosine 5'-Triphosphate 

LatA    LatrunculinA 

M    Mitosis 

MBC     Methyl benzimidazol-2-yl carbonate  

MTs    Microtubules 

NETO    New End Take Off 

Pom1    Polarity misplaced 1  

PP1    Type 1 protein phosphatase 

Rga4    Rho Tapes activating protein 4 

SH3 domain   SRC Homology 3 domain 

TAP    Tandem affinity urification 

Tea4    Tip elongation aberrant 4  

YE5S    Yeast extract with supplements 
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Scientific summary 

Cell polarity is an essential property of most cell types and relies on a dynamic cytoskeleton 

of actin filaments and microtubules. In rod-shaped S. pombe cells microtubules are 

organized along the length of the cell and transport polarity factors to cell tips to regulate cell 

polarity. An important cell polarity factor is the protein Tea4, which is responsible for correct 

cell morphogenesis and bipolar growth. During my research I confirmed the known transport 

mechanism of Tea4 and I also showed alternative localization and anchoring mechanisms at 

the cell ends. Tea4 contains a conserved SH3 domain, the function of which was unknown 

and my results show that the SH3 domain of Tea4 is essential for Tea4 function in vivo. First, 

cells with tea4SH3 mutations show aberrant cell shapes and monopolar growth patterns 

similar to tea4∆ and in addition SH3 domain is important for proper localization of multiple 

cell polarity proteins. Second, I showed that Tea4 associates with Type 1 Phosphatase Dis2 

through both its SH3 domain and an RVxF motif. Tea4 also binds the DYRK kinase Pom1 

through its SH3 domain. In addition Tea4 is proposed to promote the local dephosphorylation 

of Pom1 by Dis2 to induce the formation of a cortical gradient from cell ends essential for cell 

size homeostasis. Polarized growth is also controlled by cell tip-localized Cdc42. This Rho-

family GTPase is activated by the Guanine Exchange Factors Gef1 and Scd1 and inactivated 

by the Rho GTPase Activating Protein Rga4. In this study, I investigated the mechanisms of 

how Tea4 promotes Cdc42 activation. My work suggests that Tea4 promotes the local 

exclusion of Rga4, which in turn allows the accumulation of active Cdc42, which may result 

in growth. Exclusion of Rga4 by Tea4 is likely to be mediated by Dis2-dependent 

dephosphorylation. These results suggest a molecular pathway that links the microtubule-

associated factor Tea4 with Cdc42 to promote cell polarization and morphogenesis. 

 

Keywords: cell polarity, microtubule-associated proteins, Tea4, SH3 domain, Cdc42, Rho 

Tapes activating protein, Rga4, Type 1 phosphatase, Dis2, morphogenesis 
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Résumé scientifique 

La polarité cellulaire est une propriété essentielle de la plupart des types cellulaires et 

s'appuie sur une dynamique des cytosquelettes d'actine et de microtubules. Dans les 

cellules en forme de bâtonnet de S. pombe les microtubules sont alignés selon l’axe 

longitudinal de la cellule et les facteurs de polarité transportés aux extrémité cellulaires afin 

de réguler la polarité cellulaire. Un facteur important de polarité cellulaire est la protéine 

Tea4, qui est responsable de la morphogenèse des cellules et leur croissance bipolaire. Au 

cours de mes recherches, j'ai confirmé les mécanismes connus de transport de Tea4 et j'ai 

aussi mis en évidence d'autres mechanismes de localisation et d'ancrage de Tea4  aux 

extrémités cellulaires. Tea4 contient un domaine SH3 conservé, dont la fonction était 

inconnue et mes résultats montrent que le domaine SH3 est essentiel pour la fonction de 

Tea4 in vivo. Tout d'abord, les cellules avec des mutations tea4SH3 ont des formes 

aberrantes et leur croissance est monopolaire de manière similaire au mutant tea4Δ. De plus 

ce domaine SH3 est important pour la localisation correcte de plusieurs protéines de polarité 

cellulaire. Deuxièmement, j'ai montré que Tea4 s’associe avec la Phosphatase de Type-1 

Dis2 par son domaine SH3 et un motif RVxF. Tea4 se lie également la kinase DYRK Pom1 

par son domaine SH3. De plus, Tea4 pourrait favoriser la déphosphorylation locale de Pom1 

par Dis2 afin d’induire la formation d'un gradient cortical de Pom1 essentiel pour 

l'homéostasie de la longueur des cellules. La croissance polarisée est également contrôlée 

par la protéine Cdc42 localisée aux extrémités cellulaires. Cette GTPase de la famille de 

Rho GTPase est activée par les facteurs échange de guanine Gef1 et Scd1 et inactivée par 

la protéine ‘’Rho GTPase activating’’ Rga4. Dans cette étude, j'ai étudié les mécanismes d’ 

activation de Cdc42 par Tea4. Mes résultats suggèrent que Tea4 favorise l'exclusion locale 

de Rga4, ce qui permet l'accumulation de Cdc42 active, nécessaire à la croissance. L’ 

exclusion de Rga4 par Tea4 est vraisemblablement médiée par une déphosphorylation Dis2-

dépendente. Ces résultats suggèrent une voie moléculaire qui lie le facteur associé aux 

microtubules Tea4 à Cdc42 pour promouvoir la polarisation cellulaire et la morphogenèse. 

 

Mots-clés: polarité cellulaire, protéines associées aux microtubules, Tea4, domaine SH3, 

Cdc42, Rho GTPase protéine activating, Rga4, Type 1 phosphatase, Dis2, morphogenèse 
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Public summary 

Cell polarity is important for several essential biological functions such as generation of 

distinct cell fates during development and function of differentiated cells. Defective cell 

polarity has been related to uncontrolled cell division and subsequently to cancer initiation. 

Cell polarity depends on a functional cytoskeleton that consists of actin filaments and 

microtubules, which maintains cell shape, helps cellular motion, enables intracellular protein 

transport and plays a vital role in cell division. A component of cytoskeleton is microtubules 

that regulate cell polarization in diverse cell types. During my research, I worked with 

Schizosaccharomyces pombe, also named fission yeast, a powerful unicellular model 

organism that allows combination of genetic, biochemical and microscopic analysis for the 

proper study of cell polarity. Microtubule-associated protein Tea4 is transported to cell tips 

where it is thought to organize polarized growth. I showed that Tea4 and its evolutionarily 

conserved SH3 domain play an important role for maintenance of fission yeast cells shape 

and growth. Furthermore, Tea4 is responsible for the proper localization of multiple polarity 

proteins and acts as a mediator to control the local activity of an essential polarity regulator 

called Cdc42. Thus, my results provide a better understanding of the molecular mechanisms 

that regulate cell polarity. 
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Résumé public  

La polarité cellulaire est importante pour plusieurs fonctions biologiques essentielles telles 

que la différenciation cellulaires au cours du développement et de la fonction de cellules 

différenciées. Les défauts de la polarité cellulaire ont été liés à des divisions cellulaires 

incontrôlées et à l'initiation de tumeur. La polarité cellulaire dépend d'un cytosquelette 

fonctionnel, qui maintient la forme des cellules, aide à la migration cellulaire, permet le 

transport intracellulaire des protéines et joue un rôle essentiel dans la division cellulaire. Un 

composant du cytosquelette est constitué de microtubules qui régissent la polarisation 

cellulaire dans divers types cellulaires. Au cours de mes recherches, j'ai travaillé avec 

Schizosaccharomyces pombe, appelé également levure fissipare, un modèle unicellulaire 

puissant qui permet la combinaison de différentes d’approches expérimentales: génétiques, 

biochimiques et microscopiques pour l'étude de la polarité cellulaire. La protéine Tea4 

associée aux microtubules est transportée aux extrémités cellulaires où elle organise la 

croissance polarisée. J'ai montré que Tea4 et son domaine conservé SH3 jouent un rôle 

important pour le maintien de la forme des cellules de levure et leur croissance. De plus, 

Tea4 est responsable de la localisation correcte de multiples facteurs de polarité et agit 

comme un médiateur pour contrôler l'activité locale d'un régulateur de polarité essentiel 

appelé Cdc42. Ainsi, mes résultats permettent de mieux comprendre les mécanismes 

moléculaires qui régulent la polarité cellulaire. 

 

 

 

 

 

 

 

 

 

 

 



 16   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  17  

Chapter 1  

General introduction  

1.1. Cell polarity importance  

Cell polarity is an essential biological property of almost all cell types and is defined as an 

asymmetrical distribution of proteins and functions. Cell polarity is found in single cell 

organisms such as budding yeast Saccharomyces cerevisiae and fission yeast 

Schizosaccharomyces pombe, multicellular invertebrates including the nematode 

Caenorhabditis elegant and the fruitfly Drosophila, and vertebrates such as mammals and 

birds. Even prokaryotic organisms such as bacteria and archaea are polarized. Cells can be 

of a large range of shapes and sizes, from meter long branching neurons in mammals to the 

micrometer long rod-shaped cells of S. pombe.  

Cell polarity in these different cell types enables the cell to accomplish specialized functions. 

Stem cells give rise to non-identical daughter cells to achieve lineage-specific differentiation. 

This critical developmental process relies on accurate regulation of cell polarity to ensure 

asymmetric cell division (Knoblich, 2008). Neuronal polarity allows axons and dendrites to 

properly regulate signal transmission (Arimura and Kaibuchi, 2007). Polar localization of pin-

formed proteins (PIN) establishes auxin efflux, an important signal for plant body 

development (Dhonukshe, 2009). Proper regulation of polarity is essential for tissue integrity 

by maintaining the apical-basal polarity of epithelial cells (Shin et al., 2006). The examples 

above clearly illustrate that understanding how cell polarity is regulated is of fundamental and 

universal biological importance.  

Given the diversity and range of cell types present in nature it is remarkable that the 

mechanisms to generate and maintain polarity are highly similar. Indeed, many of the 

molecules responsible for regulating cell polarity are conserved across cell types and 

throughout metazoan species (Bryant and Mostov, 2008). One highly conserved mechanism 

of polarity establishment involves the localization of protein landmarks to specific areas at the 

cell membrane. The localization of these molecules requires cytoskeletal elements such as 

microtubules and actin to recruit the polarity regulators and to deliver vesicles to the cell 

matrix. I will mainly focus on the role of Rho GTPases, specifically that of Cdc42. Rho 

GTPases play an essential role in the regulation of cytoskeletal elements, vesicle transport 

and the localization of cytoplasmic proteins, all of which contribute to cell polarization (Jaffe 
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and Hall, 2005; Orlando and Guo, 2009). GTPases function as molecular switches that 

transit from a GDP-bound inactive state to a GTP-bound active state. Guanine Exchange 

Factors (GEF) and GTPase Activating Proteins (GAP) are the proteins involved in their 

activation and inactivation, respectively. The importance of Rho GTPases, especially Cdc42, 

in establishing polarized growth has been studied extensively in the budding yeast system 

(Chang et al., 1994; Miller and Johnson, 1994; Nobes and Hall, 1999; Pruyne et al., 2004a; 

Pruyne et al., 2004b). In budding yeast cells, Cdc42 controls actin assembly and is required 

for polarized localization of the exocyst (Lechler et al., 2001; Pruyne et al., 2004a; Zhang et 

al., 2001). It is believed that the exocyst provides information for the recruitment and 

tethering of secretory vesicles important for cell wall remodeling and growth (Heider and 

Munson, 2012; Pruyne et al., 2004b; Yu and Hughson, 2010) 

Newborn budding yeast cells utilize polarity landmark proteins, which act as spatial and 

temporal cues to position correctly the emergence of the daughter bud. Wild type cells utilize 

the GTPase Rsr1 to provide the spatial information for bud emergence adjacent to the bud 

scar from the previous division (Chant and Herskowitz, 1991). This landmark protein 

transmits the information to recruit the Cdc42 module, which activates downstream effectors 

at the selected site of growth. Cdc42 will be part of a protein complex that will enhance 

symmetry breaking to allow for the emergence of a single bud. Even in absence of landmark 

protein Rsr1, Cdc42 can break symmetry and establish polarized growth. In rsr1∆ cells, 

Cdc42 concentrates at a random cortical site either in response to an extracellular cue or 

spontaneously and triggers symmetry breaking (Irazoqui et al., 2003). Studies with rsr1∆ 

budding yeast cells have established that two positive feedback mechanisms help breaking 

symmetry to allow for polarized growth (Fig. 1.1A and B) (Slaughter et al., 2009; Wedlich-

Soldner et al., 2004). First, the Cdc42-based cortical complex recruits more cytoplasmic 

Cdc42 molecules resulting in an expanding Cdc42 cortical cluster (Goryachev and Pokhilko, 

2008; Kozubowski et al., 2008). Cdc42 activates members of the formin family of actin 

nucleators, which build polarized arrays of actin cables that in turn serve as tracks for the 

transport of more Cdc42. The cooperation between Cdc42 and actin mutually enhance each 

other through positive feedback loops to achieve symmetry breaking (Slaughter et al., 2009; 

Wedlich-Soldner et al., 2003). The second positive feedback mechanism is believed to 

require the association of the scaffold Bem1, the Cdc42-GEF Cdc24 and a PAK kinase, 

which serves to drive Cdc42 into the GTP-bound active form (Goryachev and Pokhilko, 2008; 

Kozubowski et al., 2008). Importantly, recent work has discovered a role for negative 

feedback in symmetry breaking as well (Howell et al., 2012). Initially the positive feedback 

loops permit the amplification of new polarity clusters but the amplification of more than one 

cluster would require the competition between the clusters for ‘’winning’’ the limited pool of 
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resources. Eventually the largest cluster would “win” explaining how budding yeast creates 

only one bud. This clustering is oscillatory when it is initially formed proposing also the 

presence of a negative feedback loop that scatters the polarity factors (Howell et al., 2012). 

Altogether this suggests that direct interactions between Rsr1 and Bem1, Cdc24, and Cdc42 

(Kozminski et al., 2003; Park et al., 1997; Zheng et al., 1995) combined with the active 

Cdc42 and actin positive feedback loops and possibly a negative loop ensure polarized 

growth and correct bud site selection.  

Since its original finding in S. cerevisiae, Cdc42 has been identified to regulate a variety of 

signaling pathways and cellular processes in many organisms from unicellular yeast to 

mammals (Adams et al., 1990; Johnson, 1999; Johnson and Pringle, 1990). Cdc42 acts 

upstream of numerous effectors controlling processes that include cell polarity, cytoskeletal 

rearrangements, migration, adhesion and membrane trafficking (Aznar and Lacal, 2001; 

Cerione, 2004; Stengel and Zheng, 2011). Studies in Drosophila showed that Cdc42 

regulates the morphogenesis of axons and dendrites and maintains the polarization of 

epithelial cells (Eaton et al., 1996; Luo et al., 1994; Scott et al., 2003). In mice, Cdc42 also 

plays an important role for polarity maintenance in the neural system and in liver (Chen et al., 

2006; van Hengel et al., 2008). In humans, overexpression of Cdc42 is strongly correlated 

with various cancer types and increased levels of Cdc42 associate with aging and mortality 

(Fritz et al., 2002; Fritz et al, 1999; Gomez Del Pulgar et al., 2008; Kamai et al., 2004; Kerber 

et al., 2009; Liu et al., 2009; Tucci et al., 2007). It is clear that Cdc42 misregulation affects a 

number of pathological conditions and understanding the exact control of Cdc42 is important 

for normal cell function. 

 

Figure 1.1 Breaking symmetry and polarized growth in budding yeast (Mogilner et al., 2012). (A) Initially 

symmetric cell has isotropic distribution of Cdc42 that becomes polarized leading to polarized growth. (B) Positive 

feedback loops help breaking cell symmetry to allow for polarized growth.  
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1.2. Why fission yeast  

In Sophie Martin’s lab, we have chosen to work with Schizosaccharomyces pombe, also 

called fission yeast, an ideal organism to study cell polarity. S. pombe is a species of 

ascomycetous fungi whose cells are rod-shaped and normally measure 3 to 4 micrometers in 

diameter and 7-14 micrometers in length. Historically, fission yeast was first isolated from 

African millet beer in 1893 by Lindner. Pombe means beer in Swahili language (Wixon, 

2002). In the early 1950s in Scotland, Mitchison began to study the cell cycle of S. pombe. In 

parallel in Switzerland, Leupold studied fission yeast genetics and molecular technologies. 

Almost 2 decades later, Paul Nurse successfully combined Leupold's and Mitchison’s 

approaches. Nurse together with Hunt and Hartwell discovered cell cycle regulators as the 

key molecules for controlling cell cycle transitions. They won for their findings the 2001 Nobel 

Prize in Physiology or Medicine. An additional landmark year of S. pombe history was 2002. 

An international collaboration of scientists led by the Sanger Institute published the sequence 

of fission yeast genome on 2002 (Wood et al., 2002). It was just the sixth model eukaryotic 

organism whose genome had been fully sequenced by that time. S. pombe genome is 

approximately 14.1 million base pairs, has 3 chromosomes and is estimated to contain 4,970 

protein-coding genes and at least 450 non-coding RNA’s (Wilhelm et al., 2008).  

Fission yeast cells proliferate in a haploid state and maintain their cylindrical shape by 

growing exclusively at the cell tips and dividing by medial fission, which leads to the 

production of two daughter cells of equal sizes. After division, the newly born cells first grow 

in a monopolar manner at the cell end that existed before cell division (the old end). They 

then initiate bipolar growth in the G2 phase of the cell cycle by growing at the new end 

created by septation (remarkably S. pombe remains in G2 phase for an extended period). 

This process is called New End Take Off (Fig. 1.2), or NETO (Mitchison and Nurse, 1985). 

NETO provides a system of de novo initiation of growth. Regulation of ‘’old’’ end growth 

followed by the ‘’new’’ end growth requires cellular re-arrangements controlled by polarity 

factors. This polarity machinery has to tightly control polarized growth to ensure shape 

maintenance.  

The prerequisite of rod-shaped fission yeast cell morphogenesis is the establishment of cell 

polarity, thus understanding how cells initiate and maintain polarized growth is of 

fundamental importance. Fission yeast provides an ideal organism to study polarity not only 

because of NETO but also due to the uniqueness of its polarity regulation. Even though 

several studies have been done with S. cerevisiae, another yeast model organism, which has 

provided key aspects of understanding polarized growth, there are some major advantages 
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working with fission yeast compared to budding yeast. Budding yeast buds are formed in 

specific regions of the cell distinct from the position of previous bud sites and specifically the 

new bud forms next to the previous bud in haploid cells. The actin cytoskeleton is required 

for bud growth but microtubules are not required. Although microtubules are necessary for 

the correct position of the nucleus and the mitotic spindle, in the absence of microtubules 

buds are still formed at the correct position (Jacobs et al., 1988; Huffaker et al., 1988). In 

contrast to budding yeast, microtubules have a major role in polarized growth and cell 

morphogenesis in fission yeast. S. pombe morphogenesis relies on functional microtubules 

and microtubules ensure that elongation of the cell occurs along the long axis of the cell by 

maintaining the symmetrical accumulation of polarity factors at the cell ends where growth 

occurs (for more details see Chapter 1.3). Although the exact processes that generate and 

maintain polarized growth still remain unclear, the study of cell polarity in fission yeast 

provides an excellent insight into the microtubule role to control cell polarization. Studies in 

both fission and budding yeast provide complementary evidence to strengthen a solid model 

of how polarized growth is regulated that could apply not only in fungal systems but also in 

metazoans. 

Fission yeast has also other advantages to work with. S. pombe simple rod shape is 

reproducible and cells can be easily grown and manipulated time-wise in laboratory 

conditions since each cell cycle requires approximately 2.5-3 hours in rich medium. In 

addition, fission yeast’s non-pathogenic nature makes it a safe organism to work with. 

Importantly, the ease of molecular, genetic and biochemical manipulations coupled with 

powerful live-cell imaging techniques makes S.pombe a great tool in cell polarity research.  

 

Figure 1.2. New End Take Off in Fission Yeast (Martin, 2009). Cells were stained with calcofluor to mark newly 

formed cell walls. Large arrows show cell cycle progression (clock-wise from top) and small arrows indicate 

polarized growth. 
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1.3. Fission yeast cytoskeleton and growth 

Polarity regulators and landmark proteins provide the signal where growth will occur. The 

cytoskeleton serves as the transport mechanism of vesicles that need to be deposited at the 

plasma membrane and, in mammals, the cytoskeleton also provides the forces for growth to 

occur. In contrast, in walled cells like plants, algae and yeast the force for growth depends on 

turgor pressure, but not directly on the cytoskeleton (Boudaoud, 2003; Dumais et al., 2006). 

Turgor pressure pushes the plasma membrane against the cell wall and this pressure is 

caused by the osmotic difference between the extracellular environment having low solute 

concentration and the cell cytoplasm that has a higher solute concentration. Cells rely on 

turgidity to maintain their rigidity and shape. To grow in a polarized manner, the cell has to 

deliver vesicles to the cell membrane and deposit new cell wall materials at specific 

locations. In fission yeast, the rod shape of the cells is organized and maintained by 

interactions between the cytoskeleton that consists of actin and microtubules and the cell 

membrane, which lead to the polarized delivery of cell wall components at cell tips (Martin 

and Chang, 2005). The cytoskeleton regulates cell polarity and cell shape and in turn cell 

shape also directs the organization of the cytoskeleton in a feedback loop (Minc et al., 2009; 

Terenna et al., 2008). 

In fission yeast, actin forms three different structures: the cytokinetic actin ring (CAR), actin 

patches and actin cables. During cytokinesis, actin bundles are present at the cell middle in a 

meshed-like structure and actin-driven forces compact these bundles into a tight ring, 

forming the CAR in the equatorial cortex followed by cell division in two equal daughter cells 

(Arai and Mabuchi, 2002; Lee et al., 2012; Vavylonis et al., 2008). It is proposed that the 

forces for cytokinesis are mainly produced by the assembly of cell wall proteins due to high 

internal turgor pressure and the contractile ring is not the primary force generator for 

ingression (Proctor et al., 2012). Actin patches and cables localize to sites of polarized cell 

growth and cytokinesis (Gachet and Hyams, 2005). Actin patches assemble at sites of 

endocytosis and they are responsible for the uptake of extracellular material and the 

recycling of lipids and surface proteins (Arellano et al., 1997; Gachet and Hyams, 2005; 

Kovar et al., 2011). Actin cables polarize exocytosis by serving as tracks for myosin-driven 

delivery of secretory vesicles to cell tips (Feierbach and Chang, 2001). Specifically, Myo52 is 

the only fission yeast myosin V motor protein that transports vesicles to the cell ends, 

resulting in cell wall remodeling and polarized growth (Cortes et al., 2005; Feierbach and 

Chang, 2001; Motegi et al., 2001; Win et al., 2001).  The assembly of actin cables to mediate 

this process depends on formins, a family of highly conserved eukaryotic proteins implicated 

in actin nucleation (Prune et al., 2002; Sagot et al., 2002). Polarized exocytosis also involves 
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the fusion of intracellular secretory vesicles with the plasma membrane and the release of 

material out of the cell. This depends on the function of a multi-component complex, the 

exocyst, which tethers incoming vesicles at the plasma membrane for fusion (He and Guo, 

2009; TerBush et al., 1996). Interestingly actin cable mediated transport and the exocyst 

form two redundant morphogenesis pathways, although disruption of both systems results in 

isotropic growth (Bendezu and Martin, 2011; Nakano et al., 2011; Snaith et al., 2011).  

Fission yeast encodes three formins. Cdc12 plays a role for cytokinesis and Fus1 is 

important for mating (Chang et al., 1997; Petersen et al., 1995). For3 is the only formin 

playing a major role for polarized growth by nucleating actin cables at the cell tips (Feierbach 

and Chang, 2001; Nakano et al., 2002). For3 is regulated by an autoinhibitory mechanism 

that involves an interaction of the N-terminus Dia Inhibitory Domain (DID) with the C-terminus 

Dia Autoregulatory Domain (DAD), a system also observed in other formins (Goode and Eck, 

2007). The proper localization of For3 depends on relief of this autoinhibition and the proteins 

regulating this process are the actin-interacting protein Bud6, the Boi family protein Pob1 and 

Cdc42 (Martin et al., 2007; Rincon et al., 2009). Pob1 plays a role for cell elongation and 

separation and in addition binds the For3 N-terminus and facilitates the Cdc42-mediated 

relief of For3 autoinhibition. Bud6 binding at the C terminus of For3 plays a role for For3 cell 

tip anchoring and activation. Cdc42 acts upstream of Pob1 and For3 and is the main 

regulator for actin cable assembly and For3 regulation (Martin et al., 2007; Rincon et al., 

2009). Cdc42 regulation depends on two GEFs called Gef1 and Scd1, the scaffold protein 

Scd2 and only one known GAP named Rga4 (Chang et al., 1994; Das et al., 2007; Garcia et 

al., 2006; Tatebe et al., 2008). Scd2, the homologue of budding yeast protein Bem1, is 

necessary for the localization of Scd1 and is believed to serve as a scaffold protein mediating 

the interaction between Scd1 and Cdc42 (Endo et al., 2003; Wheatley and Rittinger, 2005). 

Rga4 is an evolutionary conserved GAP protein that functionally interacts with For3 and 

deletion of Rga4 effects cell diameter and polarized growth in fission yeast (Das et al., 2007; 

Tatebe et al., 2008). In conclusion, Cdc42 is likely to be the most upstream polarizing cue for 

polarizing actin (Feierbach and Chang, 2001; Martin et al., 2007; Nakano et al., 2002; Rincon 

et al., 2009).  

The cytoskeleton also consists of microtubules that align along the long axis of the cells and 

have a more instructive role for defining sites of polarized growth compared to the role of 

actin for growth per se. In fission yeast, the spindle pole body (SPB) is functionally equivalent 

to the centrosome and it functions as a microtubule-organizing center (MTOC) where 

microtubules begin to assembly (Sawin and Tran, 2006; Snyder, 1994). Nuclear division 

arrest genes nda2 and nda3 regulate the organization of microtubules and specifically nda2 
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controls proper nuclear placement and correctly situated spindle pole bodies, while nda3 

maintains the rod shape of fission yeast cells (Toda et al., 1983; Umesono et al., 1983). 

During interphase, the microtubule cytoskeleton consists of three to six microtubule bundles 

arranged along the long axis of the cell. Within each bundle, a pair of microtubules is 

organized in an anti-parallel manner where their minus ends overlap in the center of the cell 

and their plus ends extend toward opposite cell ends (Drummond and Cross, 2000; Hoog et 

al., 2007; Sagolla et al., 2003; Tran et al., 2001). The plus ends show cycles of growth 

towards cell tips, dwelling upon cell end contact and disassembly (Drummond and Cross, 

2000; Tran et al., 2001). Manipulating fission yeast shape physically with microfluidic 

chambers re-aligns the MTs leading to accumulation of polarity factors ectopically and 

resulting in local growth (Minc et al., 2009; Terenna et al., 2008). These evidence show that 

microtubules provide the spatial information for polarity to occur and even if MTs are not 

essential for cell polarity they play a key role in cell morphogenesis by targeting polarity 

factors involved in cell growth at the cell cortex. 

Under physiological conditions, polarized growth in fission yeast is a complex process that 

involves the interplay of many polarity proteins and this protein complex is called the 

polarisome. The polarisome is formed at the cell tips and it functions in actin regulation and 

additional aspects of polarized cell growth, such as exocytosis (Feierbach et al., 2004). I 

would like to describe in more details this network of multiple polarity factors that is believed 

to instruct polarization in fission yeast. Tea2 is a kinesin motor protein, important for 

establishing and maintaining polarized growth along the long axis of the cell (Bieling et al., 

2007; Browning et al., 2003; Browning et al., 2000; Wu et al., 2006). A cargo of Tea2 is Tip1, 

a CLIP-170 +TIP protein that stabilizes and targets the growing tips of MTs along the long 

axis of the cell and is associated with Tea1 (Martin et al., 2005). Tea1 is a major regulator of 

cell polarity transported on the plus ends of elongating microtubules and deposited at the 

cortex where it is anchored by the prenylated membrane protein Mod5 (Fig. 1.3) (Behrens 

and Nurse, 2002; Brunner and Nurse, 2000; Feierbach et al., 2004; Mata and Nurse, 1997; 

Snaith and Sawin, 2003). One Tea1-binding partner is the protein Tea4, which co-localizes 

with Tea1 at microtubule plus ends and cell tips, and whose localization is dependent on 

Tea1 and Mod5 (Fig. 1.3) (Martin et al., 2005; Tatebe et al., 2005). Deletion of tea4 leads to 

bent or T-shaped cells and the cells fail to switch to a bipolar mode of growth (Martin et al., 

2005), a similar phenotype previously described for tea1 deleted cells (Snell and Nurse, 

1994). Tea4 is proposed to link Tea1 with For3 at the new cell end for NETO establishment 

(Fig. 1.3) (Martin and Chang, 2005; Martin et al., 2005). Tea4 like Tea1 is important for 

correct cell morphogenesis and bipolar growth during normal cell cycle. My main focus is to 

understand how exactly Tea4 establishes cell polarity and actin assembly resulting in bipolar 
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growth. Interestingly, Tea4 contains an Src homology 3 (SH3) domain located at its N 

terminus. The SH3 domain is a highly conserved sequence that it is believed to play 

important role for various biological functions. Thus in Chapter 2, I will try to analyze Tea4 

delivery and anchoring to the cell tips and investigate the importance of its SH3 domain.   

Tea1 and Tea4 are required for the localization of a third key factor: Pom1. Pom1 belongs to 

an evolutionarily conserved serine/threonine kinase family, DYRK (Dual-specificity tyrosine-

phosphorylation-Regulated protein Kinase (Becker et al., 1998). Pom1 along with Tea1 and 

Tea4 is required for bipolar growth and provides an inhibitory mechanism to prevent division-

septum assembly at the cell ends (Huang et al., 2007). In addition, in the course of my work, 

an additional role of Pom1 was discovered: Pom1 forms gradients that emanate from the cell 

ends and provide a measure of cell length for mitotic entry (Martin and Berthelot-Grosjean, 

2009; Moseley et al., 2009). Tea1 and Tea4 recruit Pom1 to the cell ends yet Pom1 is not 

required for their localization (Bahler and Nurse, 2001; Bahler and Pringle, 1998; Tatebe et 

al., 2005). Shortly before the start of my work, Tea4 was also shown to associate with the 

Type 1 Phosphatase Dis2 (Alvarez-Tabares et al., 2007). In Chapter 3, I will describe 

published data (Hachet et al., 2011) where I also contributed to show how Tea4 associates 

with the Phosphatase Type 1 Dis2 and the DYRK kinase Pom1 to form the cortical Pom1 

gradients that regulate mitotic entry.  

Pom1 physically interacts with the Cdc42 GAP Rga4, which normally localizes at the cell 

sides and it has been shown that when tea4, tea1, or pom1 is deleted Rga4 also 

accumulates at the non-growing end (Tatebe et al., 2008). Interestingly, when pom1 is 

deleted, cells share similar monopolar growth pattern (Bahler and Pringle, 1998) with tea1∆ 

and tea4∆ cells. It is suggested that in tea4, tea1, or pom1∆ mutants, Rga4 localization at the 

cell tips does not allow Cdc42 activation resulting in NETO failure and monopolar growth, 

even though presence of active Cdc42 at both cell tips it is not sufficient to rescue the 

monopolar growth of pom1∆ rga4∆ double mutant (Tatebe et al., 2008). This protein network 

may form microtubule-dependent cell end landmarks that link to Cdc42 GTPase activity. 

Thus in Chapter 4, I will investigate the mechanisms of how Tea4 may link microtubules with 

Cdc42 activation.  
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Figure 1.3. Microtubules and polarity factors (Martin et al., 2005). MTs transport polarity regulators Tea1 and 

Tea4 to cell ends where they are anchored by prenylated protein Mod5. Then, a protein complex of Tea1, Tea4 

and the actin nucleator For3 is formed to establish cell polarity. 
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Aim of research 

The puzzle of cell polarity regulation still remains unsolved. Many interesting questions are 

raised that I will try to answer during my research. In Chapter 2, I describe unexpected 

findings on the localization of Tea1 and Tea4, in which I show that both proteins reside and 

recycle at cell tips even in absence of microtubule-based transport. In addition, Tea4 has an 

SH3 domain whose function remains unknown. By generating a non-functional Tea4 SH3 

domain and investigating its phenotype, I investigate the importance of this domain for Tea4 

function in vivo and describe a biochemical strategy to identify novel Tea4 interactors that 

may associate with its SH3 domain to control polarized growth.  

In Chapter 3, I will present my contribution to published data (Hachet et al., 2011) proposing 

a model in which Tea4 bridges DYRK kinase Pom1 with Dis2 to promote Pom1 cortical 

anchoring essential for cell size homeostasis. Furthermore in Chapter 4, I will try to dissect 

the minimal genetic requirements for cell polarity and growth. I show that ectopically localized 

Tea4 promotes local growth. I use this assay to investigate the role of Tea4 for ectopic 

growth initiation and to understand how Tea4 may link microtubules with actin.  
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Chapter 2  

Analysis of Tea4 localization and function  

2.1. Introduction  

As described in Chapter 1, S. pombe cells grow along the long axis and microtubules (MTs) 

are organized along this axis of the cell and transport polarity factors to cell ends to mark the 

cell ends for growth. One major regulator of cell polarity delivered by microtubules to the cell 

tips is the tip elongation aberrant 1 (Tea1) protein (Verde et al., 1995). Tea1 is transported 

on the plus ends of elongating microtubules and deposited at the cortex before microtubules 

shrink back (Behrens and Nurse, 2002; Brunner and Nurse, 2000; Feierbach et al., 2004; 

Mata and Nurse, 1997; Snaith and Sawin, 2003). A prenylated membrane protein, called 

Mod5 is important for anchoring Tea1 at the cell tips (Snaith and Sawin, 2003). Mod5 

association with Tea1 also enhances Tea1 incorporation to form a stable self-focusing 

landmark at the cell ends. This Tea1-Mod5 cluster network adds robustness in polarized 

growth (Bicho et al., 2010). Functional Tea1 is necessary for cell growth in a straight line. 

When tea1 is deleted, cells exhibit morphology defects and become bent or branched. Tea1 

acts as a cell end marker and plays important roles for the organization of microtubules and 

the retention of polarity factors at the cell tips (Behrens and Nurse, 2002; Mata and Nurse, 

1997).  

Tea4 is an additional microtubule-associated protein and was first identified by using 

Tandem Mass Spectrometry as a Tea1-associated factor (Martin et al., 2005). Tea4 co-

localizes with Tea1 at microtubule plus ends and cell tips, and its localization is dependent 

on Tea1 and Mod5 (Martin et al., 2005). Tea4 is thought to organize a molecular network 

between MTs, actin and polarity factors at the cell tip for the regulation of polarized growth. 

Tea4 binds in vivo both the polarity regulator Tea1 and the actin nucleator For3. Tea4 C-

terminus interacts with Tea1 but no specific domain of Tea4 has been yet identified for For3 

binding (Martin et al., 2005). Tea4 is proposed to link Tea1 with For3 at the new cell end for 

NETO establishment (Martin and Chang, 2005; Martin et al., 2005). Under stress conditions, 

Tea4 also contributes to cell polarity maintenance together with the mitogen-activated protein 

kinase (MAPK) signaling cascade (Tatebe et al., 2005). Deletion of tea4 leads to bent or T-

shaped cells and the cells fail to switch to a bipolar mode of growth (Martin et al., 2005), a 

similar phenotype previously described for tea1 deleted cells. In conclusion, Tea4 plays an 

essential role for actin assembly at new cell ends and for cell polarity establishment.  
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Tea4 contains an Src homology 3 (SH3) domain located at its N terminus. The SH3 domain 

is a conserved sequence of approximately 60 amino acids involved in many different 

signaling pathways and it has a characteristic fold made of five or six β strands positioned as 

two anti-parallel β sheets (Mayer, 2001; Mayer and Baltimore, 1993; Musacchio et al., 1992; 

Pawson and Schlessingert, 1993). SH3 domains are identified in the non-catalytic part of 

several cytoplasmic proteins and are important for the creation of specific protein complexes 

usually through binding to proline-rich peptides (Mayer, 2001; Pawson and Scott, 1997). 

Interestingly, Tea4 SH3 domain is not required for either Tea1 or For3 binding (Martin et al., 

2005).  

All the above raise interesting questions that I will try to address in this chapter. I will 

describe unexpected findings on the localization of Tea1 and Tea4, in which I show that both 

proteins reside and recycle at cell tips even in absence of microtubule-based transport. In 

addition, Tea4 has an SH3 domain whose function remains unknown. By generating a non-

functional Tea4 SH3 domain and investigating its phenotype, I investigate the importance of 

this domain for Tea4 function in vivo and describe a biochemical strategy to identify novel 

Tea4 interactors that may associate with its SH3 domain to control polarized growth.  
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2.2. Results  

2.2.1. Tea4 and Tea1 transport and anchoring at cell tips 

Tea4 is a microtubule-associated protein that associates with microtubule plus ends and then 

it is transported to the cell ends. At cell tips Tea4 is considered to maintain cell shape and 

bipolar growth. To confirm that Tea4 is deposited at cell ends by microtubules, I co-imaged 

Tea4-GFP with microtubules, labeled with Atb2-mCherry (alpha-2-tubulin subunit) that marks 

microtubules (Tatebe et al., 2001), in time-lapse experiments (Fig. 2.1A). Tea4 associates 

with microtubule plus ends moving towards the cell end and then accumulates there (Fig. 

2.1A). To further study Tea4 dynamics I analyzed kymographs of Tea4-GFP. Kymographs 

provide a graphical representation of the spatial position of a point of interest (Tea4-GFP) 

over time. Tea4-GFP kymographs were constructed with the ‘’Make Montage’’ tool of the 

ImageJ software. Tea4-GFP movies were a single medial section taken with inverted 

spinning disk microscope (see materials and methods). Tea4 kymograph analysis showed 

Tea4 movement towards the cell tip at a rate of 2.9+/-0.3µm/minute (n=10) (Fig. 2.1B) similar 

to microtubule growth rate (3µm/minute) (Drummond and Cross, 2000). These 

measurements show the lack of retrograde movements with depolymerizing microtubules, 

and therefore the fact that Tea4 is deposited at cell ends. However, I also noticed a small 

fraction of retrograde movement (3% of the number of directed Tea4 movement) of Tea4 

towards the cell middle (Fig. 2.1C) at a rate of 4.4+/-0.4µm/minute (n=5), similar to 

microtubule shrinkage rate (4.5µm/minute) (Drummond and Cross, 2000). This kind of 

movement suggests that Tea4 deposition at the cell end is not 100% efficient and it could be 

explained by Tea4 attachment at microtubule plus ends during their shrinkage. Overall, these 

results verify that Tea4 is transported by growing microtubules and then is anchored at cell 

ends. 
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Figure 2.1. Microtubule-dependent Tea4 transport towards the cell ends. (A) Visualization of microtubules 

through tagging of tubulin alpha-2 (atb2) with RFP (red) and visualization of Tea4 through tagging with GFP 

(green) shows Tea4 association with MT plus ends and its delivery at the cell tip (white and yellow arrows). Scale 

bar 3µm. (B) Kymograph of Tea4 shows its movement towards the cell tips with a rate of 2.9+/-0.3µm/minute 

(n=10) followed by its accumulation at both cell ends. (C) Tea4 movement (3% of the number of directed Tea4 

movement) towards the cell middle (white arrows) occurs at a rate of 4.4+/-0.4µm/minute. 

To test the importance of microtubule transport, I decided to observe Tea4 localization upon 

disruption of microtubules by using methyl benzimidazol-2-yl carbamate (MBC), a 

microtubule inhibitor. Unexpectedly, Tea4 was still detected at the cell ends after disruption 

of microtubules with 25µM MBC for 15 minutes indicating redundant mechanisms of Tea4 

transport and/or its strong anchoring at cell tips (Fig. 2.2C). Surprisingly, prolonged MTs 

disruption with 25µM MBC for one hour resulted in monopolar growth patterns (52+/-6%) and 

Tea4 accumulated preferentially at the growing end of these monopolar cells (Fig. 2.2A). The 

48% of the cells was still growing in a bipolar manner and Tea4 was accumulated at both cell 

tips.  Since actin cables also serve as tracks for transport to the cell ends, I checked whether 

disruption of actin affected Tea4 cell tip localization. Disruption of all actin structures with 

200µM Latrunculin A (LatA), an actin inhibitor, had no significant effect on the localization of 

Tea4 (Fig. 2.2B). Since Tea1 has similar localization pattern as Tea4, I conducted similar 

experiments using Tea1-GFP. Tea1 also remained localized at the cell ends when 

microtubules were disrupted (Fig. 2.2C) and also exhibited accumulation at the growing end 

after 1hour treatment with MBC, similar as Tea4. In addition, the finding of Tea1 and Tea4 

presence at the cell end when microtubules are disrupted suggests the existence of an 
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alternative transport mechanism and/or reflects the high stability of tip localization for both 

proteins.  

I further investigated Tea4 localization mechanisms at the cell tips with Fluorescence 

Recovery After Photobleaching (FRAP) experiments. In FRAP experiments a region of 

interest is photobleached and then two critical values are extracted; the percentage of 

fluorescence recovery at steady state, called mobile fraction, and the speed of recovery after 

photobleaching. The speed of recovery is estimated from the time it takes for the curve to 

reach 50% of the plateau of fluorescence intensity level and is called half-time (T1/2). FRAP 

experiments after photobleaching the cell tip reveal a Tea4-GFP mobile fraction of 50% and 

a T1/2 of approximately 60 seconds (Fig. 2.2C). When microtubules are disrupted with MBC 

for 15 minutes before photobleaching there is a higher and faster recovery of Tea4-GFP 

(mobile fraction of 80% and T1/2 of 20 seconds) compared to FRAP values with functional 

microtubules (mobile fraction of 50% and T1/2 of 60 seconds) suggesting that presence of 

microtubules anchors Tea4 more stably at the cell tip and makes it less dynamic (Fig. 2.2C). 

Similar FRAP experiments for Tea1-GFP exhibited the same mobile fraction and T1/2 as 

Tea4-GFP (Fig. 2.2C).  Tea1 and Tea4 seem to share almost identical dynamics and FRAP 

experiments show that microtubules are not essential for their recovery at cell ends.  
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Figure 2.2. Redundant transport mechanisms of Tea1 and Tea4 localization to the cell tip. (A) Cells grow in 

a bipolar manner and Tea4 localizes at both growing tips (white arrows). After 1 hour of 25µM MBC treatment, 

Tea4 accumulates at one cell end (preferentially the growing end, white arrow). Staining with 10µg/ml calcofluor 

labels newly formed cell wall indicating growth. Scale bar 3µm. (B) Disruption of all actin structures with 200µM 

Latrunculin A (LatA) has no significant effect in Tea4 localization at cell ends. Scale bar 3µm. (C) Tea4 and Tea1 

still localize at the cell ends even after disruption of MTs with 25µM MBC for 15 minutes (red and yellow arrows, 

respectively). Images were taken at 45’’ intervals. The arrow indicates the time of photobleaching. FRAP 

experiment graph of Tea4-GFP and Tea1-GFP shows the same mobile fraction of 50% and T1/2 of approximately 

60 seconds (red and yellow lines, respectively). When microtubules are disrupted with 25µM MBC for 15 minutes 

there is a higher and faster recovery (mobile fraction of 80% and T1/2 of 20 seconds) of Tea4-GFP and Tea1-GFP 

(blue and purple lines, respectively). All FRAP graphs for Tea1-GFP and Tea4-GFP represent an average of at 

least five different photobleached cells. Scale bar 3µm.  
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The known anchoring factor of Tea1 and Tea4 at the cell ends is the prenylated protein 

Mod5 (Snaith and Sawin, 2003). Surprisingly, I found that Tea1 and Tea4 are still present at 

the cell tips in mod5∆ cells, albeit at lower levels, and FRAP experiments showed that the 

mobile fraction of Tea4 is 60% and the T1/2 is approximately 50 seconds (Fig. 2.3) similar to 

wild type Tea4-GFP cells. Furthermore, Tea4 was still localized at the non-growing end even 

when microtubules were disrupted with MBC for 15 minutes in mod5∆ background, although 

its localization was severely compromised. FRAP experiments in mod5∆ cells treated with 

MBC showed that the mobile fraction of Tea4 is 80% and the T1/2 is approximately 15 

seconds (Fig. 2.3). Thus, in absence of microtubules in mod5∆ cells, Tea4 is less stable and 

more dynamic at the cell ends. Furthermore, Tea1 dynamics are similar to Tea4 dynamics 

suggesting that these two microtubule-associated proteins behave in a similar way.  

Collectively, these results confirm that microtubules and Mod5 both contribute to Tea1 and 

Tea4 localization at the cell ends. They also reveal that additional mechanism(s) exist to 

localize these proteins at the cell tips.  

An additional microtubule-associated protein that could possibly play an important role for 

Tea4 transport and/or anchoring at the cell tips is the kinesin motor protein Tea2. Since Tea2 

is a kinesin, it could possibly transport Tea4 at the cell tips as its cargo.  Tea2 is important for 

tip localization of Tea1 and when tea2 gene is deleted Tea1 is unable to localize at the cell 

ends and accumulates along the short interphase MTs (Browning et al., 2000). I deleted tea2 

gene and I checked whether Tea4 is still present at the cell tips. Interestingly, Tea4 

accumulates at one cell end in tea2∆ cells (Fig. 2.3). To check the dynamics of Tea4 in tea2∆ 

cells I performed FRAP experiments that showed Tea4 mobile fraction of 80% and a T1/2 of 

approximately 20 seconds (Fig. 2.3), similar to the values observed in wild type cells after 

MBC treatment. These results suggest that Tea4 behaves the same way either when cells 

have disrupted MTs or a dysfunctional Tea2 kinesin motor. In conclusion, Tea2 is another 

important factor for Tea4 localization albeit there are still undefined factor(s) that contribute to 

Tea4 transport and anchorage at the cell end. Further investigation with localization patterns 

and FRAP experiments in double mutant mod5∆ and tea2Δ and with or without MBC could 

give evidence whether these factors have redundant properties for transporting and 

anchoring Tea4 at the cell tips. Mass spectrometry analysis of Tea4 in cells with either mod5 

and/or tea2 deleted could also reveal novel partners that could associate with Tea4 and may 

play a role for its localization. 
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Figure 2.3. Redundant mechanisms of Tea4 localization at the cell tip. Tea4 still localizes at the cell end 

when either mod5 or tea2 is deleted (yellow and black arrow, respectively). Tea4 accumulates at one cell end 

even after disruption of microtubules with 25µM MBC for 15 minutes in mod5∆ cells (blue arrow). Images taken 

with 45’’ intervals and the red arrow indicate the time of photobleaching. FRAP experiment graph shows that 

when MTs are disrupted Tea4-GFP seems to share the same values with tea2∆ cells (blue and black line, 

respectively). When only mod5 is deleted it seems that Tea4 has less and slower recovery compared to mod5∆ 

cells with disrupted MTs (yellow and purple lines, respectively, p-value=10-4). Tea4-GFP shows similar mobile 

fraction but higher T1/2 in mod5∆ cells treated with MBC compared to cells only treated with MBC (purple and blue 

lines, respectively). All FRAP graphs for Tea4-GFP represent an average of at least five independent 

experiments. Scale bar 3µm. 

 

 

 

 

 

 



  37  

2.2.2. Phenotypic characterization of Tea4 SH3 domain 

At the beginning of my work, the role of Tea4 SH3 domain was unknown. Sequence 

alignment of SH3 domains from different species identified two conserved residues found at 

155-156 amino acid positions in Tea4 sequence (Fig. 2.4A). These two tryptophans (WW) 

155-156 are predicted to be important for ligand binding (Fig. 2.4A). Sophie Martin mutated 

the two tryptophans to alanines and I characterized this mutant (Fig. 2.4B). From now on, I 

will refer to the Tea4 SH3 WW155-156AA mutant as Tea4SH3. tea4 gene was replaced by 

tea4SH3 and tea4SH3 was expressed under control of the endogenous promoter. I then 

compared the expression levels of Tea4 and Tea4SH3 in wild type and tea4SH3 mutant cells, 

respectively. As shown in Fig. 2.4C both proteins are expressed at similar levels. 

 

 

 

 

Figure 2.4. Characterization of the SH3 domain. (A) Alignment of SH3 domains of different proteins from 

various organisms. Conserved tryptophan residues indicated in the yellow box are predicted to bind the ligand. 

Mutation of these tryptophans (WW) generated the tea4SH3 mutant allele (B) β barrel structure arranged as anti-

parallel β sheets of the SH3 domain of mouse adaptor protein Mona/gads. Tryptophan residues in yellow mediate 

the binding with the hematopoietic progenitor kinase 1 Hpk1 peptide. The corresponding mutated residues are 

indicated in yellow. (C) Tea4-HA and Tea4SH3-HA have similar expression levels. GFP-Dis2 protein was used as 

a loading control.  
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To characterize the role of the Tea4 SH3 domain I first compared the phenotype of tea4SH3 

mutant cells with wild type and tea4∆ cells. In contrast to wild type, tea4SH3 cells exhibit 

morphology defects (bent or T-shaped) and monopolar cell growth (Fig. 2.5A and B) similar 

to complete deletion of tea4. tea4SH3 cells were stained with calcofluor, a chemical that marks 

the newly formed cell wall, and 53 +/- 4% (n=100) of septated cells exhibited previous growth 

only at one cell end. I measured cells exhibiting monopolar growth in septated cells because 

I wanted to check cell growth at the same cell cycle phase. In complete deletion of tea4 90 

+/- 3% (n=100) of the cells grow in a monopolar manner (Fig. 2.5A). Monopolar growth 

pattern exhibited in tea4SH3 cells was further supported by AlexaFluor 488-phalloidin staining, 

a chemical that labels actin structures. Actin filaments and patches were observed at both 

cell ends in wild type cells but only at one end in Tea4SH3 cells (55 +/-6%, n=50) (Fig. 2.5C) 

indicating that point mutations in the Tea4 SH3 domain prevent bipolar growth.   

I further analyzed the tea4SH3 morphological defects by performing re-feeding experiments 

wherein cells were overgrown for 48 hours and then diluted 1:20 in fresh yeast extract 

(YE5S) medium for 3 hours. In the re-feeding experiments, cells become rounded after 

consuming all nutrients and stop growing. Then rich medium is added and cells need to re-

establish growth de novo. These re-feeding experiments showed that almost all tea4SH3 and 

tea4Δ cells form branches at the cell middle (92 +/-3% and 95+/-4%, respectively, n=100), 

(Fig. 2.5A). tea4∆ cells also display to some extent off-center septum (Martin et al., 2005) so 

I investigated whether tea4SH3 mutant shares the same abnormality. I measured the septum 

position by taking the ratio between two values: the distance between the septum and the 

cell end furthest away and the total cell length. tea4SH3 mutant cells exhibit septum 

misplacement equal to 0.56 ± 0.02 compared to 0.52 ± 0.01 for wild type cells (Fig. 2.5A). 

tea4∆ cells also have off-center septum equal to 0.56 ± 0.02 (Fig. 2.5A). In conclusion, 

monopolar growth, aberrant cell shape and septum misplacement in tea4SH3 cells suggest 

that an intact SH3 domain is required for Tea4 function in vivo. Although it seems that many 

Tea4 properties in vivo depend on its functional SH3 domain, the defects observed when the 

Tea4 SH3 domain is mutated are less severe compared to the complete deletion of tea4 

suggesting tea4SH3 is likely to be a hypomorphic allele compared to the tea4 null mutant.  
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Figure 2.5. Phenotypic analysis of Tea4SH3. (A) tea4SH3 cells exhibit septum misplacement, monopolar growth 

and morphology defects similar to tea4∆ cells. (B) Staining with 10µg/ml calcofluor shows that wild type cells grow 

at both cell ends in contrast to tea4SH3 and tea4∆ cells, which grow in a monopolar manner (arrows). Asterisks 

indicate cells with morphology defects when either the Tea4 SH3 domain is mutated or tea4 is deleted. Scale bar 

3µm. (C) Cells stained with AlexaFluor 488-phalloidin to visualize actin organization. Actin cables and patches 

localize at both cell tips in wild type cells but only at one cell tip in tea4SH3 mutant (55 +/-6%, n=50). Scale bar 

3µm. 
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2.2.3. Tea4SH3 localization, transport and dynamics 

Tea4 normally localizes at microtubule plus ends and then is transferred and anchored at the 

cell tips by the prenylated protein Mod5. I investigated the localization of Tea4SH3 tagged with 

GFP. Tea4SH3 associated with microtubule plus-ends similar to Tea4-GFP but its cell tip 

localization changed: Tea4SH3 accumulated only at one cell end (Fig. 2.6A). To identify at 

which end Tea4SH3 was localized, I imaged cells stained with calcofluor. Tea4SH3 cell tip 

localization correlates with the non-growing cell end (Fig. 2.6C). Thus Tea4 SH3 domain may 

regulate Tea4 cell tip localization.  

Asymmetric accumulation of Tea4SH3 suggests either a defect in its transport to the growing 

cell end and/or a defect in its anchoring at the cell end. I thus analyzed the delivery of 

Tea4SH3 by microtubules towards the cell ends with kymographs (Fig. 2.6B). Even though 

Tea4SH3 is delivered at both cell ends, it is anchored preferentially at the non-growing cell 

end. Comparison of Tea4SH3 kymographs with wild type Tea4 kymographs showed that both 

proteins share the same dynamic properties (movement towards the cell tip with a rate of 

2.8+/-0.3µm/minute and 2.9+/-0.3µm/minute, respectively). Despite the different localization 

of Tea4 and Tea4SH3, It seems that they are both transported to the cell ends in the same 

way. I further investigated the mechanisms of Tea4SH3 localization at cell tips by FRAP 

experiments, similar to those described in section 2.2.1. I found that the mobile fraction and 

T1/2 of Tea4SH3 are similar to those of wild type Tea4 (50% and approximately 60 seconds, 

respectively) (Fig. 2.6D). Tea4 and Tea4SH3 molecules seem to share the same dynamics 

although their localization is different. The above results suggest that Tea4 SH3 mutated 

domain does not affect significantly the association of Tea4 with microtubules plus ends and 

its stability at the cell tips but an intact SH3 domain mediates Tea4 anchoring at the second 

cell end. The localization of Tea4SH3 only at the non-growing cell end is reminiscent of that of 

Tea1 in tea4∆ cells (Martin et al., 2005; Tatebe et al., 2005) supporting the idea that tea4SH3 

mutant is non-functional regarding the cell tip localization phenotype.  

As described in section 2.2.1, there are microtubules and Mod5-independent mechanisms for 

Tea4 localization at the cell tips. I investigated what would happen to Tea4SH3 localization in 

absence of microtubules and/or when mod5 is deleted. Here again, Tea4SH3 behaved like 

wild type Tea4, localizing at one cell tip when mod5 is deleted, even after addition of MBC 

(Fig. 2.6C). When microtubules are disrupted with MBC for 15 minutes before 

photobleaching there is a higher and faster recovery of Tea4SH3-GFP compared to FRAP 

values with functional microtubules suggesting that presence of microtubules anchors 

Tea4SH3 more stably at the cell tip and makes it less dynamic, similar to wild type Tea4 (Fig. 

2.6D). I also observed that Tea4SH3 cells exhibit more severe morphology defects when 
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microtubules are disrupted for 1 hour (Fig. 2.6C). It is not yet studied whether MT disruption 

leads to more aberrant cell shape in complete deletion of tea4. In addition, Tea4SH3 switches 

its monopolar accumulation from the non-growing cell end towards the growing end when 

cells are treated with MBC for 1 hour (Fig. 2.6C). As shown previously in Fig. 2.2C Tea4-

GFP showed the same localization pattern after treatment with MBC. Enhancement of the 

phenotype by MT disruption could be due to the fact that Tea4SH3 behaves as a hypomorphic 

allele since it seems that Tea4 and Tea4SH3 share the same dynamics but their cell tip 

localization is different.  

 

Figure 2.6. Tea4SH3 transport and localization. (A) Tea4SH3 associates with MT plus ends and it is delivered at 

the cell ends but it is only anchored at one tip. Scale bar 3µm. (B) Kymograph of Tea4SH3 shows its movement 

towards the cell tips and its accumulation at only one cell end. (C) Staining with 10µg/ml calcofluor shows that 

Tea4SH3 localizes preferentially at the non-growing cell end (arrows). After disruption of microtubules with 25µM 

MBC for 1 hour, Tea4SH3 is still present at one cell end but this time Tea4SH3 accumulates preferentially at the 

growing end (arrow). Asterisks indicate tea4SH3 cells that exhibit more severe morphology defects when MTs are 

disrupted. Scale bar 5µm. (D) FRAP experiment graph of Tea4-GFP and Tea4SH3 –GFP shows almost identical 

mobile fraction of 50% and T1/2 of approximately 60 seconds (red and yellow lines, respectively). When 

microtubules are disrupted with 25µM MBC for 15 minutes there is similar higher and faster recovery for both 

Tea4-GFP and Tea4SH3 -GFP (blue and purple lines, respectively). All FRAP graphs for Tea4-GFP and Tea4SH3 -

GFP are an average of at least five independent experiments. 
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2.2.4. Identification of Tea4 SH3 domain interactors in vivo 

To better understand how the SH3 domain contributes to proper function and localization of 

Tea4, I considered whether the SH3 domain is important for interaction with other undefined 

proteins. To address this question, I purified Tea4 and Tea4SH3 using Tandem Affinity 

Purification (TAP) method (Fig. 2.7A) (Gould et al., 2004). TAP is a technique that allows 

purification of complexes in two steps under native conditions and requires fusion of the TAP 

tag to the protein of interest. The protein of interest with the TAP tag binds to beads coupled 

with IgG. Then, the TAP tag is cleaved by protease and a second affinity purification step 

follows (Fig. 2.7A) Afterward, potential binding partners can be identified by mass 

spectrometry. I did not perform the second purification step since it did not improve the 

purification of my samples (Fig. 2.7B). 

 

 

 

 

 

 

Figure 2.7. TAP analysis. (A) During Tandem Affinity Purification (TAP) method antibody (mouse IgG) is coupled 

to magnetic beads (dynabeads proteinG) followed by immunoprecipitation of proteinA (IP1). Addition of TEV 

protease cleaves the proteinA and isolates Tea4 with its associated partners. (B) The second purification step of 

anti-HA immunoprecipitation (IP2) was not performed since it did not result in better-purified samples. 



  43  

I first purified wild type Tea4-TAP and Tea4SH3-TAP in cells that were grown in YE5S rich 

medium (Fig. 2.8A). After purification, mass spectrometry analysis was performed by the 

proteomic facility at the University of Lausanne. Mass spectrometry results (Fig. 2.8B) 

identified as expected Tea1 and Tea3, a cell end marker required for efficient NETO 

(Arellano et al., 2002), to be interacting partners with Tea4 and Tea4SH3. Both Tea4 and 

Tea4SH3 also seemed to associate with protein subunits of the molecular chaperone T-

complex and the proteasome. The role of Tea4 in these complexes is undefined but a 

primary idea would be either it has a regulatory task or it has a function to stabilize their 

conformation. Interestingly, Tea4 also associated with the only two Type 1 Phosphatases 

(Dis2 and Sds21) found in fission yeast, as described previously (Alvarez-Tabares et al., 

2007). These two phosphatases are redundant, as deletion of both of them is lethal for the 

cell; cells enter mitosis but they are deficient for the disjunction of sister chromatids (Ohkura 

et al., 1989). Excitingly, these two phosphatases were not recovered in the Tea4SH3 

purification, suggesting that a mutated SH3 domain abolishes the association of Tea4 with 

these two phosphatases. 

I repeated the TAP for Tea4 and Tea4SH3 to confirm the previous mass spectrometry results 

but this time cells were grown in minimal medium (EMM) supplemented with the required 

amino acids (ALU) (Fig. 2.8A). These conditions provide a more controlled growth medium. 

Mass spectrometry analysis reproduced the results obtained in the first TAP (Fig. 2.8B). 

Tea4 and Tea4SH3 still associate with polarity factors Tea1, Tea3 and protein subunits of T-

complex and proteasome. Dis2 and Sds21 peptides were again associated only with Tea4. 

In addition, I identified the Rho GTPase-activating protein Rga4 in the Tea4SH3 purification. 

Rga4 is a GAP for Cdc42 (Tatebe et al., 2008), an evolutionary conserved GTPase that 

contributes to polarized growth and actin organization. Additionally, two more proteins were 

found in the mass spectrometry results, the kinase Ppk2 and the Sjogren syndrome protein 

homologue (SPBC3B8.08). In conclusion, mass spectrometry results from both TAPs 

identified novel proteins that associate with Tea4 and its SH3 domain and importantly point 

mutations on the SH3 domain abolish the association with Dis2 and Sds21. 

Both mass spectrometry results identified known Tea4-associated factors such as Tea1 and 

novel Tea4 partners such as Ppk2. It has been shown that Tea4 also binds For3 and Pom1 

(Hachet et al., 2011; Martin et al., 2005). An interesting remark is that neither For3 nor Pom1 

were identified in mass spectrometry results suggesting that Tea4 may interact transiently 

with both For3 and Pom1. In addition, the TAP conditions could be harsh resulting in the 

abolishment of their association. The purified samples stayed several hours at 40C before 

proceeding to mass spectrometry analysis. Improved tandem affinity purification protocol with 
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less stringent conditions with washing steps of lower concentrations than the ones used (7 

times washing with 150mM NaCl) and direct mass spectrometry analysis could potentially 

identify For3, Pom1 and/or other proteins that associate weakly with Tea4.  

 

 

Figure 2.8. TAP analysis. (A) Purified samples after cleavage with protease were separated by SDS-PAGE and 

stained with silver nitrate solution. Black arrow indicates IgG.  Cells were grown at 30°C in Yeast Extract medium 

(YE5S) in 1st round of mass spectrometry (left) and in EMM medium containing the required supplements (EMM) 

in 2nd round of mass spectrometry (right). (B) Number of peptides identified in 1st and 2nd round of mass 

spectrometry in YE5S and EMM, respectively. 
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2.2.5. Role of novel Tea4-associated proteins  

2.2.5.1. Ppk2  

Mass spectrometry results demonstrated that Tea4 associates with Ppk2, thus I investigated 

the role of Ppk2 kinase. The kinase domain of Ppk2 is predicted to be catalytically inactive. 

The function of this pseudokinase remains unknown therefore I first tried to check its 

localization. I tagged the C-terminus of ppk2 with GFP and I observed that Ppk2 mostly 

localizes at the cell ends (Fig. 2.9A). I also observed Ppk2 to localize as cytosolic dots but it 

seems not to be associated with microtubule plus ends. However more detailed investigation 

of Ppk2 with time-lapse experiments and co-localization with microtubules could clarify its 

cytosolic localization. I then deleted ppk2 gene and I observed its phenotype. ppk2Δ cells 

exhibit monopolar cell growth (51 +/-3%, n=100), which becomes more severe in re-feeding 

experiments (88 +/-3%, n=100) (Fig. 2.9B). However, there were neither aberrant cell shapes 

nor septum misplacement (data not shown) in re-feeding experiments. Ppk2 could potentially 

play a significant role for cell polarity control and I will further comment on Ppk2 in the 

general discussion part. 

 

 

 

 

 

Figure 2.9. Ppk2 localization and phenotype. (A) Ppk2-GFP localizes at both cell tips (arrows). Scale bar 5µm. 

(B) Almost half of the cells grow in a monopolar manner when ppk2 is deleted compared to wild type cells. In re-

feeding experiments almost all cells grow only at one cell end. 
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2.2.5.2. Rga4 and Dis2 

Mass spectrometry results identified Rga4 to be associated with Tea4SH3. To further 

investigate the role of Rga4, I observed its phenotypic and localization properties. Tatebe et 

al. in 2008 have shown that Rga4 normally localizes at the cell sides and is excluded from 

cell ends. It aberrantly localizes at the non-growing cell end in tea4Δ background. My study 

supports that Rga4 is also present at the non-growing tip when the SH3 domain is mutated 

and functional Tea4 SH3 domain negatively regulates Rga4 to localize at the cell tips (Figure 

2.10B) so the cell can grow normally at both ends. rga4Δ cells exhibit monopolar cell growth 

(53+/-3%, n=100) when cells are grown in exponential phase similar to tea4SH3 (Figure 

2.10A). I also constructed an rga4Δ tea4SH3 double mutant strain and cells showed an 

increase in monopolar growth (68+/-4%, n=100). This epistatic experiment suggests that 

deletion of both genes has additive effects regarding the monopolar growth of the cells. 

Interestingly, rga4Δ cells do not show morphology defects (bent or T-shapes) similar to the 

tea4SH3 mutant. In fact, phenotypic analysis of tea4SH3 rga4Δ double mutant in re-feeding 

experiments showed 12+/-2% (n=100) T-shaped cells compared to (90 +/-3%, n=100) T-

shaped cells observed in tea4SH3 single mutant (Figure 2.10A). Thus, deletion of rga4 

rescues in part the tea4SH3 morphology defects suggesting that Rga4 presence is important 

for the ectopic growth observed at the cell side.  

Additional proteins identified through mass spectrometry to associate with Tea4 were the 

redundant Type 1 Phosphatases Dis2 and Sds21. Interestingly, no peptides were found for 

these phosphatases in the tea4SH3 mutant cells. Normally, Dis2 localizes at nuclei, at the cell 

tips and is likely associated with endocytic vesicles (Alvarez-Tabares et al., 2007). In wild 

type cells Sds21 localizes at the nucleolus. In dis2∆ cells, Sds21 localizes like Dis2. It has 

been also shown that in tea4Δ cells Dis2 is no longer localized at the cell ends (Alvarez-

Tabares et al., 2007). I investigated whether Dis2 is delocalized when the Tea4 SH3 domain 

is mutated. Dis2 is no longer present at the cell ends in the SH3 mutant background (Figure 

2.10B). As expected, deletion of dis2 did not have any defect in cell growth and shape since 

Sds21 restores the loss of functions of dis2∆ cells (data not shown). 

Since Dis2 is a Type 1 Phosphatase I checked whether Tea4 could be a substrate for de-

phosphorylation by Dis2. The Protein Analysis Facility (PAF) of CIG analyzed the samples of 

the 2nd TAP and tried to identify possible differences in phosphorylation between wild type 

and Tea4SH3 peptides. Interestingly, phosphorylation analysis by shotgun approach and 

Mascot software identified a Tea4 peptide that contained 3 serines and 1 tyrosine 

(SSYS425-428) and was only phosphorylated in tea4SH3 (Figure 2.10C) (also see predicted 



  47  

phosphorylated sites in materials and methods). According to the analysis, the most likely 

phosphorylated residue is the S426 but it is also possible that one of the other residues is the 

real phosphorylation site. If dephosphorylation of one of these four residues by Dis2 occurs 

in wild type cells then the phenotype of tea4SH3 mutant could be caused by constitutive 

phosphorylation of this amino acid (Dis2 is no longer associated with Tea4 when the SH3 

domain is mutated). I substituted the SSYS425-428 to alanines (A), since alanines cannot be 

phosphorylated, in tea4SH3 mutant cells (tea4SH3 AAAA425-428). The expected result would 

be a partial or complete rescue of the mutant phenotype in the tea4SH3 AAAA425-428 cells. 

However, no changes were observed either to the phenotype or to the localization pattern in 

tea4SH3 AAAA425-428 (data not shown). 

 

 

 

 

Figure 2.10. Rga4 phenotype and localization. Dis2 localization and identification of Tea4 phosphorylated 

residues. (A) Double mutant tea4SH3 rga4∆ shows an increase in cells growing in a monopolar manner but 

rescues the T-shape phenotype observed in tea4SH3 mutant. (B) Rga4 normally localizes at the cell sides and is 

excluded from the cell tips but in tea4SH3 mutant is also present at the non-growing cell end (white arrow). Dis2 

normally localizes at the cell ends (white arrows) but in tea4SH3 mutant is no longer present at the cell tips. Scale 

bar 5µm. (C) Schematic structure of Tea4 and Tea4SH3. Phosphorylated residues only found in the mutant are 

highlighted in red. 
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2.2.6. Localization of Tea4-associated proteins  

At this point of my research, I investigated whether the Tea4 SH3 domain is important for the 

localization of known polarity proteins. As shown in Chapter 3, DYRK kinase Pom1 was no 

longer anchored at the cortex and became completely cytosolic when the Tea4 SH3 domain 

was mutated (See Fig. 5C in Chapter 3) similar to tea4∆. These results, combined with the 

disruption of Dis2 localization in tea4SH3 mutant background shown above, were published in 

Hachet et al., 2011 (see Fig. 6D in Chapter 3). This paper of which I am a co-author 

proposes that Tea4 through Dis2 locally dephosphorylates Pom1 leading to its cortical 

localization.  

I then imaged Tea1-GFP localization in tea4SH3 cells. Tea1 localizes asymmetrically at the 

cell ends when the Tea4 SH3 domain is mutated (Fig. 2.11). Parallel imaging of Tea1-GFP 

with calcofluor staining showed that Tea1 accumulates at the non-growing cell end in tea4SH3 

cells (Fig. 2.11) as in tea4∆ (Martin et al., 2005). Remarkably, I found that polarity factors 

(Mod5, Tip1, Tea2 and Tea3, data not shown) were also localized at the non-growing cell 

end when the Tea4 SH3 domain is mutated. These results suggest that Tea4 through a 

functional SH3 domain seems to be responsible for the localization of these proteins at the 

growing cell end. 

I checked the localization of the formin For3 and interestingly it was localized at the growing 

cell end in tea4SH3 cells (Fig. 2.11) as in tea4∆ (Martin et al., 2005). Tea4 is thought to bring 

together Tea1 and For3 for NETO establishment. Although the SH3 domain is not important 

for Tea4 binding with Tea1 or For3, the Tea1-Tea4-For3 complex could fail to be formed in 

tea4SH3 cells explaining why For3 accumulates only at the growing end. Furthermore, Bud6 

and active Cdc42 (visualized by CRIB (Cdc42/Rac interactive binding)-GFP), two For3 

regulators (Martin et al., 2007; Miller and Johnson, 1994; Tatebe et al., 2008), were also 

accumulated at the growing end when the SH3 domain was mutated (Fig. 2.11). These 

results suggest that cells expressing mutated Tea4 SH3 domain cannot assembly actin at 

the second cell end, thus failing to initiate bipolar growth. 

To sum up, cell tip localization of various cell polarity factors depends on the SH3 domain of 

Tea4. Dis2 is no longer associated with the cell tips and Pom1 is cytosolic in tea4SH3 mutant 

background but Rga4 is present at one cell end (non-growing). Furthermore, Tea1 and other 

microtubule-associated factors such as Tea2 and Tip1 accumulate preferentially at the non-

growing end. It seems that these proteins are unable to be anchored at the growing end. In 

contrary, For3 and other actin-associated factors such as active Cdc42 and Bud6 
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accumulate preferentially at the growing end. These localization patterns are the same as in 

tea4∆ cells suggesting that tea4SH3 allele shows loss of function phenotypes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11. Accumulation of multiple polarity proteins at only one cell end in tea4SH3. Staining with 10µg/ml 

calcofluor shows microtubule-associated protein Tea1 to accumulate at the non-growing cell end and the actin-

associated proteins For3 and Bud6 to accumulate at the growing end in tea4SH3 cells similar to tea4∆ (arrows). 

CRIB-GFP also localizes at one cell tip (growing tip, calcofluor images are not shown). Scale bar 5µm. 
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2.3. Conclusions and discussion 

The results presented in this chapter have shown that a functional Tea4 SH3 domain is 

necessary for the proper localization of various proteins. tea4SH3 mutant cells share similar 

delocalization patterns of multiple polarity factors and morphologic abnormalities as tea4∆ 

cells. However, as the monopolar phenotype is more penetrant for tea4∆, tea4SH3 is likely a 

hypomorphic allele of tea4. The SH3 domain thus plays an important role for Tea4 functions, 

but other Tea4 regions also contribute to Tea4 role for control of polarized growth. For 

instance, the Tea4 RVxF motif downstream of its SH3 domain is also important for Type 1 

Phosphatase Dis2 binding and its localization at the cell tips (Alvarez-Tabares et al., 2007; 

Hachet et al., 2011). Although the RVxF mutation specifically blocks Dis2 binding, which is 

already disrupted by SH3 mutations, mutating both SH3 domain and RVxF motif could show 

whether the RVxF plays additional role for Tea4 functions in addition to binding Dis2. Other 

Tea4 regions, especially at the C-terminus, are also implicated in Tea1 and For3 binding 

(Martin et al., 2005), which could also play a role in Tea4 function. 

Microtubule-associated proteins Tea1 and Tea4 accumulate at the non-growing end in 

tea4SH3 cells, similar to what was observed in tea4∆ cells (Martin et al., 2005). How does this 

asymmetry come about? It is possible that monopolar accumulation at the non-growing tip 

could be due to the absence of endocytosis at this tip. Bipolar growing wild type cells should 

have similar turnover of Tea1 and Tea4 at the cell tips (Fig. 2.12A). In contrast, tea4SH3 

monopolar cells accumulate actin patches only at the growing tip indicating limited 

endocytosis events at the non-growing end. Defects in endocytosis could prevent recycling of 

polarity factors from the non-growing tip leading to their accumulation. More studies with 

proteins involved in regulation of cortical actin patch distribution such as Arp2 would be of 

major interest (Morrell et al., 1999).  Investigating Arp2 mutant to see whether cells grow in 

monopolar manner and whether Tea4 accumulates at one cell tip could support the 

hypothesis that defective endocytosis may result in Tea4 asymmetric localization. In addition, 

it has also been proposed that Tea1 forms clusters with Mod5 and through positive feedback 

loops this Tea1-Mod5 complex establishes polarized growth (Bicho et al., 2010) (Fig. 2.12A). 

Positive feedback loops between Mod5 and Tea1/ Tea4 may retain Tea1 and Tea4 at the 

cell ends in wild type cells but in tea4SH3 cells Mod5 is preferentially accumulated at the non-

growing end suggesting Tea1 and Tea4 anchoring at the growing end may become transient 

and not enhanced by positive feedback loops due to Mod5 absence resulting in Tea1 and 

Tea4 tip dissociation. 
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Interestingly, after 1hour addition of MBC, Tea1 and Tea4 switch their localization from the 

non-growing to the growing cell end, even in mod5∆ cells (Fig. 2.12B). This observation is 

intriguing. Defective endocytosis may explain the Tea1 and Tea4 monopolar accumulation 

but cannot explain how they become enriched at the growing end after 1hour MT disruption. 

According to FRAP values, absence of microtubules results in more dynamic and less stable 

Tea1 and Tea4 tip localization. Tea1 and Tea4 could abolish the non-growing cell end 

localization and randomly move through diffusion and then be ‘’trapped’’ at the growing cell 

tip (Fig. 2.12A and B). These results indicate that Mod5-independent mechanisms exist to 

anchor Tea1 and Tea4 at the growing end and also suggests that microtubule-independent 

localization mechanisms exist, which allow the cell end switch of Tea4SH3. Tea3 has been 

shown to be responsible for Tea1 anchoring to the growing cell end after disruption of MTs 

(Snaith et al., 2005) suggesting it may be an important factor for both Tea1 and Tea4 

anchoring at the growing end (Fig. 2.12B). Tea4-binding factor, the actin nucleator For3 

could also be a potential candidate for Tea4 anchoring at or transport to the growing tip (Fig. 

2.12B). For3 localizes only at the growing end in cells having non-functional Tea4. Since 

actin cables serve as tracks for myosin-mediated cargo transport, Tea4 could associate with 

actin cables and be transported towards the growing end (Fig. 2.12B). It has been shown 

that a Tea2 kinesin chimeric motor protein can transport myosin V cargos along microtubules 

(Lo Presti and Martin, 2011). In my study, the opposite may apply: In this scenario, actin 

cables and specifically myosins may serve as back-up transport for microtubule-associated 

factors. Checking Tea1 and Tea4 localization in double mutant for3∆mod5∆ in absence of 

microtubules could clarify whether presence of Tea1 and Tea4 at the growing cell end is 

actin-mediated when mod5 is deleted and microtubules are disrupted. Fission yeast cells 

may have redundant robust polarization strategies enough to utilize both cytoskeleton 

mechanisms to target polarity factors towards the cell end. Possible interactions between 

microtubule-associated proteins and actin could establish and maintain fission yeast 

polarized growth similar to other mammalian systems (Rodriguez et al., 2003).  

I showed that Tea4 and multiple polarity proteins have asymmetric localization patterns and 

grow in a monopolar manner when the SH3 domain is mutated similar to tea4∆. What comes 

first? Does monopolar growth lead to asymmetric localization of polarity factors or does 

asymmetric accumulation of polarity factors only at one cell end lead to monopolar growth? 

Understanding whether local accumulation of Tea1 and Tea4 establishes growth or growth 

enforces them to be locally accumulated still remains of major importance. In fission yeast, 

symmetric Cdc42 at the cell ends is proposed to lead to polarized growth at the cell tips (Das 

et al., 2009). Although localization of Cdc42 at both tips in pom1∆ rga4∆ monopolar mutant 

cells does not rescue result in bipolar growth (Tatebe et al, 2008) indicating that Cdc42 
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cannot act as a sole protein to initiate growth, it is also proposed that specific Cdc42 

amounts at the cell end enable pre-NETO cells to initiate bipolar growth (Das et al., 2012b). 

Furthermore manipulating fission yeast shape physically with microfluidic chambers leads to 

accumulation of polarity factors ectopically resulting in local growth (Minc et al., 2009; 

Terenna et al., 2008). In addition, spheroplasts seem to first locally accumulate polarity 

factors and then resume polarized growth independent of their initial round cell shape (Kelly 

and Nurse, 2011a).  Even if the geometry of budding yeast cells is different compared to 

fission yeast, growth in S. cerevisiae occurs in a similar way. Based on the model proposed 

for polarized growth in budding yeast, Cdc42 is the major highly conserved protein landmark 

to break symmetry and define the site of bud emergence in pre-budded rounded cells (Butty 

et al., 2002; Johnson, 1999; Johnson et al., 2011; Park and Bi, 2007). Altogether this 

suggests that tea4SH3 similar to tea4∆ localize active Cdc42 asymmetrically that may lead to 

monopolar growth. It seems that cell tip accumulation of polarity factors such as For3 and 

especially active Cdc42, first defines the growth zone followed by growth.  

Showing that Cdc42 may result in local growth still does not explain clearly what comes first 

regarding Tea1 and Tea4 asymmetric accumulation and monopolar growth. As previously 

mentioned, localization of Cdc42 at both tips in pom1∆ rga4∆ double mutant cells does not 

rescue their monopolar growth (Tatebe et al., 2008). In this monopolar mutant it is most likely 

that Tea1 and Tea4 still localize asymmetrically. Interestingly, the formation of a Tea1-For3 

complex at the new cell end is sufficient to initiate bipolar growth in tea4∆ monopolar cells 

(Martin et al., 2005). This result suggests that bipolar distribution of actin in tea4∆ mutant 

cells rescue their monopolar growth pattern proposing that growth might follow symmetry. 

Generating a Tea1-Arp2 chimera that could recruit actin patches also at the non-growing cell 

end in tea4∆ monopolar cells could result in bipolar endocytosis and eventually growth, 

supporting the hypothesis that growth may come after symmetry. In addition, detailed time-

lapse microscopy of polarity factors localization in cells in re-feeding experiments whereas 

cells stopped growing and then need to re-establish growth de novo could give more clear 

answers of what comes first: the symmetry or the growth. 
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Figure 2.12 Alternative mechanisms for Tea1 and Tea4 motion and localization. (A) Physiologically, Tea1 

and Tea4 are transported to the cell ends through microtubule plus ends and then anchored by the prenylated 

protein Mod5. Tea1 is proposed to form clusters with Mod5 to establish polarized growth. Tea4 has been 

proposed to link Tea1 and For3 for initiation of growth at the second end (dashed arrow). Actin patches (black 

circles) define sites of endocytosis that could possibly recycle Tea4 at both ends (circular arrow). In addition, 

Tea4 associates with Dis2 and Pom1 and seems to exclude Rga4 localization from the cell end. (B) After MBC 

treatment and in mod5∆ cell, diffusion phenomena (wiggly arrow), actin cables serving as tracks for Tea4 

transport and as-yet unknown anchoring protein(s) (possible candidates could be Tea3 or For3) could explain 

how Tea4 switches localization towards the growing cell end.  
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Chapter 3  

A phosphorylation cycle shapes gradients 

of the DYRK family kinase Pom1 at the 
plasma membrane. Cell 145, 1116-1128. 

3.1. Summary 

In many biological functions, concentration gradients play a crucial role and specifically in 

rod-shaped fission yeast cells, DYRK family kinase Pom1 forms gradients that emanate from 

the cell tips regulating cell cycle progression. This paper tries to answer three key questions 

regarding Pom1 gradient formation: how Pom1 associates with the cell cortex, how this 

association is modulated by kinase activity and how Tea4 mediates Pom1 recruitment to cell 

tips. First, microtubule-associated protein Tea4 is necessary and sufficient to recruit Pom1 to 

the cell cortex. Pom1 then moves laterally at the plasma membrane, which it binds through a 

basic region exhibiting direct lipid interaction. Then, Pom1 autophosphorylates in this region 

to lower lipid affinity and promotes membrane release. Tea4 triggers Pom1 plasma 

membrane association by promoting its dephosphorylation through the Type 1 Phosphatase 

Dis2. My contribution in this paper was first to show that Pom1 becomes cytosolic in tea4SH3 

mutant cells (Fig. 5C). Second, I performed the experiments in Figure 6C and 6D showing 

the interaction of Tea4 with Dis2. Tea4-HA was coimmunoprecipitated with GFP-Dis2 in wild-

type cells (Figure 6C) and this interaction was dependent on the Tea4 RVxF motif, as 

previously described (Alvarez-Tabares et al., 2007). In addition, I also found that the integrity 

of the Tea4 SH3 domain was essential for this interaction. Indeed, both Tea4RVxF and 

Tea4SH3 failed to coimmunoprecipitate with GFP-Dis2 (Figure 6C). Accordingly, Dis2 was 

delocalized from the cell tips in tea4∆, tea4RVxF, and tea4SH3 mutants, but not in pom1∆ 

backgrounds (Figure 6D). These results, together with other lines of evidence presented in 

the manuscript, led to the hypothesis that efficient localization of Pom1 to the cell tip cortex 

requires both binding to Tea4 and interaction between Tea4 and the phosphatase Dis2, 

indicating that Tea4 bridges Pom1 with Dis2 to promote the dephosphorylation of Pom1 at 

cell tips. In conclusion, Tea4 mediates the cell tip dephosphorylation of Pom1 through Dis2 

resulting in Pom1 binding to the cell membrane and followed by Pom1 lateral diffusion and 

autophosphorylation leading to Pom1 gradients formation. 
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Chapter 4  

Tea4-mediated ectopic morphogenesis 

4.1. Introduction 

As described in Chapter 1, Cdc42 is a small GTPase of the Rho-subfamily that is conserved 

from yeast to humans and it is highly important for regulating cell growth and polarity (Chang 

et al., 1994; Miller and Johnson, 1994; Nobes and Hall, 1999; Pruyne et al., 2004b). Cdc42 is 

functioning as a molecular switch that transits from a GDP-bound inactive state to a GTP-

bound active state. Guanine Exchange Factors (GEF) and GTPase Activating Proteins 

(GAP) are the proteins involved in the activation and inactivation of GTPases, respectively. 

The importance of Rho GTPases, especially Cdc42, in establishing polarized growth has 

been mostly investigated in budding yeast.  In budding yeast cells, Cdc42 is activated by its 

sole GEF protein Cdc24 that restricts Cdc42 activity to a single concentrated region at the 

plasma membrane. Active Cdc42 controls the actin assembly through the formin Bni1, 

activates the Arp2/3 complex that nucleates actin filaments from pre-existing filaments, and 

is required for polarized localization of the exocyst (Lechler et al., 2001; Pruyne et al., 2004; 

Zhang et al., 2001). While only one GEF for Cdc42 has been identified in budding yeast, four 

GAPs: Rga1, Rga2, Bem2 and Bem3 can stimulate the hydrolysis of Cdc42-GTP (Marquitz 

et al., 2002; Smith et al., 2002). Rga2, Bem2 and Bem3 may not share identical localization 

patterns but initially localize at the incipient bud site and then are present mostly at the bud 

tip and the bud cortex during bud emergence and bud growth (Knaus et al., 2007; Sopko et 

al., 2007). Rga1 is also present at the site of bud emergence but then concentrates in the 

mother-bud neck until the end of the cell cycle and is the only GAP that must be present at 

the division site to prevent subsequent polarization toward that site (Caviston et al., 2003; 

Tong et al., 2007). In conclusion, GEF and GAPs regulate the proper localization and timing 

of Cdc42 (in-) activation leading to correct polarized growth. 

To initiate polarized growth, symmetry breaking first has to occur. Models for symmetry 

breaking leading to polarization propose that stochastic fluctuations generate small clusters 

of polarity factors at random sites. Through autocatalytic amplification mechanisms, a small 

cluster can grow through positive feedback mechanisms to generate a dominating 

asymmetry (Turing, 1990) that will eventually initiate polarized growth. As described in 

Chapter 1, studies in budding yeast have shown that direct interactions between Rsr1 and 

Bem1, Cdc24, and Cdc42 (Kozminski et al., 2003; Park et al., 1997; Zheng et al., 1995) 
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combined with the active Cdc42 and actin positive feedback loops and possibly a negative 

loop ensure polarized growth and correct bud site selection. 

In fission yeast, less is known regarding Cdc42 regulation and feedback loops. As mentioned 

in the general introduction, control of Cdc42 depends on two GEFs called Gef1 and Scd1 

and only one known GAP named Rga4 (Chang et al., 1994; Das et al., 2007; Garcia et al., 

2006; Tatebe et al., 2008). A protein called Scd2, the homologue of budding yeast protein 

Bem1, is necessary for the localization of Scd1 and is believed to serve as a scaffold protein 

mediating the interaction between Scd1 and Cdc42 (Endo et al., 2003; Wheatley and 

Rittinger, 2005). In this study, I will try to investigate the molecular mechanisms that could 

link microtubule-associated protein Tea4 with the activation of Cdc42.  
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4.2. Results 

4.2.1. Ectopically targeted Tea4 induces growth  

As described in Chapter 3, Tea4 mediates Pom1 localization. During this study a chimera 

was generated by Sophie Martin by fusing Cdr2-GFP with Tea4 (Cdr2-GFP-Tea4N) to test 

whether ectopic Tea4 could recruit Pom1. Ectopic Tea4N recruited successfully Pom1 at the 

medial cortex where Cdr2 is localized in interphase cells (Morrell et al., 2004). This chimera 

relied on a truncated fragment of Tea4 (Tea4 1-521, called Tea4N) that abolishes binding to 

Tea1 (Martin et al., 2005), therefore allowing the study of Tea4 independently of its normal 

localization at cell tips. Interestingly, ectopically localized Tea4N fused with Cdr2-GFP not 

only mediated Pom1 recruitment but also initiated growth in tea4∆ background suggesting 

Tea4 is instructive for growth. The finding of initiating growth by ectopically recruited Tea4 

led me to the idea to study polarity away from the cell tips. The Tea4N fragment abolishes 

Tea1 binding but still includes the Tea4 SH3 domain and RVxF motif. In this chapter, I tried 

to investigate the mechanisms of how ectopic Tea4 induces growth in tea4∆ cells expressing 

the Cdr2-GFP-Tea4N chimera.  

First, I would like to describe the genetic engineering strategy of Tea4 ectopic recruitment. 

Tea4N was recruited to the cell sides by fusing it with the cortical protein kinase Cdr2 tagged 

with GFP (Fig. 4.1A). Cdr2 is normally localized to a broad medial band during interphase 

regulating the timing of mitotic entry (Morrell et al., 2004) and it has been shown that Pom1 

negatively regulates its localization (Martin and Berthelot-Grosjean, 2009; Moseley et al., 

2009). Thus Cdr2-Tea4N fusion probably affects its own localization through recruitment of 

Pom1 and resulting localization of the fusion may not be as tight as that of Cdr2 alone. The 

Cdr2-Tea4N fusion is expressed under the control of the mild promoter nmt81 and integrated 

at the ura4 locus. In all experiments shown below, cells expressing the Cdr2-Tea4N fusion 

are having endogenous tea4 deleted and are growing 20 hours in the presence of the 

promoter repressor thiamine in EMM medium supplied with the necessary supplements. 

Then thiamine is washed away allowing the fusion to be expressed to steady state levels for 

approximately 28-32 hours. The same fusion, but without Tea4N, was used as negative 

control. 48+/-6% of cells (n=100) expressing the Cdr2-GFP-Tea4N fusion exhibit ectopic 

growth (Fig. 4.1B). This ectopic growth is triggered when ectopic Tea4 localization leads to 

the formation of a curved shape at the cell middle, which after time grows to a round-shaped 

bump, which I will refer to as ‘’bulging”. To characterize the formation of these ectopic 

‘’bulges’’, I followed their growth over time using microfluidic chambers (CellAsic). As shown 

in Fig. 4.2B they show a growth of approximately 2µm in width over 4-6 hours. I also 
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constructed similar fusion protein with distinct fluorescent tags (GFP/CFP/mCherry). These 

fusions had similar effect, causing ectopic growth in about half of the cells. For instance 

Cdr2-CFP-Tea4N fusion led to in bulge formation in 55+/-5% of cells (See Fig. 4.7A). 

 

 

 

 

Figure 4.1. Ectopically targeted Tea4N initiates growth. (A) Genetic engineering of targeting Tea4 ectopically. 

Tea4 fragment 1-521 (Tea4N) is fused with cortical protein Cdr2-GFP. This chimera is under control of the mild 

promoter nmt81 and is expressed in tea4∆ cells. (B) Staining with 10µg/ml calcofluor labels newly formed cell wall 

indicating growth (left image). Cdr2-GFP-Tea4N fusion is localized at cell sides and at the sites of ectopic growth 

(middle image). Staining with 10µg/ml lectin, a drug that binds to cell wall, was added for 15 minutes then washed 

away and cells continued to grow for 1 hour. Lectin binds pre-existing cell wall and abolishment of lectin staining 

indicates cell regions of new cell wall synthesis (right image). Scale bar 5µm. (C) Formation of a new bulge and 

measurement of its width over time. Scale bar 5µm. (D) The bulge grows approximately 2µm in width over 4-

6hours as measured in 5 individual cells. 
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Further investigation of the bulged cells indicated that these cells could continue dividing 

‘’happily’’ and cells could grow for at least 72 hours (approximately 12-16 generations), (Fig. 

4.2B). In addition as shown in Fig. 4.2A: 1) Cells (50+/-5%, n=100) could grow from both cell 

tips suggesting that Tea4N fusion also partly rescues the monopolar growth pattern of tea4∆ 

cells. In tea4∆ cells, Cdr2 localizes around the non-growing cell end (Martin and Berthelot-

Grosjean, 2009; Moseley et al., 2009) hence the fusion is also localized at the non-growing 

end resulting in rescuing the monopolar defects of tea4∆ cells, 2) It seems that once the 

bulge is formed, it perdures through generations, and 3) A few cells (9+/3%, n=100) die 

immediately after cell division.  

I checked the cytoskeletal organization in bulged cells first by staining cells with AlexaFluor 

488-phalloidin to visualize actin. Actin patches are present at the bulge and actin filaments 

seem to emanate from the ectopic growth site (Fig. 4.2C). Interestingly, in cells expressing 

the Cdr2-Tea4N fusion but not yet exhibiting ectopic growth, it is clear that actin structures 

localize at the cell tip similar to control cells (Fig. 4.2C). Visualization of microtubules through 

tagging of tubulin alpha-2 (atb2) shows microtubules to be misaligned and oriented towards 

the bulge site with their plus ends headed towards the tip of the bulge (Fig. 4.2D, time-lapse 

videos not shown). Interestingly, in cells expressing the Cdr2-Tea4N fusion but not yet 

exhibiting ectopic growth, it is clear that microtubules exhibit the typical anti-parallel structure 

along the long axis similar to control cells (Fig. 4.2D) suggesting that MTs re-organization in 

bulged cells is a consequence of shape. I will further investigate in the following sectors of 

this chapter how ectopic growth is initiated in cells expressing the Cdr2-Tea4N fusion prior to 

bulge formation. 
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Figure 4.2. Characteristics of bulged cells. (A) Arrows indicate tip growth in bulged cells (50+/-5%, n=100) can 

grow from both cell ends (1), once the bulge is formed, it perdures through generations (2) and 9%+/-3% (n=100) 

of cells die directly after cell division (3). Scale bar 5µm. (B) Cells continue to express Cdr2-GFP-Tea4N (arrows) 

even after 72 hours of growth in exponential phase and to exhibit ectopic growth. Scale bar 5µm. (C) AlexaFluor 

488-phalloidin staining shows actin patches at the bulge tip and emanating actin filaments at the site of ectopic 

growth (arrows), in addition to their physiological cell tip localization either in rod-shaped cells expressing the 

Cd2-Tea4N fusion or in control cells. Scale bar 5µm. (D) Visualization of microtubules through tagging of tubulin 

alpha-2 (atb2) shows that MTs seem to be more abundant, misaligned and re-directed towards the tip of the 

bulge (arrows), in contrast to their physiological anti-parallel structure along the long axis of the cell observed 

either in rod-shaped cells expressing the Cd2-Tea4N fusion or in control cells. Scale bar 5µm. Time is in minutes. 
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4.2.2. Localization of cell polarity regulators at ectopic growth site 

Since cells expressing Cdr2-Tea4N fusion exhibit ectopic growth I investigated which 

proteins were localized at the bulge.  I first checked the localization of the major regulator of 

polarized growth Cdc42. CRIB-GFP (Cdc42/Rac-interactive binding) that binds to the active 

GTP-bound form of Cdc42 (Tatebe et al., 2008) localizes at the ectopic growth site (Fig. 4.3). 

Furthermore, I checked whether GEFs, the activators of Cdc42 also localize ectopically and 

as observed at Fig. 4.3 that was the case. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Active Cdc42 and its GEFs localize at sites of ectopic growth. CRIB, Scd1 and Gef1 are present 

at sites of ectopic growth (arrowheads) where Cdr2-Tea4N fusion is expressed. Scale bar 5µm. 
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Tea4 is directly associated with Pom1 and Dis2 (Alvarez-Tabares et al., 2007; Hachet et al., 

2011) so I tested whether these proteins are recruited by ectopic Tea4. Both proteins were 

present at the ectopic growth site (Fig 4.4A). In addition I checked whether other factors of 

the polarisome would be present at ectopic sites in cells expressing the fusion. Major 

proteins of the polarisome such as Tea1, For3 and Exo70 were also localized at the ectopic 

growth site (Fig. 4.4A). Even though only the Tea4N fragment is recruited ectopically, and 

thus should not directly bind Tea1, one explanation could be that since microtubules are 

oriented towards the bulge Tea1 could be delivered at the ectopic growth site and then 

‘’trapped’’ there. Positive feedback loop mechanisms could subsequently recruit additional 

polarity factors at this site (see conclusions and discussion at the end of this chapter).  

To this point, I have simplified the growth process by making it entirely Tea4-dependent. The 

recruitment of a large set of factors exemplifies the robustness of this process. The 

localization of some of these proteins might be a consequence of ectopic growth as 

previously mentioned for Tea1. To distinguish which of all these proteins are directly linked 

with Tea4, I checked their localization in cells expressing the Cdr2-Tea4N fusion prior to 

bulge formation. Polarity factors such, as For3, Tea1 and Exo70 were absent from the side of 

cells expressing the Cdr2-Tea4N fusion. In contrast, Pom1 and Dis2 are present at the cell 

side where the Tea4N is present (Fig. 4.4B) supporting the data showing their direct binding 

with Tea4 (Alvarez-Tabares et al., 2007; Hachet et al., 2011). Interestingly, CRIB also 

localizes to the cell sides (Fig. 4.4B) indicating that Tea4 recruits active Cdc42 independently 

of growth. This suggests a possible direct link between Tea4 and Cdc42.  

 

Figure 4.4. Localization of polarity factors in cell expressing the Cdr2-Tea4N fusion. (A) Multiple polarity 

factors (Pom1, Dis2, For3, Tea1 and Exo70) localize at sites of ectopic growth (arrowheads) where Cdr2-Tea4N 

fusion is expressed. Scale bar 5µm. (B) Only Pom1, Dis2 and CRIB are present at the cell side (arrowheads) in 

cells expressing the fusion Cdr2-Tea4N that have not formed yet bulges, supporting their association with Tea4N 

independent of growth process. Scale bar 5µm. 
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4.2.3. Dis2 essentiality for bulge formation 

After investigating the protein localization in the ectopic growth site, a following step was to 

determine what genes are essential for this growth. I generated strains where the gene of 

interest was deleted and then I quantified the number of bulged cells. As shown in Fig. 4.5A, 

tea1, for3, exo70, dis2 and sds21 gene deletion did not alter significantly the bulge formation. 

I would like to remark that for3 gene deletion in cells expressing the Cdr2-Tea4N fusion 

results in micro colonies that do not grow efficiently, but clearly exhibit ectopic growth as 

shown in Fig. 4.5B. An additional clarification is that since Dis2 and Sds21 are redundant 

proteins, deletion of each gene could not address their importance in the ectopic growth 

process described. Therefore, in order to study whether dis2 is essential for bulge formation I 

mutated the RVxF motif in Cdr2-Tea4N fusion. As shown by Alvarez-Tabares et al. in 2007, 

Dis2 binds Tea4 directly. In agreement with this, I showed in Chapter 2 (Fig. 2.8B) that Dis2 

associated with purified Tea4-TAP. I confirmed this interaction through co-IP and further 

showed that this interaction depends on both Tea4 RVxF motif and SH3 domain (Hachet et 

al., 2011), (See Chapter 3, Fig. 6D). Excitingly, Cdr2-Tea4NRVxF and Cdr2-Tea4NSH3 mutant 

cells severely diminish bulge formation (Fig. 4.5C) suggesting that dis2 is essential for 

ectopic growth. To dissect whether pom1 gene would play an essential role for bulge 

formation I deleted pom1 and found that the bulges still occur but in fewer cells (from 

approximately 55% in Cdr2-Tea4N to 30% in Cdr2-Tea4N pom1∆) (Fig. 4.5A). These data 

show that Dis2 is a key Tea4 binding partner for polarized growth and Pom1 is likely not the 

only target of Tea4-Dis2 dephosphorylation.  

 

Figure 4.5. Dis2 essentiality for bulge formation. (A) Deletion of multiple polarity genes does not inhibit bulge 

formation. Only when pom1∆ is deleted, cells exhibit partial inhibition of ectopic growth. Cdr2-GFP was used as a 

negative control and it did not exhibit any bulge formation. Graph shows the average of 3 different experiments 

with standard deviation bars (n=100 cells per experiment). (B) Cells expressing Cdr2Tea4N in for3∆ background 

do not grow efficiently but still exhibit ectopic growth (arrowheads, no quantification data). Scale bar 5µm. (C) 

Cdr2-Tea4NRVxF and Cdr2Tea4NSH3 do not promote bulge formation. Graph shows the average of 3 different 

experiments with standard error bars (n=100 cells). 
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To further support that Pom1 may not be the sole target of Tea4-Dis2 dephosphorylation, I 

tested whether Pom1 delocalization was the reason of the tea4SH3 mutant phenotypes (see 

Fig. 2.5A and B in Chapter 2). I used a pom1 allele that localizes to the cell periphery 

independently of Tea4, called Pom1-6A mutant (see Fig. 3C in Chapter 3). Pom1 contains 

multiple predicted autophosphorylation sites and mutating 6 of these sites resulted in the 

Pom1-6A mutant (Hachet et al., 2011) (see Chapter 3 for details). Pom1-6A mutant localizes 

at the cortex constitutively (see Fig. 3C in Chapter 3), independently of Tea4 and it remains 

kinase active (Hachet et al., 2011). I checked the phenotype of the double mutant pom1-6A-

GFP tea4SH3. While cortical active Pom1 (Pom1-6A-GFP) did not cause monopolar growth in 

wild type cells (Fig. 4.6A and B), it also could not rescue the monopolar growth of tea4SH3 

mutant. pom1-6A-GFP and pom1-6A-GFP tea4SH3 cells seem to have positioned the septum 

at the cell middle (0.52 ± 0.01 and 0.53 ± 0.02, respectively) compared to tea4SH3 mutant that 

exhibits septum misplacement equal to 0.56 ± 0.02 (Fig. 4.6A and B). I further tested whether 

the double mutant pom1-6A-GFP tea4SH3 could rescue the T-shapes observed in tea4SH3 

mutant in re-feeding experiments. Interestingly, in pom1-6A-GFP tea4SH3 double mutant, 

cells still exhibit T-shapes (40% +/- 6) and cells also appear to have more aberrant shapes 

(52% +/- 6 multi-branched cells) and only 8% +/- 4 of cells are rod-shaped (Fig. 4.6A and C). 

These data suggest that cortical active Pom1 cannot rescue the T-shaped cells observed in 

tea4SH3 mutant and Pom1-6A-GFP may have an additive effect with tea4SH3 mutant regarding 

the aberrant cell shape observed in re-feeding experiments. Both pom1-6A-GFP and pom1-

6A-GFP tea4SH3 also exhibit a higher number of multi-septated cells compared to tea4SH3 

mutant in re-feeding experiments (Fig. 4.6A and C). In conclusion, although Pom1 

delocalization seems to be responsible for the off-center septum observed in tea4SH3 mutant, 

monopolar growth and aberrant cell shape observed in tea4SH3 cells were not rescued by 

cortical active Pom1 (Fig. 4.6). These results further support that Tea4 is not only important 

for regulating Pom1 localization but also regulates the function of other targets to establish 

cell polarization.   
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Figure 4.7. Cortical active Pom1 is not able to rescue the monopolar growth and T-shaped cells observed 

in tea4SH3. (A) Pom1-6A-GFP cannot rescue the monopolar growth and T-shaped cells observed in tea4SH3 cells 

but it seems to correct the septum misplacement observed in tea4SH3 mutant. In re-feeding experiments, first, 

double mutant pom1-6A-GFP tea4SH3 still forms T-shapes and also exhibits more aberrant shapes (multi-

branches) compared to the T-shapes observed in tea4SH3 mutant, second, pom1-6A-GFP and pom1-6A-GFP 

tea4SH3 show increased number of multi-septated cells compared to tea4SH3 mutant. (B) Even though Pom1-6A-

GFP localizes all over the cortex it cannot rescue the monopolar growth of tea4SH3 cells growing in exponential 

phase. Scale bar 5µm. (C) In re-feeding experiments, both pom1-6A-GFP and pom1-6A-GFP tea4SH3 exhibit a 

higher number of multi-septated cells (blue asterisk) compared to tea4SH3 mutant. Pom1-6A-GFP cells do not 

exhibit T-shapes compared to tea4SH3 and pom1-6A-GFP tea4SH3 (yellow asterisk). Double mutant pom1-6A-GFP 

tea4SH3 also forms multi-branched shapes (red asterisk). Scale bar 5µm. 
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4.2.4. Gef1 and Rga4 essentiality for bulge formation 

I investigated how Tea4 and Dis2 may promote the ectopic activation of Cdc42. To this aim, I 

investigated the possible function of Cdc42 regulators. scd1 and scd2 deletion mutants have 

a rounded shape phenotype (Chang et al., 1994), which is difficult to analyze thus I decided 

to delete gef1, which is one of the two Cdc42 GEFs. Interestingly, there are almost no bulged 

cells when gef1 gene is deleted (Fig. 4.7A) suggesting that Gef1 is required to activate 

Cdc42 in the ectopic growth site. Since I checked the essentiality of Cdc42 activator I was 

intrigued to investigate whether Rho GAP protein Rga4 would play a role in bulge formation. 

Strikingly, deletion of rga4 gene also repressed ectopic growth (Fig. 4.7A). Thus, Cdc42 

regulators are critical for ectopic growth, suggesting a possible link with Tea4. 

Rga4 is normally localized to the cell sides as a patchy cortical line in wild type cells and 

excluded from the cell ends but when tea4 is deleted Rga4 also accumulates at the non-

growing end (Tatebe et al., 2008). In cdr2-tea4N fusion cells, Rga4 seems to be more spread 

with small gaps and having lower levels in its cortical localization where Cdr2-tea4N is 

present, especially at the bulge site (Fig. 4.7B). From now on, I will refer to this Rga4 

localization pattern observed in Cdr2-tea4N cells as either dispersion or exclusion. To show 

local exclusion of Rga4 by Tea4, I measured the cortical levels of both proteins and then I 

compared them to see whether their localization anti-correlates. For measurement of cortical 

fluorescence intensity, a 5 pixel-wide line was drawn by hand at the cell side in a medial 

confocal section and fluorescence intensity obtained using the plot profile tool of ImageJ after 

subtracting the background. Interestingly, it seems that Cdr2-Tea4N locally excludes Rga4 

since their localization exhibit anti-correlation (n=8 cells, one shown) (Fig. 4.7B) in contrast to 

the correlation pattern observed between Cdr2-mcherry and Rga4-GFP in control cells (n=8 

cells, one shown) (Fig. 4.7B). 

To explore the genetic relationship between rga4 and gef1 I performed the following 

experiment: I deleted either rga4 or gef1 in cells expressing Cdr2-Tea4N fusion and I 

checked the localization of the other one (Fig. 4.7C). As shown in Fig. 4.7C there is no longer 

Gef1 at the cell sides in Cdr2-GFP-Tea4N rga4∆ cells but interestingly Rga4 seems to be still 

dispersed or excluded by the presence of Tea4N in Cdr2-GFP-Tea4N gef1∆ cells. These 

results indicate that Tea4 controls Rga4 localization. One possibility is that Tea4 may 

associate with Rga4, as observed in the mass spectrometry results shown in Chapter 2 (Fig. 

2.8B). In rga4∆ gef1∆ double mutant, ectopic Tea4 was unable to initiate ectopic growth (Fig. 

4.7A) indicating that lack of ectopic growth was not simply due to a global unbalance in 

Cdc42 activation. 
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Figure 4.7. Gef1 and Rga4 are essential for ectopic growth and ectopic Tea4 affects Rga4 localization. (A) 

Ectopic growth is inhibited in cells expressing Cdr2-Tea4N in gef1∆ and rga4∆ background and bulge formation is 

completely abolished in gef1∆ rga4∆ double mutant. (B) According to the graph Rga4-GFP localization seems to 

anti-correlate with Cdr2-mcherry-Tea4N localization (arrowheads) suggesting that Tea4 may locally exclude 

Rga4. Rga4 localization seems to correlate with Cdr2-mcherry localization (arrows) in control cells in which Tea4 

is no longer ectopically localized (n=8 cells, one shown). White dashed lines show the cortical mcherry and GFP 

intensities measured in the graphs. Graphs showing anti-correlation were performed for at least 8 individual cells 

but only one is shown. Scale bar 5µm. (C) Arrowheads and arrows indicate Rga4 and Gef1 localization in cells 

expressing Cdr2-Tea4N chimera, respectively. While Rga4 is required for Gef1 recruitment, Gef1 is not required 

for Rga4 exclusion suggesting an association of Tea4 with Rga4. Scale bar 5µm. 
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4.2.5. Tea4-Dis2-Rga4 interplay 

Mass spectrometry results in Chapter 2 (Fig. 2.8B) showed that Rga4 associates with 

tea4SH3. These results in combination of the localization patterns observed in Fig. 4.7C 

suggest that Tea4 and Rga4 may associate. To test this hypothesis I carried on testing 

whether Tea4 binds in vivo Rga4 with co-immunoprecipitation experiments. Co-IP showed 

that Tea4 binds Rga4 and this binding does not depend on Tea4 SH3 domain (Fig. 4.8). 

Furthermore the Tea4-Rga4 interaction was not dependent on Pom1 (Fig. 4.8), which has 

been previously shown to associate with Rga4 (Tatebe et al., 2008). I would like to comment 

that the TAP purification did not identify Rga4 association with wild type Tea4. The different 

experimental conditions between co-IP and mass spectrometry analysis could explain why 

Rga4 was not detected to associate with wild type Tea4 by TAP. All buffers and timing for 

TAP and co-IP experiments were the same suggesting that the long stay of the purified 

samples after TAP for several hours at 40C before proceeding to mass spectrometry analysis 

could result in loss of Tea4-Rga4 binding, especially if this binding occurs transiently. Direct 

mass spectrometry analysis after TAP could potentially identify Rga4 to associate with Tea4. 

In conclusion, co-IP experiments showed that Tea4 associates in vivo with Rga4 and in 

addition Tea4 seems to negatively regulate Rga4. Since Tea4 associates in vivo and also 

recruits ectopically Dis2 we could hypothesize that Tea4 delivers Dis2 at the cell sides and 

that could result in the negative regulation of Rga4 localization by possible 

dephosphorylation.  

  

 

 

 

 

Figure 4.8. Tea4 associates in vivo with Rga4. Tea4 binds in vivo Rga4 and this interaction seems not to be 

dependent on either Tea4 SH3 domain or Pom1.  
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4.2.6. Rga4 analysis  

I tried to elucidate the significance of different Rga4 regions that could play a role for its 

localization. First, having a look at the schematic structure of Rga4 (Fig. 4.9A) we observe 

two adjacent LIM-LIM domains that usually play a role in protein-protein interaction. 

Downstream of the LIM-LIM domains there are two Coiled-Coil domains. CC domains are 

also one of the most abundant protein-protein interaction domains. I performed co-

immunoprecipitation experiment to test whether Rga4 binds itself, which was the case (Fig. 

4.9B). Plasmid containing Rga4-GFP was transformed in wild type cells with endogenous 

Rga4 tagged with myc and then expressed under control of the promoter nmt41 to steady 

state for approximately 28-32 hours in the absence of thiamine. In addition, the Rga4 region 

containing the CC domains is sufficient for Rga4 binding and when it is deleted this binding is 

abolished (Fig. 4.9B). Finally at the C-terminus there is the GAP domain responsible for 

Rga4 activity. 

 

Figure 4.9. Rga4 analysis. At the N-terminus, Rga4 has two adjacent LIM-LIM domains and downstream of them 

there are two Coiled-Coil (CC) domains. At the C-terminus there is the GAP domain. (B) Co-immunoprecipitation 

of Rga4 with itself (first column) seems to be mediated by the region containing its CC domains. Rga4 465-685-

GFP containing Rga4 CC domains expressed from plasmid co-immunoprecipitates with Rga4-myc (red asterisk). 

This experiment has been performed only one time.  
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To better understand the functionality of different Rga4 regions, I analyzed different Rga4 

fragments. Plasmid containing truncated Rga4 fragments were transformed in wild type and 

Cdr2-Tea4N tea4∆ cells and then expressed under control of the promoter nmt41 to steady 

state for approximately 28-32 hours in the absence of thiamine. It seems that LIM-LIM 

domains and the GAP domain are not necessary for Rga4 membrane anchoring (Fig. 4.10A). 

Rga4 1-685 fragment is still localized at the cortex but Rga4 1-623 is no longer localized at 

the cortex (Fig. 4.10A). Furthermore, Rga4 465-685 and Rga4 599-757 fragments bind to the 

membrane in contrast to Rga4 599-685 fragment, which becomes cytosolic. Altogether this 

suggests that the minimal Rga4 fragments for binding to the cortex are 465-685 and 599-757 

and the Rga4 623-685 region is required for membrane binding, but is not sufficient (Fig. 

4.10A). These fragments expressed in wild type cells localize all around the cortex and they 

are mostly enhanced at the cell sides. Interestingly when expressed from plasmid in Cdr2-

Tea4N tea4∆ cells, the Rga4 465-685 and 599-757 fragments are still cortical but are 

enhanced at the cell tips indicating that ectopic Tea4 can still affect the localization of these 

Rga4 fragments (Fig. 4.10B). In addition, expressing these minimal Rga4 fragments in Cdr2-

Tea4N cells abolishes bulge formation (Fig. 4.10B) suggesting that these fragments have a 

dominant-negative phenotype. 
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Figure 4.10. Analysis of different Rga4 regions. (A) Different Rga4 fragments were expressed from plasmid to 

steady state for approximately 28-32 hours in wild type and in Cdr2-Tea4N fusion cells. The Rga4 623-685 

fragment is required for membrane binding, but is not sufficient. (B) Rga4FL and Rga4 465-933 are excluded from 

both cell tips in wt cells and from the growing end in Cdr2-Tea4N tea4∆ background. The Rga4 465-685 and 

Rga4 599-757 fragments interestingly exhibit Rga4 enhancement at cell tips when expressed in Cdr2-Tea4N 

tea4∆ cells (arrowheads). Expressing from plasmid Rga4 465-685 fragment in Cdr2-Tea4N cells inhibits ectopic 

growth to almost all cells and there is also Rga4 enhancement at cell tips. Scale bar 5µm.  
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Hachet et al. in 2011 showed that Tea4 SH3 domain binds to Pom1 PxxP motifs to regulate 

Pom1 cortical localization. This finding suggested that a similar binding between Tea4 and 

Rga4 could regulate Rga4 localization. After identifying four PxxP sites in Rga4 sequence, I 

investigated what could happen in rga4PxxP mutant. To generate the rga4PxxP mutant an rga4 

fragment containing the mutations was synthesized (Eurofins). This fragment was 

subsequently cloned in a vector containing full-length genomic rga4 in order to replace the 

PxxP motifs by the mutated ones. This modified version of rga4 was then integrated in rga4∆ 

cells at the endogenous locus, under the rga4 promoter.  

I checked the effect in bulge formation in Cdr2-Tea4N fusion in rga4PxxP background and 

interestingly, cells with PxxP mutations inhibit ectopic growth to approximately 50% (Fig. 

4.11A). I checked the localization pattern of Rga4-GFP and Rga4PxxP-GFP in cells expressing 

the Cdr2-Tea4N fusion by measuring the cortical levels of Rga4-GFP and Rga4PxxP-GFP and 

then I compared them to Cdr2-mcherry-Tea4N. As described in Fig. 4.6C, the localization of 

Rga4-GFP exhibits anti-correlation compared to the localization of Cdr2-mcherry-Tea4N 

(n=6 cells, one shown) (Fig. 4.11A). Rga4PxxP-GFP seems to abolish this anti-correlation 

pattern and Rga4PxxP-GFP appears to localize all along the cell side independent of Cdr2-

Tea4N localization (Fig. 4.11A) suggesting that Tea4 binding to Rga4 regulates Rga4 

localization. Therefore, abolishment of this binding can no longer locally exclude Rga4 thus 

no ectopic growth can occur.  

Since I hypothesize that Tea4 induces ectopic growth by locally excluding or significantly 

reducing Rga4 level, I tried to measure the cortical distribution of Rga4-GFP in Rga4PxxP and 

tea4∆ mutants and compared them to wild type cells (Fig. 4.11C). Rga4-GFP levels are 

higher at the non-growing cell end when either tea4 is deleted or Tea4 SH3 domain is 

mutated compared to wild type cells (Fig. 4.11C). Visualizing the localization of Rga4PxxP 

tagged with GFP, it seems that there is a more spread and less patchy cortical distribution 

compared to wild type Rga4. However, when I measured Rga4PxxP-GFP cortical levels, it 

seems to share similar cortical fluorescent intensity patterns with wild type cells (Fig. 4.11C). 

To better understand whether Rga4 PxxP motifs might play an important role for binding 

Tea4, I performed co-immunoprecipitation experiments between Tea4 and rga4PxxP mutant. 

Unfortunately, due to limited time, I performed only once the co-immunoprecipitation 

experiment. This co-IP showed that Tea4 still binds rga4PxxP mutant (Fig. 4.11A) suggesting 

that might be other and/or additional Rga4 binding sites. However, in this co-IP, it seems that 

Rga4PxxP levels are lower than wild type Rga4 thus it could be possible that low levels of 

Rga4PxxP behave similar to rga4 null mutant explaining why ectopic growth is reduced in 

Cdr2-mcherry-Tea4N rga4PxxP cells. It still remains unclear the role of the Rga4 PxxP motifs. 
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Although my current analysis probably suggests that Rga4PxxP is an rga4 hypomorph allele, a 

more detailed quantitative analysis of the cortical Rga4PxxP levels and repeat of co-IP 

experiments could clarify the exact role of these motifs. In addition, investigating the 

localization of Rga4PxxP in different Tea4 mutant backgrounds such as tea4RVxF and tea4SH3 

could elucidate the Tea4-depedency of Rga4 localization.  

 

Figure 4.11. Rga4 cortical distribution. (A) Significant reduction in bulge formation in Cdr2-Tea4N cells in 

rga4PxxP background. According to the graph Rga4PxxP-GFP localization seems to correlate with Cdr2-mcherry-

Tea4N localization (arrows) suggesting that Tea4 may no longer locally exclude Rga4 when the PxxP domains 

are mutated (n=6 cells, one shown). In contrary, Rga4-GFP localization seems to anti-correlate with Cdr2-

mcherry-Tea4N localization (arrowheads), as also shown in Fig. 4.6. Graphs were performed for at least 6 

individual cells but only one is shown. Scale bar 5µm. (B) Tea4 co-immunoprecipitates with Rga4 even when 

Rga4 PxxP domains are mutated (co-IP is performed only once). Rga4PxxP seems to be expressed at lower levels 

in this particular experiment (C) Graphs represent cortical Rga4-GFP intensity in different backgrounds. 

Measurements started at the cell tip with the less Rga4-GFP (arrow, 1-2-1, dashed circular white line). Wild type 

Rga4-GFP (blue line) is normally localized at the cell sides of the cell excluded from the tips (low peak in positions 

1 and 2). When tea4 is deleted Rga4-GFP forms a sock-like localization at on one cell tip (high peak in position 

2), similar to tea4SH3 (red and yellow line, respectively). Rga4PxxP-GFP seems not to have a different localization 

pattern compared to wild type Rga4-GFP cells (purple and blue line, respectively). Each graph represents an 

average of at least five independent measurements. Scale bar 5µm. 
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4.2.7. Ectopically targeted Dis2 initiates growth in almost all cells and may negatively 

regulate Rga4 localization 

I am currently proposing that Dis2 delocalizes laterally Rga4 and that results in local growth. 

To support this thought I targeted Dis2 ectopically following the same strategy as mentioned 

in Fig. 4.1A. I genetically engineered Cdr2-Dis2 fusion in tea4∆ cell background and cells 

were grown for approximately 20 hours in the presence of thiamine and then thiamine was 

washed away and the cells continued to grow for 28-32 hours. Excitingly ectopically targeted 

Dis2 promotes ectopic growth in almost all cells (90+/-4%) (Fig. 4.12A). 

I have previously proposed that low Rga4 levels may allow ectopic growth. Thus I checked 

the localization pattern of Rga4 in the Cdr2-Dis2 fusion. Rga4 seems to be excluded at the 

cell sides, similar to the Cdr2-Tea4N fusion cells, supporting that Dis2 may directly negatively 

regulate Rga4 (Fig. 4.12B). After deleting rga4, cells did not exhibit bulges anymore (Fig. 

4.12A) supporting the previous results of Rga4 importance of restricting and concentrating 

active Cdc42 for ectopic growth initiation. I will talk in more details about ideas how a GAP 

protein could be essential for growth in the discussion section. I also tested whether deleting 

pom1 could play a role in growth process and Cdr2-GFP-Dis2 pom1∆ cells exhibited a small 

decrease in the number of cells exhibiting ectopic growth (Fig. 4.12A). In conclusion, it 

seems that Pom1 plays a minor role for ectopic growth. Rga4 is dispersed or excluded at 

ectopic growth sites but still is essential for bulge formation. 

Pom1 binds the membrane when hypophosphorylated and Tea4 is responsible for localizing 

Dis2 to cell tips to promote local Pom1 dephosphorylation and therefore membrane binding 

(Hachet et al., 2011). In this process, Tea4 also binds directly to Pom1 through SH3-PxxP 

interaction motifs. The Cdr2-Dis2 fusion mimics the Tea4 mediator role by transporting Dis2 

to the cell sides. Consequently Pom1 possibly binds to the cortex all around the cell due to 

Dis2-dependent dephosphorylation (Fig. 4.12C). The Dis2-dependent cortical localization of 

Pom1 shows that Dis2 remains functional in this fusion, and suggests that Tea4 is not 

essential for Pom1 dephosphorylation but serves as a Dis2 transporter, since in tea4∆ cells 

expressing Cdr2-Dis2 fusion Pom1 is successfully recruited at the cortex. Sequence 

alignment of Dis2 with identified orthologs in other fungal species, combined with the 

knowledge that histidine residue could be responsible for PP1 phosphatase activity (Kim et 

al., 1993), predicted that the 247 Histidine (H) residue of Dis2 may play that role. Indeed, 

Dis2 with mutated 247H to Lysine (K) abolishes its dephosphorylation activity since Pom1 

becomes cytosolic in Cdr2-GFP-dis2H247K mutant cells (Fig. 4.12C). Although there is still a 

small amount of Pom1 anchored to the cell membrane. Moreover Cdr2-GFP-dis2H247K cells 

have no longer Dis2-dependent local Rga4 exclusion and bulge formation (Fig. 4.12A and B).  
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Ectopic Dis2 seems to affect Rga4 localization thus I checked the phenotype of cells 

expressing from plasmid the Rga4 465-685 fragment. The Rga4 465-685 is still cortical but 

interestingly is enhanced at the cell tips indicating that ectopic Dis2 can still affect Rga4 

localization (Fig. 4.12D), similar to Cdr2-Tea4N cells (Fig. 4.10B). In addition, expressing 

Rga4 465-685 in Cdr2-Dis2 cells abolishes bulge formation (Fig. 4.12D) suggesting that this 

fragment has a dominant-negative effect.  

 

Figure 4.12. Ectopically targeted Dis2 initiates growth in almost all cells and may negatively regulate Rga4 

localization. (A) 90% cells of cells expressing Cdr2-Dis2 fusion exhibit ectopic growth and this ectopic growth 

depends on the activity of Dis2, Rga4 and to a small extent on Pom1. (B) According to the graph Rga4-RFP 

localization seems to anti-correlate with Cdr2-GFP-Dis2 localization (arrowheads) suggesting that Dis2 may 

locally exclude Rga4. Rga4-RFP localization seems to correlate with Cdr2-GFP-Dis2H247K localization (arrows) 

in cells in which Dis2 is inactive. White dashed lines show the cortical RFP and GFP intensities measured in the 

graphs. Graphs showing anti-correlation were performed for at least 6 individual cells but only one is shown. 

Scale bar 5µm. (C) Ectopically targeted Dis2 results in Pom1 cortical localization. In cdr2-dis2H247K cells, Pom1 

becomes cytosolic, although there is still a small amount of cortical Pom1. Scale bar 5µm. (C) Expressing from 

plasmid Rga4 465-685 fragment in Cdr2-Dis2 cells enhances Rga4 at cell tips (arrows) and diminishes ectopic 

growth to almost all cells. Scale bar 5µm.  
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4.2.8. Re-targeted cortical Rga4 inhibits ectopic growth   

The idea that growth occurs when Rga4 is locally excluded motivated me to check whether 

re-targeted Rga4 at the medial cortex in Cdr2-Tea4N fusion would inhibit ectopic growth. To 

achieve this experiment I used a strain generated in the laboratory of Paul Nurse. Cytosolic 

Rga4 (cytoRga4 622-760aa deleted) is fused with the cortical protein Blt1 to re-target Rga4 

to the cell cortex and this chimera successfully anchors Rga4 to the cortex (Kelly and Nurse, 

2011a). I would like to point out that Blt1 co-localizes with Cdr2 and its localization is Cdr2-

dependent (Moseley et al., 2009). Thus Rga4-Blt1 is likely to localize at the same sites as 

Cdr2-Tea4N therefore forcing a Tea4-Rga4 co-localization. In agreement with my 

hypothesis, expressing Blt1-cytoRga4 in Cdr2-Tea4N cells resulted in abolishment of bulges 

(Fig. 4.13B) since Tea4N cannot any longer locally exclude Rga4 even in presence of 

endogenous Rga4 (Fig. 4.13A). These data emphasize the fact that continuous Rga4 

localization at the cell sides inhibits growth. When rga4 is deleted, both cytoRga4 and Blt1-

cytoRga4 cells also do not exhibit bulges (Fig. 4.13B).  

 

Figure 4.13. Re-targeted cortical Rga4 inhibits growth. (A) Cytosolic Rga4 (cytoRga4) fused with cortical 

protein Blt1 re-targets Rga4 to the cell sides in Cdr2-Tea4N cells and inhibits bulge formation. According to the 

graph and in agreement with published data (Kelly and Nurse, 2011a), Blt1-cytoRga4-GFP localization seems to 

correlate with Cdr2-mcherry-Tea4N (arrows). Scale bar 5µm. (B) Almost all cells exhibit no ectopic growth when 

Blt1-cytoRga4 is expressed. Both cytoRga4 and Blt1-cytoRga4 cells also do not support bulge formation in rga4∆ 

background. 
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4.3. Conclusions and discussion 

In this study, I tried to dissect the molecular mechanism by which Tea4 promotes polarized 

growth. To achieve that I ectopically targeted Tea4 and excitingly ectopic Tea4 initiates 

growth. Physiologically, Tea4 is transported by microtubules to cell tips and it plays important 

role for cell shape maintenance and bipolar growth (Martin et al., 2005). I hypothesize that 

Tea4 mediates the negative regulation of Rga4 localization through Type I Phosphatase Dis2 

(Fig. 4.14). Dis2 may cause the local removal, the significant reduction and/or inhibition of 

Rga4 GAP protein levels, which in turn allows the accumulation of active GTPase Cdc42. 

Then this active GTPase initiates growth. Rga4 binds to Cdc42 and inactivates it. Activation 

of Cdc42 is re-established when it binds a GEF protein that catalyzes the release of GDP. 

GTP cellular levels are higher than GDP suggesting that when Cdc42 is inactive there is 

enough GTP to bind and go back to its active state (Perez and Rincon, 2010). This constant 

switch of Cdc42 active and inactive stage plays an important role for cell polarity regulation 

indicating that specific levels of active Cdc42 may be necessary for growth. Thus, ectopic 

growth in Cdr2-Tea4N/Dis2 cells could be explained by this mechanism of ectopic active 

Cdc42 increased levels due to limited amounts of Rga4 to inhibit Cdc42 activation at cell 

sides. 

My results propose that negative regulation of Rga4 by Tea4 is likely mediated by Dis2-

dependent dephosphorylation. To show local exclusion of Rga4 by Tea4, I measured the 

cortical levels of both proteins and then I compared them to see whether their localization 

anti-correlates. Although these anti-correlation graphs exhibit Rga4 and Tea4 peaks that 

anti-correlate, unfortunately I did not perform a statistical approach to show whether this anti-

correlation is significant. An analytical study of more cells (I tested only 8 cells) could give the 

evidence that this anti-correlation is indeed significant. An additional difficulty to show local 

exclusion of Rga4 by Tea4 is the fact that in tea4∆ background Cdr2 and Rga4 localize at 

different regions of the cortex. Rga4 mostly accumulates at the cell sides near the growing 

end and Cdr2 mostly accumulates at the cell sides near the growing end making an anti-

correlation study difficult to achieve. In addition, Pom1 negatively regulates Cdr2 localization, 

thus Cdr2-Tea4N fusion probably affects its own localization through recruitment of Pom1 

and resulting cell side localization of the fusion may not be as tight as that of Cdr2 alone. A 

new experimental approach where Tea4 localizes at the cell sides independent of Cdr2, 

where Rga4 is present, could further support the hypothesis that Rga4 is locally excluded by 

Tea4-Dis2 mediated dephosphorylation. A possible fusion of the spindle pole body 

component Ppc89 with Tea4 (see Fig.1E in Chapter 3) in tea4∆ background could target 

Tea4 at the cell sides where Rga4 is exactly present. Then, Tea4 could lead to Rga4 local 
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exclusion. Although my research suggests that Tea4 may link microtubules for the regulation 

of Cdc42 activity, further analysis is needed to be done to better establish my hypothesis. 

An interesting finding is that rga4 deletion diminishes ectopic growth meaning that Rga4 may 

be essential for restricting active Cdc42 to generate growth. When rga4 is deleted the cells 

are wider showing a more spread distribution of active Cdc42. Cdc42 can still be activated at 

the cell tip but that activation is not as well focused and as a consequence growth may occur 

over a wider area, resulting in a wider cell. This hypothesis is also supported by the fact that 

when scd1 or scd2 is deleted Rga4 becomes the major determinant of cell width, as shown 

by the additive effects of rga4Δ scd1Δ and rga4Δ scd2Δ cells (Kelly and Nurse, 2011b). 

Therefore, an additional role of Rga4 seems to be the formation of a boundary preventing the 

spread of activated Cdc42 away from the cell tip leading to proper polarized growth. In 

agreement with that, one hypothesis is that Tea4 serves to locally exclude Rga4, but that 

surrounding Rga4 is necessary to define the boundaries of active Cdc42. In budding yeast, 

only Rga1 has been shown to locally exclude active Cdc42 resulting in inhibition of 

polarization by exclusion of polarity factors at this site (Tong et al., 2007). In fission yeast, we 

could imagine that Rga4 plays a similar role like Rga1. Rga4 is inhibiting Cdc42 to be active 

but in addition is also necessary to restrict it in a specific site where active Cdc42 could 

initiate growth through positive feedback loops, similar to budding yeast. Cdc42 could 

ectopically polarize the formin For3 and in turn actin cables could concentrate more active 

Cdc42 ectopically triggering growth. In addition, factors of the polarisome and the exocyst 

could accumulate at this site resulting in proper growth similar to the cell tip. However, just 

Cdc42 presence is not sufficient to initiate growth since localization of Cdc42 at both tips in 

pom1∆ rga4∆ double mutant cells does not result in bipolar growth (Tatebe et al., 2008). 

Specifically, actin presence is a key factor for growth per se since the formation of a Tea1-

For3 complex at the new cell end is sufficient to initiate bipolar growth in tea4∆ monopolar 

cells (Martin et al., 2005). Under physiological conditions Tea4 is proposed to link Tea1 with 

For3 at the new cell end for NETO establishment (Martin and Chang, 2005; Martin et al., 

2005) supporting the role of actin presence for growth to occur. These data suggest that 

active Cdc42 at both ends is not sufficient to initiate bipolar growth if there is not also bipolar 

distribution of actin. All these suggest that first ectopic Tea4 provides the initial cue where 

growth will occur. Second, a possible Tea4-mediated Rga4 local exclusion allows local 

activation of Cdc42 and subsequent actin presence. Third, feedback loops between Cdc42 

and actin could establish and maintain ectopic growth, similar to budding yeast.  

It has been shown that Tea4 and Pom1 are required for the exclusion of the Rga4 from the 

cell tip and in tea4∆ and pom1∆ monopolar mutants Rga4 localize at the non-growing end 
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(Tatebe et al., 2008). However, it is suggested that Rga4 may not be a direct substrate of 

Pom1 and Rga4 also appears hyperphoshorylated when pom1 is deleted (Tatebe et al., 

2008). Dis2 might be the sole direct regulator of Rga4 cortical anchoring. Since Dis2 is a 

Type 1 protein phosphatase and PP1 are phosphoproteins, which their regulation depends 

on the phosphorylation status of their serine and threonine residues (Ingebritsen and Cohen, 

1983), Pom1 could phosphorylate Dis2 to activate it. In turn, Dis2 dephosphorylates Pom1 

for its membrane association (Hachet et al., 2011). Dis2 and Pom1 could share positive 

feedback loops to regulate Pom1 localization and Dis2 activity, respectively. In pom1∆ cells 

Dis2 may have decreased activity and can no longer exclude Rga4 from the cell tip. 

Furthermore, in tea4∆ cells, there is no Dis2 at the cell tip for Rga4 exclusion. However, in 

pom1∆ cells ectopic growth still occurs suggesting that Pom1 may not be the sole kinase to 

phosphorylate and activate Dis2. Interestingly, in pom1-6A tea4SH3 double mutant, active 

Pom1 is cortical but cells still grow in a monopolar manner suggesting that cortical Pom1 is 

not able to bypass the Tea4 necessity and Rga4 is present at the cell tip. This hypothesis 

proposes that Rga4 localization may depend on active Dis2 since in the double mutant 

pom1-6A tea4SH3, Dis2 is more likely absent from the cell tips due to mutated Tea4 SH3 

domain, thus Dis2 can no longer exclude Rga4. However, in cells expressing Cdr2-Tea4N, 

ectopic growth is only inhibited to some extend when pom1 is deleted proposing that not only 

Pom1 but also other kinases unknown till now could possibly phosphorylate and activate 

Dis2. 

My results imply that Dis2 may exclude or significantly reduce the Rga4 levels suggesting 

that Rga4 phosphorylation-dephosphorylation levels have to be specifically regulated for tip 

exclusion. Rga4 is highly phosphorylated and has 21 potential CDK phosphorylation sites 

(Tatebe et al., 2008) so it can not be excluded the possibility that cyclin-dependent kinases 

could also play a role for Rga4 phosphorylation status as suggested for Cdc42 GAPs in 

budding yeast (Knaus et al., 2007; Sopko et al., 2007). A fluctuation of Rga4 phosphorylated 

levels could alter its localization depending on CDKs, Pom1 and Dis2. These observations 

indicate that (de)-phosphorylation events likely play a major role for Rga4 localization. 

Further identification of Rga4 phosphorylated residues seems important for understanding 

Rga4 localization pattern. In conclusion, I hypothesize that negative regulation of Rga4 by 

Tea4 is likely mediated by Dis2-dependent dephosphorylation. Hence, Tea4 may link 

microtubules for the regulation of Cdc42 activity resulting to bipolar growth in fission yeast 

cells. 
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Figure 4.14. New mechanisms of cell polarity control. Minimal factors for polarized growth regulation. Tea4 

negatively regulates Rga4 through Dis2. Tea4 is the Dis2 transporter and Dis2 may locally exclude Rga4 allowing 

local Cdc42 activation by GEF and consequently growth. 
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General conclusions and discussion 

Tea4 functions 

Tea4 has been first suggested to regulate cell polarity by initiating a second zone of growth 

through reorganization of the actin cytoskeleton (Martin et al, 2005). Tea4 was proposed to 

bind the formin For3, which is an actin nucleator responsible for the polarized assembly of 

actin cables. These data showed that Tea4 is a possible direct molecular link between 

microtubule plus ends and actin assembly. Second, It has been shown that Tea4 bridges 

Pom1 with Dis2 to promote Pom1 dephosphorylation at cell tips resulting in Pom1 binding to 

the cell membrane, then followed by Pom1 lateral diffusion and autophosphorylation leading 

to Pom1 membrane detachment (Hachet et al., 2011). This study showed how Tea4 

mediates the Pom1 gradient formation, which regulates cell size homeostasis. During my 

study I showed that Pom1 might not be the sole target of Tea4-Dis2 dependent 

dephosphorylation. I demonstrated that in addition of Tea4 role for NETO establishment and 

regulation of Pom1 localization, Tea4 might also control Cdc42 activation by negatively 

regulating Rga4 localization through Dis2-dependent dephosphorylation. These evidence 

emphasize the role of Tea4 to link microtubules with actin by acting on different targets. To 

sum up, Tea4 seems to have multiple important roles, which altogether results in cell polarity 

establishment and shape maintenance of fission yeast cells. 

Mass spectrometry results 

Mass spectrometry results not only identified Rga4 and Dis2 as Tea4 partners, which I 

investigated thoroughly during my research showing their importance for polarized growth, 

but also other proteins that could potentially play an important role for cell polarization. The 

pseudokinase Ppk2 was found to associate with Tea4 even when the Tea4 SH3 was 

mutated. I showed that Ppk2 plays an important role for bipolar growth but I did not further 

test its role in cell polarity regulation. Ppk2 could play a significant role for cell polarity control 

and it would be intriguing to be further studied. Pseudokinases have most probably evolved 

from active kinases and they lack conserved residues responsible for kinase activity 

(Manning et al., 2002). A recent review in pseudokinases suggests that these proteins may 

act either as scaffold proteins, regulators or partially active kinases and they are involved in 

fundamental processes such as cell proliferation and differentiation (Zhang et al., 2012). 

Much remains to be learnt about the function of pseudokinases and It would be important to 

identify Ppk2 binding partners since it is suggested that a key role of these proteins is their 
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participation in protein complexes (Zhang et al., 2012). Ppk2 could potentially have a 

dominant negative role by binding to polarity proteins and prevent their phosphorylation by 

protein kinases. It would be fascinating to introduce mutations in Ppk2 that restore its 

catalytic activity and observe this phenotype. It would also be interesting to perform a Ppk2 

sequence analysis and to determine whether Ppk2 evolved from any known kinases. In 

addition to Ppk2 investigation, future studies with Tea4-associated proteins identified in the 

mass spectrometry (see mass spectrometry results section in materials and methods) such 

as the molecular chaperone T-complex, the proteasome and the Sjogren syndrome protein 

could unravel key aspects of cell polarity and morphogenesis.  

Tea4 beyond fission yeast 

S. cerevisiae and S. pombe are the unicellular fungi that are considered to be the ideal 

organisms to study polarized growth. However, phylogenetic studies have suggested that 

these two species are separated by about one billion years and in addition, fission yeast has 

been highly diverged in gene homology not only from budding yeast but also from other 

ascomycetes and filamentous fungi (Hedges, 2002; Wood et al., 2002). Interestingly, Tea4 is 

homologous to S. cerevisiae Bud14, which is required for polarized bud growth (Ni and 

Snyder, 2001) and specifically Bud14 seems to regulate microtubule dynamics at the cortex 

by increasing the dynein activity (Knaus et al., 2005). Tea4 seems to share similar properties 

with its budding yeast homologue. Bud14 localizes to sites of polarized cell growth and it also 

has an RVxF motif and an SH3 domain that both contribute to efficient binding with Type-1 

protein phosphatase Glc7 (Knaus et al., 2005), similar to Tea4 binding with Dis2. However, 

Bud14 cortical localization is actin-dependent in contrast to Tea4 microtubule-dependent 

localization supporting the distinct role of microtubules in polarized growth in fission yeast. 

Future studies of whether the function of Tea4 and Bud14 has been conserved through 

evolution could be of major importance. Expressing Bud14 in a tea4Δ fission yeast mutant 

and checking whether the phenotypic defects would be rescued could be of major interest. 

Complete or partial rescue of the tea4∆ phenotype would indicate that the function supported 

by the SH3 domain has been conserved. In addition, a chimeric molecule could be 

constructed in which the SH3 domain of Bud14 replaces the Tea4 SH3 domain and assay 

the properties of this chimera in S. pombe. Even though fission yeast and budding yeast are 

highly divergent organisms, both organisms may share similar mechanisms to control cell 

polarity. The above comparative analysis of Tea4 with its closest homologue in budding 

yeast could indicate that Tea4 functions may be conserved in higher eukaryotes contributing 

to build a conserved model of cell polarity regulation. 
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Feedback loops 

In fission yeast, it is demonstrated that cytoskeleton controls cell polarity and cell shape and 

that cell shape also controls the organization of the cytoskeleton in a feedback loop (Minc et 

al., 2009; Terenna et al., 2008). Rga4 also seems to restrict active Cdc42 at the cell tips 

where through positive feedback loops similar to budding yeast, it could initiate growth. 

Cdc42 may polarize actin and in turn actin cables concentrate more active Cdc42 triggering 

growth. In addition, factors of the polarisome accumulate at this site resulting in proper tip 

growth. We could think that the landmark component Cdc42 maintains and is maintained 

inside this loop and when correct localization of the landmark is disturbed then fission yeast 

admits additional growth patterns such as T-shape cells. My results show that ectopically 

recruited Tea4 initiates growth in the middle of the cell. My current work supports that S. 

pombe morphogenesis is governed by feedback loops between the cell shape and 

cytoskeleton. Ectopic Tea4 provides the initial cue where growth will occur by defining where 

active Cdc42 will be present. This artificial system shows an intracellular association 

between cytoskeletal elements and morphogenesis and points out the importance of 

feedback loops to establish and maintain growth.  

Rho GAPs importance 

There are Rho GAPs in multicellular eukaryotes that share parallel roles with fission yeast 

Rga4. In Caenorhabditis elegans, the GAP protein CHIN-1 is required for Cdc42 cortical 

polarization at the one-cell stage (Kumfer et al., 2010). In addition at the eight-cell C. elegans 

embryo, the GAP PAC-1 is necessary to restrict active Cdc42 for polarized growth (Anderson 

et al., 2008) similar to my hypothesis of Rga4 role to restrict active Cdc42 to initiate ectopic 

growth in fission yeast. These parallels with metazoan systems show the importance of 

GAPs to control the localization of active Cdc42 and therefore growth. In fission yeast, there 

are eight putative Rho GAPs in S. pombe, Rga1-Rga8 (Nakano et al., 2001) but only Rga4 

has been shown to be a GAP for Cdc42 (Das et al., 2007; Tatebe et al., 2008). The exact 

function of the other Rho GAPs is not studied extensively. It would be interesting to further 

investigate the role of the other GAPs and try to identify whether Rga4 associates with one or 

more of them for Cdc42 negative regulation. In addition, the role of Tea4 for the regulation of 

these Rho GAPs could build a more solid model explaining how microtubules and Cdc42 

‘’communicate’’ to establish growth. 
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The role of phospholipids in polarized growth 

My results suggest that there are additional mechanisms such as endocytosis that play a role 

in transport and anchoring of cell polarity proteins linking growth with polarity factors 

presence. But it still remains unclear how exactly that happens. In eukaryotic cells, 

phospholipids are important mediators of many cellular events including polarized growth 

even in the absence of linear cytoskeletal elements (Bendezu and Martin, 2011; Harkins et 

al., 2010; Jenkins and Frohman, 2005). In fission yeast little is known regarding the role of 

phospholipids for cell polarity regulation, Exocyst components Sec6 and Sec8 localize to cell 

tips in a phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent manner 

(Bendezu and Martin, 2011). It is also proposed that Sec3 and Exo70 tether the exocyst 

complex and the vesicle by binding PIP2 at the cell poles (Bendezu et al., 2012). Changing 

fission yeast membrane’s electrostatic status or composition could affect its affinity to bind 

polarity proteins leading to their cell tip dissociation. Non-functional Tea4 could result in 

change either of phospolipid composition or phospholipid electrostatic charge and kinase 

Pom1 and phosphatase Dis2 could possibly regulate membrane composition and charge by 

targeting phospholipid regulators. In agreement with that, the composition of phospholipids 

seems to directly modulate Cdc42 association with the membrane in budding yeast (Das et 

al., 2012a). Monopolar pre-NETO cells might require increased amounts of lipids to bind 

polarity proteins leading to their cell tip association and eventually growth in the non-growing 

end. Taking into account that the total concentration of lipids within the cell decreases 

drastically by 50% directly after cell division (Huang et al., 2012) could give an alternative 

explanation why pre-NETO fission yeast cells are monopolar. Re-establishing the 

phospholipid amount and composition of the membrane at the non-growing end of pre-NETO 

cells could lead to localization of the necessary proteins to initiate bipolar growth. However, 

the exact role of phospholipids for polarized growth is as yet unknown.  

Linking MTs with Cdc42 activation 

In rod-shaped fission yeast cells, microtubules align along the growth axis with well-defined 

tip growth. MTs transport Tea4 to cell tips and are necessary for maintaining cell shape and 

for initiation of a second site of growth during NETO (Martin et al., 2005). Cdc42 positively 

regulates the formin For3 to form actin cables and the exocyst complex to promote 

exocytosis at cell tips (Bendezu and Martin, 2011). Although our understanding of polarized 

growth is expanded, it is not clear yet how microtubule machinery and specifically Tea4 

regulates the growth elements and in particular active Cdc42. My data show that growth is 

based on specific cytoskeletal arrangements and landmark proteins. Actin and microtubules 
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cooperate to establish growth. Tea4 may regulate Cdc42 activation by negative regulation of 

Rga4 in a Dis2-dependent manner. Even if there is diversity in different cell types my 

research indicates that the growth process can be simplified to achieve the same result. In 

conclusion, my research may reveal robustness for cell polarization and morphogenesis by 

bridging a molecular pathway between microtubule-associated factor Tea4 and Cdc42. 
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Materials and methods 

Yeast strains and genetic manipulations 

I used standard methods for fission yeast media and genetic manipulations. Tagged and 

deletion strains were constructed by using a PCR-based approach (Bahler et al., 1998). 

To integrate Tea4RVxF, the Tea4RVxF fragment was released from pSM832 after digestion with 

Sal1. Transformed into YSM328 and selected on 5FOA plate and then sequenced.  

To tag Tea4SH3 with HA, I amplified with WACH PCR the HA cassette from pSM686 using 

osm315 and osm316. Transformed into YSM751 and selected on G418 plate. Sequenced.  

To tag Ppk2 with GFP, I amplified with WACH PCR the GFP cassette from pSM675 with 

osm902 and osm903. Transformed into YSM1182 and selected on G418 plate. Sequenced. 

To tag Tea4RVxF with GFP, I amplified with WACH PCR the GFP cassette from pSM675 with 

osm315 and osm316. Transformed into YSM1182 and selected on G418 plate. Sequenced.   

To tag Tea4RVxF with HA, I amplified with WACH PCR the HA cassette from pSM686 with 

osm315 and osm316. Transformed into YSM1183 and selected on G418 plate. Sequenced. 

To generate the strain ura4-294::nmt81:cdr2-GFP-tea4NRVxF-ura4+, linearized plasmid 

pSM919 with StuI was transformed into YSM486 and selected in EMM-AL plate. Stable 

insertion selected by checking growth of single colonies on EMM-ALT after growth on YE 

plate. 

To generate the strain ura4-294::nmt81:cdr2-GFP-tea4NSH3-ura4+, linearized plasmid 

pSM920 with StuI was transformed into YSM486 and selected in EMM-AL plate. Stable 

insertion selected by checking growth of single colonies on EMM-ALT after growth on YE 

plate. 

To generate the strain ura4-294::nmt81:cdr2-mcherry-Tea4N-ura4+, linearized plasmid 

pSM1024 with AvrII was transformed into YSM486 and selected in EMM-AL plate. Stable 

insertion selected by checking growth of single colonies on EMM-ALT after growth on YE 

plate.  

To generate the strain ura4-294::nmt81:cdr2-mcherry-ura4+, linearized plasmid pSM1023 

with AvrII was transformed into YSM486 and selected in EMM-AL plate. Stable insertion 

selected by checking growth of single colonies on EMM-ALT after growth on YE plate. 
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To generate the strain ura4-294::nmt81:cdr2-CFP-tea4N-ura4+, linearized plasmid pSM927 

with StuI was transformed into YSM486 and selected in EMM-AL plate. Stable insertion 

selected by checking growth of single colonies on EMM-ALT after growth on YE plate.  

To generate the strain ura4-294::nmt81:cdr2-CFP-ura4+, linearized plasmid pSM926 with 

StuI was transformed into YSM486 and selected in EMM-AL plate. Stable insertion selected 

by checking growth of single colonies on EMM-ALT after growth on YE plate. 

To generate the strain ura4-294::nmt81:cdr2-GFP-Dis2-ura4+, linearized plasmid pSM1025 

with StuI was transformed into YSM486 and selected in EMM-AL plate. Stable insertion 

selected by checking growth of single colonies on EMM-ALT after growth on YE plate.  

To generate the strain ura4-294::nmt81:cdr2-mcherry-Dis2-ura4+, linearized plasmid 

pSM1093 with StuI was transformed into YSM486 and selected in EMM-AL plate. Stable 

insertion selected by checking growth of single colonies on EMM-ALT after growth on YE 

plate. 

To generate the strain ura4-294::nmt81:cdr2-mcherry-Dis2H247K-ura4+, linearized plasmid 

pSM1130 with StuI was transformed into YSM486 and selected in EMM-AL plate. Stable 

insertion selected by checking growth of single colonies on EMM-ALT after growth on YE 

plate. 

To generate the strain leu1-32::shk1 promoter:ScGIC2 CRIB:GFP3:leu1+, linearized plasmid 

pSM1129 with NruI was transformed into YSM1180 and selected in EMM-AU plate. Stable 

insertion selected by checking growth of single colonies on EMM-AUT after growth on YE 

plate.  

The Rga4 different fragments were expressed in pSM621 and transformed into YSM1183, 

YSM1406, KK214 and KK363 and selected in EMM-AU plate. 

To generate the mutations of the predicted phosphorylated residues of Tea4 I used the site-

directed mutagenesis kit protocol (Stratagene). pSM361 or pSM758 were used as template 

and amplified with either osm880 and osm881 or osm882 and osm883 or osm884 and 

osm885. Then Tea4 or Tea4WW155-156AA with mutated phosphorylated residues 

(pSM839-pSM844) were digested with SalI and BglII and transformed into YSM328 and 

selected on 5FOA plate (ura4-). Sequenced. 
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I used the following cloning strategy to get Rga4PxxP: PxxP mutated fragment ordered from 

Eurofins with following sequence (SacII site mutated) pEX-A-rga4-PxxP (pSM1109): 

GCATGCgaaGcagtttcttcaaggcaaagctcagtagtaaataataatagcgtgcagcaacctgttgcttatcacgcctttgttc

aatcaccaaccgaaaatggtacgcttGctcaacttGctaaaaatgaaagcgttgttaatcctcctccacttcgccgctcttctactat

gaattacaaatctgtttcgacaacaacatcaccatctaaatatggatatgtgtctggcagaatagctctatctcctatccatttaaggg

gtgctcttcgtgatgtcacaaataaatgtaatttaaaggttcctagaaatcgaaacagtttatctaatcttgacgaatattacgttaacg

gattggaaagcgacgaaactcctacaaaggctagatttGctagatatGctacggtatttaataagttagatgacaaacgacttagt

agcgaaccaaacggcttgaagaaaagattgacgaactcttcaaattatgaggcttccccAcgggccaaaagtttaaatttgtcgc

aagttagtttgcatcaagcatgtgaacctgaatacaatcgaagttctttggttagagcaagtgatgtgtttacttcaaacgtatttgatg

ctacagaggaaagcgcaaatgaactcgccattcgtatttcagagcttcaagctgaggttggaaccttattgttggaagcgacttcgt

tggcttctatcatagagcagcagactGccgtgtcccTcgaG 

1. Rga4 3’UTR between SacI and SacII (amplified from genomic DNA with osm1607 and 

osm1608 was cloned in pSM206 (pSM110). 2. In the resulting vector pSM110 it was cloned 

the fragment: 5’UTR amplified from genomic DNA osm1609 and osm1610 and the start of 

rga4 ORF till the first PxxP, SalI-SphI (mutated PxxP sites)- BamHI sites (pSM1112). 3. In 

parallel to step2 the fragment from the end of rga4 ORF from the last PxxP, SphI-XhoI 

(mutated PxxP sites)- BamHI (amplified from genomic DNA with osm1611 and osm1612) 

was cloned in pSM1109 (pSM1128). 4. Extended synthetized fragment from pSM1128 was 

cloned into SphI- BamHI sites of pSM1112 (pSM1206). 5. pSM1206 digested with SalI- SacII 

and transformed into YSM1404 and selected on G418 plate. In parallel, transformants should 

not grow on EMM-AL plate. Sequenced. 

Generation of plasmids 

pSM919: pRIP82-cdr2-GFP-tea4N 222-225RVXF-RAXA. I inserted point mutations with site 

directed mutagenesis (Stratagene). Primers used osm1045 and osm1046 and plasmid used 

pSM868. Selected in LB-amp plates. Sequenced. 

pSM920: pRIP82-cdr2-GFP-tea4N W155A-W156A. I inserted point mutations with site 

directed mutagenesis (Stratagene). Primers used osm380 and osm381 and plasmid used 

pSM868. Selected in LB-amp plates. Sequenced. 

pSM926: pRIP82-cdr2-CFP. CFP amplified from pSM688 with primers osm204 and osm205. 

Digested with BamHI-Xma1 and cloned into pSM744 digested with the same enzymes. This 

removes the GFP and replaces it with CFP in pSM744. Sequenced with osm204 to check for 

CFP. 
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pSM927: pRIP82-cdr2-CFP-tea4N. Tea4N fragment from pSM866 excised with Xma1 and 

cloned into pSM926 also digested with Xma1 followed by CIP. PCR (osm204-osm598) 

verified the correct orientation of insert. Re-digestion with Xma1 releases the insert. 

pSM1023: pRIP82-cdr2-mCherry. mCherry amplified from pSM684 with primers osm1363 

and osm1364. Digested with BamHI-Xma1 and cloned into pSM926 digested with the same 

enzymes. This removes the CFP and replaces it with mCherry. Sequenced with osm1363-

osm1364 to check for mCherry. 

pSM1024: pRIP82-cdr2-mCherry-Tea4N. TeaN fragment from pSM868 excised with Xma1 

and cloned into pSM1023 also digested with Xma1 followed by CIP. Re-digestion with Xma1 

releases the insert. 

pSM1025: pRIP82-cdr2-GFP-Dis2. Dis2 amplified from cDNA with primers osm1266 and 

osm1267. Digested with Xma1 and cloned into pSM868 also digested with Xma1 followed by 

CIP. This removes the Tea4N and replaces it with Dis2 in pSM868. Sequenced with 

osm1266 and osm1267 to check for Dis2. 

pSM1093: pRIP82-cdr2-mCherry-Dis2. Dis2 fragment from pSM868 excised with Xma1 and 

cloned into pSM1023 also digested with Xma1 followed by CIP. Re-digestion with Xma1 

releases the insert. 

pSM1129: pBluescript SK+ ScGIC2 CRIB:GFP3NMT1 terminator. Leu1 Pombe gene 

amplified from gDNA with primers osm1663 and osm1664, digested with Sal1 and cloned 

into pSM1100 also digested with Sal1 followed by CIP. Re-digestion with Xma1 releases the 

insert. 

pSM1130: pRIP82-cdr2-GFP-Dis2H247K. I inserted point mutations with site directed 

mutagenesis (Stratagene). Primers used osm1613 and osm1614 and plasmid used 

pSM1025. Selected in LB-amp plates. Sequenced. 
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S. pombe strains used in this study 

Number Genotype  Source 

KK12 tea4WW155-156AA pom1-GFP-KanMX   ade6-  leu1-  ura4- This study 

KK13 h-  tea4WW155-156AA  ade6-M216  leu1-32  ura4-D18 This study 

KK15 tea4WW155-156AA tip1-GFP-kanMX    ade6-  leu1-  ura4- This study 

KK17 tea4∆::kanMX tip1-GFP-kanMX    ade6-  leu1-  ura4- This study 

KK18 h+  tea4WW155-156AA HA-TEV-ProteinA   ade6-M216  leu1-

32  ura4-D18 

This study 

KK19 h+  tea4-HA-TEV-ProteinA   ade6-M216  leu1-32  ura4-D18 This study 

KK21 tea4WW155-156AA tea1-GFP kanR   ade6-  leu1-  ura4- This study 

KK24 tea4WW155-156AA dis2-NEGFP-ura4+   ade6-M216  leu1-32  

ura4-D18 

This study 

KK26 tea4WW155-156AA for3-3GFP-ura4+   ade6-M216  leu1-32  

ura4-D18 

This study 

KK27 tea4WW155-156AA bud6-3GFP-kanMX   ade6-M216  leu1-32  

ura4-D18 

This study 

KK29 tea4WW155-156AA-GFP-kanMX mod5::kanMX   ade6-  leu1-

32  ura4-D18 

This study 

KK32 h+  tea4-GFP-kanMX  RFP-atb2   ade6-  leu1-32  ura4-D18 This study 

KK33 tea4WW155-156AA-GFP-kanMX RFP-atb2   ade6-  leu1-32  

ura4-D18 

This study 

KK40 h+  tea4WW155-156AA rga4-GFP-KanMx6   ade6-M216  leu1-32  

ura4-D18 
This study 

KK41 ppk2::ura4+ tea4-GFP-kanMX   ade6-  leu1-32  ura4-D18 This study 

KK44 h-  tea4∆::kanMX rga4-GFP-KanMx6   ade6-M216  leu1-32  ura4- This study 

KK48 tea4WW155-156AA  ura4-294::shk1 promoter:ScGIC2 

CRIB:GFP3:ura4+   ade6-M216  leu1-32 

This study 

KK50 h+  ppk2-GFP-KanMX   ade6-M216  leu1-32  ura4-D18 This study 

KK53 tea4WW155-156AA ppk2-GFP-KanMX  ade6-M216  leu1-32  

ura4-D18 

This study 

KK54 tea4∆::kanMX  ppk2-GFP-KanMX    ade6-M216  leu1-32  

ura4-D18 

This study 

KK55 tea4∆::kanMX ura4-294::shk1 promoter:ScGIC2 

CRIB:GFP3:ura4+    ade6-M216  leu1-32 

This study 
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Number Genotype  Source 

KK57 h+  tea4WW155-156AA SSYS425-428AAAA This study 

KK107 h+  ura4-294::nmt81:cdr2-GFP-tea4N-ura4+ tea4∆::kanMX    

ade6-M216  leu1-32 

This study 

KK109 h-  ura4-294::nmt81:cdr2-GFP-tea4N-ura4+ tea4∆::kanMX  

tea1::ura4+   ade6-M216  leu1-32 

This study 

KK114 h+  ura4-294::nmt81:cdr2-GFP-ura4+ tea4∆::kanMX    ade6-

M216  leu1-32 

This study 

KK116 ura4-294::nmt81:cdr2-GFP-tea4N-ura4+ tea4∆::kanMX 

exo70::nat    ade6-  leu1-32 

This study 

KK118 ura4-294::nmt81:cdr2-GFP-tea4N-ura4+ tea4∆::kanMX 

for3::kanMX6    ade6-  leu1-32 

This study 

KK127 ura4-294::nmt81:cdr2-GFP-ura4+ tea4∆::kanMX for3::kanMX6    

ade6-  leu1-32 

This study 

KK133 h-  tea4∆::kanMX ura4-294::nmt81:cdr2-GFP-tea4N222-

225RVXF-RAXA-ura4+   ade6?  leu1-32 

This study 

KK135 tea4∆::kanMX ura4-294::nmt81:cdr2-GFP-tea4NW155A-

W156A-ura4+  ade6?  leu1-32 

This study 

KK177 h+  rga4-GFP-KanMx6  leu1-32  ura4-D18 This study 

KK188 ura4-294::nmt81:cdr2-GFP-tea4N-ura4+ tea4∆::kanMX  rga4-

RFP-KanMx6 gef1::kanMX   ade6-  leu1-32 

This study 

KK189 ura4-294::nmt81:cdr2-GFP-ura4+ tea4∆::kanMX  rga4-RFP-

KanMx6 gef1::ura4+    ade6-  leu1-32 

This study 

KK190 ura4-294::nmt81:cdr2-CFP-ura4+ tea4∆::kanMX rga4∆::ura4+ 

gef1-GFP-kanMX    ade6-  leu1-32 

This study 

KK191 ura4-294::nmt81:cdr2-CFP-tea4N-ura4+ tea4∆::kanMX 

rga4∆::ura4+ gef1-GFP-kanMX   ade6-  leu1-32 

This study 

KK196 tea4WW155-156AA-HA-TEV-ProteinA rga4-GFP-KanMx6   

ade6-  leu1-32  ura4-D18 

This study 

KK197 tea4-HA-TEV-ProteinA rga4-GFP-KanMx6   ade6-  leu1-32  

ura4-D18 

This study 

KK205 h+  ura4-294::nmt81:cdr2-GFP-Dis2-ura4+ tea4∆::kanMX   

ade6-  leu1-32 

This study 

KK212 h-  ura4-294::nmt81:cdr2-mCherry-Tea4N-ura4+ 

tea4∆::kanMX rga4-GFP-KanMx6   ade6-  leu1-32 

This study 
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Number Genotype  Source 

KK214 h+  ura4-294::nmt81:cdr2-mCherry-Tea4N-ura4+ 

tea4∆::kanMX   ade6-  leu1-32 

This study 

KK215 ura4-294::nmt81:cdr2-mCherry-Tea4N-ura4+ tea4∆::kanMX 

dis2-NEGFP-ura4+  ade6-  leu1-32 

This study 

KK216 ura4-294::nmt81:cdr2-mCherry-Tea4N-ura4+ tea4∆::kanMX 

pom1-GFP-kanMX    ade6-  leu1-32 

This study 

KK217 h+  ura4-294::nmt81:cdr2-mCherry-ura4+ tea4∆::kanMX   

ade6-  leu1-32 

This study 

KK219 ura4-294::nmt81:cdr2-mCherry-Tea4N-ura4+ tea4∆::kanMX 

for3-3GFP-ura4+   ade6-  leu1-32 

This study 

KK220 ura4-294::nmt81:cdr2-mCherry-ura4+ tea4∆::kanMX tea1-

GFP::kanMX    ade6-  leu1- 

This study 

KK228 tea4-HA-TEV-ProteinA pom1∆::ura4+ rga4-GFP-KanMx6   ade6-  This study 

KK232 ura4-294::nmt81:cdr2-mCherry-Tea4N-ura4+ tea4∆::kanMX 

tea1-GFP::kanMX  ade6-  leu1-32 

This study 

KK234 ura4-294::nmt81:cdr2-mCherry-Tea4N-ura4+ tea4∆::kanMX 

scd1-3GFP-ura4+   ade6-  leu1-32 

This study 

KK236 ura4-294::nmt81:cdr2-mCherry-ura4+ tea4∆::kanMX pom1-

GFP-kanMX   ade6-  leu1-32 

This study 

KK239 ura4-294::nmt81:cdr2-GFP-Dis2-ura4+ tea4∆::kanMX 

rga4∆::ura4+  ade6-  leu1-32 

This study 

KK240 h-  [pREP41-Rga4-GFP (leu2+)] ade6-M216 ura4-D18    ade6-

M216  ura4-D18 

This study 

KK242 [pREP41-Rga4(1-685)-GFP (leu2+)] ade6-M216 ura4-D18 This study 

KK244 [pREP41-Rga4(1-470)-GFP (leu2+)] ade6-M216 ura4-D18 This study 

KK248 [pREP41-Rga4(599-685)-GFP (leu2+)] ade6-M216 ura4-D18 This study 

KK249 [pREP41-Rga4(465-685)-GFP (leu2+)] ade6-M216 ura4-D18 This study 

KK252 [pREP41-Rga4(599-757)-GFP (leu2+)] ade6-M216 ura4-D18 This study 

KK266 [pREP41-Rga4-GFP (leu2+)]  ura4-294::nmt81:cdr2-mCherry-

Tea4N-ura4+ tea4∆::kanMX ade6- 

This study 

KK267 [pREP41-Rga4(1-623)-GFP (leu2+)]  ura4-294::nmt81:cdr2-

mCherry-Tea4N-ura4+ tea4∆::kanMX ade6- 

This study 

KK268 [pREP41-Rga4(1-470)-GFP (leu2+)]  ura4-294::nmt81:cdr2-

mCherry-Tea4N-ura4+ tea4∆::kanMX ade6- 

This study 
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Number Genotype  Source 

KK270 [pREP41-Rga4(599-685)-GFP (leu2+)]  ura4-294::nmt81:cdr2-

mCherry-Tea4N-ura4+ tea4∆::kanMX ade6- 

This study 

KK271 [pREP41-Rga4(465-685)-GFP (leu2+)]  ura4-294::nmt81:cdr2-

mCherry-Tea4N-ura4+ tea4∆::kanMX ade6- 

This study 

KK272 [pREP41-Rga4(599-757)-GFP (leu2+)]  ura4-294::nmt81:cdr2-

mCherry-Tea4N-ura4+ tea4∆::kanMX ade6- 

This study 

KK283 ura4-294::nmt81:cdr2-mCherry-ura4+ tea4∆::kanMX scd1-

3GFP-ura4+ ade6-  leu1-32 

This study 

KK290 h-  ura4-294::nmt81:cdr2-mCherry-ura4+ tea4∆::kanMX gef1-

3GFP-kanMX   ade6-  leu1-32 

This study 

KK291 h+  ura4-294::nmt81:cdr2-mCherry-tea4N-ura4+ tea4∆::kanMX 

gef1-3GFP-kanMX  ade6-  leu1-32 

This study 

KK293 ura4-294::nmt81:cdr2-GFP-Dis2-ura4+ tea4∆::kanMX pom1-

Tomato-NatMX ade6- leu1-32 

This study 

KK294 ura4-294::nmt81:cdr2-mCherry-tea4N-ura4+ tea4∆::kanMX 

exo70-GFP-ura4+ ade6-  leu1-32 

This study 

KK295 ura4-294::nmt81:cdr2-mCherry-ura4+ tea4∆::kanMX exo70-

GFP-ura4+ ade6-  leu1-32 

This study 

KK299 ura4-294::nmt81:cdr2-mCherry-Tea4N-ura4+ tea4∆::kanMX 

pSV40-atb2GFP-leu+ ade6- 

This study 

KK302 ura4-294::nmt81:cdr2-GFP-tea4N-ura4+ tea4∆::kanMX 

sds21::leu2  ade6-  leu1-32 

This study 

KK330 ura4-294::nmt81:cdr2-GFP-Dis2-ura4+ tea4∆::kanMX 

pom1∆::ura4+   ade6-  leu1+ 

This study 

KK346 ura4-294::nmt81:cdr2-mCherry-Tea4N-ura4+ leu1-

32::nmt41:cytoRga4-GFP-leu1+ tea4∆::kanMX     ade6? 

This study 

KK347 ura4-294::nmt81:cdr2-mCherry-ura4+ leu1-

32::nmt41:cytoRga4-GFP-leu1+ tea4∆::kanMX   ade6? 

This study 

KK348 h-  ura4-294::nmt81:cdr2-mCherry-ura4+ leu1-32::nmt41:blt1-

cytoRga4-GFP-leu1+ tea4∆::kanMX     ade6? 

This study 

KK349 h-  ura4-294::nmt81:cdr2-mCherry-Tea4N-ura4+ leu1-

32::nmt41:blt1-cytoRga4-GFP-leu1+ tea4∆::kanMX   ade6? 

This study 

KK350 tea4∆::kanMX pom1Psites to A (1,2,3,4,5,8)-GFP-KanMx6   

ade6-M216  leu1-32  ura4-D18 

This study 
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Number Genotype  Source 

KK358 tea4WW155-156AA pom1Psites to A (1,2,3,4,5,8)-GFP-

KanMx6   ade6-M216  leu1-32  ura4-D18 

This study 

KK370 ura4-294::nmt81:cdr2-mCherry-Dis2 tea4∆::kanMX       ade6?  

[pREP41-Rga4(465-685)-GFP (leu2+)] 

This study 

KK371 ura4-294::nmt81:cdr2-mCherry-Dis2 tea4∆::kanMX         ade6?  

[pREP41-Rga4-GFP (leu2+)] 

This study 

KK377 tea4 222-225RVXF-RAXA rga4-GFP-KanMx6  leu1-32  ura4-

D18     ade6?  leu1-32  ura4-D18 

This study 

KK381 ura4-294::nmt81:cdr2-GFP-tea4N-ura4+ tea4∆::kanMX 

dis2::hphMX   ade6-M216  leu1-32 

This study 

KK390 ura4-294::nmt81:cdr2-GFP-Dis2H247K tea4∆::kanMX rga4-

RFP-KanMx6     ade6?  leu1-32 

This study 

KK391 ura4-294::nmt81:cdr2-GFP-Dis2-ura4+ tea4∆::kanMX rga4-

RFP-KanMx6   ade6?  leu1-32 

This study 

KK395 h-  ura4-294::nmt81:cdr2-mCherry-ura4+ tea4∆::kanMX leu1-

32::shk1 promoter:ScGIC2 CRIB:GFP3:leu1+  ade6- 

This study 

KK396 h-  ura4-294::nmt81:cdr2-mCherry-Tea4N-ura4+ 

tea4∆::kanMX leu1-32::shk1 promoter:ScGIC2 

CRIB:GFP3:leu1+    ade6- 

This study 

KK399 h-  Rga4-PxxP-GFP     ade6?  leu1-32  ura4-D18 This study 

KK400 ura4-294::nmt81:cdr2-GFP-Dis2H247K tea4∆::kanMX pom1-

Tomato-NatMX    ade6?  leu1-32 

This study 

KK403 h- ura4-294::nmt81:cdr2-mCherry-Tea4N-ura4+ tea4∆::kanMX 

Rga4-PxxP-GFP ade6? leu1-32 

This study 

MBG194 h+  pom1Psites to A (1,2,3,4,5,8)-GFP  ade6-M216  leu1-32  

ura4-D18 

Lab stock 

YSM119 h-  pom1-GFP-kanMX  ade6+  leu1+  ura4+ (Bahler and 

Pringle, 1998) 

YSM120 h+  tea4-GFP-kanMX  ade6-  leu1-32  ura4-D18 Lab stock 

YSM138 tea4-GFP::kanMX tea2::HIS3 Lab stock 

YSM144 h+  tea4∆::kanMX  ade6-M216  leu1-32  ura4-D18 Lab stock 

YSM163 h-  tea4∆::kanMX tea1-GFP::kanMX  ade6-  leu1-  ura4- Lab stock 

YSM165 h-  tea4∆::kanMX pom1-GFP-kanMX  ura4- Lab stock 

YSM200 h-  tea4∆::kanMX bud6-GFP::kanMX  leu1-  ura4- Lab stock 
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Number Genotype  Source 

YSM239 h+  tea4∆::kanMX kanMX::nmt81 GFP-mod5  ade6-  leu1-32  

ura4-D18 

Lab stock 

YSM243 mod5::kanMX tea4-GFP::kanMX  ade6-  leu1-32  ura4-D18 Lab stock 

YSM423 h-  for3-3GFP-ura4+  ade6-M216  leu1-32  ura4-D18 Lab stock 

YSM441 h-  for3-3GFP-ura4+ tea4∆::kanMX  ade6-M216  leu1-32  

ura4-D18 

Lab stock 

YSM733 h+  bud6-3GFP-kanMX  ade6-M216  leu1-32  ura4-D18 Lab stock 

YSM1035 h-  tea1-GFP kanR  ade6-  leu1-  ura4- Lab stock 

YSM1078 h-  tip1-GFP-kanMX  ade6-  leu1-  ura4- (Browning et 

al., 2003) 

YSM1182 h+  ade6-M216  leu1-32  ura4-D18 Lab stock 

YSM1183 h-  ade6-M216  leu1-32  ura4-D18 Lab stock 

YSM1184 h-  dis2-NEGFP-ura4+  leu1-32  ura4-D18 (Alvarez-

Tabares et al., 

2007) 

YSM1408 h-  rga4-GFP-KanMx6  leu1-32  ura4-D18 (Tatebe et al., 

2008) 

YSM1798 h-  ura4-294::nmt81:cdr2-GFP-tea4N-ura4+ pom1∆::ura4+ 

tea4∆::kanMX  leu1-32 

Lab stock 
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Microscopy and FRAP Analysis 

Microscopy was performed at room temperature on live cells by using either an inverted 

spinning disk microscope consisting of a Leica DMI4000B inverted microscope equipped with 

an HCX PL APO 100×/1.46 NA oil objective and a PerkinElmer Ultraview confocal system 

(including a Yokagawa CSU22 real-time confocal scanning head, an argon/krypton laser, 

and a cooled 14-bit frame transfer EMCCD C9100-50 camera) or a wide-field Leica AF6000 

system consisting of a DM6000B upright microscope fitted with a 40× or 63×/0.75 NA 

objective, a Leica DFC350x CCD camera, a Leica EL6000 light source and Chrome filter 

sets. Images were also acquired on DeltaVision system composed of a customized Olympus 

IX-71 inverted microscope stand fitted with a Plan Apo 60× or 100×/1.42 NA oil objective, a 

CoolSNAP HQ2 camera, and an Insight SSI 7 color combined unit illuminator. Images were 

acquired with softWoRx software. 

Tea4-GFP movements were analyzed with kymographs, which were constructed with the 

‘’Make Montage’’ tool of the ImageJ software. Tea4-GFP movies were a single medial 

section taken with inverted spinning disk microscope. Measurements of Tea4 dynamics were 

performed by recording the x and y positions of moving Tea4 over at least four consecutive 

time points. The rate of movement was calculated as the sum of the distances between the 

points divided by time.  

For analysis of the FRAP experiments, the mean fluorescence intensities were measured 

over time in the photo-bleached region, the background near to the photobleached region 

and another nonbleached cell. For each time point, the intensities of the bleached region and 

of the unrelated cell were adjusted by subtracting background signal. To correct for loss of 

signal due to imaging, the adjusted bleached region intensity was then divided by the 

adjusted intensity of the other cell. Time constants were estimated by the intersection of the 

curve with a line at half maximal recovery. All measurements and calculations were 

performed in ImageJ and MS_Excel, respectively. All images are two-dimensional maximum 

intensity projections of a single medial section. Figures were prepared with ImageJ and 

Adobe Illustrator CS3.  

In all experiments expressing either the Cdr2-Tea4N or Cdr2-Dis2 fusion cells were growing 

20 hours in the presence of the promoter repressor thiamine in EMM medium supplied with 

the necessary supplements. Then thiamine was washed away allowing the fusion to be 

expressed to steady state levels for approximately 28-32 hours. For time-lapse videos after 

the fusion was expressed to steady state levels for approximately 20-24 hours in EMM 
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medium, then I followed cell growth over time using microfluidic chambers supplying the 

chambers with the same medium overnight (Classic). 

For measurement of fluorescence intensity along the cell cortex, a 5 pixel-wide line was 

drawn by hand at the cell periphery in a medial co focal section and fluorescence intensity 

obtained using the plot profile tool of ImageJ. The fluorescence intensity of a field without any 

cells was measured using the same line, preferably next to the cell of interest, to subtract the 

background signal. All measurements and calculations were performed in ImageJ and 

MS_Excel respectively. All images are two-dimensional maximum intensity projections of a 

single medial section. Figures were prepared with ImageJ and Adobe Illustrator CS3.  

Methyl benzimidazole carbonate (MBC, Sigma) was used at a final concentration of 25 µg/ml 

from a stock of 2.5 mg/ml in DMSO to disrupt microtubules. Latrunculin A (LatA; Phillip 

Crews, University of California, Santa Cruz) was used from a stock of 20mM in DMSO at a 

final concentration of 200µM to disassemble all actin structures. Both MBC and LatA 

treatment were performed at 30°C for 15 minutes unless otherwise indicated. 

Actin staining was performed as described (Pelham and Chang, 2001) using AlexaFluor 488-

phalloidin (Invitrogen, Carlsbad, CA) with a fixation time of 60 minutes. 

All length measurements were performed on Calcofluor-stained satiated cells with the 

“Measure” tool in ImageJ 1.41 and then analyzed with Microsoft Excel. 

TAP purification and immunoprecipitation 

For TAP purification of Tea4-TAP and Tea4SH3-TAP, extracts from yeast grown in YE5S in 1st 

TAP and in EMM medium containing the required supplements in 2nd TAP were prepared in 

CXS buffer (50mM Hepes pH7.0, 150mM KCl, 1mM MgCl2, 2mM EDTA and protease 

inhibitor cocktail) by grinding in liquid nitrogen with mortar and pestle as described 

(Feierbach et al., 2004). During thawing PMSF and protease inhibitor cocktail were added to 

a final concentration of 1% and 0.1% respectively. After thawing samples were spinned in a 

table centrifuge at 13krpm for 5 minutes at 40C. The supernatant was collected and Tris 

pH8.0, NaCl and NP-40 were added to a final concentration of 10mM, 150mM and 0.1% 

respectively and high-speed soluble extracts were prepared by centrifugation at 45krpm for 

30min in the S100-3 rotor (Beckman). In parallel, 600µl of dynabeads Protein G (Invitrogen) 

were incubated with 200µg rabbit IgG (Sigma) for 1hour at room temperature with rotation. 

To remove non-covalently-coupled IgG, the beads were washed once with 1ml cold 1x PBS 

and twice with 1ml cold IPP150 (10mM Tris pH8.0, 150mM NaCl, 0.5mM EDTA, 0.1% NP-

40). Soluble extracts (corresponding to about 3l of log-phase culture) were added to the 
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beads and incubated for 2h at 4°C. Beads were washed 7x with 1ml cold IPP150 buffer, 1x 

in 1ml cold TEV buffer (10mM Tris pH8.0, 150mM NaCl, 0.5mM EDTA, 0.01% NP-40) and 

incubated for 1.5h at room temperature in 500µl TEV buffer + 1mM DTT and 20µl TEV 

protease (Invitrogen). 20µl of the supernatant was set apart for analysis by SDS-PAGE and 

silver staining with a SilverSNAP Stain Kit II (Pierce) and the rest was precipitated with TCA 

and dried. Then, the samples were sent to the Protein Analysis Facility (PAF) of University of 

Lausanne. 

For Rga4-myc co-immunoprecipitation with Rga4-GFP different fragments, 200µl soluble 

extract (corresponding to about 75ml of log-phase culture) was added to 30µl dynabeads 

Protein G (Invitrogen) pre-bound to 2µg myc antibody and incubated for 2h at 4°C. After 

incubation, the beads were washed 7x with 1ml cold IPP150 buffer, resuspended in 50µl 

sample buffer, boiled and analyzed by SDS-PAGE and Western blotting. Antibodies used on 

Western blots were: mouse monoclonal anti-myc (1:3000) and anti-GFP (1:2000) (Roche).  

For Rga4-GFP co-immunoprecipitation with Tea4-HA-ProteinA different fragments, 400µl 

soluble extract (corresponding to about 150ml of log-phase culture) was added to 50µl 

dynabeads Protein G (Invitrogen) pre-bound to 3µg rabbit IgG (Sigma) and incubated for 2h 

at 4°C. After incubation, the beads were washed 7x with 1ml cold IPP150 buffer, 1x in 1ml 

cold TEV buffer (10mM Tris pH8.0, 150mM NaCl, 0.5mM EDTA, 0.01% NP-40, 0.01% 

Tween20) and incubated for 45 minutes at room temperature with regular mixing (every 10 

minutes) in 28µl TEV buffer + 1mM DTT and 1.7µl TEV protease (Invitrogen). Supernatant 

(30µl) was removed and 28µl TEV buffer + 1mM DTT and 1.7µl TEV protease was further 

added and incubated for 45 minutes at room temperature with regular mixing (every 10 

minutes). Then 30µl of 3 times sample buffer was added to the 60µl (30ml + 30µl) of the 

supernatant, boiled and analyzed by SDS-PAGE and Western blotting. Antibodies used on 

Western blots were: mouse monoclonal anti-GFP (1:2000) (Roche) and anti-HA.11 (1:1000) 

(Covance). 
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Mass spectrometry results 

 

Tea4-
TAP 
YE5S 

Tea4-
TAP 
EMM 

Tea4SH3
-TAP 
YE5S 

Tea4SH3
-TAP  
EMM 

     
Tea4   
YE5S 

     
Tea4   
EMM 

Accession numbers       

TEA1_SCHPO 179 809 536 607 0 0 

TEA4_SCHPO 82 210 213 179 0 0 

HSP72_SCHPO 84 163 175 98 25 18 

TEA3_SCHPO 19 210 50 252 0 0 

G3P1_SCHPO 53 126 131 77 39 13 

MU131_SCHPO 0 0 0 0 0 36 

EF1A2_SCHPO 38 111 82 60 28 30 

K6PF_SCHPO 26 92 57 68 15 1 

ACT_SCHPO 17 70 67 32 18 11 

HSP75_SCHPO 10 31 28 22 15 5 

O74819_SCHPO/ 

Q9HDZ4_SCHPO,UBIQ_SCHPO 

0 24 0 24 0 0 

HSP7M_SCHPO 14 14 19 11 12 11 

EF2_SCHPO 5 16 27 8 12 0 

ILVB_SCHPO 10 18 27 9 3 0 

ADH_SCHPO 11 5 28 4 12 0 

PYR1_SCHPO 0 24 8 11 1 1 

RAD24_SCHPO 6 10 18 11 4 4 

ILV5_SCHPO 8 14 12 9 12 3 

PGK_SCHPO 0 23 3 9 4 11 

HSP60_SCHPO 4 5 12 4 9 7 

PPK2_SCHPO 0 25 0 35 0 0 
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Tea4-
TAP 
YE5S 

Tea4-
TAP 
EMM 

Tea4SH3
-TAP 
YE5S 

Tea4SH3
-TAP  
EMM 

     
Tea4   
YE5S 

     
Tea4   
EMM 

Accession numbers       

RAD25_SCHPO 6 22 11 14 3 0 

ENO11_SCHPO 0 26 11 11 4 2 

METK_SCHPO 0 22 1 14 3 7 

ALF_SCHPO 3 22 7 7 10 6 

DED1_SCHPO 1 15 2 19 1 0 

PRS10_SCHPO 9 7 11 7 3 0 

PRS8_SCHPO 2 8 13 7 0 1 

GRP78_SCHPO 7 9 9 6 2 0 

PRS6B_SCHPO 0 8 9 10 0 0 

TCPQ_SCHPO 4 8 8 5 0 0 

RPN1_SCHPO 1 12 13 5 0 0 

SEC7C_SCHPO 0 0 0 0 0 3 

LEU3_SCHPO 3 7 13 6 3 0 

CSK2A_SCHPO 4 13 4 3 3 0 

RPN2_SCHPO 2 6 10 1 4 0 

KPYK_SCHPO 0 12 4 2 4 4 

MAS5_SCHPO 0 7 12 3 0 0 

ATPB_SCHPO 0 22 3 6 0 0 

TCPZ_SCHPO 0 8 12 0 0 0 

CDC48_SCHPO 0 3 3 1 3 1 

IDH1_SCHPO 1 9 2 6 0 0 

FBRL_SCHPO 3 0 1 0 9 0 

ODPB_SCHPO 2 12 3 4 0 3 
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Tea4-
TAP 
YE5S 

Tea4-
TAP 
EMM 

Tea4SH3
-TAP 
YE5S 

Tea4SH3
-TAP  
EMM 

     
Tea4   
YE5S 

     
Tea4   
EMM 

Accession numbers       

ADH4_SCHPO 0 18 0 3 0 1 

HMT2_SCHPO 0 8 0 12 0 0 

RS3_SCHPO 3 5 5 4 3 0 

P78913_SCHPO,PDC2_SCHPO 0 9 5 2 3 2 

TCPA_SCHPO 0 5 3 1 0 0 

PP12_SCHPO 7 9 0 0 0 0 

GLYD_SCHPO 0 11 0 4 1 2 

RL4A_SCHPO 0 7 6 4 2 0 

THI3_SCHPO 0 13 0 2 0 4 

HSP90_SCHPO 3 3 5 2 3 0 

O59716_SCHPO 0 8 0 6 0 0 

PP11_SCHPO 6 12 0 0 0 0 

PRS4_SCHPO 1 4 7 0 0 0 

RGA4_SCHPO 0 0 0 11 0 0 

RLA0_SCHPO 4 5 3 3 5 0 

RUVB1_SCHPO 0 3 3 0 2 0 

THI2_SCHPO 0 12 0 5 0 0 

METE_SCHPO 0 10 0 2 0 0 

YC35_SCHPO 0 0 0 0 0 4 

PMA1_SCHPO 3 0 2 0 5 0 

MPG1_SCHPO 0 2 2 5 3 0 

GBLP_SCHPO 4 5 0 0 2 0 

PRS6A_SCHPO 0 5 6 0 0 0 
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Tea4-
TAP 
YE5S 

Tea4-
TAP 
EMM 

Tea4SH3
-TAP 
YE5S 

Tea4SH3
-TAP  
EMM 

     
Tea4   
YE5S 

     
Tea4   
EMM 

Accession numbers       

PRS7_SCHPO 0 5 2 2 0 0 

O43060_SCHPO 1 0 1 0 3 0 

HOSM_SCHPO 0 6 1 4 0 0 

RPA2_SCHPO 0 0 0 0 0 1 

RPN8_SCHPO 0 4 3 0 0 0 

CARA_SCHPO 0 0 5 3 0 0 

TBB_SCHPO 0 4 2 0 0 0 

PDX1_SCHPO 0 2 0 0 3 0 

CASP_SCHPO 0 0 0 0 0 2 

ARGD_SCHPO 0 0 0 0 0 1 

TCPG_SCHPO 0 3 3 0 0 0 

TBA1_SCHPO 0 6 0 3 0 0 

EF3_SCHPO 0 0 5 0 4 0 

COPA_SCHPO 0 1 0 0 0 0 

GLT1_SCHPO 0 3 0 0 0 0 

TIM44_SCHPO 0 0 4 0 0 0 

SYMC_SCHPO 0 5 2 0 0 0 

Q96WV0_SCHPO 3 0 5 0 0 0 

Q6LA55_SCHPO 0 0 0 0 0 2 

IF2A_SCHPO 0 2 0 0 2 0 

RUVB2_SCHPO 0 3 4 0 0 0 

ADT_SCHPO,P78754_SCHPO 0 0 3 0 0 0 

EIF3I_SCHPO 0 2 0 0 4 0 
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Tea4-
TAP 
YE5S 

Tea4-
TAP 
EMM 

Tea4SH3
-TAP 
YE5S 

Tea4SH3
-TAP  
EMM 

     
Tea4   
YE5S 

     
Tea4   
EMM 

Accession numbers       

YDR1_SCHPO 0 0 0 0 0 2 

UBLH2_SCHPO 1 0 0 0 0 0 

IPYR_SCHPO 0 4 0 0 1 0 

LYS12_SCHPO 3 0 3 0 0 0 

TCPD_SCHPO 0 2 3 0 0 0 

SYG_SCHPO 1 0 0 0 3 0 

RS0A_SCHPO 0 3 0 0 1 0 

ARP2_SCHPO 0 0 2 0 0 0 

ARG56_SCHPO 0 0 3 0 0 0 

RPN9_SCHPO 0 3 0 0 0 0 

TAL1_SCHPO 0 2 0 0 1 0 

EIF3G_SCHPO 0 0 0 0 1 0 

YI7E_SCHPO 2 0 0 0 0 0 

G3P2_SCHPO 0 4 0 0 0 0 

RPN5_SCHPO 1 0 1 0 0 0 

COPB_SCHPO 0 2 0 0 0 0 

THI4_SCHPO 0 3 0 0 0 0 

MDJ1_SCHPO 0 0 1 0 0 0 

Q1L854_SCHPO,YBI8_SCHPO 0 0 0 0 2 0 

SAHH_SCHPO 0 4 0 0 0 0 

YF19_SCHPO 0 2 0 0 0 0 

RS3B_SCHPO 0 0 2 0 0 0 

O74919_SCHPO 0 0 1 0 2 0 
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Tea4-
TAP 
YE5S 

Tea4-
TAP 
EMM 

Tea4SH3
-TAP 
YE5S 

Tea4SH3
-TAP  
EMM 

     
Tea4   
YE5S 

     
Tea4   
EMM 

Accession numbers       

EIF3H_SCHPO 0 0 0 2 0 0 

MDHM_SCHPO 0 0 1 0 0 0 

PYRG_SCHPO 0 0 2 0 0 0 

SLBR2_SCHPO 0 1 0 0 0 0 

RS2_SCHPO 0 0 2 0 0 0 

RL3A_SCHPO,RL3B_SCHPO 0 0 2 0 0 0 

Q9Y7Y6_SCHPO 0 2 0 0 0 0 

ACAC_SCHPO 0 2 0 0 0 0 

ATPA_SCHPO 0 2 0 0 0 0 

EFTU_SCHPO 0 1 0 0 0 0 

RPN11_SCHPO 0 1 0 0 0 0 

COPE_SCHPO 0 3 0 0 0 0 

RPB2_SCHPO 0 0 0 0 2 0 

BCA1_SCHPO 0 0 0 0 2 0 

RL13_SCHPO 0 0 2 0 0 0 

GPD2_SCHPO 0 0 0 0 2 0 

LSB5_SCHPO 0 0 0 2 0 0 

RL4B_SCHPO 0 0 2 0 0 0 

SLT1_SCHPO 0 2 0 0 0 0 

PEX7_SCHPO 0 2 0 0 0 0 

ARPC2_SCHPO 0 0 2 0 0 0 

AROG_SCHPO 0 0 0 0 1 0 

Q9USL6_SCHPO 0 1 0 0 0 0 
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Predicted phosphorylated sites  

S residue with top score 

S residue possibly also phosphorylated 

In green: only detected in Tea4SH3 mutant  

 

Sample: Tea4-TAP phosphopeptides detected 

Tea4 

 
 

 

 

 

 

 

 

Matched peptides shown in Bold Red  
1   MEIMESHFDP TQQNDSTIIE SRYSPEEYLE QSFEIQRIIS 
GENSEPQTVA  
51  SQEISDSQEE DTTLTSSQFE DCGTEYNEVV EDDEFRSEDE 
DDFMDEEEEY  
101 ALYEAELSSS PSIHEEVIDC NFVHAIRGFE ATVEGQVDAT 
KGDMMILLDD  
151 SNSYWWLVKM CKNLAIGYLP AEYIETPSER LARLNKYKNS 
ETSNSQQSVT  
201 LPPLDIVEKT LEAPSPNFRI KRVTFTCSSN SSDDEMDSEN 
DYEAMVNRTV  
251 AENGLEIEFS DSSDSSLSAE YRSESEDHVT DSPAYVDLTE 
LEGGFNQFNS  
301 TSFQSTSPLG LEIVETEING SSTTADSKNS HSPYSKFSSA 
YPDAENSNIS  
351 KINISIAGNK ELYGNATQSD PSLYSTWIAN KHKTASSATV 
DSPLRRSLSV  
401 DAMQSNASFS SYSSTSNTDK SLRPSSYSAV SESSNFTHDV 
SRDNKEISLN  
451 APKSIIVSQS DSFDTSNVTQ DAPNDVEKEP ISGQMPNNLS 
VQSLKQLEVY  
501 PIRHSVSIEM PSEKLLSPRL YSSSTPSSPT KGFQKDDEED 
SENRKQADKV  
551 ELSPSSLLRQ MSLPVDSSSQ SDAQCTTSSV YITAERKAFS 
QSSIDLSTLS  
601 NHHVNNEINR RSFAGGFTSL ADELSEMREL LHESPAPLEC 
NEEMVIPTPE  
651 LDASSAIPSS SISHDEDLLP RKNTEESTSS SSFSSLITSP 
ASLQYDENPF  
701 KQSVVAELNN NSSSVPFVDS AHASDIHAYD NDHVSTKNKE 
FNRRLREFIL  
751 DPDSLSGLYW SVKSAGVRAS RRVSRNIEGE SVSSDLDDIF 
ANVLKGLSDE  
801 MASLLNTNR  
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Sample: Tea4-TAP phosphopeptides detected 

Tea4 

 
 

Sample: Tea4SH3-TAP phosphopeptides detected 

Tea4 

 
 
 
 
 
 

 23 - 37      999.4304  1996.8462  1996.8455  0     0  R.YSPEEYLEQSFEIQR.I  
Phospho (ST) (Ions score 62) 
210 - 219     606.2766  1210.5387  1210.5383  0     0  K.TLEAPSPNFR.I  
Phospho (ST) (Ions score 25) 
520 - 531     667.7983  1333.5820  1333.5803  1     0  R.LYSSSTPSSPTK.G  
Phospho (ST) (Ions score 25) 
520 - 531     667.7983  1333.5820  1333.5803  1     0  R.LYSSSTPSSPTK.G  
Phospho (ST) (Ions score 28) 
520 - 531     667.7986  1333.5827  1333.5803  2     0  R.LYSSSTPSSPTK.G  
Phospho (ST) (Ions score 22) 
546 - 559     811.9110  1621.8074  1621.8076 -0     1  K.QADKVELSPSSLLR.Q  
Phospho (ST) (Ions score 21) 
546 - 559     811.9121  1621.8096  1621.8076  1     1  K.QADKVELSPSSLLR.Q  
Phospho (ST) (Ions score 29) 
629 - 671    1202.0611  4804.2153  4804.2136  0     0  
R.ELLHESPAPLECNEEMVIPTPELDASSAIPSSSISHDEDLLPR.K  Phospho (ST) (score 36) 
629 - 671    1202.0611  4804.2153  4804.2136  0     0  
R.ELLHESPAPLECNEEMVIPTPELDASSAIPSSSISHDEDLLPR.K  Phospho (ST) (score 22) 

TEA4_SCHPO 
421 - 442     831.7061  2492.0963  2492.0969     -0     0  
K.SLRPSSYSAVSESSNFTHDVSR.D  Phospho (ST) (Ions score 105) 
421 - 442     831.7069  2492.0989  2492.0969      1     0  
K.SLRPSSYSAVSESSNFTHDVSR.D  Phospho (ST) (Ions score 83) 
421 - 442     832.0403  2493.0992  2493.0809      7     0  
K.SLRPSSYSAVSESSNFTHDVSR.D  Deamidated (NQ); Phospho (ST) (Ions 48) 
520 - 531     667.7965  1333.5785  1333.5803     -1     0  R.LYSSSTPSSPTK.G  
Phospho (ST) (Ions score 27) 
520 - 531     667.7984  1333.5823  1333.5803      2     0  R.LYSSSTPSSPTK.G  
Phospho (ST) (Ions score 19) 
520 - 531     667.7987  1333.5828  1333.5803      2     0  R.LYSSSTPSSPTK.G  
Phospho (ST) (Ions score 17) 
546 - 559     811.9119  1621.8092  1621.8076      1     1  K.QADKVELSPSSLLR.Q  
Phospho (ST) (Ions score 15) 
546 - 559     811.9125  1621.8104  1621.8076      2     1  K.QADKVELSPSSLLR.Q  
Phospho (ST) (Ions score 24) 
629 - 671    1202.0614  4804.2165  4804.2136      1     0  
R.ELLHESPAPLECNEEMVIPTPELDASSAIPSSSISHDEDLLPR.K  Phospho (ST) (Ions 14) 
629 - 671    1202.0614  4804.2165  4804.2136      1     0  
R.ELLHESPAPLECNEEMVIPTPELDASSAIPSSSISHDEDLLPR.K  Phospho (ST) (Ions 28) 
629 - 671    1202.0622  4804.2197  4804.2136      1     0  
R.ELLHESPAPLECNEEMVIPTPELDASSAIPSSSISHDEDLLPR.K  Phospho (ST) (Ions 42) 
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Sample: Tea4-TAP phosphopeptides detected 

Tea1 

 

   461 - 473     716.8454  1431.6762  1431.6759          0     0  R.ASNDLPSPVVPTR.S  Phospho 
(ST) (Ions score 39) 
   461 - 473     716.8455  1431.6765  1431.6759          0     0  R.ASNDLPSPVVPTR.S  Phospho 
(ST) (Ions score 40) 
   495 - 514    1143.9752  2285.9358  2285.9397         -2     0  R.NTNDDDQSSLNSQQLSNQAK.A  
Phospho (ST) (Ions score 70) 
   495 - 514    1143.9772  2285.9398  2285.9397          0     0  R.NTNDDDQSSLNSQQLSNQAK.A  
Phospho (ST) (Ions score 87) 
   495 - 514    1143.9778  2285.9410  2285.9397          1     0  R.NTNDDDQSSLNSQQLSNQAK.A  
Phospho (ST) (Ions score 108) 
   495 - 514     762.9878  2285.9415  2285.9397          1     0  R.NTNDDDQSSLNSQQLSNQAK.A  
Phospho (ST) (Ions score 50) 
   495 - 514     762.9878  2285.9416  2285.9397          1     0  R.NTNDDDQSSLNSQQLSNQAK.A  
Phospho (ST) (Ions score 44) 
   495 - 514    1143.9785  2285.9424  2285.9397          1     0  R.NTNDDDQSSLNSQQLSNQAK.A  
Phospho (ST) (Ions score 110) 
   495 - 514    1143.9789  2285.9432  2285.9397          2     0  R.NTNDDDQSSLNSQQLSNQAK.A  
Phospho (ST) (Ions score 72) 
   495 - 514    1143.9790  2285.9434  2285.9397          2     0  R.NTNDDDQSSLNSQQLSNQAK.A  
Phospho (ST) (Ions score 86) 
   515 - 552     971.6843  3882.7081  3882.7116         -1     0  
K.AQGEVSPTLSFVPSSHSMEQGNGSVASANNAQSEAATR.S  Phospho (ST) (score 56) 
   515 - 552     971.6845  3882.7090  3882.7116         -1     0  
K.AQGEVSPTLSFVPSSHSMEQGNGSVASANNAQSEAATR.S  Phospho (ST) (score 64) 
   515 - 552    1295.2438  3882.7096  3882.7116         -1     0  
K.AQGEVSPTLSFVPSSHSMEQGNGSVASANNAQSEAATR.S  Phospho (ST) (score 98) 
   515 - 552    1295.2440  3882.7102  3882.7116         -0     0  
K.AQGEVSPTLSFVPSSHSMEQGNGSVASANNAQSEAATR.S  Phospho (ST) (score 105) 
   515 - 552    1295.2444  3882.7114  3882.7116         -0     0  
K.AQGEVSPTLSFVPSSHSMEQGNGSVASANNAQSEAATR.S  Phospho (ST) (score 131) 
   515 - 552    1300.9045  3899.6917  3899.6905          0     0  
K.AQGEVSPTLSFVPSSHSMEQGNGSVASANNAQSEAATR.S  Deamidated (NQ); Oxidation (M); Phospho (ST) 
(score 79) 
   515 - 552    1321.8992  3962.6758  3962.6779         -1     0  
K.AQGEVSPTLSFVPSSHSMEQGNGSVASANNAQSEAATR.S  2 Phospho (ST) (Ions score 56) 
   553 - 564     700.3273  1398.6401  1398.6392          1     0  R.SINSISEVSEVR.F  Phospho 
(ST) (Ions score 71) 
   553 - 564     700.3278  1398.6411  1398.6392          1     0  R.SINSISEVSEVR.F  Phospho 
(ST) (Ions score 65) 
   553 - 564     700.3279  1398.6411  1398.6392          1     0  R.SINSISEVSEVR.F  Phospho 
(ST) (Ions score 49) 
   553 - 572    1151.5524  2301.0902  2301.0889          1     1  R.SINSISEVSEVRFPEQSSVK.T  
Phospho (ST) (Ions score 97) 
   553 - 572    1151.5528  2301.0910  2301.0889          1     1  R.SINSISEVSEVRFPEQSSVK.T  
Phospho (ST) (Ions score 124) 
   553 - 572     768.0379  2301.0920  2301.0889          1     1  R.SINSISEVSEVRFPEQSSVK.T  
Phospho (ST) (Ions score 38) 
   553 - 572    1151.5534  2301.0922  2301.0889          1     1  R.SINSISEVSEVRFPEQSSVK.T  
Phospho (ST) (Ions score 87) 
   553 - 572     768.0384  2301.0933  2301.0889          2     1  R.SINSISEVSEVRFPEQSSVK.T  
Phospho (ST) (Ions score 43) 
  1051 - 1075    983.7956  2948.3650  2948.3652         -0     1  
K.LKSEEDTSLETPIHENQSIQSDQIK.E  Phospho (ST) (Ions score 49) 
  1051 - 1075    983.7957  2948.3654  2948.3652          0     1  
K.LKSEEDTSLETPIHENQSIQSDQIK.E  Phospho (ST) (Ions score 51) 
  1053 - 1075    903.4027  2707.1864  2707.1861          0     0  K.SEEDTSLETPIHENQSIQSDQIK.E  
Phospho (ST) (Ions score 38) 
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Sample: Tea4SH3-TAP phosphopeptides detected 

Tea1 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matched peptides shown in Bold Red  
1 MSFLFKRNKG SAHKPTKPNF SKTSTTPSTS QLKHSHESNV KMSTSTVTEH 

  
51   RKKPTGSGSH ITASPWSKLT VRGSSNVLPR YSHASHLYAE GGQEIYIFGG  
101  VASDSQPKND LWVLNLATSQ FTSLRSLGET PSPRLGHASI LIGNAFIVFG  
151  GLTNHDVADR QDNSLYLLNT SSLVWQKANA SGARPSGRYG HTISCLGSKI  
201  CLFGGRLLDY YFNDLVCFDL NNLNTSDSRW ELASVVNDPP PARAGHVAFT  
251  FSDKLYIFGG TDGANFFNDL WCYHPKQSAW SKVETFGVAP NPRAGHAASV  
301  VEGILYVFGG RASDGTFLND LYAFRLSSKH WYKLSDLPFT PSPRSSHTLS  
351  CSGLTLVLIG GKQGKGASDS NVYMLDTSRF RLGSVPTTSG RQRNTSFFSN  
401  STGNTNPSAF NGLLTSSRIP SYNGSKVRST SHPSRQQYIG SSNSRFNTRH  
451  QTISTPVSGR ASNDLPSPVV PTRSNSSSIL QPSYNLNSHS SDRRNTNDDD  
501  QSSLNSQQLS NQAKAQGEVS PTLSFVPSSH SMEQGNGSVA SANNAQSEAA  
551  TRSINSISEV SEVRFPEQSS VKTVDERKSL DGRITSVTLE TLVEKYSELS  
601  KQQIVEWFKS KLYEILRDSA SKIDSLTEKL KVANAEKNAA LCEAALEKVP  
651  LAKHNKLSDG TFSTPDKENV QSTNDAHIMQ ENFSLHKALE VMRETSSDLD  
701  KQLKDATASQ KELIVQTSSF QKELVEERER HNAISKRLQE IESLYRDREL  
751  LVTNLEDQLV DQTVTINKFA FERDQFRERS MGFENTIKDL TRKMEATDML  
801  NVSLHESLRS VQTENSELVT EMALLKAELV KKQAIIDANA NIYDKLTADH  
851  TNYETVSADI NQNLKETLDK LLNGSSDFKN NEIELLHDQI RITNAKLEKR  
901  EKLINASKYI EDTLRSEIQE AAEKVSNLEF SNFNLKEENS NMQLQLMKAL  
951  EQRNTGAKQL VNLRMQLSTA TSELDMLKLK LRTTALALEE SPDDYSDILS  
1001 ILRADMSPFH DLHKQCGVLI DTLNGVKRGF GIFEKKFTDY HKFLENISDK  
1051 LKSEEDTSLE TPIHENQSIQ SDQIKEVGEV LSAIKSLSDS VMLLKNQIDD  
1101 LAKEKLPLSS SDDEKVNIKE KTDFMKLLVK SGLSNPPAKE PVHDNEN  
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Sample: Tea4SH3-TAP phosphopeptides detected 

Tea1 

 
 

 

 

 

 

 

 

 

 

 

 

KK2 
TEA1_SCHPO 
   461 - 473     716.8448  1431.6750  1431.6759         -1     0  R.ASNDLPSPVVPTR.S  
Phospho (ST) (Ions score 34) 
   461 - 473     716.8452  1431.6759  1431.6759          0     0  R.ASNDLPSPVVPTR.S  
Phospho (ST) (Ions score 31) 
   495 - 514     762.9867  2285.9382  2285.9397         -1     0  
R.NTNDDDQSSLNSQQLSNQAK.A  Phospho (ST) (Ions score 57) 
   495 - 514    1143.9771  2285.9396  2285.9397         -0     0  
R.NTNDDDQSSLNSQQLSNQAK.A  Phospho (ST) (Ions score 98) 
   495 - 514     762.9873  2285.9402  2285.9397          0     0  
R.NTNDDDQSSLNSQQLSNQAK.A  Phospho (ST) (Ions score 40) 
   495 - 514    1143.9780  2285.9414  2285.9397          1     0  
R.NTNDDDQSSLNSQQLSNQAK.A  Phospho (ST) (Ions score 87) 
   495 - 514    1143.9787  2285.9428  2285.9397          1     0  
R.NTNDDDQSSLNSQQLSNQAK.A  Phospho (ST) (Ions score 95) 
   495 - 514    1143.9787  2285.9428  2285.9397          1     0  
R.NTNDDDQSSLNSQQLSNQAK.A  Phospho (ST) (Ions score 81) 
   515 - 552     971.6829  3882.7026  3882.7116         -2     0  
K.AQGEVSPTLSFVPSSHSMEQGNGSVASANNAQSEAATR.S  Phospho (ST) (Ions score 44) 
   515 - 552    1295.2440  3882.7102  3882.7116         -0     0  
K.AQGEVSPTLSFVPSSHSMEQGNGSVASANNAQSEAATR.S  Phospho (ST) (Ions score 108) 
   515 - 552    1295.2442  3882.7108  3882.7116         -0     0  
K.AQGEVSPTLSFVPSSHSMEQGNGSVASANNAQSEAATR.S  Phospho (ST) (Ions score 104) 
   553 - 564     700.3265  1398.6384  1398.6392         -1     0  R.SINSISEVSEVR.F  
Phospho (ST) (Ions score 48) 
   553 - 564     700.3268  1398.6391  1398.6392         -0     0  R.SINSISEVSEVR.F  
Phospho (ST) (Ions score 73) 
   553 - 564     700.3271  1398.6396  1398.6392          0     0  R.SINSISEVSEVR.F  
Phospho (ST) (Ions score 58) 
   553 - 564     700.3271  1398.6397  1398.6392          0     0  R.SINSISEVSEVR.F  
Phospho (ST) (Ions score 87) 
   553 - 572     768.0369  2301.0888  2301.0889         -0     1  
R.SINSISEVSEVRFPEQSSVK.T  Phospho (ST) (Ions score 51) 
   553 - 572    1151.5518  2301.0890  2301.0889          0     1  
R.SINSISEVSEVRFPEQSSVK.T  Phospho (ST) (Ions score 76) 
   553 - 572    1151.5518  2301.0890  2301.0889          0     1  
R.SINSISEVSEVRFPEQSSVK.T  Phospho (ST) (Ions score 80) 
   553 - 572     768.0370  2301.0893  2301.0889          0     1  
R.SINSISEVSEVRFPEQSSVK.T  Phospho (ST) (Ions score 50) 
  1051 - 1075    983.7954  2948.3645  2948.3652         -0     1  
K.LKSEEDTSLETPIHENQSIQSDQIK.E  Phospho (ST) (Ions score 37) 
  1053 - 1075    903.4026  2707.1859  2707.1861         -0     0  
K.SEEDTSLETPIHENQSIQSDQIK.E  Phospho (ST) (Ions score 42) 
  1053 - 1075    903.7364  2708.1874  2708.1702          6     0  
K.SEEDTSLETPIHENQSIQSDQIK.E  Deamidated (NQ); Phospho (ST) (Ions score 24) 
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Sample: Tea4-TAP phosphopeptides detected 

Tea3 

 
 

Sample: Tea4-TAP phosphopeptides detected 

Tea3 

 
 

 

 

 

 

 

 

 

 

Matched peptides shown in Bold Red  
1    MVQKVLSRQS DNSQDVSAEQ LDVVESGSID QQNIRAWVVR KVKENDKRTS  
51   TNQSFKWEAV KPASCLDAAN EKFMYLHGGR EKSGISNSLF KLDLDSCTVY  
101  SHNRGEDNDS PARVGHSIVC SADTIYLFGG CDSETDSTFE VGDNSLYAYN  
151  FKSNQWNLVS TQSPLPSPRT GHSMLLVDSK LWIFGGECQG KYLNDIHLFD  
201  TKGVDRRTQS ELKQKANANN VEKANMEFDE TDWSWETPFL HSSSPPPRSN  
251  HSVTLVQGKI FVHGGHNDTG PLSDLWLFDL ETLSWTEVRS IGRFPGPREG  
301  HQATTIDDTV YIYGGRDNKG LILNELWAFN YSQQRWSLVS NPIPILLSDS  
351  SSYKIVSKNN HILLLYLNAL DAPKQLLCYE ADPKNLYWDK DKFSDIPVLQ  
401  HISMKPSNAS NHTVSLGYLN DRPNHSKKNS VTSTSSSQFN NFLEQNQKAV  
451  RSARHRHYAS LDEQGLHSLR NLSKTSGMNH SADFSLHEFG QADPFAYEIE  
501  KPIASLPLPN GNDTISRSSE SSSPINESES NSLLKLQSDF KFSNSDDRVA  
551  WLEEQLLYCM QQGYTLKPPN LFQHVDEKLR LEKKEQLSYL EILKVIEQML  
601  ESNEQKFKKQ IVSLASENAK LAAQRDAAVE NANYSRSLIQ KKTTDETVGS  
651  LIEKVGKLEY EVQGTLEEAT SYYQKNTELQ QLLKQNESAS ELLKSRNEKL  
701  CVDYDKLRSV FEEDSSKILS LQKENENLQS QILQISEELV DYRSRCEALE  
751  YGNYELETKL IEMHDRVEMQ TNVIEASASA LDVSNTAILS FEDSLRRERD  
801  EKSTLQQKCL NLQYEYENVR IELENLQSRA LELESALEQS VSDAKYSKAI  
851  MQSGLSKLLS SINENKDNLK EFSKSKQKIS YLESQLEGLH ELLRESQRLC  
901  EGRTKELLNS QQKLYDLKHS YSSVMTEKSK LSDQVNDLTE QAKITQRKLS  
951  EVQIALADSK MNQQLSGKDS TDVHLPTDFS ASSSPLRSYF NEEDSFNNAS  
1001 AAHSSKESDI PSGGVFTKYR NHFGNLMTSE ETKAPDNNDL HKRLSDVINS  
1051 QQKFLSLSPQ VSKDYYDVRS KLNDTAGSFS GEEMRAIDDN YYASRIKQLE  
1101 DDYQKAITYA NCSDESFQQL SHSFM  

   969 - 987    1056.4679  2110.9212  2110.9209          0     0  
K.DSTDVHLPTDFSASSSPLR.S  Phospho (ST) (Ions score 77) 
   969 - 987     704.6478  2110.9216  2110.9209          0     0  
K.DSTDVHLPTDFSASSSPLR.S  Phospho (ST) (Ions score 34) 
   969 - 987    1056.4683  2110.9220  2110.9209          1     0  
K.DSTDVHLPTDFSASSSPLR.S  Phospho (ST) (Ions score 54) 
   969 - 987    1056.4687  2110.9228  2110.9209          1     0  
K.DSTDVHLPTDFSASSSPLR.S  Phospho (ST) (Ions score 76) 
  1043 - 1053    684.3371  1366.6597  1366.6606         -1     1  
K.RLSDVINSQQK.F  Phospho (ST) (Ions score 32) 
  1072 - 1085    797.3166  1592.6185  1592.6178          0     0  
K.LNDTAGSFSGEEMR.A  Phospho (ST) (Ions score 78) 
  1072 - 1085    797.3166  1592.6187  1592.6178          1     0  
K.LNDTAGSFSGEEMR.A  Phospho (ST) (Ions score 72) 
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Sample: Tea4SH3-TAP phosphopeptides detected 

Tea3 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KK2 
TEA3_SCHPO 
   969 - 987    1056.4672  2110.9198  2110.9209         -0     0  
K.DSTDVHLPTDFSASSSPLR.S  Phospho (ST) (Ions score 68) 
   969 - 987    1056.4673  2110.9200  2110.9209         -0     0  
K.DSTDVHLPTDFSASSSPLR.S  Phospho (ST) (Ions score 56) 
   969 - 987    1056.4675  2110.9204  2110.9209         -0     0  
K.DSTDVHLPTDFSASSSPLR.S  Phospho (ST) (Ions score 48) 
   969 - 987     704.6480  2110.9221  2110.9209          1     0  
K.DSTDVHLPTDFSASSSPLR.S  Phospho (ST) (Ions score 34) 
   969 - 987    1056.4685  2110.9224  2110.9209          1     0  
K.DSTDVHLPTDFSASSSPLR.S  Phospho (ST) (Ions score 35) 
  1043 - 1053    684.3397  1366.6648  1366.6606          3     1  
K.RLSDVINSQQK.F  Phospho (ST) (Ions score 28) 
  1072 - 1085    797.3155  1592.6164  1592.6178         -1     0  
K.LNDTAGSFSGEEMR.A  Phospho (ST) (Ions score 96) 
  1072 - 1085    797.3163  1592.6180  1592.6178          0     0  
K.LNDTAGSFSGEEMR.A  Phospho (ST) (Ions score 92) 
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