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a b s t r a c t   

Forensic soil examination has a well-established foundation in forensic science, this is in part due to the 
widely varied and complex nature of soil. Within this domain, mineral suite studies are a commonly utilized 
tool in soil examination. However, statistical or probabilistic approaches towards the interpretation of re-
sults from such analysis are lacking and this study aims to fill that gap. Soil samples from four different 
locations in the city of Lausanne, Switzerland were sampled and their mineral fractions, light and heavy of 
size between 90 and 180 µm, were studied utilizing microscopical methods. First, the light minerals were 
identified and counted by employing scanning electron microscopy coupled with energy-dispersive X-ray 
spectroscopy (SEM-EDS). Second, the heavy minerals were identified and counted manually under a po-
larized light microscope (PLM). The resulting count data were subjected to various multivariate statistical 
treatments such as principal components analysis (PCA), hierarchical clustering analysis (HCA), and linear 
discriminant analysis (LDA). These methods assist in identifying pertinent variables and subsequently in 
building various classification models. The validities of these models were then tested and evaluated using 
blind tests. Finally, these methods demonstrate how a probabilistic approach can be taken in the inter-
pretation of the results to answer source level questions. 

© 2021 The Authors. Published by Elsevier B.V. 
CC_BY_4.0   

1. Introduction 

The complex nature of soil, combined with its ease of transfer, 
compels many to consider it to be an ideal type of trace evidence in 
the domain of forensic science [1–3]. Soil is comprised of several 
different components (such as minerals, seeds, pollen, anthro-
pogenic particles, etc.) with characteristics related to the source 
environment as well as parent material. This brings about an ex-
ploitable diversity where different components can be studied in a 
forensic context [1,4]. There are two main utilizations of forensic soil 
analysis: geolocation and comparison cases. The latter will be the 
focus of this study and usually involves the analyses of a trace 
sample of unknown origin, followed by the comparison to various 
bulk samples of known sources. The goal would be to inform on the 
potential sources of the trace sample from a closed set of possibi-
lities [3,5,6]. While the analysis of soils should include the em-
ployment of multiple independent techniques in order to fully 
exploit discriminatory power [4], only the analysis of the mineral 

fraction of a specific size was carried out. This is because the purpose 
of the study was to explore how such results can be considered in 
answering source level questions in an informative manner rather 
than explore the depth of discrimination that can be obtained be-
tween these samples. Such interpretations can be later integrated 
into the wider array of analysis. 

The mineral suites make up an important component for com-
parison due to their variation with the source environment and re-
lative stability [7,8]. Such minerals are well integrated with the other 
components of soil and its analysis necessitates substantial sample 
preparation, as described by Palenik [9], to isolate specific fractions. 
Mineral suites of the sand fraction, specifically between 90 and 
180 µm have, according to Palenik [9], a high transfer probability and 
thus provide a good representation for comparison. In addition, 
heavy minerals are well concentrated in this size range and yields a 
representative view of the mineral suites [8]. 

Minerals of this fraction can be divided into two groups based on 
their density [8,9]. Light minerals with densities less than 2.89 mg/ 
cm3 are composed of mainly quartz, carbonates, feldspars, and micas  
[9]. The distinct classification of phases coupled with the simple 
varieties found in the light mineral fraction allows for easy identi-
fication via elemental analysis such as SEM-EDS [10]. Utilizing such 
methods, light mineral fraction analysis can be easily automated to 
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provide a proportional count of each type of mineral present. Such 
an approach mitigates the tediousness of identifying and counting 
these minerals manually [10,11]. The main drawbacks, however, are 
the lack of varietal features in this fraction and the fact that these 
minerals make up the most abundant minerals in the earth’s crust  
[12]. This disadvantage is especially pertinent if one focuses only on 
chemical compositions and not on physical properties such as 
morphology [6]. As such, discrimination based on these components 
may not be immediately apparent, therefore requiring the use of 
statistical treatments to accentuate their significance. 

Heavy minerals with densities greater than 2.89 mg/cm3 on the 
other hand possess much more variety and thus present a wider 
range of compositions [8]. Since minerals possess highly ordered 
chemical and physical structures, their optical properties are highly 
characteristic. These properties have been well documented and 
allow for their identification and counting under polarized light 
microscopy [8,13,14]. With the correct training and tools, heavy 
minerals may be identified or classified based on their morphology, 
color, refractive index, and optical properties under polarized light. 
This provides a means of obtaining the mineral count of a sample. 
However, heavy minerals are a small fraction of the soil sample, 
rarely making up more than 1%. Therefore, in order to study them in 
appreciable quantities it is necessary to concentrate them since bulk 
analysis of soil rarely reflects any information originating from this 
fraction [8,9]. 

While there exist many methods for the analysis of soils, espe-
cially with the advancement in instrumental techniques in recent 
times [4,15], microscopy, optical or otherwise, remains a preferred 
tool in the arsenal of many forensic soil examiners. Such methods 
provide the benefit of allowing the user to physically see and po-
tentially identify the various materials present in a sample. As a 
result, ambiguity is reduced since individual particles can be char-
acterized and isolated for further analysis [5,16,17]. Furthermore, 
these methods permit the study of physical characteristics such as 
morphology and texture, which would otherwise be missed by 
straight chemical analysis [17]. 

There are, however, considerations that should be made when 
using such results to aid in source level inquiries. In general, com-
parison of soil samples using any method typically leads to one of 
three conclusions: differentiated, non-differentiated, or inconclusive  
[5,6,18]. Once this decision has been made, the interpretation of the 
results often stops there, with no further insight into the significance 
of this conclusion. It is commonly accepted that the complexity of 
soil gives a quality of uniqueness to soils from different sources. The 
claim then follows that it is highly improbable that two soils share 
the exact same composition, and they will therefore be differ-
entiated in some manner [15]. While this might be the case, natural 
variability within the sample renders it difficult to draw a definitive 
line that discriminates two samples, especially if they are closely 
related in terms of environment and source material. More clearly 
stated, even though two samples may be similar or dissimilar, it is 
insufficient to simply draw conclusions based on the ability to dif-
ferentiate or not between them. Instead, it is important to identify 
which variables are significant in their discrimination and to what 
extent. In doing so, the pertinence and strength of the results can be 
more accurately evaluated. This is related to the intra- and inter- 
variability of the samples [19]; the variation within the relevant 
population as compared to the variation between different popula-
tions. Understanding this is key to providing useful information to-
wards the answering of the question of common source. 

With respect to the comparison of mineral suite compositions, 
there is a tendency to focus on certain key minerals as a means of 
discrimination. That is to say that they are present, preferably in 

abundance, in one sample, but either completely absent or present 
in an appreciably different quantity in the other sample [18]. While 
this semi-quantitative approach may be sound, it is limited to 
samples that are clearly differentiable in terms of composition and 
offers no means of measuring the significance of a non-differentia-
tion decision. Without a relevant database, there is no way of 
knowing just how unique such a composition may be and samples 
with similar composition may be falsely linked due to such a sub-
jective decision. Furthermore, if a key “rare” mineral presents itself 
in only small concentrations, there would be a high relative standard 
deviation [20,21] which may result in it being undetected in certain 
samples when it is in fact present, leading to a false exclusion. There 
is thus a need, as highlighted by some publications [6,18,22], to take 
a probabilistic approach towards the interpretation of “non-differ-
entiations” in casework. Such notions are also seconded by the best 
practices manual published by European Network of Forensic Sci-
ence Institute’s animal, plant and soil working group [23]. In order to 
carry out such an approach, the use of a case relevant localized 
database, as well as parametric or non-parametric multivariate 
statistics to model the inter and intra-variability of the data is re-
quired. With such information, evaluations at the source level can be 
considered under the proposition that the samples share a common 
source and the proposition that they do not [20]. Hence, the analyst 
would be able to provide a much more complete interpretation than 
just simply the ambiguous statement that the two samples “cannot 
be differentiated”, where the significance of this statement is left to 
the decision maker to interpret. 

Such approaches with statistical tools are typical in other aspects 
of forensic science [19,24] as well as with certain instrumental ana-
lysis of soils [6]. Their use has also been explored in the closely related 
domains of geology and botany in order to classify samples by loca-
tion based on count data [25]. However, they remain rare when 
comparing mineral suite compositions for forensic purposes with 
only a handful of studies found [22,26]. With such methods, the goal 
is to create a statistical model that would group various samples into 
established classes, which in this case refers to the source location. 

Based on analysis of the mineral suites of the sand fraction, this 
study explores how the results can be considered in answering 
source level questions in an informative manner by using statistical 
tools. Two phases were executed in succession, the first being a 
mostly exploratory phase to understand the data, find patterns of 
interest, and identify, if any, key potentially discriminating variables. 
Secondly, with the information obtained during the first phase, a 
more directed approach was then taken in building a predictive 
model that would be able to class an unknown sample into the 
various categories with known or at least appreciable uncertainty. 
Not only can such a model be evaluated for its precision and accu-
racy, but it also furnishes its classifications with transparency. This 
provides a more complete picture for the interpretation of the data. 

Soils from four different parks in Lausanne, Switzerland were col-
lected and analyzed for this study. These samples have been known to 
be difficult to differentiate with other methods such as pH, elementary 
composition or particle size distribution, etc. [27]. These samples share 
a similar composition given the similar geological and biological setting 
of the area. Lausanne lies on the Molasses basin along with the other 
major cities and cantons in Switzerland, soils originating from the basin 
thus share many similarities due to the parallel conditions of weather, 
elevation, parent materials, etc. [28]. As such it was expected that the 
raw mineral counts would easily produce a subjective “non-differ-
entiated” result, despite being from different locations. Multivariate 
statistics were applied to better understand and clarify such a result, 
with the hope that a more informative interpretation could be obtained 
for answering source level questions. 
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2. Materials and method 

2.1. Sampling and sample preparation 

Samples in this study were obtained from four different parks in 
the Lausanne area: Valency (VA), Mont-Repos (RE), Denantou (DE), 
and Bourget (BO) as shown in the to-scale map in Fig. 1. These lo-
cations are a mix of urban and natural settings, although the soils are 
most likely of natural origin and have not been imported. The exact 
sampling points within these parks were chosen based on their se-
clusion and accessibility from a main track. Respectively in these 
locations, samples of 20 g were collected from the surface from a 
central point (CC), followed by two points found 2 m to the north 
(NN) and south (SS). Soils from each sampling point were collected 
with inert tools, packaged in plastic seal bags, and dried at ambient 
temperature. 

To prepare the respective samples for analysis, 3–4 g of sub- 
sample was first obtained by coning and quartering to ensure 
homogeneity. The process described by Palenik [9] was then carried 
out to separate both the light and heavy mineral fraction of size 
between 90 and 180 µm. Three replicates of all the center points 
were obtained for analysis with two additional replicates of the 
North and South locations respectively for the heavy mineral frac-
tion. Each sample was labelled by their location, the cardinal di-
rection, and the replicate number. For example: VACC1 refers to the 
first replicate obtained from the central point of Valency park. 

2.2. Light mineral fraction 

A subsample of the light mineral fraction was obtained once 
again by quartering. This subsample was then mounted in a 
ClaroFast hot mounting acrylic resin using a Struers Cito-Press 
mounting press. Parameters of the mounting process can be found in 
the Annex. These resin mounts were then polished using silicon 
carbide and subsequently diamond polishers of sizes, 6, 3 and 1 µm 
progressively. These mounts were then carbon coated with a 
Cressington Carbon Coater at 4.0 V which gives a coat of around 
15 nm. They were then observed under a Tescan Mira II LMU SEM 
with a Penta-FET EDS detector. The AZtec software was utilized to 
carry out the automatic counts. The exact parameters for imaging 
and quantifying X-ray counts can be found in the Annex. For each 
mount, the image of an area was first taken to establish the 
thresholds of contrast in order for the software to identify the mi-
nerals as target areas to analyze. An erosion function was utilized to 
minimize issues due to adjacent touching particles being counted as 
one particle, and a hole-fill function was added to tackle the issues of 
particles with gaps. Once these parameters were optimized, an au-
tomation process was set in place to count and analyze these mi-
neral particles across the mount. These particles were then classified 
based on their elemental composition by percent weight according 
to the scheme found in the Annex Table 1. Where possible, up to 
approximately 1000 particles were counted per preparation. 12 
samples consisting of 3 replicates of each center point were analyzed 
using this method. 

2.3. Heavy mineral fraction 

The heavy mineral fractions were respectively mounted on mi-
croscope slides using Cargille immersion oil with refractive index of 
nD = 1.660. The resulting yield of minerals was sufficient to produce 
1–3 microscopic slides for each replicate with approximately three 
to five hundred particles on each slide. All slides were utilized in 
counting to ensure the results were representative. The slides were 
then observed utilizing a Leica Leitz DMRXP polarized light micro-
scope. Minerals were then classified based on their optical char-
acteristics and morphology under 100 x or 200 x magnification, with 

references to the literature for consistency [8]. The method de-
scribed by Graves [14] was adapted; the rotating stage of the mi-
croscope was fixed and the slide was allowed to traverse horizontally 
and minerals that came into the field of view that intersected the 
ocular crosshairs were identified and counted. Once the end of a row 
was reached, the slide was then displaced vertically by a sufficient 
distance to avoid double counting. This process ensures consistent 
counting and up to around 300 particles were counted for each re-
plicate. In total, 28 samples were observed, comprising 3 replicates 
for the center point (CC) and two replicates for the North (NN) and 
South (SS) locations. 

2.4. Data treatment 

The numerical data obtained for each sample was first normal-
ized to a hundred percent based on total mineral count in order to 
compare fairly across the samples. R statistical software was then 
used in all the data treatment. First, to explore and visualize the data, 
each mineral type was plotted against their proportion and sepa-
rated by location to evaluate their discriminating potential. The light 
mineral fraction was eliminated as an effective means of dis-
crimination on this basis. Variables, if any, were then preliminarily 
selected for evaluation based on their perceived initial potential and 
confidence in identification. Multinomial logistic regression on each 
of these selected variables was carried out to evaluate and select 
suitably discriminating minerals based on their p-values, using VA as 
a reference location. These p-values were calculated from the Z- 
score for a normal distribution under the null hypothesis that the 
counts of each variable are not different for distinct locations. It thus 
refers to the probability of observing the results given that the null 
hypothesis is true [21]. 

Three different pretreatment methods were applied: total pro-
portion normalization, square root, and a combination of both. These 
were evaluated using the same visual and regression methods, 
which resulted in selecting both pretreatment methods. Using 
multinomial logistic regression as a guide, the proportions of mi-
nerals were compared between locations to evaluate if their pro-
portions were different. The minerals with p-values less than 0.1 for 
at least two of the locations, as well as dolomite were selected for 
the next phase. 

Pretreated values of selected variables were then used to obtain 
their principal component scores utilizing their covariance. After 
which, the selection of variables was further refined based on their 
loadings, clustering ability, and percent variation explained. The 
refined list of variables was then applied to HCA methods where four 
distance measures were utilized: Euclidean, Manhattan, Minkowski, 
and Bray-Curtis [24,25,29]. For each distance measure, four clus-
tering methods: simple, complete, average, and ward were tested to 
obtain sixteen different dendrograms. The dendrogram with the best 
separation and most accurate groupings was selected. 

A linear discriminant model was then built with the same 
parameters and evaluated for its performance by sampling one- 
thousand times from the dataset. Each repeated sampling splits the 
data into a training and test set, which was used to evaluate the false 
positive rate for each classification and overall average performance. 
The complete dataset was then used to construct a final model. The 
performance was calculated by the average percent of correct clas-
sifications, and the false positive rate for each class was calculated by 
dividing the number of false positives by the sum of false positives 
and true negatives. 

Finally, two sets of blind tests were carried out with two samples 
from the center points in each instance. The first set of blinds la-
belled A and B, were analyzed for their heavy mineral fraction as 
described with the known samples. The resulting numerical counts 
were then treated in the same manner and used to predict their PCA 
and LDA scores, as well as to calculate their distance relative to the 
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known dataset. The models were then used to classify the possible 
locations of these blind samples using all three models. The LDA 
model provided a posterior probability for its classification using an 
equally distributed prior probability of 0.25 for each location. 

After the termination of the first set of blind tests, refinements in 
variable selection were carried out to improve the models. Minerals 
with counts of less than 5% in all locations were eliminated and the 
models were rebuilt using the remaining variables. The process was 
then repeated with the second set of blind samples labelled C and D 
using the refined models for classification. 

3. Results 

3.1. Light mineral fraction 

Table 1 shows the different counts for the established light mi-
nerals as classified automatically by the Aztec software based on 
their EDS spectra. In total, 12 samples were analyzed and 18,544 
particles classified. 

A visual representation of the mineral proportions can be seen in  
Fig. 2. As seen, quartz accounts for the large majority of the minerals 
present. Other mineral types typically make up for less than 10% of 
the light mineral suite. Visually speaking, the minerals do not appear 
to have much discriminating power aside from a few candidates that 
can potentially differentiate between DE and BO locations. These 
are: quartz, carbonates, oligoclase, and potassium rich feldspars 
(K-spar). 

Scaled principal components obtained using this data set without 
biotite, muscovite, or anorthite show no inherent potential to group 
or separate these samples by location (see Fig. 3). Pretreatments 
applied show no improvement in separating these samples and do 
not appear to mitigate the heavy weighting of the quartz fraction. An 
argument could however be made for DE samples being isolated in 
the bottom right quadrant mainly due to the loadings of the car-
bonates. In addition, the BO samples were also tightly grouped due 
to the loadings of quartz and oligoclase, however, these samples 
have huge overlaps with other location samples. 

3.2. Heavy mineral fraction 

Ten main types of minerals were identified to be present con-
sistently in the heavy mineral fractions: apatite, chlorite, chloritoid, 

Fig. 1. Map of the Lausanne area with the four locations labelled (VA = Valency, RE=Mont-Repos, DE Denantou, and BO=Bourget).1  

Table 1 
Light mineral fraction count for respective samples and replicate.              

Sample Quartz Carbonate K-spar Albite Anorthoclase Oligoclase Anorthite Muscovite Biotite Not-classified Total  

RECC1  589  40  16  51  22  49  1  0  0  105  873 
RECC2  472  21  10  5  5  14  0  0  0  82  609 
RECC3  716  25  35  1  45  48  0  0  0  69  939 
BOCC1  667  46  21  100  32  57  0  2  3  101  1029 
BOCC2  717  32  24  69  34  65  0  0  6  101  1048 
BOCC3  697  36  41  61  52  67  0  0  1  66  1021 
DECC1  726  1  7  86  30  53  0  0  2  110  1015 
DECC2  287  1  3  1  6  10  0  0  0  42  350 
DECC3  714  0  24  62  64  55  0  0  1  46  966 
VACC1  409  1  10  2  9  19  0  0  0  50  500 
VACC2  692  54  31  15  54  77  0  0  0  77  1000 
VACC3  676  29  22  66  60  48  0  0  4  56  961 

1 Map from the Guichet Cartographique Cantonal, https://www.geo.vd.ch/ 
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Fig. 2. Percent proportions of light minerals from different locations (n = 12).  

Fig. 3. First two principal component scores and variable loadings of light minerals (n = 12). Small symbols represent the scores of the actual sample and the big symbols 
represent the center of each location group. 
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dolomite, epidote, garnet, glaucophane, hornblende, tourmaline, and 
opaque minerals. In total, 32 samples, including the blinds, were 
counted representing a total of 10,451 particles visually identified 
and counted. 

The raw heavy mineral counts of these ten minerals can be found 
in Table 2. Remaining minerals under “others” include rock frag-
ments that were polycrystalline, and quartz that have hematite in-
clusions that render them heavy. Also present in minute amounts 

were glauconite, zircon, and some pyroxenes. The raw data revealed 
some potential for differentiating between certain locations. This is 
especially the case for chlorite, dolomite, epidote, hornblende, and 
the opaque minerals as seen in Fig. 4. There is also some indication 
that Hornblende counts are distinct between VA and DE locations 
from BO and RE locations, a trend that is also observed to a weaker 
extent in glaucophane. Both chlorite and epidote proportions show 
strong potential to separate between DE and BO samples, as well as 

Table 2 
Heavy mineral counts of respective samples and replicates.               

Sample Garnet Glaucophane Tourmaline Hornblende Chloritoid Dolomite Apatite Epidote Chlorite Opaques Others Total  

BOCC1  2  3  2  7  2  41  8  21  49  38  130  303 
BOCC2  1  1  3  6  1  43  7  19  53  34  152  320 
BOCC3  7  4  3  8  1  48  20  29  49  27  120  316 
BONN1  5  3  5  8  3  44  9  25  36  33  158  329 
BONN2  4  3  2  10  3  54  7  21  44  40  170  358 
BOSS1  6  3  3  9  4  39  19  35  60  46  132  356 
BOSS2  13  3  2  10  2  32  6  32  49  37  145  331 
DECC1  4  3  2  17  3  1  17  51  29  34  145  306 
DECC2  10  4  4  9  4  0  22  43  24  59  127  306 
DECC3  7  3  3  16  6  1  18  58  25  57  144  338 
DENN1  14  3  5  14  5  1  14  38  25  44  148  311 
DENN2  10  6  7  14  4  2  14  53  36  58  146  350 
DESS1  11  4  5  15  2  1  7  30  22  48  152  297 
DESS2  11  3  5  10  7  0  7  44  27  47  139  300 
RECC1  5  2  3  3  0  26  16  20  29  45  149  298 
RECC2  4  1  2  2  2  30  7  25  33  58  145  309 
RECC3  14  3  2  7  2  24  14  36  40  64  125  331 
RENN1  4  1  7  13  1  33  10  22  29  50  185  355 
RENN2  7  2  3  7  5  50  10  31  45  50  136  346 
RESS1  7  2  4  5  2  50  9  34  43  66  167  389 
RESS2  5  4  3  9  2  48  9  28  34  65  119  326 
VACC1  5  3  3  12  4  25  4  28  37  30  151  302 
VACC2  4  5  3  14  1  17  9  43  40  45  144  325 
VACC3  5  3  5  15  5  24  20  34  48  45  136  340 
VANN1  6  3  4  11  10  36  12  34  34  39  135  324 
VANN2  9  5  5  16  3  45  10  34  38  40  131  336 
VASS1  4  4  4  12  7  30  9  32  25  45  146  318 
VASS2  2  5  3  18  9  33  19  23  45  41  142  340 
Blind A  6  4  4  17  7  1  21  46  23  46  131  306 
Blind B  8  3  3  16  4  42  10  26  30  48  145  335 
Blind C  8  4  8  7  4  48  12  22  39  26  175  353 
Blind D  4  2  2  5  1  38  8  20  22  39  156  297 

Fig. 4. Percent proportion of selected minerals in the heavy mineral fraction by location and pretreatment (n = 28).  
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to a lesser extent from both VA and RE samples. Dolomite strongly 
separates DE samples from the rest of the samples given that there 
are close to none. Finally, the proportions of opaque minerals in-
dicate a potential difference between counts in VA and BO samples 
from DE and RE samples. When the samples are grouped by their 
cardinal directions (NN, SS, and CC) there are no obvious trends that 
could be observed with respect to their mineral counts. 

Applications of data pretreatment methods generally aid in 
spreading out the variation in low proportional count data relative to 
the higher proportions, resulting in clearer separations in some 
cases. As seen in Fig. 4, the spread of the proportions within some 
locations were reduced for higher proportion minerals such as in BO 
and DE for chlorite, RE for epidote, and BO, as well as VA for the 
opaque. The combination of increased inter-variation and decreased 
intra-variation appears to aid in the separation of certain groups 
based on specific minerals whose discriminating potential was al-
ready observed in the raw data. 

Multinomial logistic regression for each mineral by pretreatment 
also highlights these effects with a general decrease in p-values in 
certain important minerals as shown in the Annex Table 2. Overall, 
the utilization of both pretreatment methods seems to alter the 
variations in the most favorable way in terms of separating by lo-
cation and was therefore chosen. The following six minerals were 
selected based on the criterion mentioned involving their p-values 
(< 0.1) from the multinomial logistic regression: hornblende, glau-
cophane, chloritoid, epidote, chlorite, and the opaque minerals. 
Dolomite was also selected despite not meeting the p-value criteria, 
as it was a clear discriminating variable based on the visual plots. Its 

high p-value in the multinomial logistic regression will be discussed 
in the next section. 

3.3. First attempt at a model 

Principal component scores derived from these minerals show a 
strong clustering and separation for DE samples based on the first 
two principal components. While the other three locations do show 
separation, there is a more uncertainty in their groupings, with their 
confidence ellipses exhibiting overlap (see Fig. 5). Based on the 
loadings in Fig. 5, DE samples are primarily isolated from the other 
location samples based on the first principal component, which is 
heavily weighted by the proportion of dolomite, epidote, and to a 
lesser extent chlorite. DE samples have a much higher variation in 
the second principal component mostly influenced by the opaque 
minerals. This first principal component is also responsible for the 
weak separation between the BO and VA groups. Between these two 
groups, the opaque mineral proportion does not vary significantly, 
and they are separated from the RE samples by the second principal 
component based on the opaque minerals. Finally, RE and VA are 
also separated in the diagonal direction based on glaucophane, 
hornblende, and chloritoid counts. 

Distance calculation as well as the dendrograms reveal that uti-
lizing the Manhattan distance with a ward clustering yields the most 
accurate groupings. In which all of the DE and VA samples were 
correctly classed, two BO samples were incorrectly classed as VA, 
and one RE sample was incorrectly classed as BO shown in Fig. 6. 

Fig. 5. First two principal component scores and variable loadings of heavy minerals with prediction of blinds (n = 28) with the predictive scores of two blind samples. Small 
symbols represent the scores of the actual sample and the big symbols represent the center of each location group. 
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LDA using the same variables and resampling for a thousand 
times yielded an average performance of about 85%, the false posi-
tives rates are shown in Table 3. The model is thus apparently ef-
fective in distinguishing samples of DE origin, with much more 
uncertainty in classifying samples of other locations, especially RE, 
which performed the worst. 

3.4. First set of blind tests, samples A and B 

Utilizing these three models, the identities of the blind tests were 
approximated. Predicted principal components scores in Fig. 5 show 
blind Sample A to be distinctly clustered with the DE samples and 
blind sample B to be positioned close to the center of the other three 
locations, although noticeably closer to VA. Hierarchical clustering 
using the Manhattan distance measurement and ward clustering 
also classified the blind sample A into the DE group and the blind 
sample B into the VA group in Fig. 6. 

The LDA model provided the posterior probabilities shown in  
Table 3. This model classified blind sample A into the DE group with 
a probability of close to 1, with the other classes being negligible in 
their probability. As for blind sample B, the model gave the highest 
posterior probability for VA but non-negligible values for RE and BO, 
in that order. The true identities of the blind samples for A and B are 
DE and RE respectively. Hence, blind sample A was classified accu-
rately, while there were certain inaccuracies for blind sample B. It 
was concluded that there were issues with this attempt at a model 
and further refinements were carried out along with an addition of a 
second set of blind tests to test the new models. 

3.5. Model refinement, evaluation, and all blind tests (Samples A to D) 

In this second attempt of a model, only data from minerals that 
had more than 5% proportions were used. These minerals represent 
the high-count variables and are chlorite, dolomite, epidote, and the 
opaque minerals. The first two principal components scores derived 
from these minerals resulted in a larger overlap of the confidence 
ellipses between locations and a larger grouping size, although se-
paration is still visible. Sample B is located in the overlap of the VA 
and RE samples but much closer to the center of the RE samples this 
time around. Sample A is still distinctly clustered among the DE 
group. With respect to the new blind samples, scores for sample C 

and D landed close to the center of the BO and RE clusters respec-
tively. These scores are shown in Fig. 7. 

False positive rates increased for the classification of BO, RE, and 
VA classes to approximately 20% for each, and overall model per-
formance also deteriorated to around 80% in the reworked LDA 
model. Posterior probabilities for sample A remained the same, with 
a close to 1 probability for DE and negligible probabilities for the 
other classifications. Concerning sample B, the two highest posterior 
probabilities were for VA and RE with approximately an even split 
between the two. As for the second set of blind samples, the highest 
posterior probability for sample C and D are BO and RE respectively, 
with other locations presenting significantly lower to negligible 
posterior probabilities. Table 4. 

The identities for the second set of blind tests were BO and RE for 
samples C and D respectively. Therefore, they appear to be correctly 
classed using the refined model. 

4. Discussion 

4.1. Light mineral fraction 

At a preliminary glance, none of the minerals in the light mineral 
appear to have strong discrimination potential between locations. 
Quartz and potassium rich feldspars appear to have some potential 
between only two locations (DE and BO) and carbonates have a 
strong potential in discriminating DE samples from other locations. 
This trend in the carbonates can also be observed in the heavy mi-
neral fraction with dolomite, a carbonate variety. Overall, the light 
minerals do not appear to have a strong classification potential for all 
four groups as compared to the heavy minerals. Moreover, the pro-
portions are heavily weighted by quartz which resulted in the other 
minerals representing around 10% of the proportion at best. Data 
pretreatments were unable to reduce this heavy weighting from 
quartz. As a result, focus was drawn towards the heavy mineral 
fraction to differentiate between these locations and no further work 
or data treatment was attempted on the light mineral fractions. 

4.2. Heavy mineral fraction 

The heavy mineral fraction was, as expected, a lot more varied in 
terms of mineral types. With ten mineral types consistently detected 
in all samples. Other minerals were detected in certain samples, but 
they were at an alarmingly low count and were inconsistent be-
tween replicates such that it would not be appropriate to use them 
as classifiers. These were thus disregarded, but kept as part of the 
total count for normalization. 

As seen in the proportion plots (Fig. 4), there is evidence to 
suggest that several of these minerals could aid in the classification. 
Most of these are higher count minerals (more than 10% on average) 
with visible separations in at least one of the locations. A strong 
example is that of dolomite for location DE where little to none were 
present in this location. DE has a large population of pine trees with 
acidic leaves. It is thus possible that the carbonates in the soil were 
removed from this location due to reactions with the acids [12]. This 
is supported by these locations having a lower pH from previous 
tests [27]. Whatever the explanation may be, dolomite is a strong 
classification parameter for the DE samples. However, the lower 
count minerals proportions appear to be more random, mirroring 
the trends seen in the light mineral fraction. 

Data pretreatment was employed with the intention of reducing 
the weight of these higher count variables on the classification and 
evaluating if some of the lower count minerals had classification 
potential which could be enhanced. The plot of proportions indicate 
that the pretreatments appear to alter the inter- and intra-variability 
in a favorable way that improves the separation power in the mi-
nerals. Namely, by reducing the intra-variability within a location 

Fig. 6. HCA of selected minerals using manhattan distance and ward clustering 
(n = 28) with the inclusion of two blind samples. 

Table 3 
False Positive Rates (n = 1000) and Posterior Probabilities for Blind Samples A and B. 
Classification Using LDA With Selected Minerals from the first model. (n = 28).        

BO DE RE VA  

False Positive Rate (%) 11.64 0.00 19.00 9.98 
Posterior Probability (A)  <0.001  >0.999  <0.001  <0.001 
Posterior Probability (B) 0.0659  <0.001 0.150 0.784 
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and increasing the inter-variability between locations. The multi-
nomial logistic regression on these minerals also supports this no-
tion, with several p-values lowered after the pretreatment was 
applied (see Annex Table 2). It is important to note however that 
multinomial logistic regression operates under the assumption that 
classes cannot be perfectly distinguished. As such they do not yield 
accurate p-values for minerals when classes are clearly distinct such 
as dolomite for DE. Post pretreatment, several minerals appear to 
remain unexploitable for classification purposes, and were thus 
eliminated based on their apparent lack of separation in the pro-
portion plot and higher p-value for more than one location class. 
These were apatite, tourmaline, and garnet. The threshold was set at 
0.1 for the p-values, while an admittedly arbitrary choice, it allowed 
for the selection of variables that could still be adjusted moving 
forward. The sole exception to this rule was dolomite who’s low p- 
value was due to its strong discriminatory power [21]. Overall, 
pretreatment was able to improve the classification ability of some 
of the lower count minerals such as chloritoid, hornblende, and 
glaucophane. 

The selected list of pretreated variables contributed to principal 
components that were able to cluster DE samples strongly and the 
other three locations with less certainty. Nevertheless, there was an 
apparent grouping and tendency for each sample to be clustered by 
their location. Based on the observations of the loadings (Fig. 5), the 
locations were grouped into their respective locations not based on 
all the selected variables but between one to three key mineral 
proportions. The fact that RE and VA samples were separated in the 
first model most strongly by hornblende, glaucophane, and chlor-
itoid proportions became crucial when the first set of blind tests 
were evaluated. The key discriminant variables may differ for com-
pletely different locations and should thus be evaluated based on a 
case-by-case basis. 

Hierarchical clustering, as well as LDA demonstrated more of the 
same ideas with the DE samples being distinctly classed and a higher 
uncertainty in classing the other three samples by location. The 
additional benefit of the LDA model is the ability to provide a 
quantification of these uncertainties, thus evaluating the perfor-
mance of the model. False positives rates for RE classification appear 
to be the worst with BO and VA not far behind. Such quantification of 
the uncertainty can be applied to case-work scenarios to clarify the 
uncertainties in the results, as well as in model selection. 
Additionally, posterior probabilities calculated in the classification of 
unknown samples allow for concrete information to be provided on 
the potential sources rather than just an exclusion or inclusion result  
[20]. Based purely on the counts of the heavy mineral fractions (see  
Table 2 and Fig. 4) it would be difficult to determine at which point 
these samples can be classified as different, especially for the BO, VA, 
and RE samples. Assuming a valid construction, these models give 

Fig. 7. Principal component scores from high count minerals and predicted scores of blinds (n = 28) with the predictive scores of four blind samples. Small symbols represent the 
scores of the actual sample and the big symbols represent the center of each location group. 

Table 4 
False positive rates (n = 1000) and posterior probabilities for blind sample classifica-
tion using high count minerals.        

BO DE RE VA  

False Positive Rate (%) 18.21 0.00 18.34 15.56 
Posterior Probability (A)  <0.001  >0.999  <0.001  <0.001 
Posterior Probability (B) 0.0348  <0.001 0.493 0.472 
Posterior Probability (C) 0.872  <0.001  <0.001 0.128 
Posterior Probability (D) 0.008  >0.001 0.981 0.011 
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insight into the tendencies of the mineral counts as well as the 
limitations of the analysis in a meaningful way. Although it may be 
clear that certain mineral count proportions vary in such a way that 
suggest a difference based on location, without having an idea of 
how the variation affects these discriminatory properties, it would 
be easy to falsely exclude or include an unknown sample based 
solely on the apparent differences or similarities in the counts. The 
information provided from the models serves to give a more accu-
rate interpretation of an unknown sample. In the case of this study, 
these models would be able to classify an unknown into the DE 
group with an appreciably high certainty and with less certainty in 
the other three groups, depending on the mineral counts. As such, 
certain samples could be more confidently classified than others 
depending on their variation. This was explored in the blind testing 
phase. 

The incorrect classification of blind sample B into the VA class 
accentuates the uncertainties associated with the first model. 
Additionally, it is worth noting that the models acknowledge this 
uncertainty instead of providing a concrete statement of inclusion or 

exclusion. Without developing these uncertainties, the analyst 
would be stuck making a decision on the samples’ classification and 
could wrongly classify the sample with unfounded confidence. 
Nevertheless, the posterior probabilities provided for the classifica-
tion for blind sample B in Table 3 were still determined to be higher 
than an acceptable margin of error. There was thus clearly a need to 
refine the models. 

As observed in the loadings plot, there are several redundancies 
in terms of the variables, with glaucophane, hornblende, and 
chloritoid heavily weighing the separation between VA and RE 
samples, the two locations in contest for sample B. These variables 
are all low count minerals of less than 5% proportion. As previously 
mentioned, there is a risk in the employment of such data because 
the estimate of relative standard error for these parameters are 
higher. In other words, a small change in counts affects the nor-
malized proportion to a more significant extent as compared to the 
same changes in a higher count mineral. Fig. 8 illustrates this phe-
nomenon with the hornblende (H) and epidote (E) count in sample B 
being manipulated by a subtraction of six in increments of one. The 
shift was much more drastic for each subtraction in hornblende 
count as compared to epidote. Overall, the shift for hornblende was 
enough to move sample B much closer to the RE cluster whereas the 
shift for epidote kept sample B in the same cluster of VA. Numeri-
cally, in principal component space, a difference of six in the horn-
blende counts shifted sample B by 0.577 units. This is contrasted to 
0.283 units for epidote, a difference of approximately half. The 
changes to the posterior probability due to these alterations also 
show a much more significant effect on the classification with 

Fig. 8. Zoomed in plot of principal components of the first model with sample B and manually altered counts of epidote (E) or hornblende (H) for sample B. The point labelled B is 
the original location of the blind sample B, while each point labelled E and H are the alteration in count for epidote and hornblende respectively followed by the number of counts 
subtracted. 

Table 5 
Posterior Probabilities from the first LDA model for Sample B and Sample B with 
Altered Counts of minus 6 for Hornblende and Epidote Respectively.        

BO DE RE VA  

Posterior Probability (B) 0.0659  <0.001 0.150 0.784 
Posterior Probability (B, Hornblende - 6) 0.122  <0.001 0.832 0.447 
Posterior Probability (B, Epidote - 6) 0.036  >0.001 0.166 0.797    
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changes in hornblende counts as compared to epidote (see Table 5). 
When the hornblende count was reduced by six, posterior prob-
ability shifted in favor of RE instead of VA. Whereas for epidote, a 
change in value of six barely affected the posterior probabilities. 

This occurrence is likely due to the fact that the hornblende 
minerals have a lower average count in the samples, which results in 
any deviation having a greater proportional difference with respect 
to the mean [21]. As an example, for a sample with a mean count of 
10, a difference of 1 in the count corresponds to a 10% change 
whereas for a mean of 30, it is 3%. The estimate from a lower mean 
count is thus more prone to error, especially over a small number of 
trials. Therefore, it seems apparent that caution should be exercised 
when using a low count mineral and the threshold should be de-
pendent on the circumstance. If lower count minerals were desired 
to be employed, either a higher number of total counts or more 
replicates should be applied to get a more accurate depiction of the 
mean and standard deviation. These corrections may not be practical 
due to the time-consuming nature of this analysis, as well as small 
sample sizes in case work. It might thus be pragmatic to stick to 
more prevalent minerals. The models were then refined to drop all 
variables that accounted for less than 5% in more than two locations. 
Four variables remained: dolomite, epidote, chlorite, and the opaque 
minerals. 

The refined PCA and LDA models provided a much more rea-
sonable evaluation of the uncertainty towards the classification of 
unknown sample B, with the disadvantage of a loss in performance. 
Although locational groups are no longer as clearly separated from 
before, and false positive rates have increased, these newer models 
better reflect the reality of the similarities between the groups. 
Additionally, the classification for the two sets of blinds were also 
much more accurate. The higher discrimination with the previous 
model was likely a result of over parameterization, a model fitted to 
the training data specifically, but does not in fact yield accurate re-
sults for data outside the training set. A conservative model such as 
the latter type should be favored for application when the true 
identities of unknowns cannot be verified. Finally, it should be noted 
that there are several factors that could influence the sample counts 
outside of random variation for both fractions. Most of these issues 
arise from the sample preparation phase, where identical treatment 
of each sample is not possible due to random and human error. An 
interesting aspect to note was that the first set of blinds were not 
homogenized before sample preparation, whereas the blinds in the 
second set were. It is possible that this resulted in the lower con-
fidence in classification for blind sample B as compared to C and D. 

As previously mentioned, such a probabilistic approach is highly 
applicable to casework. Firstly, it allows for the advancement of the 
interpretation of the results beyond “non-differentiation”. Based 
solely on their mineral counts, samples of VA, RE, and BO may have 
been described as “cannot be differentiated”. The location DE is a 
classic example of an ideal situation where one single mineral pro-
vides the smoking gun for differentiation. Yet it is still important to 
quantify this conclusion, the result that sample A “non-differ-
entiated” from the location DE clearly does not have the same 
strength as the three other blind samples being classified as “non- 
differentiated”. By studying the variation and tendencies of these 
counts, useful patterns and parameters could be identified that 
begin to differentiate between the three questionable locations. 
There is no doubt that just as with any method, an uncertainty 
comes with this approach, but these uncertainties are identifiable 
and quantifiable. This thus permits the dissemination of increasingly 
accurate information for the decision maker. For example, instead of 
describing blind sample B as simply being non-differentiated from 
the three locations in question, one can provide the conclusion that 
the mineral count does not support the proposition that it is of BO 
origin and provides approximately equal support for both VA and RE 
origins. This is much more revealing than stating simply that the 

samples cannot be differentiated. It explains to what extent the 
samples are similar or dissimilar in a way that is useful in answering 
a case relevant question [20]. It is also important to note that only 
one component of the soils were evaluated, and there is a plethora of 
other means to analyze the soil [4,15] that could serve to decrease 
the uncertainty of the interpretation and provide a more robust 
classification of the various samples. Previous methods (XRF, pH 
measures, particle size distributions, and GC-MS) applied to attempt 
to differentiate these samples yielded similar results, in that there 
was a high overlap between the intra and inter-variability. In order 
to combine these analyses in a way that correctly weights the dis-
crimination of the different methods, a probabilistic approach has to 
be employed [20]. 

Finally, the samples worked with in this study (3–4 g) are quite 
large by forensic science standards. Questioned or trace samples in 
case work are often miniscule in nature [3]. Replicates are thus most 
likely impossible for the such samples. In addition, the minute 
samples may mean that a critical number of minerals to be counted 
may not be reached. This study is limited in this regard and future 
work could investigate the effects of smaller total counts on inter-
pretation. Another issue that is not evaluated in this study is that of 
differential transfer. Questioned samples are typically found on a 
secondary substrate after being in contact with the primary source. 
This creates another layer of uncertainty as to what proportion of 
minerals are transferred and if there are differences between dif-
ferent mineral types. Since comparisons would be made to reference 
samples collected from the source locations, they would not have 
gone through the same unknown interactions with the substrate or 
be diluted by background particles already present on the target 
surface. As such, it is very unlikely that a one-to-one comparison 
would be appropriate [6,18]. It would be interesting and pertinent to 
explore the effects of transfer, persistence, and background of the 
mineral suite composition in soil onto different target substrates for 
future studies [30]. Such a study would also benefit the interpreta-
tions at the activity level [20]. 

5. Conclusion 

Four parks in the Lausanne area were sampled for their soils. 
These samples were treated and analyzed for their mineral compo-
sition at the size between 90 and 180 µm and separated into light 
and heavy mineral fractions. The resulting mineral proportions were 
then treated with multivariate statistical methods to provide a 
probabilistic approach in answering source level questions. 

The multivariate statistical evaluation of the light mineral counts 
in this mineral suite study revealed a limited utility of the light 
mineral fractions to discriminate between samples from the four 
locations. Due to the low potential, efforts concerning this fraction 
were abandoned to focus on the more promising fraction. 

On the other hand, the evaluation of heavy mineral counts de-
monstrates greater potential. The pretreatment of the heavy mineral 
fraction improved discrimination for certain variables and resulted 
in the successful creation of three separate models that were able to 
group the samples based on their locations. The uncertainty of such 
models was abundantly clear either visually or quantifiably. Blind 
testing successfully attributed three out of four samples to their 
actual sources but also revealed certain weaknesses of these models. 
For the last sample, classification was not as straightforward, but the 
models were still able to provide a correct classification with lower 
confidence. It was also established that low count variables were not 
suitable for classification due to the higher relative standard error. 
Care should thus be taken with small sample sizes when choosing 
variables to use as classifiers. These models also highlight the pre-
valence of uncertainty in classification and demonstrate that the 
interpretations do not have to be confined to strict categories of 
differentiated or not differentiated. Posterior probabilities, as well as 
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error rates, can be calculated to quantify the uncertainty in order to 
provide more accurate information towards answering source level 
questions. Studies looking into probabilistic approaches towards 
forensic soil examination should be further explored to increase the 
aid towards the interpretation of results. 

Such a probabilistic approach is highly applicable to complex 
casework as it allows for the advancement of the interpretation of 
the results beyond “non-differentiation” and enables to quantify this 
conclusion. There is no doubt that just as with any method, an un-
certainty comes with this approach, but these uncertainties are 
identifiable and quantifiable. This avoids the so-called fall off the cliff 
effect of using the generic terms relating to “differentiation” to de-
scribe samples that have varying probative values. Such an approach 

thus permits the dissemination of increasingly accurate information 
for the decision maker. This information can also then be combined 
in a sensible way with other analysis of soil samples that may also be 
done in parallel. 

Future work could explore such approaches in other components 
in the soil or single mineral studies. Furthermore, mineral suite 
studies such as this one can also be expanded towards activity level 
problems by exploring issues of transfer, persistence, and back-
ground on the mineral counts. 
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Annex 

See Table A1 and A2. 

The following are the parameters used in the sample preparation and SED-EDX analysis of the light mineral fraction: 

Cito-Press Parameters 

Temperature: 180 °C. 
Press time: 5.0 min 
Pressure: 150 bar. 
Cooldown time:6.0 min 

Table A1 
Light mineral fraction identification scheme.     

Mineral Sub-type Classification Criteria  

Quartz – Si  >  79%, and P  <  15% 
Carbonate – Ca  >  80% 
Feldspar Orthoclase (K) 45%  <  Si  <  72%, P  <  12%, 12%  <  Al  <  35%, 9%  <  K  <  35%, Na  <  K, Ca  <  6%, and Mg  <  5% 

Albite (Na) 65%  <  Si  <  85%, P  <  12%, 12%  <  Al  <  28%, 2%  <  Na  <  15%, Ca = 0%, K = 0%, and Fe  <  6% 
Anorthoclase (Na-K) 55%  <  Si  <  85%, P  <  12%, 12%  <  Al  <  28%, K  >  0%, 2%  <  Na  <  15%, Ca = 0%, and Fe  <  6% 
Oligoclase (Na-Ca) 53%  <  Si  <  76%, P  <  12%, 12%  <  Al  <  28%, Na  >  2%, Ca  >  0%, and (Na + Ca)  >  K, and Fe  <  6% 
Anorthite (Ca) 48%  <  Si  <  66%, P  <  12%, 12%  <  Al  <  30%, Na = 0% K, Ca  >  13%, and Fe  <  6% 

Mica Biotite 45%  <  Si  <  72%, P  <  12%, 12%  <  Al  <  35, 9%  <  K  <  35%, 1.5%  <  Mg  <  40%, and 1.5%  <  Fe  <  50% 
Muscovite 45%  <  Si  <  72%, P  <  12%, 12%  <  Al  <  35, 9%  <  K  <  35%, and Mg  <  10%, 

Table A2 
P-values for respective minerals at each location compared to VA with multinomial logistic regression (n = 28).              

Garnet Glaucophane Tourmaline Hornblende Chloritoid Dolomite Apatite Epidote Chlorite Opaques 

Raw Data  

VA vs BO  0.814  0.0560  0.134  0.0306  0.0268  0.262  0.705  0.0565  0.610  0.137 
VA vs DE  0.0323  0.736  0.330  0.944  0.457  0.868  0.318  0.0354  0.0331  0.0462 
VA vs RE  0.394  0.0107  0.407  0.0108  0.0166  0.222  0.657  0.114  0.775  0.0190 

Normalization to Total Proportion 

VA vs BO  0.833  0.0611  0.204  0.0233  0.0312  0.0243  0.643  0.375  0.0567  0.220 
VA vs DE  0.0318  0.917  0.279  0.564  0.558  0.196  0.198  0.058  0.0399  0.0203 
VA vs RE  0.443  0.00996  0.606  0.00826  0.916  0.213  0.686  0.0776  0.726  0.0131 

Square Root 

VA vs BO  0.956  0.0547  0.107  0.0285  0.0269  0.0269  0.670  0.0573  0.0624  0.142 
VA vs DE  0.0257  0.732  0.389  0.993  0.608  0.695  0.308  0.0324  0.0321  0.0450 
VA vs RE  0.408  0.0126  0.330  0.0101  0.0111  0.224  0.729  0.118  0.795  0.0176 

Both 

VA vs BO  0.954  0.0564  0.148  0.0239  0.0287  0.0271  0.635  0.037  0.0545  0.225 
VA vs DE  0.0212  0.866  0.325  0.633  0.708  0.680  0.188  0.058  0.0376  0.0109 
VA vs RE  0.413  0.0130  0.430  0.00686  0.0109  0.229  0.735  0.0807  0.765  0.0131 
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SEM-EDX Parameters 

SEM 
Accelerating voltage:20 KeV. 
Probe current:6. 
Process time:5 s 
Image scan resolution:1024 px. 
Dwell Time:15 µs. 

EDS 

Acquisition mode:Spot. 
Scan time:6 s 
Pulse pileup correction: Checked. 
Auto-Id:All possible elements checked except Oxygen and Carbon. 
The following table describes the classification scheme used for mineral identification adapted from McVicar and Graves [10]:  
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