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Abstract: We consider two different portfolios of proportional reinsurance of the same pool of risks. This contribution

is concerned with Gaussian-like risks, which means that for large values the survival function of such risks is, up to a

multiplier, the same as that of a standard Gaussian risk. We establish the tail asymptotic behavior of the total loss

of each of the reinsurance portfolios and determine also the relation between randomly scaled Gaussian-like portfolios

and unscaled ones. Further we show that jointly two portfolios of Gaussian-like risks exhibit asymptotic independence

and their weak tail dependence coefficient is non-negative.
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1 Introduction

In numerous insurance and financial situations the same source of risks impacts simultaneously different portfolios

according to individual deterministic weights associated with those risks. For instance consider two big reinsurance

companies that operate on the international level, and therefore happen to reinsure different proportions of the same

risks. If the reinsurance treaty is a proportional one, then the total risk of each company for the proportional business

is given by a linear combination of risks, arising from each portfolio of the direct insurer taking part in the reinsurance

programme.

Throughout the paper Xi, i ≤ n will be independent random variables which alternatively are referred to as risks,

reflecting our interest on insurance and finance applications. In a probabilistic setting the total loss amount of each

reinsurance company can be modeled by Qn and Wn, respectively with

Qn =

n∑
i=1

λiXi, Wn =

n∑
i=1

λ∗iXi,

where Xi is the financial loss amount claimed from the ith direct insurer, and λi, λ
∗
i are the proportionality factors of

the risks being shared.

In a financial context, as for instance in that considered by Geluk et al. (2007), both Qn and Wn model two portfolios

with financial returns, where the risks X1, . . . , Xn are the individual asset returns or risk factors and λi, λ
∗
i , i ≤ n are

the asset weights. Typically, the asset weights are assumed to sum to 1.

In concrete insurance and finance applications the distribution function of financial risks is not known. Essentially,

this is not a major drawback, since often of interest is the quantification of the probability of large catastrophic risks,

especially from the side of the reinsurer. In applications, departure from a Gaussian model is possible, however for

inference a model with ”Gaussian-like” features is of course preferable.

The main purpose of this article is to explore Gaussian-like risks i.e., risks that are similar to Gaussian ones in terms

of the probability of producing large values. Specifically, we shall assume that for any risk Xi, i ≤ n

P (Xi > u) ∼ Li(u)uαi exp(−u2/2), u→∞, (1)
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where Li(·), i ≤ n are slowly varying functions at infinity i.e., for any t positive limu→∞ Li(tu)/Li(u) = 1. In other

words

P (Xi > u) ∼
√

2πLi(u)uαi+1Ψ(u), u→∞, (2)

with Ψ the survival function of a N(0, 1) random variable; throughout this paper f1(x) ∼ f2(x) means asymptotic

equivalence i.e., f1(x)/f2(x)→ 1 as x→∞.

Clearly, if αi = −1 and Li(u)→ (2π)−1/2 as u→∞, then Xi is tail equivalent to a N(0, 1) random variable. However,

in general a Gaussian-like risk differs very strongly from a Gaussian one since αi can take large negative values. It is

therefore interesting to investigate the individual behavior of each portfolio consisting of Gaussian-like risks in terms of

the probabilities of observing large losses. We shall investigate first the asymptotic behavior of P (Qn > u) for u→∞.

In view of Lemma 8.6 in Piterbarg (1996)

P (X1 +X2 > u) ∼ L1L2

√
π
uα1+α2+1

2α1+α2+1
exp(−u2/4), u→∞ (3)

holds for any two Gaussian-like risks X1, X2 satisfying (1) with Li(u) ≡ Li > 0,∀u > 0, i = 1, 2, which implies the tail

asymptotic behavior of Q2 for the case λ1 = λ2 > 0.

However, if λ1 6= λ2 and, more generally, if risks obey (1), then the tail asymptotics of Q2 cannot be established by

simply using (3). The risks obeying (1) do not belong to the class of subexponential distributions (see Embrechts et al.

(1997) or Foss et al. (2011) for the properties of this class). In fact those risks belong to the class of superexponential

distributions, see Rootzén (1986,1987), Klüppelberg and Lindner (2005), or Geluk et al. (2007) for more details.

We note in passing that if X1, X2 are independent N(0, 1) random variables, then X1 +X2 is a N(0, 2) random variable,

so (3) follows easily. Therefore, the appearance of exp(−u2/4) in the general case in (3) is intuitively expected since we

deal with ”Gaussian-like” risks.

As it will be discussed below, special Gaussian-like risks relate to the random scaling of Gaussian risks.

Indeed, the random scaling is a common phenomena in various insurance models which incorporate inflation or deflation.

In our framework, the random scaling of Xi’s will be modelled by non-negative random variables Si, i ≤ n being

independent of Xi, i ≤ n. Under certain restrictions, it follows that the randomly scaled risk SiXi is a Gaussian-like

one, if Xi is a Gaussian like risk. This closure property together with the Gaussianity of Xi’s are crucial for extending

(3) to Gaussian-like risks obeying (1). Further, the random scaling technique utilized in the proof of the main result

leads to the derivation of the tail asymptotic behavior of Qn if each risk Si is bounded, and its survival function is

regularly varying at its upper endpoint, see (4) below.

Our new result allows us to calculate the weak tail dependence coefficient χ̄(Qn,Wn). This measure of asymptotic

independence introduced in Coles et al. (1999) is important for modelling of joint extremes.

The organization of the rest of the paper: we continue below with the formulation of the main results. Section 3 presents

two applications. The first one establishes the asymptotic independence of both portfolios Qn and Wn, whereas the

second one derives the weak tail dependence coefficient χ̄(Qn,Wn). All the proofs are relegated to Section 4.

2 Main Results

In the following Xi’s are independent (but not identically distributed) risks with distribution functions Fi, i ≤ n

and Si, i ≤ n are independent non-negative risks with distribution function Gi, i ≤ n. We shall write for short

Xi ∼ Fi, Si ∼ Gi, i ≤ n. Further, we shall assume that X1, . . . , Xn, S1, . . . , Sn are mutually independent. In the special
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case Xi ∼ N(0, 1), i ≤ n and λi, i ≤ n are given constants

Q∗n :=

n∑
i=1

λi
√
SiXi

d
= X1

√√√√ n∑
i=1

λ2
iSi =: X1

√
Vn,

where
d
= means equality of distribution functions.

For practical applications due to the time-value considerations of money random scaling of X ′is by Si’s is natural. If

as above the X ′is are normally distributed, then instead of considering the tail asymptotics of Qn we can investigate

that of Vn, and X1 separately and then determine the tail asymptotics of Q∗n. Indeed, by the fact that X1 and Vn are

independent, and the tail asymptotics of X1 is known, in view of Hashorva et al. (2010), the tail asymptotic behavior

of the portfolio of risks modeled by Q∗n follows under certain assumptions on Vn which are satisfied if the Gi’s have

a finite upper endpoint ωi := sup(x : Gi(x) < 1) and if 1 − Gi is regularly varying at ωi. More specifically, we shall

assume that ωi = 1, i ≤ n and

lim
x→∞

P (Si > 1− t/x)

P (Si > 1− 1/x)
= tγi , ∀t > 0 (4)

for each i ≤ n with some index γi ∈ [0,∞).

Our result on the tail behavior of Vn is surprising in that it links the tail asymptotic behavior of the aggregated risk

with that of the products of the risks. The arithmetic-geometric mean inequality implies that

Vn ≥
n∏
i=1

Sλi
i =: V ∗n , 1 ≤ i ≤ n,

provided that
∑n
i=1 λi = 1. Our first result below shows the surprising fact that Vn and V ∗n have the same tail asymptotic

behavior.

Theorem 2.1. Let Si ∼ Gi, i ≤ n be independent non-negative random variables satisfying (4). Then for any λi >

0, i ≤ n such that
∑n
i=1 λi = 1

P
( n∑
i=1

λiSi > u
)
∼ P

( n∏
i=1

Sλi
i > u

)
∼
∏n
i=1 λ

−γi
i Γ(γi + 1)P (Si > u)

Γ(
∑n
i=1 γi + 1)

, u ↑ 1

holds, where Γ(·) is the Euler Gamma function.

Next, we show how by using this theorem, we can reduce the proof of the following Theorem 2.2 in an important

particular case to random scaling of a portfolio of independent standard Gaussian variables. Under the assumptions of

Theorem 2.1 we know the asymptotic behavior of Ṽn =
∑n
i=1 λ

2
iSi/λ

2, λ2 =
∑n
i=1 λ

2
i , and in particular we find that

P

(√
Ṽn > 1− 1/u

)
∼ P (Ṽn > 1− 2/u), u→∞.

The distribution function of X1 is in the Gumbel max-domain of attraction (MDA) with scaling function w(x) = x. We

recall that a random variable Z with P (Z > u) < 1,∀u > 0 is in the Gumbel MDA with some positive scaling function

w(·) if

P (Z > u+ s/w(u)) ∼ exp(−s)P (Z > u), u→∞

holds for any s ≥ 0, see e.g., Embrechts et al. (1997). Applying Theorem 3.1 of Hashorva et al. (2010) (see also Hashorva

(2012)) we obtain thus

P (Zn > u) ∼ P
(
X1

√
Ṽn > u/λ

)
∼ 1

2
P
(
|X1|

√
Ṽn > u/λ

)
∼ 1

2
Γ(

n∑
i=1

γi + 1)P
(√

Ṽn > 1− λ2/u2
)
P (|X1| > u/λ)
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∼ Γ(

n∑
i=1

γi + 1)P (Ṽn > 1− 2(λ/u)2)Ψ(u/λ), u→∞. (5)

Since limu→∞ P (Ṽn > 1 − 1/u2) = 0 the above works only for αi + 1 < 0, i ≤ n. Thus the above chain of asymptotic

relations leads us to the main result of this paper in the particular case αi < −1, that is for the distributions possessing

(1) with tails lighter than Gaussian. Next we state our main result for all values αi ∈ R, i ≤ n.

Theorem 2.2. If Xi, i ≤ n are independent Gaussian-like risks satisfying (1) for some αi ∈ R, i ≤ n, then for any set

of deterministic weights λi > 0, i ≤ n we have

P (Qn > u) ∼
(
√

2π)n−1
∏n
j=1

[
λ
αj+1
j Lj(u)

]
uα+n−1

λ2α+2n−1
exp

(
− u2

2λ2

)
(6)

as u→∞, where λ2 =
∑n
i=1 λ

2
i , α =

∑n
i=1 αi.

Remarks: a) In Theorem 2.2 we do not put any assumption on the lower asymptotic tail behavior of the risks. In the

Gaussian mean-zero case such risks are symmetric about 0. If in Theorem 2.2 we assume that the Gaussian-like risks

are symmetric about zero, then (6) can be easily adapted to the case that λi ∈ R, i ≤ n.

b) If Li(·) is a constant function, then as mentioned in the Introduction the risk Xi belongs to the class of superexponen-

tial distributions. The tail asymptotics of the convolution of identically distributed and independent superexponential

risks is established in Rootzén (1987) and for more general risks in Klüppelberg and Lindner (2005). In the aforemen-

tioned papers the results are derived under several constraints on the probability density function of the risks, which

we do not impose here. Hence both our results and Lemma 8.6 of Piterbarg (1996) do not follow from Rootzén (1987)

or Klüppelberg and Lindner (2005).

d) In view of Theorem 2.1 and Theorem 2.2 the total loss of randomly scaled risks modeled by Q∗n is a Gaussian-like

risk if the Si’s and X ′is are independent and satisfy the assumptions of Theorem 2.1 and Theorem 2.2, respectively.

The proof of Theorem 2.2 in the general case is based on the following generalization of Lemma 8.6 of Piterbarg (1996)

to random variables obeying (1).

Lemma 2.3. If Xi, i = 1, 2 are two independent random variables such that

P (Xi > u)∼Li(u)uαi exp

(
− u2

2p2
i

)
, u→∞, i = 1, 2 (7)

for some αi ∈ R, pi > 0 and Li(·) are slowly varying functions at infinity, then as u→∞

P (X1 +X2 > u)∼
√

2πp2α1+1
1 p2α2+1

2 L1(u)L2(u)uα1+α2+1

p2α1+2α2+3
exp

(
− u2

2p2

)
, (8)

with p =
√
p2

1 + p2
2.

Example 1. Consider X1, X2 two independent Gaussian-like risks which satisfy (1). Applying (8) with p1 = p2 =

1, p =
√

2 we obtain

P (X1 +X2 > u)∼
√
πL1(u)L2(u)(u/2)α1+α2+1 exp(−u2/4)

as u→∞, which implies (3). In particular, when X1, X2 are independent N(0, 1) random variables, then X1 +X2 is a

N(0, 2) random variable, and therefore its tail asymptotics is given by

P (X1 +X2 > u) = P
(
X1 > u/

√
2
)
∼ 1√

πu
exp(−u2/4), u→∞,

which follows also from (7) when L1 = L2 = (2π)−1/2 and αi = −1, i = 1, 2.
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3 Applications

A bivariate Gaussian random vector (X,Y ) with N(0, 1) marginals is specified completely by the correlation coefficient

ρ. Although ρ < 1 can be very close to 1, still X and Y are asymptotically independent in the sense that

lim
u→∞

P (X > u, Y > u)

P (X > u)
= 0. (9)

Asymptotic independence is a nice property, closely related to joint asymptotic behavior of componentwise sample max-

ima (e.g., Resnick (1987)). For bivariate Gaussian samples the componentwise maxima are (using (9)) asymptotically

independent. The asymptotic independence is a crucial property for the calculation of many indices related to extreme

value statistics, finance and insurance applications. In our first application we show that the losses modeled by Qn and

Wn are asymptotically independent.

If Qn and Wn have distribution functions H and H∗, respectively, then the asymptotic independence of Qn and Wn

means that

χu(Qn,Wn) :=
P (Qn > tu,Wn > t∗u)

P (Qn > tu)
→ 0, u→∞,

with tu := H−1(1 − 1/u), t∗u := H−1
∗ (1 − 1/u), and H−1, H−1

∗ are the generalized inverses of H and H∗, respectively.

In view of Theorem 2.2 both Qn and Wn have distribution function in the Gumbel MDA. Utilizing the formula for

the norming constants of Weibull-like distributions given on p. 317 of Mikosch (2009) and using again Theorem 2.2, it

follows that with λ =
√∑n

i=1 λ
2
i > 0, λ∗ =

√∑n
i=1(λ∗i )

2 > 0

tu
λ
∼ t∗u
λ∗
, u→∞. (10)

Consequently, since for all u large

χu(Qn,Wn) =
P (Qn/λ > tu/λ,Wn/λ > t∗u/λ

∗)

P (Qn/λ > tu/λ)

we shall assume without loss of generality that λi, λ
∗
i , i ≤ n are positive and satisfy

n∑
i=1

λ2
i =

n∑
i=1

(λ∗i )
2 = 1. (11)

The assumption (11) is reasonable since when all Xi’s are N(0, 1) random variables, then Qn and Wn are also N(0, 1)

distributed. Note that (11) implies

% :=

n∑
i=1

λiλ
∗
i ∈ [0, 1].

Since both portfolios are supposed to be different, we shall assume below that

% ∈ [0, 1). (12)

Hence, by Theorem 2.2, (10) and (12) for any ε > 0 we obtain

χu(Qn,Wn) ≤
P (
∑n
i=1(λi + λ∗i )Xi > 2tu(1 + o(1)))

P (Wn > tu)
→ 0, u→∞.

When asymptotic independence holds, as suggested by Coles et al. (1999) more insight on the strength of the joint tail

behavior is obtained by calculating the weak tail dependence coefficient χ̄(Qn,Wn) := limu→∞ χ̄u(Qn,Wn) (supposing

the limit exists), where

χ̄u(Qn,Wn) =
lnP (Qn > tu) + lnP (Wn > t∗u)

lnP (Qn > tu,Wn > t∗u)
− 1.
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Borrowing the idea of Piterbarg and Stamatovic (2005) (see also Dȩbicki et al. (2010)) we have for all large u

P (Qn > tu,Wn > t∗u) ≤ inf
a,b>0,a+b=1

P
( n∑
i=1

(aλi + bλ∗i )Xi > tu(1 + o(1))
)
,

which implies using further Theorem 2.2

lim sup
u→∞

lnP (Qn > tu,Wn > t∗u)

t2u
≤ lim
u→∞

infa,b∈R,a+b=1 ln
(
P
(∑n

i=1(aλi + bλ∗i )Xi > tu(1 + o(1))
))

t2u

= − 1

1 + %
. (13)

Consequently,

lim sup
u→∞

χ̄u(Qn,Wn) ≤ %.

Our last result shows that χ̄(Qn,Wn) = % for two Gaussian-like portfolios Qn and Wn.

Theorem 3.1. Under the assumptions of Theorem 2.2, if further (11) and (12) are satisfied, then

χ̄(Qn,Wn) = % (14)

holds. Moreover, (14) still holds even if some λi, λ
∗
i equal zero.

Remark: If we do not assume (11) in Theorem 3.1, then (14) is valid with % =
∑n

i=1 λiλ
∗
i√∑n

i=1 λ
2
i

∑n
i=1(λ∗

i )2
, provided that (12)

holds.

4 Proofs

Proof of Theorem 2.1. For all x large by the independence of S1, . . . , Sn we may write (set Gi,x(z) := Gi(1 −

z/x), x, z ∈ (0,∞))

P (

n∑
i=1

λiSi > 1− 1/x)

=

∫ 1

0

P (λ1S1 > 1− 1/x−
n∑
i=2

λiyi) dG2(y2) · · · dGn(yn)

=

∫ 1

0

P (λ1S1 > λ1 − 1/x+

n∑
i=2

λi −
n∑
i=2

λi(1− zi/x)) dG2(z2) · · · dGn(zn)

=

∫ ∞
0

· · ·
∫ ∞

0

P (S1 > 1− (1−
n∑
i=2

λizi)/(λ1x)) dG2,x(z2) · · · dGn,x(zn)

=

n∏
i=1

Gi(1− 1/x)

∫ ∞
0

· · ·
∫ ∞

0

P (S1 > 1− (1−
∑n
i=2 λizi)/(λ1x))

G1(1− 1/x)
dG2,x(z2) · · · dGn,x(zn)/(

n∏
i=2

Gi(1− 1/x)).

Assume for simplicity that n > 2. By the assumption on Gi, for any zi > 0, i ≤ n

Gi,x(zi)

Gi(1− 1/x)
=
Gi(1− zi/x)

Gi(1− 1/x)
→ zγii , x→∞

and

lim
x→∞

P (S1 > 1− (1−
∑n
i=2 λizi)/(λ1x))

G1(1− 1/x)
=
(

max
(

0, 1−
n∑
i=2

λizi

))γ1
,
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which implies as x→∞

P (

n∑
i=1

λiSi > 1− 1/x)

∼
n∏
i=1

Gi(1− 1/x)λ−γ11

n∏
i=2

γi

∫ ∞
0

· · ·
∫ ∞

0

(
max

(
0, 1−

n∑
i=2

λizi

))γ1 n∏
i=2

zγi−1
i dz2 · · · dzn

=
1

Γ(
∑n
i=1 γi + 1)

n∏
i=1

(
λ−γii Γ(γi + 1)Gi(1− 1/x)

)
.

Applying Theorem 3.1 in Hashorva et al. (2010) we obtain as x→∞

Γ(

n∑
i=1

γi + 1)P
( n∏
i=1

Sλi
i > 1− 1/x

)
∼

n∏
i=1

(
P (Sλi

i > 1− 1/x)Γ(γi + 1)
)

=

n∏
i=1

(
P (Si > 1− 1/(λix))Γ(γi + 1)

)
,

hence the proof is complete.

Proof of Theorem 2.2. In light of Lemma 2.3 for random variables λiXi, i = 1, . . . , n we have p2
i = λ2

i and

correspondingly scaled Li’s. Thus for n = 2 we have proven that

P (Q2 > u) =

√
2πλα1+1

1 λα2+1
2 L1(u)L2(u)uα1+α2+1

θ2α1+2α2+3
2

exp

(
− u2

2θ2

)
(1 + o(1))

as u→∞, with θ2 = λ2
1 + λ2

2. Now we proceed by induction assuming that

P (Qk > u) ∼
(
√

2π)k−1
∏k
j=1

[
λ
αj+1
j Lj(u)

]
uα1+···+αk+k−1

θ2α1+···+2αk+2k−1
k

exp

(
− u2

2θk

)
,

with θk = λ2
1 + · · ·+ λ2

k and k > 2. Considering that Qk+1 = Qk + λk+1Xk+1 with Qk being independent of Xk+1, the

claim follows by a direct application of Lemma 2.3. 2

Proof of Lemma 2.3. Let Fi, i = 1, 2 denote the distribution functions of X1 and X2, respectively. Suppose without

loss of generality that p2
1 + p2

2 = 1 and p1 ≤ p2. Then for c = 1.1 and any ε > 0 we have

P (X1 +X2> x,X2 ≤ (1− cp1)x) ≤ P (X1 > cp1x) = O(xα1+ε exp(−c2x2/2)),

P (X1 +X2> x,X2 > cp2x) ≤ P (X2 > cp2x) = O(xα2+ε exp(−c2x2/2)) (15)

as x → ∞. Note that 0 < a := 1 − cp1 < b := cp2; the first inequality follows from p1 ≤ 1/
√

2 and the second one

follows from p1 + p2 > 1. Let us focus on the asymptotic behavior of the integral

Ix =

∫ bx

ax

F1(x− y))dF2(y), Fi = 1− Fi.

Pick small h > 0 and denote hk = kh/x, ∆k = [hk, hk+1), where k is a positive integer. Then, bounding F1 on intervals

[x− hk, x− hk−1] by its maximum and minimum values, respectively and then integrating in y we have∑
k: ∆k⊂[ax,bx]

F1(x− hk−1)(F2(hk)− F2(hk−1)) ≤ Ix ≤
∑

k: ∆k∩[ax,bx]6=∅

F1(x− hk)(F2(hk)− F2(hk−1)).

Observe that there exist two positive functions A1, A2 decreasing to zero as x→∞ such that for i = 1, 2

Li(x)xαi exp(−x2/2p2
i )(1−Ai(x)) ≤ Fi(x) ≤ Li(x)xαi exp(−x2/2p2

i )(1 +Ai(x)), ∀x > 0.
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Similarly, there exist two positive functions B1, B2 decreasing to zero as x→∞ such that

1−Bi(x) ≤ inf
y∈[a,b]

Li(xy)

Li(x)
≤ sup
y∈[a,b]

Li(xy)

Li(x)
≤ 1 +Bi(x), i = 1, 2.

Since xαe−x
2/2q2 , q > 0 decreases for all sufficiently large x denoting

γ2(x) = A2(ax) +B2(x) +A2(ax)B2(x), r(x) =
ex − 1

x

we obtain

F2(hk)− F2(hk−1) ≤ L2(x)

[
r(bh/p2

2)hα2

k e−h
2
k/2p

2
2
kh2

p2
2x

2
+ 2 γ2(x)(x)hα2

k−1e
−h2

k−1/2p
2
2

]
.

In order to derive an estimation from below, note that for sufficiently large x

(2k − 1)h2

2x2p2
2

+ log

(
k − 1

k

)α2

≥ kh2

p2
2x

2
(1− C/x2)

for some C > 0 which does not depend on h for all sufficiently small h. Therefore

F2(hk)− F2(hk−1) ≥ L2(x)

[
hα2

k e−h
2
k/2p

2
2
kh2

p2
2x

2
r

(
kh2(1− C/x2)

p2
2x

2

)
(1− C/x2)− 2γ2(x)(x)hα2

k−1e
−h2

k−1/2p
2
2

]
.

Thus we have

Ix ≤ L1(x)L2(x)

[
(1 +A1(x/4))(1 +B1(x/4))(1 + γ2(x))r

(
hb/p2

2

)
×

∑
k: ∆k∩[ax,bx]6=∅

(x− hk)α1 exp(−(x− hk)2/2p2
1)hα2

k e−h
2
k/2p

2
2
kh2p2

2

x2

+ 2(1 +A1(x/4))γ2(x)(1 +B1(x))

×
∑

k: ∆k∩[ax,bx]6=∅

(x− hk)α1 exp(−(x− hk)2/2p2
1)hα2

k−1e
−h2

k−1/2p
2
2

]
(16)

and

Ix ≥ L1(x)L2(x)

[
(1−A1(x/4))(1−B1(x/4))(1− γ2(x))r

(
ha(1− Cx−2)/p2

2

)
×

∑
k: ∆k⊂[ax,bx]

(x− hk)α1 exp(−(x− hk)2/2p2
1)hα2

k e−h
2
k/2p

2
2
kh2p2

2

x2

− 2(1 +A1(x/4))γ2(x/4)(1 +B1(x/4))(1− Cx−2)

×
∑

k: ∆k∩[ax,bx]6=∅

(x− hk)α1 exp(−(x− hk)2/2p2
1)hα2

k−1e
−h2

k−1/2p
2
2

]
. (17)

The first sums in (16) and (17) differ from each other by two summands, so it is sufficient to estimate one of them.

Then the first sum in the right-hand side of (16) is equal to (set h′k = hk/x = hk/x2)

I ′x := p−2
2 xα1+α2+2

∑
k: ∆k/x∩[a,b]6=∅

(1− h′k)α1(h′k)α2 exp

(
−x

2(1− h′2k )

2p12

− x2h2
k

2p2
2

)
h′k

h

x2

≤ p−2
2 xα1+α2+2

∫ b

a

(1− t+ h/x2)α1tα2+1 exp

(
−x

2

2

(
(1− t)2

p2
1

+
t2

p2
2

))
dt,

where we used the monotonicity of the involved functions. In order to obtain a lower bound for the first sum in (17)

replace (1− t+ h/x2)α1tα2+1 by (1− t)α1(t− h/x2)α2+1. Next, Theorem 1.3 in Fedoryuk (1987) yields

I ′x =
√

2πp2a1+1
1 p2a2+1

2 xα1+α2+1e−x
2/2(1 +O(x−2)), x→∞.
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We investigate below the second sums I ′′x and J ′′x on the right-hand side of (16) and (17), respectively. For any k, the

kth summands in those sums are equal to the kth summands in the first sums multiplied by x2/(kh)2, which is not

greater than b/h. Thus we obtain dividing right- and left- parts of (16) and (17) by

D(x) =
√

2πp2a1+1
1 p2a2+1

2 L1(x)L2(x)xα1+α2+1e−x
2/2

and letting x→∞, that

r
(
ha/p2

2

)
≤ lim inf

x→∞

Ix
D(x)

≤ lim sup
x→∞

Ix
D(x)

≤ r
(
hb/p2

2

)
,

which by definition of r(x) and the arbitrary choice of h establishes the asymptotic behavior of Ix. Clearly, in view of

the fact that Li(x/p) ∼ Li(x), i = 1, 2 the proof in the case that p2
1 + p2

2 = 1 follows from (15). The general case of

p1, p2 follows by re-scaling, and thus the proof is complete. 2

Proof of Theorem 3.1. In view of (13) we need to estimate P (Qn > tu,Wn > t∗u) from below. We shall determine

optimal δi(u), i ≤ n such that

P (Qn > tu,Wn > t∗u) ≥ P (Xi > δi(u), i = 1, . . . , n) . (18)

In order to realize such a choice, consider the asymptotic behavior of the integral∫
{Σn

i=1λixi≥u,Σn
i=1λ

∗
i xi≥u}

e−
1
2‖x‖

2

dx =un
∫
{Σn

i=1λisi≥1,Σn
i=1λ

∗
i si≥1}

e−
1
2u

2‖s‖2ds.

In the spirit of the Laplace asymptotic method, we find the minimal value of ‖s‖2 =
∑n
i=1 s

2
i on the set {s :Σni=1λisi ≥

1,Σni=1λ
∗
i si ≥ 1}. Since λi, λ

∗
i are all non-negative, the minimum is attained at the boundary, that is, on the set

{s :Σni=1λisi = 1,Σni=1λ
∗
i si = 1}. It follows that the point of minimum has components

si =
λi + λ∗i
1 + ρ

, i = 1, . . . , n.

Consequently, the minimal value of ‖s‖2 on the integrating set equals 2/(1 + ρ). Setting now (write zu := max(tu, t
∗
u))

δi(u) =
λi + λ∗i
1 + ρ

zu

we have that (18) holds for any u > 0 and furthermore, by (1) and (9)

logP (Xi > δi(u), i = 1, . . . , n) =

n∑
i=1

logP (Xi > δi(u))

∼ −z2
u

n∑
i=1

(ρi + ρ∗i )
2

2(1 + %)2
, u→∞

= − z2
u

1 + ρ

and thus the claim follows using (10). 2
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