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The difficulties inherent in the construction of two-dimensional pressure ensem- 
bles are discussed, and are tackled by defining an energy cost depending on the 
convex hull of the set of particles. An energy proportional to the area of the 
convex hull is not able to prevent evaporation of the system, whereas an energy 
proportional to the area of the circumcircle of the convex hull ensures a 
thermodynamic behavior. In the latter model, which turns out  to be exactly 
solvable, various characterizations are given of the geometry of a typical state. 
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random polytopes; isoperimetric deficit. 

1. I N T R O D U C T I O N  

It appears to anyone working on problems such as the equilibrium shape 
of a finite crystal, ground state of an assembly of atoms, evaporation 
mechanisms, and related questions that the prescription of enclosing the 
particles in a fixed container is, to say least, ill-adapted in these cases. The 
remedy should consist of course in allowing the container to vary while 
fixing the pressure: this is the so-called pressure ensemble which has often 
been referred to in the litterature. ~1'2) However, to the author's knowledge, 
and operational definition is available for one-dimensional systems only~31: 
in that case, the class of "possible boxes" constitutes a one-parameter 
family index by the length of the box. In two dimensions (and beyond), the 
following difficulties immediately arise: 

(a) How can we generate the (noncountable) class of all possible 
containers and adjoin to it an a priori distribution? 

(b) Having to described the shape of a container by an infinite 
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number of parameters (for instance, the Fourier coefficients of its curvature 
radius(4)), we should allow for a corresponding infinite set of conjugate 
variables of "pressures." 

Before giving my point of view on these questions, let me first observe 
that, when we think about the volume of a finite crystal, we clearly mean 
the volume occupied by the particles themselves, and not the volume of any 
hypothetical box containing the crystal. I shall therefore identify in a 
natural way the fluctuating container with the system itself, or, more 
precisely, with the smallest set containing all the particles, that is, its 
convex hull. In this approach the shape of a system of N particles in a plane 
becomes an observable: in particular, its area, perimeter, diameter, and so 
on are defined by the coordinates of all the particles and cannot be con- 
sidered as independent data. The a priori distribution of the shape of a 
finite system (determined by the polygonal boundary of its convex hull) is 
now generated in a natural way by the product over the uniform distribu- 
tions of the configurations of each particle. Observe that a finite number of 
parameters is required to describe a finite polygon, and recall that the set 
of polygons (endowed with a suitable metric) is dense in the set of convex 
bodies. (s'6) These elements together permit us to tackle problem (a). 

To prevent possible evaporation, one now has to define a cost 
increasing with the size of the system: this role is played by the energy, 
which, accordingly to (b), has the form of a sum over the geometric 
parameters describing the shape of the convex hull, each being multiplied 
by the conjugate coupling constant. There is an infinite number of possible 
choices of energy, among which I feel unable to hazard a preference 
ordering: the simplest choice, which consists in taking the energy pro- 
portional to the area of the system, fails to ensure the cohesion of its 
constituents, as shown below. 

In this introductory and self-contained paper, I have made the 
deliberate choice of concentrating on and solving a limited number of (two- 
dimensional) problems, rather than giving incomplete answers to a larger 
number of questions, however important they might be. In Section 2, I 
define the general class of systems to which this approach is intended to 
apply. In Section 3, I show that an energy proportional to the area of the 
convex hull leads to the evaporation of the system. Finally, I investigate in 
Section 4 the properties of the model whose energy is taken proportional to 
the area of the circumcircle of the convex hull: it turns out that the 
partition function is exactly computable; moreover, the geometry of a 
typical state can be characterized rather precisely. 

2. Let us denote by x i e R  2 ( i=  1,..., N) the coordinates of the ith 
particle. The smallest convex set containing all the particles, i.e., the convex 
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hull of the set {XN} := {Xl,... , XN} , will be denoted by K(XN). Assuming 
that its diameter D(K):= max/<j ]x i -x j l  is finite, K is a v-sided bounded 
polygonal body (1 <~v<~N) of area ]K[ and perimeter l c~K]. The 
Hamiltonians ~(XN) I shall consider are of the form 

og{(Xu) ----- H(K(XN) ) + V(XN) (1) 

where H is required to depend on the convex hull K(XN) only and to be 
translationaly invariant. V(XN) is the "usual part" of the interaction, 
typically a two-body Lennard-Jones-like potential. (The kinetic part, which 
plays a trivial role, is omitted.) The canonical partition function is defined 
as  

/ .  
Qu([3) = JR2N dXl"" dxN (~((D(XN)) exp[ -- flH(K(XN) ) - flV(XN)] (2) 

The term 3(co(xu)) breaks the translational invariance of the system and 
therefore prevents the divergence of the integral. The class of functions 
CO(XN) to consider is defined in the following lemma. 2 

k e m m a  1. If V(XN) is translationally invariant (i.e., does not 
contain any external field), and (J)(XN): a 2N-~ a 2 satisfies, for all a e R 2, 

(L.I(X 1 .-.~ a ..... XN"IL a)=(D(Xl ..... XN)-~-a (3)  

then the partition function is independent of the particular choice of ~o(xN). 

Proof. We shall show that the partition function (2) can be written 
as 

( .  
QN(fl) = jR2u dXN (~(xl) e x p [  - - /~d~(XN) ] (4)  

where l (1 ~< l~< N) is a fixed index. To that end, consider the transforma- 
tion x; = CO(XN) + X i -  Xt for i = l,..., N. The Jacobian is 

~(XN) = det Vx c~(xN) = det I =  1 (5) 
i i 

by virtue of (3). | 

First of all, let us investigate the properties of the model which is the 
closest analog of the one-dimensional pressure ensemble: that is, we enclose 
the interacting system in a circular container of fixed origin. Allowing the 

2I owe this lemma to O. Penrose. 
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radius of the container to fluctuate by fixing the pressure P, we get the 
partition function 

dxu exp[- --flV(XN)] (6) Zu(fl, P)= dA exp(-f lPA) u(o.,) 

where B(0, r) is the disk of radius r centered at the origin, and A = / r r  2 is 
its area. The Laplace transform in (6) reflects the Legendre transform 
G = F + P V, where G and F are, respectively, the Gibbs and the Helmoltz 
free energy. For a finite system, the former has to be defined here as 

G u(fl, P)= --fl-~ ln[ Z N(fl, P )/N! ] (7) 

P r o p o s i t i o n  1. The ensemble defined by (6) is thermodynamically 
equivalent [without the factor 6(CO(XN)] to an ensemble of the form (2), 
with 

~ ( X N )  : H0(XN) -t- V(XN) := PI~Ra(XN) + V(XN) (8) 

and 

R(xN) := max Ix,I (9) 
l <~i<~N 

ProoL The proof is straightforward: denoting by ZM(X) the charac- 
teristic function of the set M c  R 2, (6) transformed into: 

N 

;. fo ZN(fl, P ) =  dXNeXp[--flV(XN) ] dA exp(--flPA) 1-[ ZB(0,r)(X,) 
2N i =  1 

= 2n dxs  exp[--  fl V(XN)] dr r exp( --flPnr 2) 
2N m a x l  <~t<~N Ixi[ 

= f.2NdXNeXp{--fl[V(XN)+P R2(XN)]} ! (lo) 

Proposition 1 clearly shows what happens if one considers the area of 
the system as an independent variable, as in (6): the corresponding 
Hamiltonian H0(xu) is not translationally invariant, and therefore 
unsuitable to model a "mechanical resorvoir" in the absence of an external 
field. On the other hand, one infers from the transformations made in (10) 
that a "pressure" ensemble is nothing but a canonical one in which some 
interaction of geometric origin is explicitly taken into account via the term 
H(K(XN) ). Consequently, the free energy of models defined by (1) and (2) 
has to be interpreted as a generalized Gibbs free energy, 

Gu(fl) := -kTln[Qu(fl) /NI ] (11) 
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where the role of the pressure is now played by the coupling constant(s) 
appearing in H(K(XN) ). 

In the following, we shall set V(XN)= 0. The next lemma sums up the 
trivial results. 

I_emma 2. If H(K(XN) ) is positive homogeneous of degree p (p > 0) 
in the coordinates [i.e., H(K()~XN) ) - -  12[ PH(K(XN) ) ~ 0 for all XN e 112N, 

2 E R ], then 

,kT,  q r (q  + (2N- 2)/p) (12) <Hq(K))N,~=( ) ~ ) - ~  

where q e R, and (-.  ')N,p denotes the canonical average with respect to the 
ensemble (2). 

Proof. It is implicitly assumed that the left-hand side of (12) makes 
sense (a counterexample is given in Section 3). The homogeneity implies 
that the ground-state energy is zero, realized when all the particles 
coincide. The measure of all configurations of energy E, i.e., the micro- 
canonical partition function 

#N(E) :---- fR2N dx u ~5((D(XN) ) D(E- H(K(XN))) (13) 

is easily verified to be homogeneous of degree r = ( 2 N -  2 - p)/p in E: 

t~N(E) ---- a (N)E  r (14) 

where a(N) depends on N only and consitutes the nontrivial part of the 
problem. The result follows from the definition: 

S~ dE E q+ r a(m) exp(--fiE) 
(Hq(K)>N'a = ~ dEEra(N)  e x p ( - f i E )  (15) 

The above denominator is identical to the partition function (2). This 
leads to the following expression for the free energy per particle in the 
thermodynamic limit (if it exists): 

flg(fi) = fl lim (l /N) Gu(fl) N~oo 
= ( Z / p -  1) + (Z/p)In(tip~Z)- lira ln[cr(N)l/NN (2/p- 1)] (16) 

N~oo 

3,. As announced above, I shall show in this section that a 
Hamiltonian proportional to the area of the convex hull 

HI(K(xN)) := 2IKI, 2 > 0  (17) 

is not sufficiently confining to prevent the evaporation of the system: 

822/57/5-6-7 
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P r o p o s i t i o n  2. The canonical partition function (2) diverges for 
.9~ = Hi:  

QN(B) = oe for all /3, N (18) 

ProoL Consider R, the smallest rectangle of given orientation con- 
taining K, and call the lengths of its sides Lx, Ly. Obviously, H 1 ~< ,~LxLy. 
Taking into consideration that 4 out of the 2N coordinates determine 
K, we get 

NZ(N- 1)2 f o  dLx f~ dLy (LxLy) u-2 exp(-2LxLy) Qu(fl) >~ 

=N!N(N-1)2 N+l fodLX - - =  oe | (19) 
Lx 

The above divergence is prooduced by "stretched" configurations 
possessing a direction along which a particle can be sent to infinity while 
increasing the area ]KI by an arbitrary small factor, provided the width of 
the system in the perpendicular direction is sufficiently small. On the other 
hand, it seems plausible that the logarithmic divergence could be removed 
by dealing with a hard-core system or by adding to HI(K) a term of the 
form # I~KI ~, for some judiciously chosen ~. 

4. Let B(Ce, re) be the circumcircle (of center C~ and radius re) of 
the set (X~,...,XN), that is the smallest circle containing K(XN). Let us 
call obtuse (acute) a polygon having two (three) intersections with the 
boundary of its circumcircle: this generalizes to arbitrary polygons the usual 
nomenclature for triangles (note that the circumcircle of a triangle is often 
defined in the litterature as the circle passing through the three vertices). 
The set of configurations involving more than three intersections is of 
measure zero and therefore discarded. In an equivalent way, K is obtuse iff 
its diameter D(K) satisfies D(K)= 2re(K), and acute iff D(K)< 2re(K). In 
this section, we investigate the properties of the following Hamiltonian: 

H2(K) = )~rZ(K), 2 > 0 (20) 

Let us compute the microcanonical partition function (13) by choosing 
m(XN) as Ce(XN). In the obtuse case, let x~ and x2 be the particles which 
define the diameter of K. Then 

#obt  . . . .  N=(2N~fR4dxldX2(7~x2)N-2(~(~-~"~)(~( E-~TcX2 ) 

2 N(N- 1 ) (21) 
2 
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In the acute case, let x~, x2, and x 3 be the particles defining the circum- 
circle. We shall use a coordinate system with Ce at the origin: 

x~ = 2~ + Ce, i = 1, 2, 3 (22) 

where 

(re c~i}, i = 1, 2, 3 (23) 
\ cos 

2i = \ r e  sin c~/ 

The Jacobian of the transformation is (7) 

dXl dx2 dx3 = dee r3 dre IS(~I, ~2, ~z3)l d~l d~2 d~3 (24) 

where 

S(~1, c~2, ~3):= sin(c~2- ~1) + sin(c%- ~2) + sin(71 - c%) (25) 

The admissible phase space for (~1, ~2, ~3) is not the totality of [0, 2rc]3: 
B(Ce, re) being by hypothesis the smallest circle containing K(XN), 
configurations such that there exists a half-circle containing the three 
particles in its interior are forbidden. Taking into account some obvious 
symmetries, we obtain finally 

dre re(fOr e) dCe 6(C~) 5 ( E -  2rcr~) l~acute, N(E)=4rC 3 2 N-- 3 
2 

x d~2 dc~3 IS( O, a2, ~3)1 

1 N ( N - 1 ) ( N -  2) ( ~ )  N-2 (26) 

It is instructive, at this stage, to compare the total microcanonical 
partition function for H2 = 2tOre 2, 

#N(E) = #obt .... N(E)+Uacutc, N(E)='~N2(N--1)\)~} (27) 

to the corresponding expression for Ho [-as given by (8)] for N - 1  par- 
ticles (recall that one out the N particles of H z is frozen). One immediately 
gets 

1 
fiN_ ,(E) = ~ ( N -  1) (28) 
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The factor N 2, by which the two models differ, does not grow sufficiently 
rapidly to ensure different free energies in the thermodynamic limit: (14) 
and (16) yield 

g(fl, [ H 2 ] ) =  g(fl, [Ho] )=kTln ( f i2 )  (29) 

An interesting open problem consists in determining whether models 
like 

H3(K) = ~-  D2(K), H4(K ) = I c3KI 2 (30) 

possess the free energy (29) or not. 3 
The next proposition is a direct consequence of (21) and (26). 

P r o p o s i t i o n  3. The probability for the convex hull of N points to 
be obtuse (acute) is 

2 2 
Pobtu~e(U) = ~ ,  pacut~(N) = 1 - - ~  (31) 

(Recall that the probability in question is the conditional probability 
generated by throwing uniformly N particles in R 2, their circumradius 
being fixed.) 

One can actually go further into the characterization of a typical con- 
figuration generated by the Hamiltonian H2 by using some results of R6nyi 
and Sulanke. (s'9) These authors give asymptotic expressions for the average 
area ]K[, perimeter [~3KL, and number of vertices v of the convex hull K(XN) 
of N particles uniformly distributed in a bounded convex set M. Specialized 
to M = B(0, r), their expressions become 

(( IKI ))N,r = 7zr2[ 1 -- aN-2~3 + O(N-I) ]  (32) 

(( [QKI ) )  N,r  = 27zr [1 - b N  -2/3 + O(N-I) ]  (33) 

((V))u,r = cN ~/3 + O(1) (34) 

where a = (2/9)(12n) 2/3 F(2/3), b = (n2/12) 1/3 F(2/3), and c = 2n(16/81~) m 

r(2/3). 
The distribution of particles we are concerned with is different: either 

two or three particles are required to belong to the boundary of the circum- 
circle: the corresponding averages are therefore greater than the above 
ones. On the other hand, if we remove these boundary particles from the 
definition of K, we obtain lower bounds to (32)-(34). The difference 
between these two bounds affects N only and therefore does not appear in 

3 Note added in proof: this problem is now solved and the answer is affirmative for both 
models (F. Bavaud, to be published). 
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the leading terms of the asymptotic expansion. Passing to the canonical 
ensemble and using Lemma 2, we get the following result. 

Proposition 4. The canonical averages (2) of the area, perimeter, 
and number of vertices of a system of N particles with Hamiltonian 
H~(K) = 2~zr~ 2 are given asymptotically by 

1 kT 
(]K])N, fl=-'-~ - [-1 --aN 2/3 _]_ O(N-1)-] (35) 

1 ( k T ~  1/2 
N1/2 ( tOKI)N,B=2~\ -~ j  [ 1 - b N - Z / 3 + O ( N  ' ) ]  (36) 

1 
N1/3 (V)N.Z = C+ O(N -1/3) (37) 

It is important to realize that the density of the system under 
consideration [-and, more generally, of any system of the form (1)J is a 
(fluctuating) observable. It appears natural to define is as 

N 
p(Xm) := (38) 

IK(XN)I 

One deduces from (35) the following limit: 

lira ( P ) N ,  fl = 2/kT (39) 
N~oo 

which constitutes the familiar ideal gas equation of state, 2 playing the role 
of the pressure. Note that, in contrast to the usual fixed-container ideal gas, 
the equation of state (39) holds strictly in our model in the thermodynamic 
limit only. 

I conclude the geometric description of the average configurations of 
the model H 2 by the observation that, for growing N, the typical convex 
hulls are increasingly circular: 

Proposition 5. The average isoperimetric deficit satisfies 

 vl/10KI ) kr 0 < ~ \  [K] <~-:-[AN-2/3+O(N 1)1 (40) 
N, fl A 

with A = a - ~/3c 2 ~ 14.95. 

Proof. The isoperimetric deficit attains its lower bound zero in the 
case of circles only. On the other hand, the perimeter of a v-sided polygon 
satisfies (1~ 

]OK] ~ 2r~v sin(~z/v) (41) 
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Therefore  

(t sin ) 2) 
rc 2 (1  3E~N(V)) 2 (42) < ~ r 2 E N ( ( 1 - - - ~ V 2 )  ) < ~ r 2  

(I have used successively an integrated form of Jordan ' s  inequali ty and 
Jensen's inequality).  Using (35) and (37) and passing to the canonical  
ensemble achieves the proof.  
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