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Abstract

In Candida glabrata, the transcription factor CgPdr1 is involved in resistance to azole antifungals via upregulation of ATP
binding cassette (ABC)-transporter genes including at least CgCDR1, CgCDR2 and CgSNQ2. A high diversity of GOF (gain-of-
function) mutations in CgPDR1 exists for the upregulation of ABC-transporters. These mutations enhance C. glabrata
virulence in animal models, thus indicating that CgPDR1 might regulate the expression of yet unidentified virulence factors.
We hypothesized that CgPdr1-dependent virulence factor(s) should be commonly regulated by all GOF mutations in
CgPDR1. As deduced from transcript profiling with microarrays, a high number of genes (up to 385) were differentially
regulated by a selected number (7) of GOF mutations expressed in the same genetic background. Surprisingly, the
transcriptional profiles resulting from expression of GOF mutations showed minimal overlap in co-regulated genes. Only
two genes, CgCDR1 and PUP1 (for PDR1 upregulated and encoding a mitochondrial protein), were commonly upregulated
by all tested GOFs. While both genes mediated azole resistance, although to different extents, their deletions in an azole-
resistant isolate led to a reduction of virulence and decreased tissue burden as compared to clinical parents. As expected
from their role in C. glabrata virulence, the two genes were expressed as well in vitro and in vivo. The individual
overexpression of these two genes in a CgPDR1-independent manner could partially restore phenotypes obtained in clinical
isolates. These data therefore demonstrate that at least these two CgPDR1-dependent and -upregulated genes contribute to
the enhanced virulence of C. glabrata that acquired azole resistance.
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Introduction

Candida glabrata is a haploid member of Ascomycetes normally

not found in the environment but which has rather adapted to

conditions found in mammals [1]. Among human fungal

pathogens, C. glabrata is often reported as the second most

prevalent species after Candida albicans [2,3]. C. glabrata can cause

mucosal and bloodstream infection (BSI) mainly in immuno-

compromised hosts. Worldwide, C. glabrata accounts for an average

11% of infections caused by Candida species, however this

proportion varies from 7 to 20% depending on geographical

locations [4].

C. glabrata infections can be treated with several antifungal

agents including amphotericin B, azoles and echinocandins [5,6].

However, C. glabrata can develop antifungal resistance and

especially to the class of azole antifungals. Azole resistance

surveillance studies have revealed a proportion varying from 10

to 20% of isolates with MIC values reaching clinical breakpoints

(e.g. 64 mg/ml for fluconazole, based on CLSI standards). Several

countries reported an increase in the proportion of azole-resistant

isolates from 2001 to 2007 [4]. C. glabrata is also known for

exhibiting intrinsically higher azole MIC values than C. albicans.

For example, the average of fluconazole MIC values of a C. glabrata

wild type population is near a value of 4 mg/ml, while it is

approximately 32-fold lower for C. albicans [7,8]. We and others

showed that azole resistance in C. glabrata was mediated almost

exclusively by enhanced drug efflux and overexpression of

multidrug transporters of the ATP Binding Cassette (ABC)

transporters. Several genes encoding these transporters were

identified including CgCDR1, CgCDR2 (PDH1) and CgSNQ2

[8,9,10,11,12]. Azole resistance in clinical isolates can be the

result of overexpression of single or several transporters [13]. The

understanding of regulatory circuits controlling the expression of

these genes has progressed in the recent years. A major regulator

of these genes, CgPDR1, was identified [14,15]. This gene belongs

to the family of zinc finger transcription factors and functionally

resembles PDR1 and PDR3 from the baker’s yeast Saccharomyces

cerevisiae. Deletion of CgPDR1 results in a loss of transcriptional

control of the major transporters involved in azole resistance and,

consequently, decreased resistance to these antifungals [14,15].

CgPDR1 exhibits mutations, so called gain-of-function (GOF)

mutations, which are responsible for intrinsic high expression of

ABC transporters and therefore constitute the molecular basis of

azole resistance in C. glabrata [13,14,15]. One striking feature of

GOF mutations is their high diversity among CgPDR1 alleles from

azole-resistant isolates. As many as 67 mutations conferring azole

resistance are described up to now [13,14,15,16,17]. GOF

mutations are found within several domains of the transcription
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factor corresponding to putative functional elements inferred from

comparison to the S. cerevisiae PDR1 and PDR3 and including the

transcriptional activation domain, a regulatory domain and a so-

called middle homology region (MHR) which is found in several

zinc finger proteins [13,16].

Not only are GOF mutations in CgPDR1 important for azole

resistance in C. glabrata but also for fungal-host interactions. We

showed that GOF mutations were associated with enhanced

virulence and fitness in animal models of systemic infection [13].

This was unexpected since it is generally accepted that the

development of drug resistance in other microbes is usually

associated with costs in virulence or fitness. Secondary compen-

satory mechanisms can however restore the costs of resistance

development [18,19].

In this study we addressed in C. glabrata the identification of

genes behind the GOF-dependent virulence of CgPDR1. Because

we rationalized that some genes commonly expressed by GOF

mutations could be responsible for this effect, we analysed with

transcript profiling analysis C. glabrata isolates containing individ-

ual GOF mutations but in identical genetic backgrounds. Only

two genes (CgCDR1 and PUP1) were identified. We describe here

their relevance in the enhanced virulence mediated by CgPDR1

GOF mutations.

Results

Transcriptional analysis of GOF mutations
In a previous study, we reported a high variety of gain-of-

function (GOF) mutations in the transcriptional activator CgPDR1

[13]. These mutations conferred azole resistance through the

differentiated upregulation of several ABC transporters including

CgCDR1, CgCDR2 and CgSNQ2. It is known that CgPDR1 controls

the expression of many other genes, some of which contain a

regulatory domain in their promoter matching the PDRE

(Pleiotropic Drug Responsive Element) described in S. cerevisiae

(TCCRYGSR) [14,16].

We were therefore interested to test whether the differentiated

expression pattern observed for a few genes as described earlier

[13] could be generalized to the entire transcriptome of C. glabrata.

In order to achieve this goal, labeled cRNA from mRNA isolated

in triplicates from strains containing seven different CgPDR1 GOF

was applied to oligonucleotides custom arrays. The selection of

GOFs was based on their occurrence in putative CgPdr1

functional domains including the regulatory domain (L280F,

R376W), the MHR (Y584C, T588A) and the activation domain

(D1082G, E1083Q). The GOF P822L was also selected since it

was previously associated with a strong upregulation of CgSNQ2 as

compared to other ABC-transporters [9]. The format of one-color

hybridization was chosen since it allows direct comparisons

between any strains. The strains containing the different GOF

were obtained by re-introduction of CgPDR1 alleles at the genomic

locus and were described in our previous study [13].

As summarized in Table 1, the number of genes differentially

regulated ($2-fold) by individual GOF as compared to the wild

type CgPDR1 ranges from 73 (for the R376W substitution) to 385

(for the T588A substitution) and no GOF regulated a similar

number of genes. A total of 626 genes were regulated by at least

one GOF (see File S1). The degree of similarity between

transcription profiles in the 626 genes regulated could also be

estimated with linear regression coefficients, which can establish

the extent of gene co-regulation by pairs of separate GOF. As

summarized in Table 2, approximately half of r2 values from

pairwise comparisons were above 0.5 (from 0.54 to 0.87) and thus

signified a moderate trend towards the co-regulation of the genes

by these GOFs. The highest correlation (r2 = 0.87) was observed

between expression pattern of GOF D1082G (SFY103) with

P822L (SFY116) (Fig. 1A, left side). One GOF (R376W) in

SFY101 yielded systematically low r2 values with all other GOFs

(between 0.0003 and 0.058). Increasing the cut-off for differential

regulation to $3-fold did not significantly change r2 values (data

not shown). The expression of genes obtained from GOF P822L

(SFY116) and from R376W is shown to illustrate the low level of

gene co-regulation between both isolates (Fig. 1A, right side).

Taken together, these data support the concept that individual

GOF result each in distinct transcription profiles even though the

number of GOF analysed is probably only a portion of the entire

mutation spectrum.

Given the diversity of transcriptional profiles provided by each

GOF, the generated transcriptional data were clustered in a

separate analysis in order to group sets of genes co-regulated by

the different GOFs. Four separated groups were thus identified

which were enriched in specific biological processes (Fig. 1B). It is

noteworthy that genes from cluster 1 and 4 are enriched in

processes related to amino acid metabolism, while others are

enriched in signal transduction and protein metabolic processes.

We closely inspected the transcription profiles of two isolates,

one carrying the GOF mutation D1082G (SFY103) and the other

the mutation P822L (SFY116). This choice was based on the fact

that these profiles show the highest correlation (r2 = 0.87) and

similar numbers of up-and downregulated genes, thus facilitating

comparisons (Table 1 and 2). Between the two GOFs, 86 genes

were co-regulated (32 upregulated and 54 downregulated) from

the total of 626 genes regulated by at least one GOF. The

Table 1. Number of C. glabrata genes regulated by $twofold
in PDR1 GOF mutants as compared to the wild type.

Strain
CgPDR1 GOF
mutation

Genes
upregulated

Genes
downregulated Total

SFY101 R376W 27 46 73

SFY103 D1082G 53 77 130

SFY105 T588A 235 150 385

SFY109 E1083Q 58 103 161

SFY111 Y584C 197 132 329

SFY115 L280F 67 132 199

SFY116 P822L 71 89 160

doi:10.1371/journal.pone.0017589.t001

Table 2. Correlation coefficients of transcriptional profiles.

GOF in
CgPDR1
allele L280F R376W Y584C T588A P822L D1082G E1083Q

L280F 1 0.016 0.6111 0.3107 0.7761 0.6979 0.8391

R376W 0.016 1 0.0588 0.0316 0.0003 0.0055 0.0003

Y584C 0.6111 0.0588 1 0.5491 0.7798 0.7012 0.7321

T588A 0.3107 0.0316 0.5491 1 0.4591 0.5596 0.4023

P822L 0.7761 0.0003 0.7798 0.4591 1 0.8704 0.7741

D1082G 0.6979 0.0055 0.7012 0.5596 0.8704 1 0.6984

E1083Q 0.8391 0.0003 0.7321 0.4023 0.7741 0.6984 1

doi:10.1371/journal.pone.0017589.t002

Azole Resistance and Virulence in Candida glabrata
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upregulated genes in the SFY103 vs SFY116 comparison showed

enrichment for xenobiotic transporter activity (p = 3.7E-3), while

the downregulated genes exhibited enrichment in amino acid

(arginine, glutamine) biosynthesis processes (p = 5.87E-07 to

2.97E-06). The inspection of conserved motifs in the promoters

of upregulated genes yielded the consensus YCCACGGA (Figure

S3), which closely resembled the PDRE recognition motif of PDR1

in S. cerevisiae ((TCC[AG][CT]G[G/C][A/G]) [20]. These data

are therefore consistent with the role of CgPDR1 in the regulation

of genes by the GOF mutations D1082G and P822L.

To determine whether the expression of genes differentially

regulated by the GOF mutations was also affected by the absence of

PDR1, we analysed the expression profile of the pdr1D strain SFY92.

A total of 247 genes were differentially regulated ($2-fold) in strain

SFY92 as compared to SFY114 (containing the CgPDR1 wild type

allele). Analysis of the 99 downregulated genes showed that one

third of these genes encode for proteins predicted to be localized in

the mitochondria. Moreover, enrichment of specific biological

processes (oxidation-reduction, ATP synthesis coupled to electron

transport chain, cellular respiration) was observed (File S2).

Consistent with these observations is that PDR1 and PDR3 in S.

cerevisiae are known to participate into the mitochondria-nucleus

signalling pathway [21], which may also be applied to CgPDR1.

Finally, 121 genes were differentially regulated not only in absence

of PDR1 but also in the presence of GOF mutations, indicating that

these genes might represent the basal set of PDR1-dependent genes.

Virulence determinants in C. glabrata
We reported that GOF mutations analysed here by transcrip-

tional profiling in C. glabrata not only resulted in azole resistance

but also in enhanced virulence and fitness in a mice model of

infection [13]. We reasoned that enhanced virulence could be due

to specific genes commonly regulated by all CgPDR1 GOFs, given

that this phenotype was shared by all these mutations. Our current

analysis revealed that no gene was commonly downregulated and

only two genes were commonly upregulated by at least two-fold by

all GOFs, i.e. CgCDR1, the well-known ABC-transporter involved

in azole resistance, and the ORF CAGL0M12947g, which we

named PUP1 (for PDR1 UPregulated gene) in the present study.

This gene is highly similar to YIL077c, a gene encoding a protein

Figure 1. Expression profiles of C. glabrata genes regulated by GOFs in CgPDR1. Panel A: Pairwise comparisons of gene expression changes
relative to SFY114 carrying the wild type CgPDR1 allele. Each data point correlate the same gene expressed in strain SFY116 (P822L GOF) versus strain
SFY103 (P1082G GOF) (left side) and in strain SFY116 (P822L GOF) versus strain SFY101 (R376W GOF). For each diagram, r2 values are given. Panel B:
K-means clustering of the normalized expression levels of the 626 genes regulated ($2-fold) by at least one CgPDR1 GOF. Clustering was performed
with GenespringH GX (parameters: Euclidian distance metric, 100 iterations, 4 clusters). For each cluster, enriched biological function and biological
component were determined using GO terms of S. cerevisiae homologues. Results are given below the cluster analysis.
doi:10.1371/journal.pone.0017589.g001
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of unknown function thought be located in the mitochondria. We

tested this hypothesis in C. glabrata by the expression of a GFP-

tagged version of PUP1 in the azole-resistant clinical isolate

DSY565. As shown in Fig. 2, the GFP signal could be detected in

DSY565. Moreover, Mitotracker Red staining (Panel C), which

specifically reveals mitochondrial punctuate and tubular struc-

tures, co-localized with GFP signals of Pup1-GFP. These results

therefore confirmed that PUP1 encodes a mitochondrial protein.

CgCDR1 and PUP1 are overexpressed by all GOFs and

therefore they may constitute good candidates to be responsible

for the enhanced virulence observed in animal models. In vitro,

both genes were dependent on the presence of CgPDR1 (Fig. 3A).

Moreover, PUP1 contains two PDREs in its promoter (2770 to

2763: TCCACGGA; 2740 to 2733: TCCGTGGA) and PUP1

expression was inducible by fluconazole (Fig. 3B) similarly to

CgCDR1. Because they might be important for the enhanced

virulence phenotype, these genes should also be expressed in vivo.

We tested this hypothesis by injecting mice with strains expressing

the GFP under the control of the CgCDR1 promoter or fused to the

PUP1 ORF. Kidneys homogenates were recovered and analysed

by flow cytometry to identify GFP-positive yeast cells. As shown in

Fig. 4, GFP could be easily detected in the azole-resistant

background DSY565 (SFY168) that expresses GFP under the

control of the CgCDR1 promoter. This was not the case in the

DSY562 background (SFY167), where GFP expression driven by

the CgCDR1 promoter is low. Similarly, GFP signals in yeast cells

expressing the GFP-tagged PUP1 were detectable in the DSY565

background (SFY174), but not in the DSY562 background

(SFY173). The results are consistent with the in vitro experiments

performed with both GFP-tagged genes and thus indicate that

CgCDR1 and PUP1 are overexpressed by CgPDR1 GOF both in

vitro and in vivo.

To test whether CgCDR1 and PUP1 were involved in C. glabrata

virulence, mutants were constructed in both the genetic back-

grounds of DSY562 and DSY565 resulting in strains SFY148 and

SFY149 (CgCDR1 mutants) and SFY150 and SFY151 (PUP1

mutants), respectively. The deletion of the genes was verified by

Southern analysis (see Figure S2). The constructed mutants were

next injected intravenously in mice and mice survival was recorded

over time. In this model, mice are immuno-compromised by

cyclophosphamide treatment. In general, deletion of CgCDR1 and

PUP1 in DSY562 background had no significant effects as

compared to the azole-susceptible isolate DSY562 (Fig. 5). On

the contrary, the deletion of CgCDR1 or PUP1 in DSY565 resulted

in a significant decrease in virulence as compared to the wild type

(SFY149 vs DSY565: p = 0.04; SFY151 vs DSY565: p = 0.02).

Deleting both genes from DSY565 (SFY170) had a no significant

effect as compared to single mutants. In addition, revertant

isolates, SFY160 and SFY162, restored PUP1 and CgCDR1

expression, respectively, and the phenotype of the wild type

parent.

Tissue burdens were assessed at day 7 post infection and are

shown in Fig. 6. In this model, mice are immunocompetent and

the endpoint measurement is not mice survival but rather tissue

colonization by the infection agent. CFU values were compared

with each other. In isolates derived from DSY562, it is interesting

to observe that the deletion of PUP1, even if it did not result in a

decrease of mice survival as compared to the wild type,

significantly decreased kidney colonization. This decrease was

compensated by the reintroduction of PUP1 in the mutant

(SFY160). This decrease was even more pronounced in the

absence of both PUP1 and CgCDR1 (SFY169). In isolates derived

from DSY565, the individual deletion of CgCDR1 and PUP1

(SFY150 and SFY151) decreased CFU counts in a significant

Figure 2. Localization of Pup1p in mitochondria. SFY174 cells expressing the Pup1p-GFP fusion protein were stained with Mitotracker Red and
fixed as described in Materials and Methods. Panel A: Nomarski images of the cells; panel B: Pup1p-GFP; panel C: mitochondria stained with
Mitotracker Red; panel D: merging of B and C. Four individual images are shown. Bar, 5 mm.
doi:10.1371/journal.pone.0017589.g002
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manner as compared to the parent strain, a change which was

restored by revertants of the corresponding genes. The double

deletion of PUP1 and CgCDR1 decreased CFU counts in

comparison to all other conditions, as observed from DSY5652-

derived strains, indicating that CgCDR1 and PUP1 deletions have

an additive effect on tissue colonization.

Taken together, these results strongly suggest that CgCDR1 and

PUP1, two genes upregulated by all CgPDR1 GOF mutations, are

important for the enhanced virulence phenotype observed in the

azole-resistant isolate DSY565. Decreased virulence from

DSY565-derived strains was associated with decreased tissue

colonization and mutant phenotypes could be reverted by the

corresponding wild type genes.

Overexpression of CgCDR1 and PUP1 in a CgPDR1-
independent manner

The overexpression of CgCDR1 and PUP1 is under the control

of CgPDR1 in C. glabrata. We showed in the above experiments that

both CgCDR1 and PUP1 have impact on C. glabrata virulence.

However, these experiments were carried out in the background of

a functional CgPDR1 and it is possible that other CgPDR1-

dependent factors contribute to enhanced virulence of azole-

resistant isolates. We therefore expressed CgCDR1 and PUP1 with

a strong constitutive promoter (TDH3) in the background of a

CgPDR1 deletion strainto avoid interference with such factors. As

observed in Fig. 7, the engineered strains could overexpress both

genes at different levels but still to higher levels than pdr1D

Figure 3. Expression of CgCDR1 and PUP1 in vitro. Panel A: Expression of CgCDR1 and PUP1 in isolates containing distinct CgPDR1 alleles. Panel
B: Expression of PUP1 after exposure to 256 mg ml21 fluconazole during 150 min. Quantification was performed by qRT-PCR. The values are averages
of three separate experiments and represent the increase in gene expression relative to DSY562 (set at 1.00). Strains were constructed from a pdr1D
mutant and were named by the re-introduced GOF mutation or wild type CgPDR1 allele. The indicated names correspond to the following strains:
pdr1D: SFY92, PDR1: SFY114, L280F: SFY115, R376W: SFY101, Y584C: SFY111, T588A: SFY105, P822L: SFY116, D1082G: SFY103, E1083Q: SFY109).
doi:10.1371/journal.pone.0017589.g003

Azole Resistance and Virulence in Candida glabrata
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mutants. CgCDR1 levels were approximately equal to those

measured in the azole-resistant isolate DSY565 (Fig. 7A), while

PUP1 levels were higher (approx. 20-fold) when expressed under

the control of the TDH3 promoter than the native promoter

(Fig. 7B). However, both genes were expressed to similar levels in

DSY562 and DSY565 as expected from the constitutive expression

from the TDH3 promoter. Azole MICs strains were 32 mg/ml

fluconazole in strains overexpressing CgCDR1 via the TDH3

promoter, while the fluconazole MICs were almost identical to the

parent strains when PUP1 was overexpressed (1–2 mg/ml, Table 3),

indicating that CgCDR1 is the major mediator of azole resistance in

our strains.

The strains were next injected intravenously in mice and tissue

burden were next assessed from kidneys and spleen from sacrificed

animals (Fig. 8). In general, when CgCDR1 and PUP1 were

overexpressed in a pdr1D mutant background, tissue burdens were

significantly increased as compared to the parent strains. The

colonization was slightly lower when PUP1 was overexpressed as

compared to CgCDR1.

When virulence of the same strains was tested in the immuno-

suppressed mice model, the results showed no significant

difference between strains overexpressing CgCDR1 or PUP1 as

compared to the pdr1D mutants (Fig. 9). A closer inspection of the

obtained data still suggests that strains overexpressing CgCDR1 or

PUP1 tended to be more virulent than their parents. At day 15

post-infection, 90% of the mice infected with the pdr1D mutants

survived, while approximately 70% survived when infected with

the overexpressing strains (Fig. 9).

These results support the idea that the individual overexpression

of CgCDR1 and PUP1 contributed moderately to virulence,

however their overexpression was more important for maintaining

Figure 4. Expression of CgCDR1 and PUP1 in vivo. Flow cytometry
analysis of GFP-positive yeast cells was performed from mice kidneys.
Groups of 4 mice were injected intravenously with 46107 CFU of C.
glabrata strains. Mice were sacrificed at day 7 post-infection. Results are
expressed as percents of GFP-positive events in FACS and represent values
recorded separately for each mouse. Asterisks indicate statistically
significant differences (*: P,0.05; **: P,0.01, ***: P,0.001). Strains
SFY167 and SFY168 express the CgCDR1p-3xGFP construct and are derived
from DSY562 and DSY565, respectively. Strains SFY173 and SFY174 express
the PUP1-3xGFP construct and are derived from DSY562 and DSY565,
respectively. As controls, kidneys of uninfected mice (mock) were analyzed
alone or mixed with 16107 cells of SFY168 or SFY174 grown in YEPD.
doi:10.1371/journal.pone.0017589.g004

Figure 5. Virulence of C. glabrata is dependent on CgCDR1 and PUP1. Survival curves of mice infected with DSY562 (panel A) and DSY565
(panel B) and derived mutants. Statistical differences were performed using the Log-rank Mantel-Cox test (Prism 5.0) by comparing survival curves of
mice infected by the parental strains (DSY562 or DSY565) and by other strains as indicated. Asterisks indicate statistically significant differences
(*: P,0.05; **: P,0.01, ***: P,0.001). NS indicates no significance (P.0.05). For strains derived from DSY562, the indicated names correspond to the
following strains: pdr1D: SFY92, cdr1D: SFY148, CDR1rev: SFY161, pup1D: SFY150, PUP1rev: SFY159, cdr1D, pup1D: SFY152. For strains derived from
DSY565, the indicated names correspond to the following strains: pdr1D: SFY94, cdr1D: SFY149, CDR1rev: SFY162, pup1D: SFY151, PUP1rev: SFY160,
cdr1D, pup1D: SFY153.
doi:10.1371/journal.pone.0017589.g005

Azole Resistance and Virulence in Candida glabrata
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Figure 6. C. glabrata tissue burdens in murine infection models. Fungal tissue burdens in kidneys (panel A) and spleen (panel B) from BALB/c
mice infected intravenously with 46107 viable cells of C. glabrata strains. Mice were sacrificed at day 7 post-infection. Results are expressed as CFUs
per gram of tissue and represent values recorded separately for each of the ten mice. Geometric means are indicated by horizontal bars. Statistical
comparisons are summarized above each panel. Asterisks indicate statistically significant differences (*: P,0.05; **: P,0.01, ***: P,0.001). NS
indicates no significance (P.0.05). The symbol ‘-’ indicates that the statistical comparison was not performed. Statistical differences were determined
using the non-parametric Wilcoxon Rank sum tests (Prism 5.0). The origin of each strain is indicated; strain background (DSY562 and DSY565) is
indicated by filled or empty symbols, respectively. See legend of Fig. 5 for strain designations.
doi:10.1371/journal.pone.0017589.g006
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tissue colonization. Taken together, our results indicate that both

CgCDR1 and PUP1 are important mediators of C. glabrata

virulence, but that their individual overexpression per se is not

sufficient to mimic the increased virulence conferred by CgPDR1

GOF mutations.

Discussion

In this study we analysed the expression profiles of GOF

mutations obtained from azole-resistant isolates in a previous study

[13]. The analysis of transcription profiles gave only two genes

commonly upregulated by all GOFs, CgCDR1 and PUP1. Other

investigators have analysed transcription profiles of azole-resistant

isolates and thus enable comparisons with our study. Recently,

Tsai et al. [16] obtained the transcription profiles of seven clinical

pairs, each containing an azole-susceptible and an azole-resistant

isolate. The CgPDR1 GOF obtained from these strains were

different from those investigated here, except for the L280F GOF.

Their study highlighted 45 genes regulated (by $2-fold change as

compared to the susceptible parent) by at least one clinical pair.

Our study revealed a larger set of genes regulated by at least one

GOF (i.e. 626 genes). CgCDR1 and PUP1, the two genes selected in

our study were found commonly upregulated by all GOFs in the

Tsai et al. [16] study including by decreasing expression levels,

CgCDR1, CAGL0M12947g (PUP1), CAGL0F02717g (CgCDR2/

PDH1), CAGL0K00715g (RTA1), CAGL0C03289g (YBT1),

CAGL0G00242g (YOR1), CAGL0K09702g, CAGL0A00451g

(CgPDR1) and CAGL0G01122g. In a study published by

Vermitsky et al. [14], one azole-resistant isolate (F15) was

compared to an azole-susceptible parent. From the 109 genes

regulated by at least two-fold in the resistant isolate, 34 were found

regulated (out of 626 genes) in our study, among which CgCDR1

and PUP1, the latter being the most upregulated gene in their

study. The differences in transcriptional profiles could be

explained by several factors including experimental conditions,

type of array technology and intrinsic differenced between isolates

used in all three studies. One major difference between our study

and others is that we used an isogenic background in the

reintroduction of the seven individual CgPDR1 alleles, which

prevents intrinsic strain variations. This is perhaps a reason for the

difference between the number of genes regulated in at least one

condition in our study (626 genes regulated by at least one GOF)

and that of Tsai et al. [16] (45 genes regulated in at least one strain

pair). This view is supported by separate results obtained with the

transcriptional comparison of two related clinical strains, DSY717

and DSY2317, the latter containing the CgPDR1 GOF L1081F.

Between these two isolates, only 39 genes were regulated by at

least two-fold (File S3), including CgCDR1 and PUP1, thus

suggesting that intrinsic strain variations may mask the real effect

of GOF on the C. glabrata transcriptome.

The overlap between our study and others [14,16] falls into 14

regulated genes (Figure S4). Besides CgCDR1 and PUP1, which

were found consistently upregulated in all three studies, the other

genes may constitute a core set of genes regulated by CgPDR1. It is

interesting to observe that the 14 genes are almost all found

upregulated in the data provided by Vermitsky et al. [14] and Tsai

et al. [16], while in our case, the regulation of these genes is

dependent on the type of reintroduced GOF in the same genetic

background. Several hypotheses will be provided below.

Given that CgPDR1 is a major regulator of azole resistance in C.

glabrata and should act on regulated genes via PDRE binding

elements in the promoters of regulated genes, the consensus for

CgPDR1 binding (TCCRYGSR) was proposed and we searched

systematically for this motif in the promoter regions of the 626

Figure 7. Overexpression of CgCDR1 and PUP1 in a CgPDR1-
independent manner. Panel A: TDH3-dependent expression of CgCDR1.
Panel B: TDH3-dependent expression of PUP1. Quantification was
performed by qRT-PCR. The values are averages of three separate
experiments and represent the increase in gene expression relative to
SFY196 (set at 1.00). Strains derived from DSY562 are represented by black
bars and the indicated names correspond to the following strains: PDR1:
SFY196, pdr1D: SFY198, pdr1D+TDH3p-CDR1: SFY200, pdr1D+TDH3p-PUP1:
SFY202. Strains derived from DSY565 are represented by white bars and the
indicated names correspond to the following strains: PDR1L280F: SFY197,
pdr1D: SFY199, pdr1D+TDH3p-CDR1: SFY201, pdr1D+TDH3p-PUP1: SFY203.
doi:10.1371/journal.pone.0017589.g007
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genes regulated by at least one GOF in our study. Fourty six (46)

genes contained the consensus. We asked whether the degree of

upregulation obtained by each GOF could be associated by the

presence of the consensus. Our data show that the PDRE

consensus was present in seven (for SFY101) to 45% (for SFY115)

of the upregulated genes in single to several copies (see File S1).

The presence of the PDRE could be detected in the downregu-

lated genes, however the proportion was low (between 1–4%) and

usually the detected PDRE occurred in a single copy. Regulatory

elements on genes dependent on individual GOF were also

searched with the RSAT tool (File S4). The following consensus

site (TCCACGGA) could be detected in the promoters of

upregulated genes from the GOF L280F (SFY115) and P822L

(SFY116) and D1082G (SFY103). It resembles the PDRE

consensus proposed by Vermitsky et al. [14] and fits to the

sequence TCCACGGA published by Tsai et al. [16]. In

complement to these analyses, we also observed that the PDRE

consensus was present in 11 out of 14 promoters of regulated genes

from three different data sets (Figure S4) and thus highlights the

relevance of this binding site for the regulation of these genes.

Future studies will be needed to address the genome-wide

occupancy of CgPdr1 by chromatin immuno-precipitation exper-

iments in C. glabrata. One can expect that CgPdr1 will bind to

some extent to the genes commonly regulated by the different

studies discussed here.

We showed here that GOF mutations in CgPDR1 have

differential effect on transcriptional profiles. This result was

unexpected since previous results investigating the effect of GOF

mutations in regulators of drug resistance in other yeast species (for

example MRR1 or TAC1 mutations in C. albicans) have concluded

to a convergence of transcriptional profiles with different

mutations on a same regulator [22,23,24]. As mentioned from

data shown in Fig. 1A, while a pairwise comparison between two

GOFs can yield good correlation between expressed genes,

another example between R376W and P822L gave striking

different results: here, about 55% of the regulated genes showed

an inverse expression pattern. Such patterns is not unique to our

study: Tsai et al. [16] have analysed the expression of a few genes

including CgCDR1, CgPDR1, CgSNQ2 in a set of isogenic strains

into which individual GOF were re-introduced. The authors

observed a GOF-dependent gene expression pattern as docu-

mented here. Presently, no clear explanations could be provided

four our observations. However, taking S. cerevisiae homologues

Pdr1 and Pdr3 as models, some hypothesis can be formulated. In

S. cerevisiae, the expression of the ABC-transporters PDR5, SNQ2,

PDR10, PDR15 and YOR1 is controlled by Pdr1p/Pdr3p. In

addition, Yrr1p modulates the expression of both SNQ2 and YOR1.

Similarly to PDR3, YRR1 is autoregulated via PDREs in its

promoter [25,26]. Pdr1p and Pdr3p can act as homo- or

heterodimers and can positively or negatively regulate expression

of target genes, indicating that additional factors can modulate

their activity [27,28]. For instance, the transcriptional regulator

Rdr1p, acts as a repressor of PDR5 in a PDRE-dependent manner

and heterodimers of Rdr1p/Pdr1p or Rdr1p/Pdr3p compete with

Pdr1p/Pdr3p for binding to PDREs [29,30]. Similarly, the zinc

cluster protein Stb5p also acts through PDREs and forms

predominantly heterodimers with Pdr1p (no interaction with

Pdr3p or Yrr1p yet described). Yrr1p is only present as a

homodimer [31]. Pdr1 and Pdr3 can also associate to different

subunits of the Mediator complex including Med15 and Med12,

which is an important step into the recruitment of RNA

polymerase II for target gene transcription. These two subunits

are present in the C- and L-Mediator complexes, which may act as

positive and negative regulator of transcription, respectively [32].

While both Pdr1 and Pdr3 can bind to Med15, Pdr3 binds in a

specific manner to Med12 only in cells with mitochondrial

dysfunctions [32]. With respect to CgPdr1, which combined in a

single gene properties shared by Pdr1 and Pdr3, these studies

suggest that CgPdr1 may interact with other DNA-binding

proteins and may also associate with different subunits of the

Mediator complex. The different GOF detected in CgPdr1 may

alter in a positive or negative manner these interactions and thus

could result in differentiated gene expression patterns as observed

in our study. Future studies will be needed to verify this hypothesis.

Virulence and tissue burden quantitative assays performed in

this study support the idea that CgCDR1 and PUP1 are important

for the pathogenesis of C. glabrata at some stage of the infection.

Currently our data cannot discriminate whether or not C. glabrata

can replicate in the tested animal models. At least, the tested

strains can persist over the time course of the experimentation,

which is consistent with similar experiments performed in mice

[33]. Interestingly, enhanced virulence has been observed in other

C. glabrata isolates where azole resistance results from mitochon-

drial dysfunctions independently of GOF CgPDR1 mutations. In

this case, CgCDR1 and PUP1 are strongly upregulated and thus

may also contribute to favor C. glabrata in host interactions [34].

The specific role of individual gene in fungal-host interaction

remains to be solved however several reports have already

identified ABC-transporters as able to contribute to selective

advantages under host conditions. For example, the Cryptococcus

neoformans ABC transporter AFR1 was shown to interfere with

lysosome acidification in macrophages to increase its survival. In

particular, azole-resistant isolates showing increased AFR1 expres-

sion were more virulent than their parental azole-susceptible

isolates [35,36,37], which highlights the relevance of the

association between drug resistance and virulence observed here.

Interestingly, a recent study reported that AFR1 upregulation

could be obtained by reversible chromosome duplication and thus

suggests C. neoformans could use this mechanism to modulate its

virulence [38]. In another fungal species, Botrytis cinerea, which is a

fungus causing losses of commercially important fruits, vegetables

and vineyards worldwide, ABC-transporter upregulation was

Table 3. Fluconazole susceptibilities of CgCDR1, PUP1 and CgPDR1 mutant strains derived from strains DSY562 and DSY565.

Fluconazole MIC (mg ml21)a

Wild type pdr1D cdr1D pup1D cdr1D+CgCDR1 pup1D+PUP1
cdr1D
pup1D pdr1D+TDH3p-CDR1 pdr1D+TDH3p-PUP1

DSY562 4 1 1 2 4 4 1 32 1

DSY565 128 1 4 64 128 128 2 32 2

aMICs were determined by the broth microdilution method according to EUCAST document EDef 7.1 [42].
doi:10.1371/journal.pone.0017589.t003
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associated with drug resistance due to the use of fungicides. B.

cinerea drug resistance is spreading, thus arguing against a fitness

cost due to ABC-transporter upregulation [39]. Regarding PUP1,

no other homologues were found yet involved in microbial

pathogenesis and therefore the exact role of the product encoded

by this gene in C. glabrata pathogenesis remains an open question.

We have attempted the overexpression of both genes in a

CgPDR1-independent manner and animal experiments yielded

results in favor of the hypothesis that CgCDR1 and PUP1

contribute to virulence. However, while tissue burden of mice

were consistently increased when CgCDR1 and PUP1 were

overexpressed (Fig. 8), virulence assays failed to discriminate in a

Figure 8. Effect of CgCDR1 and PUP1 overexpression on tissue colonization. Panel A: Fungal tissue burdens in kidneys. Panel B: Fungal
tissue burdens in spleen. Tissue burden were determined from BALB/c mice infected intravenously with 46107 viable cells of C. glabrata strains. Mice
were sacrificed at day 7 post-infection. Results are expressed as CFUs per gram of tissue and represent values recorded separately for each of the ten
mice. Geometric means are indicated by horizontal bars and asterisks indicate statistically significant differences (*: P,0.05; **: P,0.01, ***: P,0.001).
NS indicates no significance (P.0.05). Statistical differences were determined using the non-parametric Wilcoxon Rank sum tests (Prism 5.0). Strain
background (DSY562 and DSY565) is indicated by filled or empty symbols, respectively. For strains derived from DSY562, the indicated names
correspond to the following strains: DSY562-TDH3p: SFY196; pdr1D-TDH3p: SFY198; pdr1D-TDH3p-CDR1: SFY200 pdr1D-TDH3p-PUP1: SFY202. For
strains derived from DSY565, the indicated names correspond to the following strains: DSY562-TDH3p: SFY197; pdr1D-TDH3p: SFY199; pdr1D-TDH3p-
CDR1: SFY201 pdr1D-TDH3p-PUP1: SFY203.
doi:10.1371/journal.pone.0017589.g008
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statistical manner survival curves obtained with the overexpressing

strains (Fig. 9). Several hypotheses could be provided explaining

these results. First, it is possible that enhanced virulence needs the

simultaneous overexpression of CgCDR1 and PUP1 to result in

significant survival differences with parental strains. Second, it is

also possible that, because the overexpression was carried out in a

pdr1D mutant, other CgPDR1-dependent genes still need to be co-

expressed for phenocopying the enhanced virulence of the original

strain DSY565. Moreover, it is possible that the animal model

used here (mouse intravenous infection) is not best suited to reveal

the role of the two investigated genes. Urinary tract infection

models might represent an alternative, as demonstrated by

Domergue et al. [40]. These questions are currently being

addressed in the laboratory.

In conclusion, our study started from a transcriptional analysis

to identify important mediators of azole resistance and virulence in

C. glabrata. The ABC transporter CgCDR1 contributes almost solely

to azole resistance but but has other activities contributing to the

enhanced virulence of azole-resistant isolates. Nevertheless, this

protein could be targeted for the design of inhibitors interfering

both with resistance and virulence of this yeast species. ABC-

transporter inhibitors have been already described and among

them some are used in animal health for parasite protection (i.e.

mylbemycins) and have low toxicity profiles for mammalian cells

[41]. It will be therefore interesting to test these substances in the

future to decrease drug resistance and its associated virulence in C.

glabrata.

Materials and Methods

Strains and growth media
C. glabrata strains used in this study are listed in Table 4. Yeasts

were grown in complete medium YEPD (1% Bacto peptone, Difco

Laboratories, Basel, Switzerland), 0.5% Yeast extract (Difco) and

2% glucose (Fluka, Buchs, Switzerland). To prepare inocula for

experimental infections, yeasts were grown in YEPD medium.

When grown on solid media, 2% agar (Difco) was added. YPD

agar plates containing nourseothricin (clonNAT, Werner BioA-

gents) at 200 mg ml21 were used as a selective medium for growth

of yeast transformant strains. FLP-mediated excision of the SAT1

cassette was induced by growing the cells for 4 h at 30uC in YCB-

BSA medium (23.4 g l21 yeast carbon base and 4 g l21 bovine

serum albumin; pH 4.0). One hundred to 200 cells were then

spread on YPD plates containing nourseothricin (15 mg ml21) and

grown for 48 h at 30uC to obtain nourseothricin-sensitive strains.

This drug concentration can distinguish between nourseothricin-

resistant and nourseothricin-sensitive cells. Escherichia coli DH5 was

used as a host for plasmid construction and propagation. DH5a
was grown in Luria-Bertani broth or on Luria-Bertani agar plates

supplemented with ampicillin (0.1 mg ml21) when required.

Drug susceptibility assays
The C. glabrata strains were tested for azole susceptibility with the

broth microdilution method described in the EUCAST document

EDef 7.1 [42]. Briefly, aliquots of 1.56105 cells ml21 were

distributed into wells of a microtiter plate in RPMI 1640 containing

2% glucose and incubated at 35uC for 24 h. Endpoint readings

were recorded with an automatic plate reader (Multiskan Ascent,

Thermo) and the lowest azole concentration that reduced growth to

50% of that of the drug-free control was defined as the MIC.

Construction of C. glabrata microarrays
The nucleotide sequences of the 5283 C. glabrata ORFs and the

mitochondrial genome were downloaded from the Génolevure

Consortium (http://www.genolevures.org/). Following the Agilent

eArray Design guidelines, two separate probe sets for each ORF

were designed, each consisting of 60 base oligonucleotides. The

probe selection was performed using the GE Probe Design Tool.

Probes were filtered following their base composition and

distribution, cross-hybridization potential and melting tempera-

ture to yield two probe sets representing each 5210 nuclear and 6

mitochondrial ORFs. These probes cover more than 98% of the

nuclear genome and represent 6 out of the 8 mitochondrial

protein-encoding genes. For quality control and normalization

purposes, 103 probes were selected randomly and spotted 20 times

throughout each array in addition to standard Agilent controls

including spike controls for intra- and inter-array normalizations.

C. glabrata custom arrays were manufactured in the 8615 k format

by Agilent Technologies.

cRNA synthesis, one-color labelling and C. glabrata arrays
hybridization

Sample preparation was performed on three biological

triplicates. Total RNA was extracted from log phase cultures in

Figure 9. Virulence of C. glabrata in strains overexpressing CgCDR1 and PUP1. Immuno-suppressed mice were infected as described in
Material and Methods with strain derived from DSY562 and DSY565. Statistical differences were performed using the Log-rank Mantel-Cox test (Prism
5.0) by comparing survival curves of mice infected by the strains as indicated. The comparison between DSY565-TDH3p and DSY565-TDH3p was
significant (p = 0.04) while comparisons of strains overexpression CgCDR1 and PUP1 with parents (pdr1D-TDH3) was not significant. See legend of
Fig. 8 for strain designations.
doi:10.1371/journal.pone.0017589.g009
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liquid YEPD as previously described [8]. Briefly, after centrifuga-

tion of 5 ml culture (corresponding to 108 cells), the yeast cell pellet

was mixed with 0.3 g of glass beads, 300 ml of RNA extraction

buffer (0.1 M Tris-HCl at pH 7.5, 0.1 M LiCl, 10 mM EDTA,

0.5% SDS) and 300 ml of phenol-chloroform-isoamyl alcohol

(24:24:1). After 1 min of vortexing in a bead beater (Fastprep-24

Instrument, MP Biomedicals Switzerland, Zürich), the aqueous

phase was re-extracted with phenol-chloroform-isoamyl alcohol,

and RNA was precipitated with 600 ml of ethanol at 220uC for

1 h. The RNA pellet was resuspended in 50 ml of diethyl

pyrocarbonate-treated H2O. The integrity of the input template

RNA has been determined prior to labeling/amplification, using

Agilent RNA 6000 Nano LabChip kit and 2100 bioanalyzer

(Agilent Technologies). Agilent’s One-Color Quick Amp Labeling

Kit (Agilent Technologies) was used to generate fluorescent cRNA

according to the manufacturer’s instructions. Briefly, 1 mg of total

RNA from each sample was used to which a spike mix and T7

promoter primers were added, both of which are provided by the

manufacturer. cDNA synthesis was promoted by MMLV-RT

(Moloney Murine Leukemia Virus Reverse Transcriptase) in the

presence of dNTPs and RNaseOUT. Next, cRNA was produced

from this first reaction with T7 RNA polymerase, which

simultaneously amplifies target material and incorporates cyanine

3-labeled CTP. The labelled cRNAs were purified with RNeasy

Mini Kit (Qiagen) and quantified using NanoDrop ND-1000 UV-

VIS Spectrophotometer. 600 ng of Cy3-labelled cRNAs were

fragmented and hybridized for 17 h at 65uC to each array using

the Gene Expression Hybridization Kit (Agilent Technologies) and

a gasket slide with a 8 microarrays/slide format for sample

hybridization to separate each sample in specific sub-arrays of the

8615 K format.

Microarrays data analysis
Slides were washed and processed according to the Agilent 60-

mer Oligo Microarray Processing protocol and scanned on a

Agilent microarray scanner G2565BA (Agilent Technologies).

Data were extracted from the images with Feature Extraction (FE)

software (Agilent Technologies). FE software flags outlier features,

and detects and removes spatial gradients and local backgrounds.

Data were normalized using a combined rank consistency filtering

with LOWESS intensity normalization.

The gene expression values obtained from FE software were

imported into GeneSpring 10.0.2 software (Agilent Technologies)

for preprocessing and data analysis. For inter-array comparisons, a

linear scaling of the data was performed using the 75th percentile

signal value of all of non-control probes on the microarray to

normalize one-color signal values. Probe sets with a signal intensity

value below the 20th percentile were considered as absent and

discarded from subsequent analysis. The expression of each gene

was normalized by its median expression across all samples. Genes

were included in the final data set if their expression changed by at

least 2-fold between each strain expressing a CgPDR1 GOF allele

and the strain SFY114 expressing the CgPDR1 wild type allele in at

least two independent experiments. Corrected p-value (,0.05) was

chosen as the cut-off for significance. Validation of genes found

regulated by microarray analysis was performed by qRT-PCR

analysis (see below for technical details) on a set of nine different

genes. In general, the correlation found between qRT-PCR and

microarray data was excellent (see Figure S1). Microarray data

have been uploaded to the NCBI GEO microarray repository.

The GEO accession number for the C. glabrata Agilent array is

GPL10713 and the accession numbers for the data are GSE23827,

GSE23828 and GSE23829.

Use of bioinformatic tools
The analysis of consensus pattern on C. glabrata promoters

(2800 to 21) was performed using the Regulatory Sequence

Analysis Tools (RSAT: http://rsat.ulb.ac.be/rsat/index.html) and

implemented to the pattern discovery tool (oligo-analysis). The

settings were those supplied by default by the tool provider. The

position-specific scoring matrices (PSSM) consensus matrices were

Table 4. Strains used in this study.

Strain Parental strain Genotype Reference

DSY562 Related to DSY565 Azole-susceptible clinical strain [11]

DSY565 Azole-resistant clinical strain [11]

DSY717 Related to DSY2317 Azole-susceptible clinical strain [13]

DSY2317 Azole-resistant clinical strain [13]

SFY92 DSY562 pdr1D::SAT1-FLIP [13]

SFY93 SFY92 pdr1D::FRT [13]

SFY94 DSY565 pdr1D::SAT1-FLIP [13]

SFY95 SFY94 pdr1D::FRT [13]

SFY101 SFY93 pdr1D::PDR1R376W-SAT1 [13]

SFY103 SFY93 pdr1D::PDR1D1082G-SAT1 [13]

SFY105 SFY93 pdr1D::PDR1T588A-SAT1 [13]

SFY109 SFY93 pdr1D::PDR1E1083Q-SAT1 [13]

SFY111 SFY93 pdr1D::PDR1Y584C-SAT1 [13]

SFY114 SFY93 pdr1D::PDR1-SAT1 [13]

SFY115 SFY93 pdr1D::PDR1L280F-SAT1 [13]

SFY116 SFY93 pdr1D::PDR1P822L-SAT1 [13]

SFY148 DSY562 cdr1D::SAT1-FLIP This study

SFY149 DSY565 cdr1D::SAT1-FLIP This study

SFY150 DSY562 pup1D::SAT1-FLIP This study

SFY151 DSY565 pup1D::SAT1-FLIP This study

SFY152 SFY148 cdr1D::FRT This study

SFY153 SFY149 cdr1D::FRT This study

SFY154 SFY150 pup1D::FRT This study

SFY155 SFY151 pup1D::FRT This study

SFY159 SFY154 pup1D::PUP1-SAT1 This study

SFY160 SFY155 pup1D::PUP1-SAT1 This study

SFY161 SFY152 cdr1D::CDR1-SAT1 This study

SFY162 SFY153 cdr1D::CDR1-SAT1 This study

SFY167 DSY562 CDR1p::[pSF109] This study

SFY168 DSY565 CDR1p::[pSF109] This study

SFY169 SFY152 cdr1D::FRT, pup1D::SAT1 This study

SFY170 SFY153 cdr1D::FRT, pup1D::SAT1 This study

SFY173 DSY562 PUP1::[pSF113] This study

SFY174 DSY565 PUP1::[pSF113] This study

SFY196 DSY562 ScTDH3p-SAT1 This study

SFY197 DSY565 ScTDH3p-SAT1 This study

SFY198 SFY93 pdr1D::FRT, ScTDH3p-SAT1 This study

SFY199 SFY95 pdr1D::FRT, ScTDH3p-SAT1 This study

SFY200 SFY93 pdr1D::FRT, ScTDH3p-CDR1-SAT1 This study

SFY201 SFY95 pdr1D::FRT, ScTDH3p-CDR1-SAT1 This study

SFY202 SFY93 pdr1D::FRT, ScTDH3p-PUP1-SAT1 This study

SFY203 SFY95 pdr1D::FRT, ScTDH3p-PUP1-SAT1 This study

doi:10.1371/journal.pone.0017589.t004
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converted using statistical parameters to consensus patterns and

viewed via Weblogo [43].

GO term enrichment analysis in the investigated genes

was carried out using the Generic Gene Ontology (GO) Term

Finder online tool available at http://quantbio.princeton.edu/

toolsResources.html.

Quantitative real-time RT-PCR (qRT-PCR)
Total RNA was extracted from log phase cultures with an

RNeasy Protect Mini kit (Qiagen) by a process involving

mechanical disruption of the cells with glass beads and an

RNase-free DNase treatment step as previously described [44].

Expression of the CgCDR1, CgCDR2 and CgSNQ2 genes was

quantitatively assessed with real-time RT-PCR in an i-Cycler iQ

system (Bio-Rad). All primers and probes [44] were designed with

Beacon Designer 2 (version 2.06) software (Premier Biosoft

International) and synthesized by MWG Biotech (Ebersberg,

Germany). qRT-PCRwere carried out as previously described

[44]. Each reaction was run in triplicate on three separate

occasions. For relative quantification of the target genes, each set

of primer pairs and the Taqman probes were used in combination

with the primers and probe specific for the CgACT1 reference gene

in separate reactions [9].

CgPDR1 and PUP1 expression levels were determined by real-

time qRT-PCR in a StepOne Real-time PCR System (Applied

Biosystems) [13] using the Mesa Blue qPCR Mastermix Plus for

Sybr assay kit (Eurogentec). Each reaction was run in triplicate on

three separate occasions. CgPDR1 and PUP1 expression levels were

normalized by CgACT1 expression. Changes (n-fold) in gene

expression relative to that of control isolate SFY114 were

determined from CgACT1-normalized expression levels. The

primers used for PUP1 quantification are PUPa (59-cactggtgcgct-

gaaaggtg-39) and PUPb (59-tgtcccaggctatctttgcc-39). The primers

used for CgPDR1 and CgACT1 quantification were previously

described [13]. A two-fold increase in the expression level of each

gene was arbitrarily considered as significant [9].

Disruption and replacement of CgCDR1
For the disruption of CgCDR1, the SAT1 flipping method was

employed (Reuss et al., 2004). The complete CgCDR1 ORF flanked

by 500 bp was amplified by PCR from genomic DNA of DSY562

using the primers CgCDR1-ApaI (59-gcgcaaaGGGCCCtacatgttgg-

caaacccagg-39) and CgCDR1-SacII (59-gcgcaaaCCGCGGttgga-

caattgaatcagccg-39) containing ApaI and SacII restriction sites,

respectively, and inserted into pBluescript II SK(+) to yield

pSF87. CgCDR1 deletion was created by PCR using the primers

CgCDR1-XhoI (59-gcgcaaaCTCGAGtgttacttttctttactttg-39) and

CgCDR1-NotI (59-gcgcaaaGCGGCCGCtaatttatttagcctgcgct-39)

and pSF87 as a template. The resulting PCR product was digested

with XhoI and NotI and ligated to a 4.7 kb XhoI-NotI fragment

containing the SAT1 flipper cassette from pSFS1 (referred as to

FLIP) [45] to yield pSF91. This plasmid was linearised by digestion

with ApaI and SacII and transformed into DSY562 and DSY565.

After selection of transformants on nourseothricin-containing

YEPD plates (200 mg/ml), the CgCDR1 deletion strains SFY148

and SFY149, respectively, were obtained.

For CgCDR1 replacement, the SAT1 cassette was excised in

SFY148 and SFY149 to obtain the nourseothricin-sensitive strains

SFY152 and 153 respectively. The 600-bp of the 39UTR of CgCDR1

ORF was amplified by PCR from DSY562 genomic DNA using the

primers CgCDR1-NotIb (59-gcgcaaaGCGGCCGCaaattttaga-

cagcgctcgg-39) and CgPDR1-SacIIb (59-gcgcaaaCCGCGGtttgcga-

caaattgggcagc-39) and inserted into pSFS1 to yield pSF97. The

complete CgCDR1 ORF flanked by 500-bp upstream and 250-bp

downstream was amplified using the primers CgCDR1-ApaI (see

above) and CgCDR1-XhoIb (59-gcgcaaaCTCGAGtatacctatgagca-

gatttc-39) and inserted into pSF97 to yield pSF103. This plasmid

was linearised by ApaI and SacII and transformed into SFY152 and

SFY153. After selection of transformants on, the CgCDR1 revertant

strains SFY161 and SFY162 were obtained.

Disruption and replacement of PUP1
For the disruption of PUP1 (CAGL0M12947g), the complete

PUP1 ORF flanked by 500-bp was amplified using the primers

PUP-KpnI (59-gcgcaaaGGTACCcattcatacccattccgtgg-39) and

PUP-SacI (59-gcgcaaaGAGCTCtaggattcctgaaatgctgg-39) contain-

ing KpnI and SacI restriction sites, and inserted into pBluescript II

SK(+) to yield pSF90. PUP1 deletion was created by PCR using

the primers PUP-ApaI (59-gcgcaaaGGGCCCattgtaacttatgttgtctg-

39) and PUP-SacII (59-gcgcaaaCCGCGGagtgaccatactacacatta-39)

and pSF90 as a template. The resulting PCR product was digested

with ApaI and SacII and ligated to a 4.7 kb ApaI-SacII fragment

containing the SAT1 flipper cassette from pSFS1 [45] to yield

pSF94. This plasmid was linearised by digestion with KpnI and SacI

and transformed into DSY562 and DSY565 to obtain the PUP1

deletion strains SFY150 and SFY151, respectively.

Another PUP1 deletion cassette was constructed to obtain

strains with deletion in both CgCDR1 and PUP1. As described

above, pSF90 was amplified using the primers PUP-ApaI and

PUP-SacII. The SAT1 marker without the flipper system was

amplified using the primers SAT1-ApaI (59-gcaaaGGGCCCggac-

cacctttgattgtaaatagt-39) and SAT1-SacII 59-(ataagaatCCGCGGgt-

caaaactagagaataataaag-39) and pSFS1 as template. The resulting

PCR products were digested with ApaI and SacII and ligated to

yield pSF101. This plasmid was transformed into the CgCDR1

deletion strains SFY148 and SFY149 to obtain the CgCDR1 and

PUP1 double deletion strains SFY169 and SFY170, respectively.

For PUP1 replacement, the SAT1 cassette was excised in

SFY150 and SFY151 to obtain the nourseothricin-sensitive strains

SFY154 and SFY155 respectively. PUP1 replacement cassette was

created by PCR using the primers PUP-ApaIb (59-

gcgcaaaGGGCCCcgaatctattggtcgcaagg-39) and PUP-SacIIb (59-

gcgcaaaCCGCGGgtaagtcatggagcttatgc-39) and pSF90 as a tem-

plate. The resulting PCR product was digested with ApaI and SacII

and ligated to a 4.7 kb ApaI-SacII fragment containing the SAT1

flipper cassette from pSFS1 [45] to yield pSF98. This plasmid was

linearised by KpnI and SacI and transformed into SFY154 and

SFY155 to obtain the PUP1 revertant strains SFY159 and

SFY160. All above-constructed strains were verified by Southern

blot analysis (see Figure S2). Transformants were selected onto

nourseothricin-containing YEPD plates.

Overexpression of CgCDR1 and PUP1
For CgCDR1 and PUP1 overexpression, the SAT1 marker was

amplified using the primers SAT1-NotI (59-ataagaatGCGGCC-

GCgtcaaaactagagaataataaag-39) and SAT1-BamHI (59-gcaaaG-

GATCCggaccacctttgattgtaaatagt-39) and inserted into the NotI-

BamHI restriction sites of pBluescript II SK(+) to yield pSF30. This

plasmid was then digested with XhoI and EcoRI and ligated to a

1.3 kb XhoI-EcoRI fragment containing the C. glabrata CEN-ARS from

pCgACU-5 (Kitada et al., 1996) to yield pSF126. The 0.7 kb EcoRI-

BamHI fragment from yEpGAP-Cherry-MCS [46] containing the

constitutive S. cerevisiae TDH3 promoter, was ligated into pSF126 to

yield pSF127. The complete CgCDR1 and PUP1 ORFs were

amplified by PCR from genomic DNA of DSY562 using the primers

CgCDR1-EcoRIfor (59-actGAATTCatgtctcttgcaagtgacaag-39) and

CgCDR1-EcoRIrev (59-ataGAATTCtatacctatgagcagatttc-39), and

PUP-EcoRIfor (59-actGAATTCatgtcagacagcagggaaat-39) and
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PUP-EcoRIrev (59-ataGAATTCcgaatctattggtcgcaagg-39), respec-

tively. The resulting PCR products were digested by EcoRI and

inserted downstream of the TDH3 promoter of pSF127 to yield the

CgCDR1 and PUP1 overexpressing vectors, pSF129 and pSF130,

respectively.

The plasmids pSF129 and pSF130 were transformed into the

PDR1 deletion strains SFY93 and SFY95 to obtain strains

overexpressing CgCDR1 (SFY200 and SFY201) or PUP1,

(SFY202 and SFY203). As controls, plasmid pSF127 was

introduced in strains DSY562, DSY565 and derivatives pdr1D
mutants SFY93 and SFY95 to yield strains SFY196, SFY197,

SFY198 and SFY 199, respectively. Transformants were selected

onto nourseothricin-containing YEPD plates.

Construction of the fusions CgCDR1p-3xGFP and PUP1-
3xGFP

To express GFP under the control of the CgCDR1 promoter, the

SAT1 marker was amplified using the primers SAT1-StuI (59-

ataagaatAGGCCTgtcaaaactagagaataataaag-39) and SAT1-

BamHI (see above) and inserted into the StuI-BglII restriction sites

of pBS-3xGFP–TRP1 [47] containing three tandemly fused GFP

genes (3xGFP) to yield pSF104. Five hundred bp of the CgCDR1

promoter were amplified from genomic DNA of using the primers

CgCDR1p-BamHI (59-gcgcaaaGGATCCtacatgttggcaaacccagg-

39) and CgCDR1p-BclI (59-gcgcaaaTGATCAtgttacttttctttactttg-

3) containing BamHI and BclI restriction sites, respectively, and

inserted into the BamHI site of pSF104 to yield pSF109. This

plasmid was linearised by digestion with SphI and transformed into

DSY562 and DSY565 to obtain strains SFY167 and SFY168,

respectively.

To fuse the 3xGFP gene and the PUP1 ORF, the complete

PUP1 ORF was amplified from DSY562 genomic DNA using the

primers PUP-BglIIf (59-gcgcaaaAGATCTatgtcagacagcagggaaat-

39) and PUP-BglIIr (59-gcgcaaaAGATCTtgtatgatcattatcctt-39) and

inserted into the BamHI site of pSF104 to yield pSF113. This

plasmid was linearised by digestion with NcoI and transformed into

DSY562 and DSY565 to obtain strains SFY173 and SFY174,

respectively. Transformants were selected onto nourseothricin-

containing YEPD plates.

Confocal microscopy
To label mitochondria, log phase cultures of strain SFY174

were treated with 0.25 mM MitotrackerH Red CMXRos (Molec-

ular Probes) for 30 min and washed with PBS. C. glabrata cells were

fixed in 3.5% para-formaldehyde at 4uC for 5 min followed by

10 min at room temperature. Cells were then washed 3–5 min

with phosphate-buffered saline (10 mM Na2HPO4, 2 mM

KH2PO4, 140 mM NaCl, 3 mM KCl, pH 7.4). The remaining

fixative was quenched with 100 mM Tris-HCl, pH 8.0. Fluores-

cence was analyzed with a confocal fluorescence microscope (Zeiss

LSM 510 Meta, Jena, Germany).

Flow cytometry
Groups of four female BALB/c mice (20 to 25 g; Charles-River)

were injected into their lateral vein with saline suspensions

containing 46107 colony-forming units (CFU) of the C. glabrata

strains (each in a volume of 250 ml). After seven days, mice were

sacrificed by CO2 inhalation, and kidneys were excised aseptically

and homogenized in 10 ml sterile water. Kidneys homogenates

were washed twice with FACS buffer (16PBS pH 7.4, 5% FCS,

2 mM EDTA pH 8.0) and resuspended in 2 ml FACS buffer.

Remaining tissue aggregates and cell clumps were eliminated by

filtration through 50-mm cell strainers. A FACSCaliburH system

(BD Bioscience) and the CellQuestTM software were used for

analysis.

Animal studies
Female BALB/c mice (20 to 25 g) were purchased from Harlan

Italy S.r.l (San Pietro al Natisone, Udine, Italy) and inbred in-

house. The mice were housed in filter-top cages with free access to

food and water. To establish C. glabrata infection, mice were

injected into their lateral vein with saline suspensions of the C.

glabrata strains (each in a volume of 200 ml).

In virulence studies, a group of ten immuno-suppressed mice

was established for each yeast strain. Mice were rendered

neutropenic by intraperitoneal administration of cyclophospha-

mide (200 mg kg21 of body weight per day) three days before

challenge and on the day of infection. Mice were injected with

76107 colony-forming units (CFU) of each of the investigated

strains. For tissue burden experiments, immuno-competent mice

were inoculated with 46107 CFU. After seven days, mice were

sacrificed by use of CO2 inhalation, and target organs (spleen and

kidney) were excised aseptically, weighted individually, and

homogenized in sterile saline by using a Stomacher 80 device

(Pbi International, Milan, Italy) for 120 s at high speed. Organ

homogenates were diluted and plated onto YPD. Colonies were

counted after two days of incubation at 30uC, and the numbers of

CFU g21 of organ were calculated. For survival experiments, mice

were made neutropenic as previously described [48] and then

injected with 76107 CFUs of each of the strains studied. Mice

were monitored with twice-daily inspections and those that

appeared moribund or in pain were sacrificed by use of CO2

inhalation.

CFU counts were analyzed with non-parametric Wilcoxon

Rank sum tests, while mean survival times were compared among

groups by using the long-rank test. A P-value of less than 0.05 was

considered to be significant.

Ethics Statement
The animal experiments were performed under a protocol

approved by the Institutional Animal Use and Care Committee at

Università Cattolica del S. Cuore, Rome, Italy (Permit number:

L21, 10/02/2008) and authorized by the Italian Ministry of

Health, according to Legislative Decree 116/92, which imple-

mented the European Directive 86/609/EEC on laboratory

animal protection in Italy. Animal welfare was routinely checked

by veterinarians of the Service for Animal Welfare.

Animal experiments carried out for in vivo detection of GFP-

tagged proteins (see above) were performed at the University of

Lausanne and University Hospital Center under the surveillance

of the local governmental veterinarian offices. These experiments

were approved by the local governmental veterinarian offices and

are registered under number 1734.2.

Supporting Information

Figure S1 Validation of microarrays results by qRT-
PCR. Panel A: Gene expression relative to the strain SFY114

(containing the wild type CgPDR1 allele) obtained by microarray

analysis for each of the investigated GOF mutation in CgPDR1.

Color code for up- and downregulated genes is given. Panel B:

Gene expression relative to the strain SFY114 obtained by qRT-

PCR. The values are averages of three separate experiments and

represent increase in gene expression relative to SFY114 (set at

1.00). Primers used for CgPDR1, PUP1, CgCDR1 and the

normalization control CgACT1 are described in the Material and

Methods section. Other primers used for qRT-PCR are listed
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below. The comparison between qRT-PCR results and microarrays

was estimated by linear regression between relative expression

changes. R2 values ranged from 0.4 and 0.89 between comparisons.

Two comparisons including values obtained for CAGL0A00473g

and CAGL0A00451g (PDR1) gave low correlation coefficients. This

is explained by the fact that microarrays values of regulated genes

were 10–100 fold different than observed for qRT-PCR. However,

these discrepancies do not change the categorization of these genes

being up- and downregulated by a given GOF mutation and taking

a 2-fold change as a cut-off value. Forward and reverse primers are

the following for CAGL0K00715g: 59-TGCATCATCGAAGT-

CGTTGG-39 and 59-CCCACGAGTAACAGCACCACT-39; for

CAGL0E03894g: 59-AAGCCGCAGACAAAGAGCAG-39and 59-

CATCACCATTCTCGCCGTG-39; for CAGL0A00473g: 59-

CACTGGTGCGCTGAAAGGTG-39 and 59-TGTCCCAGGC-

TATCTTTGCC-39; for CAGL0F01111g: 59-GTTTGGCTA-

CTTGAGCACCGA-39 and 59-CGATCTCCCCTAGGCCATC-

-39; for CAGL0I09724g: 59-GCCTGAGAGCTTGGACCACT-39

and 59-TTGTTGGACGTGGTCTTCGA-39; for CAGL0D-

02662g: 59-CGCTGATGTTTCTGCGATGT-39 and 59-CACC-

GAATGCGATCATCAAA-39.

(TIF)

Figure S2 Southern blot analysis and diagram illustrat-
ing strategies for disruption and replacement of
CgCDR1 and PUP1 in C. glabrata isolates. DNA was

purified from isolated colonies, digested with the restriction

enzyme PvuII, analyzed by gel electrophoresis and hybridized to

specific probes. Panel A: Analysis of CgCDR1 loci. The expected

sizes for CgCDR1 analysis are: 1.7 kb for DSY562 and DSY565

(wild type CgCDR1 locus); 6.1 kb for SFY148 and SFY149

(cdr1D::SAT1-FLIP); 1.3 kb for SFY152, SFY153, SFY169 and

SFY170 (cdr1D::FRT); 1.7 kb for SFY161 and SFY162

(cdr1D::CgCDR1-SAT1). Panel B: Analysis of PUP1 loci. The

expected sizes for PUP1 analysis are: 1.2 kb for DSY562 and

DSY565 (wild type PUP1 locus); 12.6 kb for SFY150 and SFY151

(pup1D::SAT1-FLIP); 7.8 kb for SFY154 and SFY155

(pup1D::FRT); 1.2 kb for SFY159 and SFY160 (pup1D::PUP1-

SAT1); 9.7 kb for SFY169 and SFY170 (pup1D::SAT1).

(TIF)

Figure S3 Promoter consensus analysis of genes upre-
gulated in SFY103 (GOF mutation D1082G) and SFY116
(GOF mutation P822L). The data was obtained using RSAT

(http://rsat.ulb.ac.be/rsat/index.html) and the oligo-analysis tool

with default settings.

(TIF)

Figure S4 Comparisons of transcript profiling experi-
ments of azole resistance in C. glabrata. Panel A: Venn

diagram was obtained by comparisons of published studies [14,16]

with the present study and included all genes regulated by $2-fold.

Panel B: List of the 14 genes commonly regulated as reported by

published studies [14,16] and by the present study. Color codes

and abbreviations are detailed in File S1.

(TIF)

File S1 List of genes regulated by the GOF mutations in
CgPDR1.
(XLSX)

File S2 List of genes regulated by CgPDR1 in C.
glabrata.
(XLSX)

File S3 List of genes regulated in a pair of isolate
containing an azole-susceptible (DSY717) and an azole-
resistant isolate (DSY2317).
(XLS)

File S4 Putative regulatory sequences in genes regulat-
ed by GOF mutations in CgPDR1.
(PDF)
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